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We formulate equations of motion and conservation laws for a quantum many-body system in a co-moving
Lagrangian reference frame. It is shown that generalized inertia forces in the co-moving frame are described by
Green’s deformation tensgy,,(£,t) and a skew-symmetric vorticity tens%;w(g,t), where£ in the Lagrang-
ian coordinate. Equations of motion are equivalent to those for a quantum many-body system in a space with
time-dependent metrig,,,(£,1) in the presence of an effective magnetic fiEI,g,(g,t). To illustrate the general
formalism we apply it to the proof of the harmonic potential theorem. As another example of application we
consider a fast long wavelength dynamics of a Fermi system in the dynamic Hartree approximation. In this
case the kinetic equation in the Lagrangian frame can be solved explicitly. This allows us to formulate the
description of a Fermi gas in terms of an effective nonlinear elasticity theory. We also discuss a relation of our
results to time-dependent density functional theory.
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I. INTRODUCTION of the convective motion of particles. This is a natural gen-
Lagrangian and Eulerian formulations of fluid mechanicserahzatlon of the common separation of the center-of mass

are known as two alternative ways to describe dynamics o'imt'on in homogeneous many—body system;. The separat!on
continuum medid. The more common Euleriafor spatia) of the center-of-mass motion also plays an important role in

formulation considers basic collective variables, such as derf€ theory of harmonically trapped systems. For the har-
sity n(x,t) or currentj(x,t) distributions, as functions of Monic inhomogeneity the convective motion can be sepa-
space-time coordinates and t.2 This corresponds to the rated by the transformation to a global accelerated reference

description of a system from the standard point of view of arffame, which is a key step in the proof of the harmonic
observer in a fixed laboratory reference frame. Central noPotential theorefir® (HPT). In fact, the proof of HPT can be
tions of Lagrangiar(or materia) description are the trajec- Viewed as the simplest application of the Lagrangian descrip-
tories of infinitesimal fluid elements. Every small element oftion to quantum dynamics. In the case of a quneral mhomo;
a fluid can be uniquely labeled by its initial positignthat ~ 9€neous flow the separation of convective “center-of-mass
plays a role of independent, so called Lagrangian, coordiMotion leads to an appearance of inhomogeneous inertia
nate. Lagrangian description represents the dynamics of coferces in the equatlons.for the relat|.ve motion. We showithat
tinuum media as it is seen by a local observer, moving witfhese forces can be uniquely described by the §ymme.tr.|c de-
a flow. In the last decades the Lagrangian method attracts darmation tensorg,,(£,t) and a skew-symmetric vorticity
increasing attention as a powerful tool for studying nonlineatensorF ,,(&,t). The deformation tensor enters equations of
dynamics of compressible media with numerous applicationsnany-body dynamics as an effective time-dependent metric,
in cosmology, plasma physics, physics of semiconductorsyhile the vorticity tensor plays a role of an effective mag-
etc. (for a recent comprehensive review see RefRecently  netic field.
we have shown that the Lagrangian coordinate naturally ap- A great advantage of the Lagrangian description of many-
pears in time-dependent density functional the@pDFT), body dynamics is that in the co-moving frame both the den-
where it plays a role of a basic variable for a nonadiabaticsity of particles and the current density become the exact
exchange correlation potentfalt is also interesting to note a integrals of motion. The current density is zero in every point
relation of Lagrangian fluid dynamics to noncommutativeof Lagrangiané-space, while the particles’ density distribu-
geometry and noncommuting gauge fields. tion preserves its initial form. These “conservation laws” are
Commonly Lagrangian and Eulerian descriptions are conguaranteed by a fine local compensation of inertia forces,
sidered as inherent ingredients of the classical continuurexternal forces, and the force of internal stresses. The above
mechanics. In fact, they offer two alternative techniques foiforce balance follows the local momentum conservation law
solving the equations of classical hydrodynamics. However(the exact microscopic Navier-Stokes equatiaiter the
the main idea of Lagrangian method, which is the descriptioriransformation to the Lagrangian frame. We explicitly dem-
of dynamics using co-moving coordinates, is clearly muchonstrate that the exact internal stress force takes a form of a
more general and universal. In the present paper we formwovariant divergence of a symmetric second-rank stress ten-
late microscopic equations of many-body dynamics in thesor. As a byproduct of our formalism we obtain a micro-
co-moving Lagrangian reference frame. The transformatiorscopic representation for the local stress tensor in a general
to the Lagrangian frame corresponds to an explicit separatioguantum many-body system.
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The concept of quantum stress has been introduced by - V2
Schrodinger in 1927.0ver the last two decades there has T=—f dX(//T(X)Enl/I(X), 2
been a growing interest in understanding properties of quan-
tum systems, such as molecules or solids, in terms of the
stress densitysee, for example, Refs. 10-13 and references W= 1 J dxdx"w(|x = x" ) () (X V(X ) p(x),  (3)
therein. A derivation of a microscopic expression for the 2
kinetic part of the stress tensor in quantum many-body sys-
tem causes no problem. This simple generalization of the - s
one-particle result has been obtained in the classical paper by U :J AXUextX, ) 4" (X)), (4)
Martin and Schwinge¥* However, the derivation of the mi-
croscopic form for the interaction related stress tensor turnewherew(x) is the interaction potential, and" and  are the
out to be not that simpl&-14-18|n this paper we present two field operators, which satisfy proper commutation relations
alternative derivations of the symmetric form for the stress + N o
density, which has been obtained by Puff and Gillis in Ref. [00), ptx)]e = Sx =X7). ®)
17. In particular, we show that this form is consistent with The upper(lower) sign in Eqg.(5) corresponds to fermions
the definition of the stress tensor via the variational deriva{boson$, and[A,B],=AB+BA. Using Hamiltonian of Egs.
tive of the energy with respect to the metric tensor. (1)<(4) we obtain Heisenberg equations of motion for
The structure of the paper is the following. In Sec. Il we y-operators,
consider the standard Eulerian form of the conservation laws

2
in a quantum many-body system. In this section we also iﬁw(x):_v_w(x)JrU tzﬁ(X)+de’w(|x
present a compact derivation of the microscopic expression at 2m &
for the exact stress tensor. Section Il is devoted to the for- —x’|)¢f(x’)¢(x’)¢(x) 6)

mulation of quantum many-body theory in the co-moving

Lagrangian frame. In Sec. Il A the key notions of Lagrang-Equation(6) allows to derive equations of motion for any
ian coordinate and of the deformation tensor are formallyphysical observable as well as for any correlation function.
defined. The derivation of the equations of motion in an ar-The most important of these equations are the local conser-
bitrary local noninertial reference frame is presented in Secvation laws or balance equations, which should be satisfied
[l B. Here we also derive the form of transformed many- for an arbitrary evolution of the system. Below we concen-
body Hamiltonian and discuss the physical meaning of gentrate on conservation laws for the number of particles and for
eralized inertia forces. In Sec. Ill C we derive local conser-momentum. These local conservation laws follow the equa-
vation laws, and present a complete formulation of thetions of motion for the densityp(x,t), and for the current,
many-body problem in the Lagrangian frame. It is shownj(x,t), respectively. Computing the time derivative of the
that this problem corresponds to the solution of the equationgensity operator,

of motion for the relative motion, supplemented by the local ~ .

force balance equation. The force balance equation plays a A, = ¢ (X, DX, 1), (7)

role of an additional gauge condition that fixes the referencgye optain the continuity equation that is the local balance
frame. Section IV contains simple examples of application ofqyation for the number of particles,

the general theory. In Sec. IV A we interpret the harmonic .

potential theorefhin terms of dynamics in the Lagrangian an + Iy -0 ®)
frame. In Sec. IV B we apply the general formalism to the a oxr

study of semiclassical collisionless dynamics of a Fermi gas, .

and shortly discuss a connection of our approach to TDDFTVheren(x,t)=(n(x,t)) and

It is shown that in the regime of a fast long wavelength R i o oyt

evolution the kinetic equation in the Lagrangian frame can Ju ) = (X)) =— — z//T—# - ). (9

be solved explicitly. In this case the behavior of the system is 2m X oX

described by an effective nonlinear continuum mechanicsHere the angle brackets stand for averaging with the exact
which, after the transformation to the laboratory frame, re-many-body density matrix. Similarly using E@) we derive
duces to the generalized collisionless hydrodynamics ofhe equation of motion for the current, E@) (see, for ex-
Refs. 19 and 20. In Sec. V we summarize our results. ample, Refs. 14 and 18

Il. CONSERVATION LAWS IN THE LABORATORY
REFERENCE FRAME: DEFINITION OF THE STRESS
TENSOR

N kin, cimt 0
m—;tﬂ +FHF 4= U= 0, (10)

_ _ . _ Equation(10) has a meaning of the local force balance equa-
In this paper we consider a system Mfinteracting par- tion in the fixed laboratory reference frame. Vectbf§ and
ticles in the presence of a time-dependent external potentig@n jn Eq. (10) correspond to the forces, which are related to
Uex(X,t). The corresponding Hamiltonian takes the follow- the kinetic and the interaction effects, respectively,

ing standard form: 01 )ataw e s
PN — —( —— 4+ ——LC - —y2%3 ) - (11)
OXFax¥  oxVoxt 2

H=T+W+U, (1) © T ax"2m
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aw(|x = x'|) , Equations(11), (13), and (14) show that the net internal

sz(x,x ). (12) force,F‘;'”+F':t, is representable in a form of divergence of a
symmetric second-rank tenshr,,. Tensorll,,, describes lo-

In Eq. (120 we introduced the notationpy(x,x’) cal internal stresses in the fluid. A contribution of the con-

=(T ) T (X") (X" ) h(x)) for the two-particle density matrix. Vective motion of particles to this tensor is known exadétly.

Obviously, the last term on the left-hand side in Etp) is It is equal to the macroscopic momentum flow tensor,

the force produced by the external potential. The kineticMv,.v,, Wherev=j/nis the fluid's velocity. It is convenient

force of Eq.(11) has a form of a divergence of a symmetric t0 separate this contribution explicitly and rewrite the con-

second rank tensor. This automatically implies vanishing inServation laws of Eqg(8) and(10) in the following familiar

tegral kinetic force/F<"(x, t)dx=0. The Newton’s third law ~form:

requires that the forcE'l'L1t of Eq. (12) should obey the same p

property, which is however by far not obvious. In fact, the Din+n—wv,=0, (15

possibility to represent Eq.12) in a divergence form has x

been a subject of a long discussion in the literattiré:16-18 5 ;

An elegant symmetric representation of the stress tensor has 7 7 -

been presentedunfortunately without derivationby Puff MNBw,,* P N Ve =0, (16

and Gillis in Ref. 17. Since this representation is of primary . . -

importance for our paper, below we give a compact derivaWhere Dt:(.a/ ) +vV is the convective d_erlvat|ve _arﬂw .

tion of the Puff and Gillis result. =T,,+W,, is the exact stress tensor, which contains the ki-

netic, T,,, and the interaction)V,,, contributions. The inter-

int _ ’
F. = dx

The symmetry of the functiop,(x,x") with respect to the o A X
permutation of coordinates allows us to transform veEﬁr action stress teT‘SOWw IS given by. Eq.(14), while the
Eq. (12), as follows: kinetic part, T,,, is defined as follows:

e I B TS S
FM() = f dX,&NGZXMX D xx) T 2m<(q#¢) Qi+ (@) Gt = 58V n>, (17)
, where §=-iV-mv is the operator of “relative” momentum
:} dx,aw(lx |)[pz(x—x’,x) + pa(X,x =X")] which accounts for the above-mentioned separation of the
2 X'+ macroscopic convective motion.
1 aw(|x') Equations(15) and(16) form a basis for a hydrodynamic
=—— | dX'——[pa(x +X",X) = pa(X,x = x")] description of a nonequilibrim many-body system. Accord-
2 298 ing to the Runge—Gross mapping theorem of TDBFhe
1 o aw(|x']) exact many-body wave function/density matfifor given
=-3 J dx’(ef - 1) pwy pa(X,x = X"), initial conditions is a unique functional of velocity(x,t).
Therefore the stress tens@,, is also a functional ofv.
whered, =3l dx,. Using an obvious operator identity Hence Eqgs(15) and(16) can be viewed as a formally closed

system of equations that completely determine the dynamics
of collective variables(x,t) andv(x,t). These dynamics are
governed by the external forced,U.,; and by the force of
internal stressg,P,,,. Since the convective motion has been
we arrive at the following final representation for the local explicitly separated from the stress tensor, only the relative
force FI;T: motion of particles contributes tB,,,. A particular form of

P, should be determined from the solution of a many-body
problem in a reference frame moving with the “center-of-
mass” velocityv(x,t). In the rest of the present paper we
derive equations of many-body dynamics in this co-moving

whereW,,(x) is a stress tensor, which is responsible for theframe and present simple illustrative examples of their solu-
contribution of interparticle interaction to the force balaftce tigns.

1
V-1 :f x' Ve Vd\
0

FM(x) = %wﬂxx), (13)

1 XX ow(|x[)
Wlw(x) - 5 dx |X'| r?|X’| I1l. QUANTUM DYNAMICS IN THE LAGRANGIAN
N FRAME
X J po(X+ XX x=(1=-Nx")dN.  (14) A. Definition of the Lagrangian reference frame
0

Co-moving or Lagrangian frame is a local noninertial ref-
In the next section we will show that parameXein Eq.(14)  erence frame which moves with the velocityx,t) of the
has a deep geometric meaning. It can be associated to tiflgid. Formally the transformation to the Lagrangian frame
natural parameter for a geodesstraight line in the present corresponds to a nonlinear change of variablex(¢,1),
case that connects two interacting particlésee also the which maps old coordinates to new coordinateg. For a
Appendix. given velocity distribution the transformation function,
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x(&,1), is defined by the following initial value problem: where Ug(&,1) =Uq(x(&,1),1), and field operatorsi(&,t)
X(ED) satisfy the following equal-time commutation relations:
—— =V(X(£D,0), x(£0)=§. (18) ) 1
A [4'(), W &)]e= =&~ &). (22)
If the functionv(x,t) is continuous and satisfies the Lipschitz V9
condition inx, there exists a unique solution to the first order To shorten the notations in E(R1) we omitted the explicit
differential equation of Eq.18).22 Therefore, under the time dependence in the argument @operators. The first
above conditions on the velocity distribution, the map: term in the large parentheses in K1) is the Laplace op-
— & is unique and invertible. erator in a reference frame with metrigg, (see, for ex-
Physically the functiorx(&,t) corresponds to the trajec- ample, Ref. 2% while the second term comes from the trans-
tory of an infinitesimally small fluid element. Every fluid formation of the time derivative in Eq®). This term is
element(and therefore every trajectoris uniquely labeled —proportional to vectob*(£,t) that is the vector of velocity,
by the element’s initial position—the Lagrangian coordinatetransformed to a new frame,
& The inverse functioné=£(x,t), which determines the prn
transformation from the Lagrangian to the laboratory refer- vHEN = —
ence frame, recovers the initial position of a fluid element oX
that at instant arrives at the point. The nonlinear transfor-  The interparticle distance ., in the argument of the inter-
mation of coordinatess=x(£,t), induces a change of metric action potential in Eq(21) equals to a length of geodesic
« oa that connects pointg and §'. Geodesic,zg¢/(\), param-
D (190  etrized by a parametex (0<\<1), is a solution to the
et ¢ following equatior?*
In classical continuum mechanics the symmetric second rank i (AN SBINY =
tensorg,,,(£,t), Eq. (19), is known as Green's deformation _ 20+ D@2 NZ'0) =0, (24)
tensor! This tensor is normally used to characterize a dewherez=4z/J\, andl';; is the affine connection

v (X(£:1).1). (23

(dx)*=g,,d¢"d¢", g, =

formed state of a system within the Lagrangian description. 1 ig ig g
The corresponding contravariant tensgt!, is defined as rgﬁ: - M”(—”; +—2§——“V§). (25)
follows: 2 s I3 3
aE" og" Equation (24) should be solved with boundary conditions
04, =48, og*'= gyt (200  z(0)=¢, z(1)=¢'. It is convenient to parametrize geodesics

by a natural parameter, which is chosen in such a way that an

Since the deformation tensgy,, has a meaning of the metric absolute value of the “velocity,z|=g,,2", becomes in-
tensor in the Lagrangia&space, it should play a key role in dependent ok along the curve(\). For this parametrization
the description of many-body dynamics. It is quite natural tothe lengthl; ./, which enters Eq(21), is simply equal tdZz|
expect that the general equations of motion in the Lagrangiaat any point on the geodesic,

frame should reduce to those in a space with time-dependent 1

metricg,,(£,t). Below we confirm this intuitive expectation leg = f
by explicit calculations.

Vg, (2Z* 002 (VN =g, 27" (26)
0

Equation(21) is the equation of motion for the operator
Y(&,1)=y(x(£,1),t). Due to the Jacobian factor 4g in the
] ) ] . ~_ commutation relations of Eq22), the quantity/(&,t) cannot

In this section we derive quantum equations of motion inye jnterpreted as an operator for annihilation of a particle in
a general noninertialnot necessarily Lagrangiameference 4 given point of £&space. In particular, the operataté)

frame. The fr-ame is defir}ed by its velocityx,t), Which =(&) (& does not correspond to the density operator in
enters the trajectory equation of H48), .and thus.prowdes 2 the new frame. By definition the density is a humber of par-
unique and |nfvert|ble mall'pg—>§. As ?ﬁrst step |fn the deri-  icjeq per unit volume that is changed under a volume non-
vation we perform a nonlinear transformation of coordinates, eqerying coordinate transformation. Therefore it is natural

x=x(¢,1), in the equation of motion, Eq6), and in the 5 jefine the physical field operators and the density operator
commutation relations of EqS5). Straightforward calcula- 45 follows:

tions lead to the result,

B. Equations of motion in a local noninertial reference frame

T — L4 ey = qll4,, 1
iagb(g)—( 11 4 ’Eg‘“’a WO =g""U ), Y(&=g"¢' (D, (27)
5 “\ T o m e v - _ —
~ amygaet T o 78 =0 (&6 = ov (O, (28)
+ Fﬂ“(g,t)i + Uext(g't)> e which al_JtomaticaIIy accounts for the proper chgnge of a unit
ag" volume in the deformed reference frame. Obviously the re-

defined field operatorgf(g) satisfy the common commuta-

+fdf'W(|g,gr)¢T(§')¢(§')¢(§), (21)  tions relations,
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[01(&),p(&)]. = 8(&- &). (29) :
The renormalization ofi-operators, Eq27), is equivalent to

the corresponding multiplicative redefinition of the many- -
body wave function. This redefinition is aimed to preserve \7V=—Jd AEW( . NG E T (EVHE Y 37
the common probabilistic interpretation and the standard 2 sdEWlle )9SV (EHNENNE), (37
form of the normalization conditions in the new reference

- . — gtv . —
- J d&\oR, g )R V), (39

frame (similar arguments were suggested by Poddisky 2 T oM
early days of quantum mechanics fdg Uext— m“uz— oy (38)

Let us show that the renormalization of field operators,
Eq. (27), also simplifies the form of the equations of motion. Equations(34)—(38) represent the main results of this sec-
First we note that the differential operator on the right-handion. Equation(34) is the Heisenberg equation of motion for
side in Eq.(21) (first two terms in the square bracketean  the physical field operator, while Eq85)—(38) establish the

be rearranged as follows: rules for the transformation of the many-body Hamiltonian
to an arbitrary local noninertial reference frame.
110 *'ag“Vi+F6”i Formally the Hamiltonian of Eq935)—(38) describes a
2m gﬁf“ 0" oE* system of quantum particles in the presence of an effective

vector potentialmv(&,t) and an additional effective scalar
) (30) potentialmiv?/2. The particles live in a space with the time-
' dependent metrig,,(£,t) and interact via pairwise potential

o - which depends on the length of a geodesic connecting pair of
where we introduced an operator of “kinematic” momentumpayticles, Additional “potentials” and a nontrivial metric ten-

in the noninertial reference frame, sor are responsible for generalized inertia forces exerted on a

1K gKE  TH 1 (0 —
Vg mvuv iﬁ(_\,gvﬂ
\,g 2m 2 2Vg\ 9&"

. 9 particle in a general noninertial reference frame. To get a
K,= —|07—§M -no,, (31) transparent physical understanding of these forces it is in-
structive to look on dynamics in the semiclassical approxi-
(Raising and lowering of tensor indices are performed acmation. Since the most important inertial contributions enter
cording to the standard rules, i.8,=g,,5" or kﬂzg,wkw) only quadratic parts of the Ham!ltoniiEqs.(C%G) and(38_)],
Using the equation of trajectony(&,t), Eq. (18), and the W€ ne_glect for a moment th_e interaction, and consider an
definition of metric tensog,,,, Eq. (19), one can prove the ©duation of motion for the Wigner function,

following identity: = f .pn<~,r( 7 >~( 7 )>d
— i +1 _ X
g_l/4(?gl/4 1 (9 In g 1 ( (? /J') p(gvt) e lp g 2 1t w g 2 yt g

YT Vg (32

a4 a 2 Vg in a gas of noninteracting particles. In the semiclassical limit

The quantity on the right-hand side in E(2) coincides the Wigner function satisfies the following kinetic equation:

with the last term on the right-hand side in E§0). Hence g H g H Jf
the sum of the corresponding term in the equation of motion, ;tB + ;p,f)f - ;p’g)f =0, (39
Eq. (21), and of the time derivative ofs reduces to the fol- P 3 & P

lowing compact form: where H(p, & is the semiclassical Hamiltonian function,

~ which corresponds the noninteracting part of ,
W 1 9 1/4‘99 W g P &P
&gﬂ “ly=g =g =" (39)

— 124 0"
7 A H(p.) = 2 — (P~ M5,)(p, =N, + U= m™2
Substituting Eq.(30) into Eq. (21) and using Eq(33), we
obtain the final equation of motion for the renormalized field (40)
operatory(£,t) Substituting Eq(40) into Eq. (39 we get the result
) _( Kok T T ). iy g iy (agaﬁ PaPp _ *
Ta T \9 om 9 TVex” e a tm P )agv 98" 2m g e
) ~ =~ (9U &f
+ f dE'W(l g ) Y (E) W E ) U &). (34) ;Xt> pe =0. (41)

Equation(34) allows us to recover a form of the transformed Inertia forces do not explicitly show up in E¢41). The

HamlltomanH[dfr l/f] which, together with the commutation reason is that Eq(41) is the equation for the functlom
relations of Eq(29), determines the dynamics of the system,which depends on the canonical momentpnThe phyS|caI
velocity of a particle in the new reference frame is propor-

, (35 tional to the kinematic momentuid =p-nwv (i.e., aﬁ/&pM

—|l)
El)
cbL

H= +
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=K*/m). Therefore it is more natural physically to considerto derive the equation of motion for the density operator

K as an independent variable in the kinetic equatlon Th?i(g )=y (£,0)9(£,1). Using Eq.(34) to compute the time
distribution function of the kinematic momenturf{(£,t),  derivative of the density operator we find that the desired

can be introduced as follows: equation indeed reduces to the common form of the continu-
~, ~ ity equation,
fK(f,t) = fK+rﬁ\7(§1t) . (42)
Performing the corresponding change of variables in(&g). Zﬁ aj" o 46
we obtain the final semiclassical equation of motion for the g (46)
distribution functionf (&,t) in the local noninertial refer- N
ence frame, if we define the current operatgt(£,t), as follows:
(9?,2 KVO"?(( ) ~ 99,5 KKP - J IUi— —_
KL TK I m= +KEE - 2eBr v ~1 oY l// v~~~
ot m [?gV [ ot v agv 2m J,u g”“ ¢ Fng éléVw UVlﬂ lﬂ' . (47)
K2 af’ The standard form of the continuity equation, Eg6),
+ Pz Uexi= m- 2 aKV =0, (43 should be considered as one more justification for the redefi-

_ nition of field operators, Eq27). We would like to outline a
where a skew-symmetric second rank tenBgy is defined  very natural form of the current operator, H47). Despite

as follows: the presence of the Jacobian fact(org or g in the Hamil-
tonian, they completely vanish in EG47) [as well as in the
EF = @& - @ (44) definition of the density operator of E(R8)].
mYggr gt From this point we restrict ourselves to the Lagrangian

frame, which is the local reference frame, moving with the
Since te”SOFMv van:sshes for an irrotational flow, we name it ye|ocity v of the fluid. In this special case the continuity
the vorticity tensof® In the next section Eq(43) will be  equation admits a very simple solution, Let us calculate the
applied to the derivation of generalized collisionless . = .
hydrodynamicg®:20 expelc):tattljon valfue of the Icurrtt)ant ope;awr_Eq. E’]47)l'Tf?ISh .
P . . can be done, for example, by transforming the right-han
The expression in the square brackets in @8) contains side in Eq.(47) back to the laboratory frame, and by using

all inertia forces. These are all the terms except for the exz
ternal force,d, U, The first term in the square brackets is Eq. (9) together with the definition of the velocity=j/n.
The result takes an extremely simple form

the linear acceleration force, while the last term is related to
the kinetic energy of a moving frame. In a particular case of B -~

a homogeneously rotating frame the last term is responsible J“(E1) =(j*"(&1))=0. (48)
for the centrifugal force. The second and the third terms i
the square brackets correspond to inertia forces that depe
on a velocity of a particular particle. The second term is the

classical Coriolis force. This force is proportional to the
skew-symmetric vorticity tensor, which defines a local angu- Combining Eq.(48) and the continuity equation of E¢6)

lar velocity of the reference frame. The third, bilinear in we arrive at the conclusion that the densii,t) is inde-

particle’s momentum term is less common. The corresponoQendent of time
ing inertia force makes a free particle to move along a geo- (&) =T(£,0) =ng(&), (49)
desic in a local noninertial frame. Indeed, the third term in

the square brackets in E(13) can be rewritten as follows: where ny(x) is the initial density distribution. Therefore in
the Lagrangian frame not only the number of partidiess

éms the current density is exactly zero in every point of the
Lagrangiang-space. This is of course not surprising, since an
“observer in the co- moving frame should not see any current.

1 4 1 . : o . )
L gagKaKﬁ: =g, T* KKP, (45) an mtegrql of motion, but the dens_lty_ltself is also a conserv
2m 9¢" m>rH ap ing quantity. Evolution of the density in the laboratory frame

) i can be calculated with the following formulaee Eq.(28)]:
where we have used E@5), which relates the affine con- _

nectionI'%; to the metric tensog,,,. The right-hand side of n(xt) = nEx.H.H _ no(£(x.1) (50

Eq. (45) is easily recognized as a covariant component of the T g(EX DD Vg(EXD,

force in the equation of geodegmee, for example, E¢24)]. _ o o ) )
Equation(50) is, in fact, the explicit solution to the continu-

ity equation of Eq(8), which defines the density(x,t) as a
functional of velocityv(x,t).

1. The continuity equation Equations(48) and (49) demonstrate the main advantage
The first problem we address in this section is a propefDf the _Lagranglqn frame for_the description of many.—bod.y
o = .. dynamics. In this very special reference frame the inertia
definition of the current operatof!, in a general noninertial - ¢5-ces are adjusted to get exactly zero current density and
reference frame. The easiest way to establish a forjt &f  therefore to keep the density of particles fixed during the

C. Conserving quantities and balance equations
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=Pl (56)

construct a complete many-body theory in the co-moving IE* Ix” 9E°
frame. The frame’s velocity enters the equation of motion,

Eqg. (34), as an external parameter. Imposing the localwhere the semicolon is used to denote the covariant deriva-
“gauge” condition of Eq(48) we specify the reference frame tive. The covariant divergence of the stress tensor in(&).

and thus get the complete theory with all quantities defineds defined as follows$*2’

by the initial conditions.

whole evolution of the system. Equati¢fhd) can be used to XM IE® 9 [ IEP X'~
Xt IEY ’

) ) ’EV ﬂ +Tv Pa e Pa i&\’gpy }&gaéﬁaﬂ.
2. Local force balance in the Lagrangian frame Fr val o T opal v g PYe 2 ger
Let us turn to the local momentum conservation law. In (57)

the laboratory reference frame it is given by E§6) [or,

equivalently, by Eq(10)]. Since in the Lagrangian frame the Substitution of Eqs(54) and (56) into Eq. (53) leads to the
current density is zero, the local momentum conservatiorinal form of the force balance equation in the Lagrangian
law should reduce to the zero force condition—the inertiaframe

forces should exactly compensate the external force and the p ~~
force of internal stresses. Below we derive an explicit form ’ﬁ|:m_li + i<uext_ mﬂ)] + vraTDV_ =0. (58
of this balance equation by the direct transformation of Eq. a o 2 oy

(16) to the Lagrangian coordinate% First we express the

vector of velocityv and the stress tenser,, in terms of the A direct comparison of the force term in the kinetic equation

i o =7 . of Eq. (43) and the term in the square brackets in Esp)
corresponding quantities,and Py, in the Lagrangian frame  shows that the latter is exactly the sum of the external force
agﬁ and two inertia forces that are independent of particle’s mo-
Uﬁ(g t), (51) ~mentum. These three forces are balanced by the force of
internal stressefghe second term in E¢58)]. The net force,
exerted on every fluid element in the Lagrangian space, is
gﬁ X'—, zero, which results in a zero current density and a stationary
Pu= IxH (9§yp HED. (52) particles’ density distribution. It should be noted that the rest
of inertia forces(those, which are different for different par-
Equation(51) follows the definition ofv#, Eq.(23), while in  ticles in a fluid eIemer)tlmpI|C|tIy present in the kinetic part

Eq. (52 we adopted the standard tensor transformationyf the stress tensd?,,,. To see this more clearly we need to

rules?* Substituting Eqs(51) and (52) into Eq. (16), trans-  derive an explicit microscopic representation for this tensor.
forming the derivatives, and multiplying the result by

ax*[ &%, we obtain the following equation: 3. Stress tensor in the Lagrangian frame
oxt o[ aEP_\  oxtoE® o [ 9gP ox'~ U ineticT i-
mn——(iulg> +— —§—5<i—Pﬁ +n—=2=0. In general both kineticT ,,, and mteracuonW , contri
JE* at\ oxt OE™ IXY 9E°\ axt 9&EY a&E” butions to the total stress tenscFP —T +WW, can be
(53) found using the common transformatlons réfes
. . . e (?Xa (9Xﬁ
The first term in Eq.53) can be further simplified as fol- T (£1) = (X(£,1),1) (59)
lows: wv agﬂ agu Tap
axwagﬁ _ B~ e wt o, 1P @ B
R P e a2 e W60 = 2 WagK(ED.0). (60)

54
64 Here stress tensors,z(x,t) andW,4(x,1), in the laboratory

In the sequence of transformations in E§4) we used an reference frame are given by E¢$7) and(14), respectively.
obvious identity (ax”/&g“)(agﬁlaxﬂ)z(?g, the trajectory We shall however follow another route, which takes full ad-
equation of Eq(18), and the definition ob*, Eq. (23). A  vantage of geometric ideas we develop in this paper. The
similar simplification of the second term in EG3) is even  transformed many-body Hamiltonian of E¢35)—38), is an
more straightforward. One only needs to apply the chain rulexplicit functional of the metric tensa;,,. Therefore we can
for the calculation of the spatial derivative and take into ac-find the required stress tensor by computing the variational
count the following explicit representation for affine connec-derivative of the energy with respect to the metric tensor.

tion (see, for example, Ref. 24 More precisely, we make use of the fact that under a small
variation of the metric, the variations of the kinetic energy,
o _ 08" P (55) Eq. (36), and of the energy of interparticle interaction, Eg.
B XY 9Er9EP” (37), are related to tensofEM andW,,,, respectively,

—_
/

As a result we get a very natural expression for the second

term in Eq.(53), 5<§|'>:J dg\—fﬁg"’:l'“v:—f d§L;5ngTr”V, (61)
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— - 1
P \r’ ~ \ ~ 1 . v
W) = f dé" ) oW, = - f dé" ) o9, 7. (62) Ao =51 — fo dN3g,, [ZO0]Z )2/
- _ . N2’ ()
Such a definition of the stress tensors is closely related to the =[d&] dnié- Z()\)]59W(§)2|—,
common definition of the energy-momentum tensor in gen- 0 n7’
eral relativity (see, for example, Ref. 27The main advan- (65)

tage of this definition is that it automatically gives a symmet- . . . .
ric form of the stress/energy-momentum tensors. Recently \Alherez(l)\):zﬂ’”(()\). is the geodesic which connects points
very similar approach has been used to derive a microscopil @1d 7. Substituting Eq(65) into Eq. (64), and using the
expression for the stress tensor in the equilibrium quanturf€finition of Eq.(62) we get the following representation for
many-body system within the local density approximafidn. (he interaction part of the stress tensor:
Reference 13 also contains a general discussion of the above 1 [t
geometric definition of the stress tensors in the context of WHY(E 1) == —,—f dA f dnpdn'd&-2,,(N)]
nonrelativistic quantum mechanics. 27gJo

The variation of the Hamiltonian should be taken at con- -Zl:m'()‘)-zzm ) awlly )

stant I];—variables (since they satisfy the equations of : ‘0o(m,7m'). (66)
motion)'32” and at constant velocity. The kinetic energy

operatorT of (36) contains the metric tensor only in a form Let us evaluate the right-hand side of E66) at the Euclid-

| dl

xs xs

of g**, \g andg 4. Noting that ean metricg,,=4,,. In this casel, , =|»—»'| while the
geodesidparametrized by the natural paramgiera straight
line

[ [ v - — - v
SNg=-3v90,,80", 8gV4= 397,59,

Zr],n'()\) = 7’+ (1’, - 1’))\

The above expressions fby ,» andz,, ,,(\) should be sub-
stituted into Eq(66). Introducing a new variablé' =5’ - n,
and removing the delta-function by the integration owgr
we obtain the result that exactly coincides with Ed4).
Therefore the symmetric representation of Etyd), which

we can easily compute the variation Bfand then identify
the kinetic stress tensor using E@1). The result of the
calculations takes the form

~ 1 A - has been obtained in the preceding section by somewhat ar-
T(&D = om (K g Y4 (K, g Y4p) tificial manipulations, has a clear geometric meaning. In par-
ticular, the internal parametex in Eq. (14) is the natural
+(kyg—1/4@)f(kﬂg—1/%) {:_)alrameter for a geodesic connecting two interacting par-
icles.
I = v Equations(63) and (66) are the principal results of the
B EQWV—E&—@W\*QQ a_gﬁ\_a . (63) present section. They define explicit microscopic representa-
tions for the stress tensors in a local noninertial reference
frame.
If we evaluate the right-hand side in E@3) for Euclidian The zero force condition of E¢58) with T:,M of Egs.(63)

metric, g,,,=4,,,, we immediately recover Eq17). There-  5nq (66) is equivalent to the requirement of zero current
fore the commonly used symmetric form of the kinetic Stres%ensity Eq(48). Hence we can use E(59) as an alternative
tensorT,,, Eq. (17), is in exact correspondence with the «g4,ge” condition to fix the velocity paramefét&,t), enter-
geometric definition of Eq(61). ing many-body equations of motion, E@®4).

Calculation of the variatiorsW, Eq. (62), is a little bit
more involved. Since the interaction Hamiltonian of Egj7)
depends om,,, only via the length of geodesic, we have IV. EXAMPLES AND APPLICATIONS

A. The harmonic potential theorem

W(l,, ) _ ) As a first simple example of application of our general
(ﬂ—Pz(ﬂ, n'), (64 formalism, we consider many-body dynamics in the presence
nn of the following external potential:

< 1
5{\/\,} = E J dnd”,ﬂﬂxﬂ’

~ ~ ~ ~ - 1 JngV 97
wherefo(, )= (3 () (' A n' ) ). The next step is Uenl 1) = 2 M XX+ B, (O, ©7
to compute the variation of the functiond) ,/[g,,], Eq.  wherew,, is a constant tensor arg,(t) is a time-dependent
(26). Let X in Eq. (26) be a natural parameter for a geodesicvector[without loss of generality we can skf,(0)=0]. The

in the space with “unperturbed” metrg,, (not the “full” initial value problem with the external potential of E§7) is
metric g,,,+ 89,,,). For this parametrization the variation of exactly solvable, which is known as the harmonic potential
| y.7[9,,] takes the form theorem(HPT).® It is also known that HPT is related to the
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covariance of the time-dependent Schodinger equation undet t=0 the stationary force balance equation is fulfilled,
the transformation to a global accelerated reference frame.
Therefore our formulation of the many-body problem should ’?
be perfectly suited to the demonstration of HPT. no(&) 08" P
Within the present Lagrangian formulation one needs t
find a self-consistent solution to the many-body equation o
motion, Eq.(34), and to the force balance equation, EsB).
Let us assume that velocity(x,t), which defineqvia Eq. ﬁZR (t)
(18)] the motion of the reference frame, is a functiontof o2 + Mo, R() + E,(1) =0, (74
only, v(x,t)=V(t). In this case the trajectory of a fluid ele-
ment takes a form then both the equation of motion, E¢/1), and the force
balance equation, E472), preserve their initia(stationary
x(&1) =£+R(1), (68) form. Therefore the many-body system in the co-moving

whereR(t) is a solution to the following Cauchy problem: frame remains in the initial stationary state, in particular,

P..(&,1)=P,(£,0). This statement is the essence of HPT.
=V(t), R(0)=0. Within the present formulation of many-body dynamics it
appears quite naturally. In fact, HPT is a built-in property of
our self-consistent approach. This actually means that any
approximate treatment of a self-consistent system of Egs.
(34) and (58) should automatically satisfy HPT.

(£,0) + Maw,,£"=0. (73

f at all t>0 the center-of-mass coordind®t) satisfies the
classical equation of motion,

IR(t)

Clearly, if our anzatzy(x,t)=V(t), is a self-consistent solu-
tion, thenR(t) should correspond to the center-of-mass co-
ordinate. Using Eq(68) we get the following results for the
metric tensory,,,, the velocityV(£,t), and the effective po-

tential, which enter Eqg34) and (58), B. Geomgtric formul.a’_[ion of gengrglized hydrod_ynamics:
nonlinear elasticity of a collisionless Fermi gas

9= G V(ED =V, (69) The HPT type of motion provides an extremely simple
~~ example of many-body dynamics without any deformation of
UeX(£1),1) - m2- = 1o LE4E = L () + & ma, RY(D) local fluid elementsg!;'=4,,,). In this section we apply our
2 2°F . approach to a much more general situation with a nontrivial
+E,(0)]. (70) dynamics of a fluid. Namely, we consider a semiclassical

dynamics of an interacting Fermi system in the time-
FunctionL(t) in Eq. (70) is the classical Lagrangian for a dependent Hartree approximation. The problem reduces to
particle moving in the harmonic potential of E&7), the self-consistent solution of a semiclassical collisionless
m kinetic equatior{see Eq.(43)],
L(t) = EVZ(t) - 3Ma, RYORY(Y) - E,(ORX().

gt Ko, o - ag B
K+K__K_{m@+KMF _ KK

The equation of motion, Eq(34), and the force balance gt mag” at K¢ 2m
equation, Eq(58), simplify, respectively, as follows: - ~,
- +i(u—m—"‘—v UM)}M—K—O (75)
(9 ! VZ l ~ v - l
ii:(__§+_mwﬂvgygv)l//r (95 2 (9KV
dt 2m 2 and a force balance equatifsee Eq.(58)],
! _ &l e T (?“ e -
+fd§w<|§ EIM(EW (& m—”m—(u-mﬂ> \gpy 0. )
Mt o 2

oV, (t ~
+ 5"( m—a"t(—) + Mo, R¥(t) + Eﬂ(t)) Y, (71 HereU=U(&,t)+Uy(£&,1) is a sum of the external potential

and the Hartree potential,

V
ma atu(t) + mvaRV(t) + E,u(t) UH(g:t) = f W(|§,§,)n0(§/)d§/ )

( (£1) + Mo §V> _ (72) Since the interaction effects are already included the
No(€) agv Py K 0, mean field level in the self-consistent potential, only the
- kinetic part of the stress tensor contributes to ths) ie.,
where we also performed a gauge transformatigiié,t) '|5 SSMISK, K,,f /\g. The last expression foP s a
—¢(§ texd - |mV§+|ft Ldt'], which corresponds to the pla|n semlcla55|cal limit of the general kinetic stress tensor,
transformation from the canonical to the kinematic momen-Eq. (63).
tum. The problem of solving Eqg75) and (76) can be refor-
Let, initially, the system be prepared in a stationary statenulated as follows. Let us substitute the sum of the inertia
(or in arbitrary mixture of stationary stateIhis means that and the external forces from the balance equation,(E8),
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into the kinetic equation of Eq.75). After the substitution respectively. Both terms in the second line in of E£Y) also
the potentiall in Eq. (75) cancels out and the kinetic equa- give a contribution~u/L, while the term, related to the Co-

tion reduces to the following universal form: riolis force, is proportional td=~%+/L, whereT is a rota-
~, v 3 B aB o ~, tional (or transversecomponent of the velocity. According
Ik + Koty _ (KMF - 9ap K™ _ EPV'V>M_K =0, to the force balance equation of E6), for any physical
gt mag” oo 2m ng )oK, velocity the transverse part of the linear acceleration is com-

(77 pensated by the transverse part of the vem@'/ nO)INDZ;V.
Hencev should be proportional teu?/L. This means that

where the stress tens#,, is defined as follows: the contribution of Coriolis force to the kinetic equation is of
- 1« KK, the order of7u?/L2. Therefore, to the leading order in the
P.(§1) = EE —’:n—fK(f,t)- (78 small parametey=ru/L<1, only the first term in Eq(77)
'Y K

gives a nonvanishing contribution. Thus the universal prob-
Equations(77) and (78) constitute a closed set, which is lem of Egs.(77) and (78) reduces to the following trivial
structurally similar to the system of Vlasov equations with aéquation:
self-consistent force. The skew-symmetric vorticity tensor, .
F..(€.1), and the symmetric deformation tensgy,,(£,1), Ef,&(f,t):o. (80)
enter Eqs(77) and(78) as external parameters, which gov-
ern the evolution of the system. Hence these equations definyuation(80) shows that for a fast, small-gradient evolution
a distribution functionfy (¢,t), as a unique functional ¢%,,  the distributiorl functiog in the Lagrangian frame preserves
andg,,, provided the initial condition}k(g,O):?Ef)(g), is its initial form, fk(f,t):fff)(g). In this respect the dynamics
given. Equatior(78) determines the stress tensor as a univerfemind the HPT type of motion. However the evolution of

sal (i.e., independent of external potentifiinctional of F , the velocity is by far not trivial. Below we consider a system
K which evolves from the equilibrium state. Substituting the

anddg,,, I A C
Ouv _ o equilibrium distribution function into Eq(78) we get the
Puv=PulF..0,,1(ED. (790  stress tensor functional,
The vorticity and the deformation tensors contain nine inde- ~ S,
H = i P,uv(‘f!t) =T PO(g)u (81)
pendent scalar functionghree fromF ,, and six fromg,,) VO(&D)

which completely describe a deformed state of a system.
Hence Eq.(79) plays a role of a generalized “equation of which is proportional to the initial equilibrium pressure,
state” which relates the stress tensor to the deformation. It iBo(&€). The last step is to substitute the nonadiabatic “equa-
worth mentioning that the existence of such an equation ofion of state,” Eq(81), into the force balance equation of Eq.
state is a direct consequence of Runge-Gross mappin@6). This results in the following “hydrodynamic” equation
theorem? in TDDFT. of motion:

Substituting the functional of Ed.79) into Eq. (76) we — , »
obtain a hydrodynamic equation of motion which determines rb@& + noi(u _m ) L 99 }P0(99 ~0
the evolution of velocity for a given external potential. at I+ 2 & 2 7 ogH ’
Therefore the description of many-body dynamics consists of (82)
two separate problems. The first one corresponds to the uni-
versal kinetic problem of Eqs(77) and (78). By solving  where we used the definition of the covariant divergence, Eq.

these equations we find the stress tensor functional(®).  (57), to compute the stress forc&iglz’”.y, in Eq. (76). We
(the generalized equation of stat&he second problem is to \yould like to outline thahy(£€) andPy(£) in Eq. (82) are the
compute the velocity and density distributions by solving theime independent initial density and pressure, respectively.
closed set of hydrodynamics equations, H48) and (76). Equations(82) and(18) constitute a closed set of continuum
The universal kinetic problem of Eqe/7) and(78), can  mechanics equations which describe a long wavelength dy-
be solved explicitly in the case of a fast long wavelengthnamics of a Fermi gas in the time-dependent Hartree ap-
dynamics, i.e., if the deformation tensor is a fast function Ofproximation. Since the stress force in E82) depends only
time, but slowly changes in space. More precisely, we aspp the deformation tensag,,,, it is natural to interpret Eqs.
sume that the characteristic length scaleof the deforma-  (82) and(18) as a nonlinear elasticity theory of a Fermi gas.
tion inhomogeneity is much larger thami, where is the | the case of small deformations this theory reduces to the
time scale of a dynamical process ands the characteristic  standard linear elasticity theory with a nonzero shear modu-

velocity of a particle. This situation is, for example, common|ys_ |ndeed, in the linear regime E(1.9) takes the form
in Coulomb systems where the plasma frequency determines

the characteristic time scale of dynamics, while the corre- (gt

sponding spatial variations of the density can be arbitrary ot =V(&Y, (83)
slow. Let us estimate different terms in EF.7) under the

above assumption. The first and the second terms on thehereu=x-£ is the displacement vector. The deformation
right-hand side of Eq(77) are of the order of 17 andu/L,  tensor reduces to the common linearized expression,
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T o, <9UV_ 84) applications to particular nonlinear problems.
Kegr ag

. . -~ . V. CONCLUSION
Assuming for simplicity that the unperturbed state is homo-

geneous, and substituting Eq83) and (84) into Eq. (82), We applied the idea of the Lagrangian description in con-
we get the following equation of motion for the displacementtinuum mechanics to the theory of nonequilibrium quantum
vector: many-body systems. Reformulation of the microscopic
5 many-body theory in terms of Lagrangian coordinates corre-
rbﬂ& _ 9% + no@ =0. (85) sponds to the transformation to the local noninertial refer-

at? & aE+ ence frame moving with the flowthe co-moving Lagrangian

frame. This transformation allows to separate the convective
motion of particles, which is a direct generalization of the
common separation of the center-of-mass motion in homo-

o =5 kM, , du, - 2du, (86) geneous systems. The motion of particles in the Lagranglan

py = OuN"T o T T w Cuvg e |t frame is influenced by the external forces and by generalized

73 NS 3 9¢ SO D
inertia forces. We have shown that the inertia forces can be
whereKngo andu =Py are the bulk modulus and the shear described in purely geometric terms of Green’s deformation

modulus of a Fermi gas, respectiveét/®2° . tensorg,,, and the skew-symmetric vorticity tengey,,. Ten-
The full nonlinear set of equations, Eq82) and(18), is sors dF . f . frocti
. . g . 9., andF,, enter equations of motion as an effective
equ_lvale_nt to the generalized collisionless hydrodynamlcsmetric tensor and an effective magnetic field, respectively.
derived in Refs. 19 and 2(ee also Ref. 29 In fact, Egs. ' :

(82) and(18) and the generalized hydrodynamics of Refs. 19Our results demonstrate a close relation of the many-body

and 20 correspond to the same theory in the Lagrangian an(%}mamICS in Lagrangian frame to the quantum dynamics on

Eulerian formulations, respectively. An advantage of thecurved manifolds.

present Lagrangian formulation is the explicit form of the

The linearized stress tenseor,, takes the standard elastic
form

We also derived local conservation laws for the number of
~ . . i particles and for momentum in the Lagrangian frame, and
stress tensoP,,,, Eq. (81). The Lagrangian point of view presented closed microscopic expressions for the stress ten-
also gives a very clear microscopic picture of the fast colli-sor and for the corresponding stress force. The local momen-
sionless dynamics. This is a kind of evolution of a many-tym conservation law in the Lagrangian frame reduces to a
body system with almost time-independent distribution ofzerg force condition. The inertia forces exactly compensate
particles inside every moving and deforming fluid elementhe external force and the stress force in every point of the
Using the nonadiabatic equation of state in the Lagrangiap agrangiang-space. The net force, exerted on every fluid
frame, Eq.(81), we can easily recover the correspondingelement, is exactly zero, which results in zero current density
expression for the stress tensBy,,(x,t) in the laboratory  gnq a time-independent density distribution. This property is

frame, the main advantage of the Lagrangian description. It suggests
9E 9EP— o — one of the most promising application of our formalism,
P, 1) = =22 Pos(£(X,1),1) = 9, (X, 1) VO(X, 1) Po(&(X,1)). which is a new reformulation of TDDFT in a form similar to

Ix* ox” the static theory. Indeed the main practical problem of TD-

(87) DFT is an inevitable strong nonlocality of exchange correla-
tion potentials:”8 The physical reason for this is just the
nonadiabatic motion of fluid elements. When time is flowing,

— 0 9E* new and new fluid elements arrive at a given pointand
9u(X,t) = o 37 1/g. (88 bring an information about surrounding space, producing the
above nonlocality. Using our reformulation of the many-

One can check the® ,,(x,t) of Eq. (87) is a solution to the  body theory as a basis for TDDFT one can completely re-

equation for the stress tensor derived in Refs. 19 and 20. Th@ove the very source on the nonlocality, which is of extreme

stress tensolP,,(x,t), Eqg. (87), enters the force balance practical importance. In this paper we did not touch these
equation in the laboratory frame, E(.6). This is a hydro- questions since it required an extended special consideration.
dynamic equation of motion in the Eulerian description. It isA detailed formulation of TDDFT in the Lagrangian frame
quite natural thatP,,(x,t) depends ong,,(x,t) since will be presented in the next paper of this sefiés.

Cauchy’s tensor is a common characteristics of deformations In this paper we also considered two illustrative examples

in the Eulerian picture. of application. The most interesting of them is the descrip-

In contrast to the stress tensor in the Lagrangian frameijon of a nonlinear semiclassical dynamics of a collisionless

Eq. (81), the stress tensor of E@87) is a highly nonlocal Fermi gas. We have shown that the full problem can be sepa-

function. It is proportional to the pressuf® at the initial  rated into two independent parts. The first one is the solution

position of a fluid element which is currently at[x is an  of a universal kinetic problem, which defines the stress ten-
independent variable in E416)]. The locality of the stress sor as a universal functional gf,, andF ,,. This stress ten-

force in Eq.(82) is a key property of the present Lagrangian sor is used as an input for the second “hydrodynamic” part of
formulation of nonadiabatic continuum mechanics of a Fermithe problem, determining the dynamics of the velocity vec-
gas. This formulation should be much more convenient foitor. This separation of the initial many-body problem can be

Here@w(x,t) is Cauchy’s deformation tensbr,
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viewed as a particular realization of TDDFT in the hydrody- ~ 1

namic formulatiorf:22 In the case of a fast long wavelength W= EE w(Xi, X)), (A3)
dynamics(similar to that for plasma oscillationghe univer- "

sal kinetic problem can be solved explicitly. The solution iswherei andj label particles. Calculating the commutator of
extremely simple—the Wigner function in the LagrangianEq. (A1) we get the force in the following form:

frame is time independent. The corresponding “hydrody-

namic” problem also can be formulated in the explicit form.  Fint(y) = EE (5()( _ xi)M - xj)M>.

It reduces to a closed nonlinear elasticity theory of a Fermi i X j

gas. This elasticity theory is, in fact, the Lagrangian formu- (A4)
lation of the generalized hydrodynamics derived in Refs. 19

and 20. The generalized hydrodynamics proved to be usefuf the interaction potential satisfies the Newton’s third law,
in the description of a small-amplitude collective dynamics WX, X)) WX X))

of an electron gas. It gives the corrgcbnsistent with the Lk T LA (A5)
kinetic treatment dispersion of plasma waves in homoge- IXi 28
neous system&2° and recovers the exact dispersion of theq. (A4) takes the form

edge modes in a confined geometryThe results for the ' L ( )
standing plasma waves in a parabolically trapped electron Sintioy _ o o\ WLX, X

gas are also quite reasonablé® The Lagrangian “elasticity F0) = 2.21" [0 =xi) = 6lx = x;)] — - (AS)
theory” of a Fermi gas, derived in Sec. IV B is structurally

much more simple than the Eulerian formulation of Refs. 19The difference of delta-functions in E¢A6) can be trans-
and 20. Therefore, we believe that it should provide a goodormed as follows:

_ba3|s for the description of nonlinear dynamical effects in S(x-x) - sx-x)=(1 _e(xi—xj)(ﬁ/dx))5(x_xi)
inhomogeneous many-electron systems.

J 1
== (X - Xj)&J AN 5(x — x;)
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APPENDIX: THE DIVERGENCE REPRESENTATION OF tion for the interaction stress force,
THE INTERACTION STRESS FORCE - 9 -
int
N Fo(x)= @WW(X), (A8)
By definition the infraction stress ford€™ is the commu-
tator of the current operatprand the interaction Hamiltonian where\fvlw(x) is the interaction stress tensor operator,
W!

1
WMV(X) =- %E AN X = X; = NMXj = %))]
ijJo

FM(x) = m{j (x), W] (A1)
In the coordinate representation operatf)rand\fv are de- < (x — (X, Xj)
fined as follows: (=) poo (A9)
X
J) = > [, (X = x)]s, (A2)  The\-integration in Eq(A9) is along the line that connects
i two interacting particles.
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