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We formulate equations of motion and conservation laws for a quantum many-body system in a co-moving
Lagrangian reference frame. It is shown that generalized inertia forces in the co-moving frame are described by

Green’s deformation tensorgmnsj ,td and a skew-symmetric vorticity tensorF̃mnsj ,td, wherej in the Lagrang-
ian coordinate. Equations of motion are equivalent to those for a quantum many-body system in a space with

time-dependent metricgmnsj ,td in the presence of an effective magnetic fieldF̃mnsj ,td. To illustrate the general
formalism we apply it to the proof of the harmonic potential theorem. As another example of application we
consider a fast long wavelength dynamics of a Fermi system in the dynamic Hartree approximation. In this
case the kinetic equation in the Lagrangian frame can be solved explicitly. This allows us to formulate the
description of a Fermi gas in terms of an effective nonlinear elasticity theory. We also discuss a relation of our
results to time-dependent density functional theory.
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I. INTRODUCTION

Lagrangian and Eulerian formulations of fluid mechanics
are known as two alternative ways to describe dynamics of
continuum media.1 The more common Euleriansor spatiald
formulation considers basic collective variables, such as den-
sity nsx ,td or current j sx ,td distributions, as functions of
space-time coordinatesx and t.1,2 This corresponds to the
description of a system from the standard point of view of an
observer in a fixed laboratory reference frame. Central no-
tions of Lagrangiansor materiald description are the trajec-
tories of infinitesimal fluid elements. Every small element of
a fluid can be uniquely labeled by its initial positionj that
plays a role of independent, so called Lagrangian, coordi-
nate. Lagrangian description represents the dynamics of con-
tinuum media as it is seen by a local observer, moving with
a flow. In the last decades the Lagrangian method attracts an
increasing attention as a powerful tool for studying nonlinear
dynamics of compressible media with numerous applications
in cosmology, plasma physics, physics of semiconductors,
etc.sfor a recent comprehensive review see Ref. 3d. Recently
we have shown that the Lagrangian coordinate naturally ap-
pears in time-dependent density functional theorysTDDFTd,
where it plays a role of a basic variable for a nonadiabatic
exchange correlation potential.4 It is also interesting to note a
relation of Lagrangian fluid dynamics to noncommutative
geometry and noncommuting gauge fields.5

Commonly Lagrangian and Eulerian descriptions are con-
sidered as inherent ingredients of the classical continuum
mechanics. In fact, they offer two alternative techniques for
solving the equations of classical hydrodynamics. However,
the main idea of Lagrangian method, which is the description
of dynamics using co-moving coordinates, is clearly much
more general and universal. In the present paper we formu-
late microscopic equations of many-body dynamics in the
co-moving Lagrangian reference frame. The transformation
to the Lagrangian frame corresponds to an explicit separation

of the convective motion of particles. This is a natural gen-
eralization of the common separation of the center-of mass
motion in homogeneous many-body systems. The separation
of the center-of-mass motion also plays an important role in
the theory of harmonically trapped systems. For the har-
monic inhomogeneity the convective motion can be sepa-
rated by the transformation to a global accelerated reference
frame, which is a key step in the proof of the harmonic
potential theorem6–8 sHPTd. In fact, the proof of HPT can be
viewed as the simplest application of the Lagrangian descrip-
tion to quantum dynamics. In the case of a general inhomo-
geneous flow the separation of convective “center-of-mass”
motion leads to an appearance of inhomogeneous inertia
forces in the equations for the relative motion. We show that
these forces can be uniquely described by the symmetric de-
formation tensorgmnsj ,td and a skew-symmetric vorticity

tensorF̃mnsj ,td. The deformation tensor enters equations of
many-body dynamics as an effective time-dependent metric,
while the vorticity tensor plays a role of an effective mag-
netic field.

A great advantage of the Lagrangian description of many-
body dynamics is that in the co-moving frame both the den-
sity of particles and the current density become the exact
integrals of motion. The current density is zero in every point
of Lagrangianj-space, while the particles’ density distribu-
tion preserves its initial form. These “conservation laws” are
guaranteed by a fine local compensation of inertia forces,
external forces, and the force of internal stresses. The above
force balance follows the local momentum conservation law
sthe exact microscopic Navier-Stokes equationd after the
transformation to the Lagrangian frame. We explicitly dem-
onstrate that the exact internal stress force takes a form of a
covariant divergence of a symmetric second-rank stress ten-
sor. As a byproduct of our formalism we obtain a micro-
scopic representation for the local stress tensor in a general
quantum many-body system.
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The concept of quantum stress has been introduced by
Schrödinger in 1927.9 Over the last two decades there has
been a growing interest in understanding properties of quan-
tum systems, such as molecules or solids, in terms of the
stress densityssee, for example, Refs. 10–13 and references
thereind. A derivation of a microscopic expression for the
kinetic part of the stress tensor in quantum many-body sys-
tem causes no problem. This simple generalization of the
one-particle result has been obtained in the classical paper by
Martin and Schwinger.14 However, the derivation of the mi-
croscopic form for the interaction related stress tensor turned
out to be not that simple.11,14–18In this paper we present two
alternative derivations of the symmetric form for the stress
density, which has been obtained by Puff and Gillis in Ref.
17. In particular, we show that this form is consistent with
the definition of the stress tensor via the variational deriva-
tive of the energy with respect to the metric tensor.

The structure of the paper is the following. In Sec. II we
consider the standard Eulerian form of the conservation laws
in a quantum many-body system. In this section we also
present a compact derivation of the microscopic expression
for the exact stress tensor. Section III is devoted to the for-
mulation of quantum many-body theory in the co-moving
Lagrangian frame. In Sec. III A the key notions of Lagrang-
ian coordinate and of the deformation tensor are formally
defined. The derivation of the equations of motion in an ar-
bitrary local noninertial reference frame is presented in Sec.
III B. Here we also derive the form of transformed many-
body Hamiltonian and discuss the physical meaning of gen-
eralized inertia forces. In Sec. III C we derive local conser-
vation laws, and present a complete formulation of the
many-body problem in the Lagrangian frame. It is shown
that this problem corresponds to the solution of the equations
of motion for the relative motion, supplemented by the local
force balance equation. The force balance equation plays a
role of an additional gauge condition that fixes the reference
frame. Section IV contains simple examples of application of
the general theory. In Sec. IV A we interpret the harmonic
potential theorem6 in terms of dynamics in the Lagrangian
frame. In Sec. IV B we apply the general formalism to the
study of semiclassical collisionless dynamics of a Fermi gas,
and shortly discuss a connection of our approach to TDDFT.
It is shown that in the regime of a fast long wavelength
evolution the kinetic equation in the Lagrangian frame can
be solved explicitly. In this case the behavior of the system is
described by an effective nonlinear continuum mechanics,
which, after the transformation to the laboratory frame, re-
duces to the generalized collisionless hydrodynamics of
Refs. 19 and 20. In Sec. V we summarize our results.

II. CONSERVATION LAWS IN THE LABORATORY
REFERENCE FRAME: DEFINITION OF THE STRESS

TENSOR

In this paper we consider a system ofN interacting par-
ticles in the presence of a time-dependent external potential
Uextsx ,td. The corresponding Hamiltonian takes the follow-
ing standard form:

H = T̂ + Ŵ+ Û, s1d

T̂ = −E dxc†sxd
¹2

2m
csxd, s2d

Ŵ=
1

2
E dxdx8wsux − x8udc†sxdc†sx8dcsx8dcsxd, s3d

Û =E dxUextsx,tdc†sxdcsxd, s4d

wherewsxd is the interaction potential, andc† andc are the
field operators, which satisfy proper commutation relations

fc†sxd,csx8dg± = dsx − x8d. s5d

The upperslowerd sign in Eq. s5d corresponds to fermions
sbosonsd, and fA,Bg±=AB±BA. Using Hamiltonian of Eqs.
s1d–s4d we obtain Heisenberg equations of motion for
c-operators,

i
]

]t
csxd = −

¹2

2m
csxd + Uextcsxd +E dx8wsux

− x8udc†sx8dcsx8dcsxd. s6d

Equations6d allows to derive equations of motion for any
physical observable as well as for any correlation function.
The most important of these equations are the local conser-
vation laws or balance equations, which should be satisfied
for an arbitrary evolution of the system. Below we concen-
trate on conservation laws for the number of particles and for
momentum. These local conservation laws follow the equa-
tions of motion for the density,nsx ,td, and for the current,
j sx ,td, respectively. Computing the time derivative of the
density operator,

n̂sx,td = c†sx,tdcsx,td, s7d

we obtain the continuity equation that is the local balance
equation for the number of particles,

]n

]t
+

] jm

]xm = 0, s8d

wherensx ,td=kn̂sx ,tdl and

jmsx,td = k ĵmsx,tdl = −
i

2m
Kc† ]c

]xm −
]c†

]xm cL . s9d

Here the angle brackets stand for averaging with the exact
many-body density matrix. Similarly using Eq.s6d we derive
the equation of motion for the current, Eq.s9d ssee, for ex-
ample, Refs. 14 and 18d,

m
] jm

]t
+ Fm

kin + Fm
int + n

]

]xmUext = 0, s10d

Equations10d has a meaning of the local force balance equa-
tion in the fixed laboratory reference frame. VectorsFm

kin and
Fm

int in Eq. s10d correspond to the forces, which are related to
the kinetic and the interaction effects, respectively,

Fm
kin =

]

]xn

1

2m
K ]c†

]xm

]c

]xn +
]c†

]xn

]c

]xm −
dmn

2
¹2n̂L , s11d
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Fm
int =E dx8

]wsux − x8ud
]xm r2sx,x8d. s12d

In Eq. s12d we introduced the notationr2sx ,x8d
=kc†sxdc†sx8dcsx8dcsxdl for the two-particle density matrix.
Obviously, the last term on the left-hand side in Eq.s10d is
the force produced by the external potential. The kinetic
force of Eq.s11d has a form of a divergence of a symmetric
second rank tensor. This automatically implies vanishing in-
tegral kinetic force,eFm

kinsx ,tddx=0. The Newton’s third law
requires that the forceFm

int of Eq. s12d should obey the same
property, which is however by far not obvious. In fact, the
possibility to represent Eq.s12d in a divergence form has
been a subject of a long discussion in the literature.11,14,16–18

An elegant symmetric representation of the stress tensor has
been presentedsunfortunately without derivationd by Puff
and Gillis in Ref. 17. Since this representation is of primary
importance for our paper, below we give a compact deriva-
tion of the Puff and Gillis result.

The symmetry of the functionr2sx ,x8d with respect to the
permutation of coordinates allows us to transform vectorFm

int,
Eq. s12d, as follows:

Fm
intsxd =E dx8

]wsux − x8ud
]xm r2sx,x8d

=
1

2
E dx8

]wsux8ud
]x8m fr2sx − x8,xd + r2sx,x − x8dg

= −
1

2
E dx8

]wsux8ud
]x8m fr2sx + x8,xd − r2sx,x − x8dg

= −
1

2
E dx8sex8n]n − 1d

]wsux8ud
]x8m r2sx,x − x8d,

where]n=] /]xn. Using an obvious operator identity

ex8¹ − 1 =E
0

1

x8 ¹ elx8¹dl

we arrive at the following final representation for the local
force Fm

int:

Fm
intsxd =

]

]xnWmnsxd, s13d

whereWmnsxd is a stress tensor, which is responsible for the
contribution of interparticle interaction to the force balance21

Wmnsxd = −
1

2
E dx8

x8mx8n

ux8u
]wsux8ud

]ux8u

3 E
0

1

r2sx + lx8,x − s1 − ldx8ddl. s14d

In the next section we will show that parameterl in Eq. s14d
has a deep geometric meaning. It can be associated to the
natural parameter for a geodesicsstraight line in the present
cased that connects two interacting particlesssee also the
Appendixd.

Equationss11d, s13d, and s14d show that the net internal
force,Fm

kin+Fm
int, is representable in a form of divergence of a

symmetric second-rank tensorPmn. TensorPmn describes lo-
cal internal stresses in the fluid. A contribution of the con-
vective motion of particles to this tensor is known exactly.2.
It is equal to the macroscopic momentum flow tensor,
mnvmvn, wherev= j /n is the fluid’s velocity. It is convenient
to separate this contribution explicitly and rewrite the con-
servation laws of Eqs.s8d ands10d in the following familiar
form:

Dtn + n
]

]xmvm = 0, s15d

mnDtvm +
]

]xn Pmn + n
]

]xmUext = 0, s16d

whereDt=s] /]td+v¹ is the convective derivative andPmn

=Tmn+Wmn is the exact stress tensor, which contains the ki-
netic,Tmn, and the interaction,Wmn, contributions. The inter-
action stress tensor,Wmn, is given by Eq.s14d, while the
kinetic part,Tmn, is defined as follows:

Tmn =
1

2m
Ksq̂mcd†q̂nc + sq̂ncd†q̂mc −

1

2
dmn¹

2n̂L , s17d

where q̂=−i ¹−mv is the operator of “relative” momentum
which accounts for the above-mentioned separation of the
macroscopic convective motion.

Equationss15d ands16d form a basis for a hydrodynamic
description of a nonequilibrim many-body system. Accord-
ing to the Runge–Gross mapping theorem of TDDFT22 the
exact many-body wave function/density matrixsfor given
initial conditionsd is a unique functional of velocityvsx ,td.
Therefore the stress tensorPmn is also a functional ofv.
Hence Eqs.s15d ands16d can be viewed as a formally closed
system of equations that completely determine the dynamics
of collective variablesnsx ,td andvsx ,td. These dynamics are
governed by the external force,n]mUext, and by the force of
internal stress,]nPmn. Since the convective motion has been
explicitly separated from the stress tensor, only the relative
motion of particles contributes toPmn. A particular form of
Pmn should be determined from the solution of a many-body
problem in a reference frame moving with the “center-of-
mass” velocityvsx ,td. In the rest of the present paper we
derive equations of many-body dynamics in this co-moving
frame and present simple illustrative examples of their solu-
tions.

III. QUANTUM DYNAMICS IN THE LAGRANGIAN
FRAME

A. Definition of the Lagrangian reference frame

Co-moving or Lagrangian frame is a local noninertial ref-
erence frame which moves with the velocityvsx ,td of the
fluid. Formally the transformation to the Lagrangian frame
corresponds to a nonlinear change of variablesx=xsj ,td,
which maps old coordinatesx to new coordinatesj. For a
given velocity distribution the transformation function,
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xsj ,td, is defined by the following initial value problem:

]xsj,td
]t

= vsxsj,td,td, xsj,0d = j. s18d

If the functionvsx ,td is continuous and satisfies the Lipschitz
condition inx, there exists a unique solution to the first order
differential equation of Eq.s18d.23 Therefore, under the
above conditions on the velocity distribution, the map:x
→j is unique and invertible.

Physically the functionxsj ,td corresponds to the trajec-
tory of an infinitesimally small fluid element. Every fluid
elementsand therefore every trajectoryd is uniquely labeled
by the element’s initial position—the Lagrangian coordinate
j. The inverse functionj=jsx ,td, which determines the
transformation from the Lagrangian to the laboratory refer-
ence frame, recovers the initial position of a fluid element
that at instantt arrives at the pointx. The nonlinear transfor-
mation of coordinates,x=xsj ,td, induces a change of metric

sdxd2 = gmndjmdjn, gmn =
]xa

]jm

]xa

]jn . s19d

In classical continuum mechanics the symmetric second rank
tensorgmnsj ,td, Eq. s19d, is known as Green’s deformation
tensor.1 This tensor is normally used to characterize a de-
formed state of a system within the Lagrangian description.
The corresponding contravariant tensor,gmn, is defined as
follows:

gmagan = dn
m, gmn =

]jm

]xa

]jn

]xa . s20d

Since the deformation tensorgmn has a meaning of the metric
tensor in the Lagrangianj-space, it should play a key role in
the description of many-body dynamics. It is quite natural to
expect that the general equations of motion in the Lagrangian
frame should reduce to those in a space with time-dependent
metric gmnsj ,td. Below we confirm this intuitive expectation
by explicit calculations.

B. Equations of motion in a local noninertial reference frame

In this section we derive quantum equations of motion in
a general noninertialsnot necessarily Lagrangiand reference
frame. The frame is defined by its velocityvsx ,td, which
enters the trajectory equation of Eq.s18d, and thus provides a
unique and invertible map,x→j. As a first step in the deri-
vation we perform a nonlinear transformation of coordinates,
x=xsj ,td, in the equation of motion, Eq.s6d, and in the
commutation relations of Eq.s5d. Straightforward calcula-
tions lead to the result,

i
]

]t
csjd = S−

1

2m

1
Îg

]

]jm
Îggmn ]

]jn

+ iṽmsj,td
]

]jm + Uextsj,tdDcsjd

+E dj8wslj,j8dc
†sj8dcsj8dcsjd, s21d

where Uextsj ,td=Uextsxsj ,td ,td, and field operatorscsj ,td
satisfy the following equal-time commutation relations:

fc†sjd,csj8dg± =
1
Îg

dsj − j8d. s22d

To shorten the notations in Eq.s21d we omitted the explicit
time dependence in the argument ofc-operators. The first
term in the large parentheses in Eq.s21d is the Laplace op-
erator in a reference frame with metricsgmn ssee, for ex-
ample, Ref. 24d, while the second term comes from the trans-
formation of the time derivative in Eq.s6d. This term is
proportional to vectorṽmsj ,td that is the vector of velocity,
transformed to a new frame,

ṽmsj,td =
]jm

]xn vnsxsj,td,td. s23d

The interparticle distance,lj,j8, in the argument of the inter-
action potential in Eq.s21d equals to a length of geodesic
that connects pointsj and j8. Geodesic,zj,j8sld, param-
etrized by a parameterl s0,l,1d, is a solution to the
following equation:24

z̈msld + Gab
m szdżasldżbsld = 0, s24d

whereż=]z/]l, andGab
m is the affine connection

Gab
m =

1

2
gmnS ]gna

]jb +
]gnb

]ja −
]gab

]jn D . s25d

Equation s24d should be solved with boundary conditions
zs0d=j, zs1d=j8. It is convenient to parametrize geodesics
by a natural parameter, which is chosen in such a way that an
absolute value of the “velocity,”użu=Îgmnż

mżn, becomes in-
dependent ofl along the curvezsld. For this parametrization
the lengthlj,j8, which enters Eq.s21d, is simply equal toużu
at any point on the geodesic,

lj,j8 =E
0

1
Îgmnszdżmsldżnslddl = Îgmnż

mżn. s26d

Equations21d is the equation of motion for the operator
csj ,td=csxsj ,td ,td. Due to the Jacobian factor 1/Îg in the
commutation relations of Eq.s22d, the quantitycsj ,td cannot
be interpreted as an operator for annihilation of a particle in
a given point ofj-space. In particular, the operatorn̂sjd
=c†sjdcsjd does not correspond to the density operator in
the new frame. By definition the density is a number of par-
ticles per unit volume that is changed under a volume non-
preserving coordinate transformation. Therefore it is natural
to define the physical field operators and the density operator
as follows:

c̃sjd = g1/4csjd, c̃†sjd = g1/4c†sjd, s27d

n̂̃sjd = c̃†sjdc̃sjd = Îgc†sjdcsjd, s28d

which automatically accounts for the proper change of a unit
volume in the deformed reference frame. Obviously the re-

defined field operatorsc̃sjd satisfy the common commuta-
tions relations,
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fc̃†sjd,c̃sj8dg± = dsj − j8d. s29d

The renormalization ofc-operators, Eq.s27d, is equivalent to
the corresponding multiplicative redefinition of the many-
body wave function. This redefinition is aimed to preserve
the common probabilistic interpretation and the standard
form of the normalization conditions in the new reference
frame ssimilar arguments were suggested by Podolsky25 in
early days of quantum mechanicsd.

Let us show that the renormalization of field operators,
Eq. s27d, also simplifies the form of the equations of motion.
First we note that the differential operator on the right-hand
side in Eq.s21d sfirst two terms in the square bracketsd can
be rearranged as follows:

−
1

2m

1
Îg

]

]jm
Îggmn ]

]jn + iṽm ]

]jm

=
1
Îg

K̂m
ÎgK̂m

2m
− m

ṽmṽm

2
− i

1

2Îg
S ]

]jm
ÎgṽmD , s30d

where we introduced an operator of “kinematic” momentum
in the noninertial reference frame,

K̂m = − i
]

]jm − mṽm. s31d

sRaising and lowering of tensor indices are performed ac-

cording to the standard rules, i.e.,ṽm=gmnṽn or K̂m=gmnK̂n.d
Using the equation of trajectoryxsj ,td, Eq. s18d, and the

definition of metric tensorgmn, Eq. s19d, one can prove the
following identity:

g−1/4]g1/4

]t
=

1

4

] ln g

]t
=

1

2Îg
S ]

]jm
ÎgṽmD . s32d

The quantity on the right-hand side in Eq.s32d coincides
with the last term on the right-hand side in Eq.s30d. Hence
the sum of the corresponding term in the equation of motion,
Eq. s21d, and of the time derivative ofc reduces to the fol-
lowing compact form:

]c

]t
+

1

2Îg
S ]

]jm
ÎgṽmDc = g−1/4]g1/4c

]t
= g−1/4]c̃

]t
. s33d

Substituting Eq.s30d into Eq. s21d and using Eq.s33d, we
obtain the final equation of motion for the renormalized field

operatorc̃sj ,td

i
]c̃sjd

]t
= Sg−1/4K̂m

ÎgK̂m

2m
g−1/4 + Uext − m

ṽmṽm

2
Dc̃sjd

+E dj8wslj,j8dc̃
†sj8dc̃sj8dc̃sjd. s34d

Equations34d allows us to recover a form of the transformed

HamiltonianH̃fc̃†,c̃g, which, together with the commutation
relations of Eq.s29d, determines the dynamics of the system,

H̃ = T̃
ˆ

+ W̃
ˆ

+ Ũ
ˆ

, s35d

T̃
ˆ

=E djÎgsK̂mg−1/4c̃d†gmn

2m
sK̂ng

−1/4c̃d, s36d

W̃
ˆ

=
1

2
E djdj8wslj,j8dc̃

†sjdc̃†sj8dc̃sj8dc̃sjd, s37d

Ũ
ˆ

=E djSUext − m
ṽmṽm

2
Dc̃†c̃. s38d

Equationss34d–s38d represent the main results of this sec-
tion. Equations34d is the Heisenberg equation of motion for
the physical field operator, while Eqs.s35d–s38d establish the
rules for the transformation of the many-body Hamiltonian
to an arbitrary local noninertial reference frame.

Formally the Hamiltonian of Eqs.s35d–s38d describes a
system of quantum particles in the presence of an effective
vector potentialmṽsj ,td and an additional effective scalar
potentialmṽ2/2. The particles live in a space with the time-
dependent metricgmnsj ,td and interact via pairwise potential
which depends on the length of a geodesic connecting pair of
particles. Additional “potentials” and a nontrivial metric ten-
sor are responsible for generalized inertia forces exerted on a
particle in a general noninertial reference frame. To get a
transparent physical understanding of these forces it is in-
structive to look on dynamics in the semiclassical approxi-
mation. Since the most important inertial contributions enter
only quadratic parts of the HamiltonianfEqs.s36d ands38dg,
we neglect for a moment the interaction, and consider an
equation of motion for the Wigner function,

f̃psj,td =E e−iphKc̃†Sj +
h

2
,tDc̃Sj −

h

2
,tDLdj

in a gas of noninteracting particles. In the semiclassical limit
the Wigner function satisfies the following kinetic equation:

] f̃p

]t
+

]H̃sp,jd
]p

] f̃p

]j
−

]H̃sp,jd
]j

] f̃p

]p
= 0, s39d

where H̃sp ,jd is the semiclassical Hamiltonian function,
which corresponds the noninteracting part of Eq.s35d,

H̃sp,jd =
gmn

2m
spm − mṽmdspn − mṽnd + Uext − m

ṽmṽm

2
.

s40d

Substituting Eq.s40d into Eq. s39d we get the result

] f̃p

]t
+

gmn

m
spm − mṽmd

] f̃p

]jn − S ]gab

]jn

papb

2m
−

]ṽa

]jn pa

+
]Uext

]jn D ] f̃p

]pn

= 0. s41d

Inertia forces do not explicitly show up in Eq.s41d. The

reason is that Eq.s41d is the equation for the functionf̃p
which depends on the canonical momentump. The physical
velocity of a particle in the new reference frame is propor-

tional to the kinematic momentumK =p−mṽ si.e., ]H̃ /]pm
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=Km /md. Therefore it is more natural physically to consider
K as an independent variable in the kinetic equation. The

distribution function of the kinematic momentum,f̃K8 sj ,td,
can be introduced as follows:

f̃K8 sj,td = f̃K+mṽsj,td. s42d

Performing the corresponding change of variables in Eq.s41d
we obtain the final semiclassical equation of motion for the

distribution function f̃K8 sj ,td in the local noninertial refer-
ence frame,

] f̃K8

]t
+

Kn

m

] f̃K8

]jn − Fm
]ṽn

]t
+ KmF̃mn −

]gab

]jn

KaKb

2m

+
]

]jnSUext − m
ṽmṽm

2
DG ] f̃K8

]Kn

= 0, s43d

where a skew-symmetric second rank tensorF̃mn is defined
as follows:

F̃mn =
]ṽm

]jn −
]ṽn

]jm . s44d

Since tensorF̃mn vanishes for an irrotational flow, we name it
the vorticity tensor.26 In the next section Eq.s43d will be
applied to the derivation of generalized collisionless
hydrodynamics.19,20

The expression in the square brackets in Eq.s43d contains
all inertia forces. These are all the terms except for the ex-
ternal force,]nUext. The first term in the square brackets is
the linear acceleration force, while the last term is related to
the kinetic energy of a moving frame. In a particular case of
a homogeneously rotating frame the last term is responsible
for the centrifugal force. The second and the third terms in
the square brackets correspond to inertia forces that depend
on a velocity of a particular particle. The second term is the
classical Coriolis force. This force is proportional to the
skew-symmetric vorticity tensor, which defines a local angu-
lar velocity of the reference frame. The third, bilinear in
particle’s momentum term is less common. The correspond-
ing inertia force makes a free particle to move along a geo-
desic in a local noninertial frame. Indeed, the third term in
the square brackets in Eq.s43d can be rewritten as follows:

1

2m

]gab

]jn KaKb =
1

m
gnmGab

m KaKb, s45d

where we have used Eq.s25d, which relates the affine con-
nectionGab

m to the metric tensorgmn. The right-hand side of
Eq. s45d is easily recognized as a covariant component of the
force in the equation of geodesicfsee, for example, Eq.s24dg.

C. Conserving quantities and balance equations

1. The continuity equation

The first problem we address in this section is a proper

definition of the current operator,j̃ m̂, in a general noninertial

reference frame. The easiest way to establish a form ofj̃ m̂ is

to derive the equation of motion for the density operator

n̂̃sj ,td=c̃†sj ,tdc̃sj ,td. Using Eq.s34d to compute the time
derivative of the density operator we find that the desired
equation indeed reduces to the common form of the continu-
ity equation,

]n̂̃

]t
+

] j̃ m̂

]jm = 0, s46d

if we define the current operator,j̃ m̂sj ,td, as follows:

j̃ m̂ = gmnF − i

2m
Sc̃† ]c̃

]jn −
]c̃†

]jn c̃D − ṽnc̃†c̃G . s47d

The standard form of the continuity equation, Eq.s46d,
should be considered as one more justification for the redefi-
nition of field operators, Eq.s27d. We would like to outline a
very natural form of the current operator, Eq.s47d. Despite
the presence of the Jacobian factorssÎg or g1/4d in the Hamil-
tonian, they completely vanish in Eq.s47d fas well as in the
definition of the density operator of Eq.s28dg.

From this point we restrict ourselves to the Lagrangian
frame, which is the local reference frame, moving with the
velocity v of the fluid. In this special case the continuity
equation admits a very simple solution. Let us calculate the

expectation value of the current operatorj̃ m̂, Eq. s47d. This
can be done, for example, by transforming the right-hand
side in Eq.s47d back to the laboratory frame, and by using
Eq. s9d together with the definition of the velocity,v= j /n.
The result takes an extremely simple form

j̃msj,td = k j̃ m̂sj,tdl = 0. s48d

Thus the current density is exactly zero in every point of the
Lagrangianj-space. This is of course not surprising, since an
observer in the co-moving frame should not see any current.
Combining Eq.s48d and the continuity equation of Eq.s46d
we arrive at the conclusion that the densityñsj ,td is inde-
pendent of time

ñsj,td = ñsj,0d = n0sjd, s49d

where n0sxd is the initial density distribution. Therefore in
the Lagrangian frame not only the number of particlesN is
an integral of motion, but the density itself is also a conserv-
ing quantity. Evolution of the density in the laboratory frame
can be calculated with the following formulafsee Eq.s28dg:

nsx,td =
ñsjsx,td,td
Îgsjsx,td,td

=
n0sjsx,tdd

Îgsjsx,td,td
. s50d

Equations50d is, in fact, the explicit solution to the continu-
ity equation of Eq.s8d, which defines the densitynsx ,td as a
functional of velocityvsx ,td.

Equationss48d and s49d demonstrate the main advantage
of the Lagrangian frame for the description of many-body
dynamics. In this very special reference frame the inertia
forces are adjusted to get exactly zero current density and
therefore to keep the density of particles fixed during the
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whole evolution of the system. Equations48d can be used to
construct a complete many-body theory in the co-moving
frame. The frame’s velocityv enters the equation of motion,
Eq. s34d, as an external parameter. Imposing the local
“gauge” condition of Eq.s48d we specify the reference frame
and thus get the complete theory with all quantities defined
by the initial conditions.

2. Local force balance in the Lagrangian frame

Let us turn to the local momentum conservation law. In
the laboratory reference frame it is given by Eq.s16d for,
equivalently, by Eq.s10dg. Since in the Lagrangian frame the
current density is zero, the local momentum conservation
law should reduce to the zero force condition—the inertia
forces should exactly compensate the external force and the
force of internal stresses. Below we derive an explicit form
of this balance equation by the direct transformation of Eq.
s16d to the Lagrangian coordinatesj. First we express the
vector of velocityv and the stress tensorPmn in terms of the

corresponding quantities,ṽ and P̃n
m, in the Lagrangian frame

vm =
]jb

]xm ṽbsj,td, s51d

Pmn =
]jb

]xm

]xn

]jg P̃b
gsj,td. s52d

Equations51d follows the definition ofṽm, Eq. s23d, while in
Eq. s52d we adopted the standard tensor transformation
rules.24 Substituting Eqs.s51d and s52d into Eq. s16d, trans-
forming the derivatives, and multiplying the result by
]xm /]ja, we obtain the following equation:

mn
]xm

]ja

]

]t
S ]jb

]xm ṽbD +
]xm

]ja

]jd

]xn

]

]jdS ]jb

]xm

]xn

]jg P̃b
gD + n

]Uext

]ja = 0.

s53d

The first term in Eq.s53d can be further simplified as fol-
lows:

]xm

]ja

]

]t

]jb

]xm ṽb =
]ṽa

]t
− ṽb

]jb

]xm

]vm

]ja =
]ṽa

]t
−

1

2

]ṽbṽb

]ja .

s54d

In the sequence of transformations in Eq.s54d we used an
obvious identity s]xm /]jads]jb /]xmd=da

b, the trajectory
equation of Eq.s18d, and the definition ofṽm, Eq. s23d. A
similar simplification of the second term in Eq.s53d is even
more straightforward. One only needs to apply the chain rule
for the calculation of the spatial derivative and take into ac-
count the following explicit representation for affine connec-
tion ssee, for example, Ref. 24d:

Gab
m =

]jm

]xg

]2xg

]ja]jb . s55d

As a result we get a very natural expression for the second
term in Eq.s53d,

]xm

]ja

]jd

]xn

]

]jdS ]jb

]xm

]xn

]jg P̃b
gD = P̃a;b

b , s56d

where the semicolon is used to denote the covariant deriva-
tive. The covariant divergence of the stress tensor in Eq.s56d
is defined as follows:24,27

P̃m;n
n =

]P̃m
n

]jn + Gna
n P̃m

a − Gma
n P̃n

a=
1
Îg

]ÎgP̃m
n

]jn −
1

2

]gab

]jm P̃ab.

s57d

Substitution of Eqs.s54d and s56d into Eq. s53d leads to the
final form of the force balance equation in the Lagrangian
frame

ñFm
]ṽm

]t
+

]

]jmSUext − m
ṽnṽ

n

2
DG + ÎgP̃m;n

n = 0. s58d

A direct comparison of the force term in the kinetic equation
of Eq. s43d and the term in the square brackets in Eq.s58d
shows that the latter is exactly the sum of the external force
and two inertia forces that are independent of particle’s mo-
mentum. These three forces are balanced by the force of
internal stressesfthe second term in Eq.s58dg. The net force,
exerted on every fluid element in the Lagrangian space, is
zero, which results in a zero current density and a stationary
particles’ density distribution. It should be noted that the rest
of inertia forcessthose, which are different for different par-
ticles in a fluid elementd implicitly present in the kinetic part

of the stress tensorP̃mn. To see this more clearly we need to
derive an explicit microscopic representation for this tensor.

3. Stress tensor in the Lagrangian frame

In general both kinetic,T̃mn, and interaction,W̃mn, contri-

butions to the total stress tensor,P̃mn=T̃mn+W̃mn, can be
found using the common transformations rules24

T̃mnsj,td =
]xa

]jm

]xb

]jn Tabsxsj,td,td, s59d

W̃mnsj,td =
]xa

]jm

]xb

]jn Wabsxsj,td,td. s60d

Here stress tensors,Tabsx ,td andWabsx ,td, in the laboratory
reference frame are given by Eqs.s17d ands14d, respectively.
We shall however follow another route, which takes full ad-
vantage of geometric ideas we develop in this paper. The
transformed many-body Hamiltonian of Eqs.s35d–s38d, is an
explicit functional of the metric tensorgmn. Therefore we can
find the required stress tensor by computing the variational
derivative of the energy with respect to the metric tensor.
More precisely, we make use of the fact that under a small
variation of the metric, the variations of the kinetic energy,
Eq. s36d, and of the energy of interparticle interaction, Eq.

s37d, are related to tensorsT̃mn andW̃mn, respectively,

dkT̃ˆ l =E dj
Îg

2
dgmnT̃mn = −E dj

Îg

2
dgmnT̃

mn, s61d
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dkW̃ˆ l =E dj
Îg

2
dgmnW̃mn = −E dj

Îg

2
dgmnW̃

mn. s62d

Such a definition of the stress tensors is closely related to the
common definition of the energy-momentum tensor in gen-
eral relativity ssee, for example, Ref. 27d. The main advan-
tage of this definition is that it automatically gives a symmet-
ric form of the stress/energy-momentum tensors. Recently a
very similar approach has been used to derive a microscopic
expression for the stress tensor in the equilibrium quantum
many-body system within the local density approximation.13

Reference 13 also contains a general discussion of the above
geometric definition of the stress tensors in the context of
nonrelativistic quantum mechanics.

The variation of the Hamiltonian should be taken at con-

stant c̃-variables ssince they satisfy the equations of
motiond13,27 and at constant velocityṽ. The kinetic energy

operatorT̃
ˆ

of s36d contains the metric tensor only in a form
of gmn, Îg andg−1/4. Noting that

dÎg = − 1
2
Îggmndgmn, dg−1/4 = 1

4g−1/4gmndgmn,

we can easily compute the variation ofT̃
ˆ

and then identify
the kinetic stress tensor using Eq.s61d. The result of the
calculations takes the form

T̃mnsj,td =
1

2m
KsK̂mg−1/4c̃d†sK̂ng

−1/4c̃d

+ sK̂ng
−1/4c̃d†sK̂mg−1/4c̃d

−
1

2
gmn

1
Îg

]

]ja
Îggab ]

]jb

c̃†c̃

Îg
L . s63d

If we evaluate the right-hand side in Eq.s63d for Euclidian
metric, gmn=dmn, we immediately recover Eq.s17d. There-
fore the commonly used symmetric form of the kinetic stress
tensor Tmn, Eq. s17d, is in exact correspondence with the
geometric definition of Eq.s61d.

Calculation of the variationdW̃
ˆ

, Eq. s62d, is a little bit
more involved. Since the interaction Hamiltonian of Eq.s37d
depends ongmn only via the length of geodesic, we have

dkW̃ˆ l =
1

2
E dhdh8dlh,h8

]wslh,h8d

]lh,h8
r̃2sh,h8d, s64d

wherer̃2sh ,h8d=kc̃†shdc̃†sh8dc̃sh8dc̃shdl. The next step is
to compute the variation of the functionallh,h8fgmng, Eq.
s26d. Let l in Eq. s26d be a natural parameter for a geodesic
in the space with “unperturbed” metricgmn snot the “full”
metric gmn+dgmnd. For this parametrization the variation of
lh,h8fgmng takes the form

dlh,h8 =
1

2lh,h8
E

0

1

dldgmnfzsldgżmsldżnsld

=E djE
0

1

dldfj − zsldgdgmnsjd
żmsldżnsld

2lh,h8
,

s65d

wherezsld=zh,h8sld is the geodesic which connects points
h andh8. Substituting Eq.s65d into Eq. s64d, and using the
definition of Eq.s62d we get the following representation for
the interaction part of the stress tensor:

W̃mnsj,td = −
1

2Îg
E

0

1

dlE dhdh8dfj − zh,h8sldg

3
żh,h8

m sldżh,h8
n sld

lh,h8

]wslh,h8d

]lh,h8
r̃2sh,h8d. s66d

Let us evaluate the right-hand side of Eq.s66d at the Euclid-
ean metricgmn=dmn. In this caselh,h8= uh−h8u while the
geodesicsparametrized by the natural parameterd is a straight
line

zh,h8sld = h + sh8 − hdl.

The above expressions forlh,h8 andzh,h8sld should be sub-
stituted into Eq.s66d. Introducing a new variablej8=h8−h,
and removing the delta-function by the integration overh,
we obtain the result that exactly coincides with Eq.s14d.
Therefore the symmetric representation of Eq.s14d, which
has been obtained in the preceding section by somewhat ar-
tificial manipulations, has a clear geometric meaning. In par-
ticular, the internal parameterl in Eq. s14d is the natural
parameter for a geodesic connecting two interacting par-
ticles.

Equationss63d and s66d are the principal results of the
present section. They define explicit microscopic representa-
tions for the stress tensors in a local noninertial reference
frame.

The zero force condition of Eq.s58d with P̃mn of Eqs.s63d
and s66d is equivalent to the requirement of zero current
density, Eq.s48d. Hence we can use Eq.s58d as an alternative
“gauge” condition to fix the velocity parameterṽsj ,td, enter-
ing many-body equations of motion, Eq.s34d.

IV. EXAMPLES AND APPLICATIONS

A. The harmonic potential theorem

As a first simple example of application of our general
formalism, we consider many-body dynamics in the presence
of the following external potential:

Uextsx,td = 1
2mvmnx

mxn + Emstdxm, s67d

wherevmn is a constant tensor andEmstd is a time-dependent
vector fwithout loss of generality we can setEms0d=0g. The
initial value problem with the external potential of Eq.s67d is
exactly solvable, which is known as the harmonic potential
theoremsHPTd.6 It is also known that HPT is related to the
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covariance of the time-dependent Schödinger equation under
the transformation to a global accelerated reference frame.7,8

Therefore our formulation of the many-body problem should
be perfectly suited to the demonstration of HPT.

Within the present Lagrangian formulation one needs to
find a self-consistent solution to the many-body equation of
motion, Eq.s34d, and to the force balance equation, Eq.s58d.
Let us assume that velocityvsx ,td, which definesfvia Eq.
s18dg the motion of the reference frame, is a function oft
only, vsx ,td=Vstd. In this case the trajectory of a fluid ele-
ment takes a form

xsj,td = j + Rstd, s68d

whereRstd is a solution to the following Cauchy problem:

]Rstd
]t

= Vstd, Rs0d = 0.

Clearly, if our anzatz,vsx ,td=Vstd, is a self-consistent solu-
tion, thenRstd should correspond to the center-of-mass co-
ordinate. Using Eq.s68d we get the following results for the
metric tensorgmn, the velocityṽsj ,td, and the effective po-
tential, which enter Eqs.s34d and s58d,

gmn = dmn, ṽsj,td = Vstd, s69d

Uextsxsj,td,td − m
ṽnṽ

n

2
=

1

2
mvmnjmjn − Lstd + jmfmvmnR

nstd

+ Emstdg. s70d

Function Lstd in Eq. s70d is the classical Lagrangian for a
particle moving in the harmonic potential of Eq.s67d,

Lstd =
m

2
V2std − 1

2mvmnR
mstdRnstd − EmstdRmstd.

The equation of motion, Eq.s34d, and the force balance
equation, Eq.s58d, simplify, respectively, as follows:

i
]c̃8

]t
= S−

¹j
2

2m
+

1

2
mvmnjmjnDc̃8

+E dj8wsuj − j8udn̂̃sj8dc̃8sjd

+ jmSm
]Vmstd

]t
+ mvmnR

nstd + EmstdDc̃8, s71d

m
]Vmstd

]t
+ mvmnR

nstd + Emstd

+ S 1

n0sjd
]

]jn P̃mnsj,td + mvmnjnD = 0, s72d

where we also performed a gauge transformation,c̃8sj ,td
=c̃sj ,tdexpf−imVj+ ie0

t Ldt8g, which corresponds to the
transformation from the canonical to the kinematic momen-
tum.

Let, initially, the system be prepared in a stationary state
sor in arbitrary mixture of stationary statesd. This means that

at t=0 the stationary force balance equation is fulfilled,

1

n0sjd
]

]jn P̃mnsj,0d + mvmnjn = 0. s73d

If at all t.0 the center-of-mass coordinateRstd satisfies the
classical equation of motion,

m
]2Rmstd

]t2
+ mvmnR

nstd + Emstd = 0, s74d

then both the equation of motion, Eq.s71d, and the force
balance equation, Eq.s72d, preserve their initialsstationaryd
form. Therefore the many-body system in the co-moving
frame remains in the initial stationary state, in particular,

P̃mnsj ,td= P̃mnsj ,0d. This statement is the essence of HPT.6

Within the present formulation of many-body dynamics it
appears quite naturally. In fact, HPT is a built-in property of
our self-consistent approach. This actually means that any
approximate treatment of a self-consistent system of Eqs.
s34d and s58d should automatically satisfy HPT.

B. Geometric formulation of generalized hydrodynamics:
nonlinear elasticity of a collisionless Fermi gas

The HPT type of motion provides an extremely simple
example of many-body dynamics without any deformation of
local fluid elementssgmn

HPT=dmnd. In this section we apply our
approach to a much more general situation with a nontrivial
dynamics of a fluid. Namely, we consider a semiclassical
dynamics of an interacting Fermi system in the time-
dependent Hartree approximation. The problem reduces to
the self-consistent solution of a semiclassical collisionless
kinetic equationfsee Eq.s43dg,

] f̃K8

]t
+

Kn

m

] f̃K8

]jn − Fm
]ṽn

]t
+ KmF̃mn −

]gab

]jn

KaKb

2m

+
]

]jnSU − m
ṽmṽm

2
DG ] f̃K8

]Kn

= 0, s75d

and a force balance equationfsee Eq.s58dg,

m
]ṽm

]t
+

]

]jmSU − m
ṽnṽ

n

2
D +

Îg

n0
P̃m;n

n = 0. s76d

HereU=Uextsj ,td+UHsj ,td is a sum of the external potential
and the Hartree potential,

UHsj,td =E wslj,j8dn0sj8ddj8.

Since the interaction effects are already includedson the
mean field leveld in the self-consistent potential, only the
kinetic part of the stress tensor contributes to Eq.s76d, i.e.,

P̃mn=m−1oKKmKn f̃K8 /Îg. The last expression forP̃mn is a
plain semiclassical limit of the general kinetic stress tensor,
Eq. s63d.

The problem of solving Eqs.s75d and s76d can be refor-
mulated as follows. Let us substitute the sum of the inertia
and the external forces from the balance equation, Eq.s76d,
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into the kinetic equation of Eq.s75d. After the substitution
the potentialU in Eq. s75d cancels out and the kinetic equa-
tion reduces to the following universal form:

] f̃K8

]t
+

Kn

m

] f̃K8

]jn − SKmF̃mn −
]gab

]jn

KaKb

2m
−

Îg

n0
P̃m;n

n D ] f̃K8

]Kn

= 0,

s77d

where the stress tensorP̃mn is defined as follows:

P̃mnsj,td =
1
Îg

o
K

KmKn

m
f̃K8 sj,td. s78d

Equationss77d and s78d constitute a closed set, which is
structurally similar to the system of Vlasov equations with a
self-consistent force. The skew-symmetric vorticity tensor,

F̃mnsj ,td, and the symmetric deformation tensor,gmnsj ,td,
enter Eqs.s77d and s78d as external parameters, which gov-
ern the evolution of the system. Hence these equations define

a distribution function,f̃K8 sj ,td, as a unique functional ofF̃mn

and gmn, provided the initial condition,f̃K8 sj ,0d= f̃K
s0dsjd, is

given. Equations78d determines the stress tensor as a univer-

sal si.e., independent of external potentiald functional ofF̃mn

andgmn,

P̃mn = P̃mnfF̃mn,gmngsj,td. s79d

The vorticity and the deformation tensors contain nine inde-

pendent scalar functionssthree fromF̃mn and six fromgmnd
which completely describe a deformed state of a system.1

Hence Eq.s79d plays a role of a generalized “equation of
state” which relates the stress tensor to the deformation. It is
worth mentioning that the existence of such an equation of
state is a direct consequence of Runge-Gross mapping
theorem22 in TDDFT.

Substituting the functional of Eq.s79d into Eq. s76d we
obtain a hydrodynamic equation of motion which determines
the evolution of velocity for a given external potential.
Therefore the description of many-body dynamics consists of
two separate problems. The first one corresponds to the uni-
versal kinetic problem of Eqs.s77d and s78d. By solving
these equations we find the stress tensor functional, Eq.s79d
sthe generalized equation of stated. The second problem is to
compute the velocity and density distributions by solving the
closed set of hydrodynamics equations, Eqs.s18d and s76d.

The universal kinetic problem of Eqs.s77d and s78d, can
be solved explicitly in the case of a fast long wavelength
dynamics, i.e., if the deformation tensor is a fast function of
time, but slowly changes in space. More precisely, we as-
sume that the characteristic length scale,L, of the deforma-
tion inhomogeneity is much larger thantu, wheret is the
time scale of a dynamical process andu is the characteristic
velocity of a particle. This situation is, for example, common
in Coulomb systems where the plasma frequency determines
the characteristic time scale of dynamics, while the corre-
sponding spatial variations of the density can be arbitrary
slow. Let us estimate different terms in Eq.s77d under the
above assumption. The first and the second terms on the
right-hand side of Eq.s77d are of the order of 1/t andu/L,

respectively. Both terms in the second line in of Eq.s77d also
give a contribution,u/L, while the term, related to the Co-

riolis force, is proportional toF̃, ṽT/L, whereṽT is a rota-
tional sor transversed component of the velocity. According
to the force balance equation of Eq.s76d, for any physical
velocity the transverse part of the linear acceleration is com-

pensated by the transverse part of the vectorsÎg/n0dP̃m;n
n .

HenceṽT should be proportional totu2/L. This means that
the contribution of Coriolis force to the kinetic equation is of
the order oftu2/L2. Therefore, to the leading order in the
small parameterg=tu/L!1, only the first term in Eq.s77d
gives a nonvanishing contribution. Thus the universal prob-
lem of Eqs.s77d and s78d reduces to the following trivial
equation:

]

]t
f̃K8 sj,td = 0. s80d

Equations80d shows that for a fast, small-gradient evolution
the distribution function in the Lagrangian frame preserves

its initial form, f̃K8 sj ,td= f̃K
s0dsjd. In this respect the dynamics

remind the HPT type of motion. However the evolution of
the velocity is by far not trivial. Below we consider a system
which evolves from the equilibrium state. Substituting the
equilibrium distribution function into Eq.s78d we get the
stress tensor functional,

P̃mnsj,td =
dmn

Îgsj,td
P0sjd, s81d

which is proportional to the initial equilibrium pressure,
P0sjd. The last step is to substitute the nonadiabatic “equa-
tion of state,” Eq.s81d, into the force balance equation of Eq.
s76d. This results in the following “hydrodynamic” equation
of motion:

mn0
]ṽm

]t
+ n0

]

]jmSU − m
ṽnṽ

n

2
C +

]gmnP0

]jn +
1

2
P0

]gaa

]jm = 0,

s82d

where we used the definition of the covariant divergence, Eq.

s57d, to compute the stress force,ÎgP̃m;n
n , in Eq. s76d. We

would like to outline thatn0sjd andP0sjd in Eq. s82d are the
time independent initial density and pressure, respectively.
Equationss82d ands18d constitute a closed set of continuum
mechanics equations which describe a long wavelength dy-
namics of a Fermi gas in the time-dependent Hartree ap-
proximation. Since the stress force in Eq.s82d depends only
on the deformation tensor,gmn, it is natural to interpret Eqs.
s82d ands18d as a nonlinear elasticity theory of a Fermi gas.
In the case of small deformations this theory reduces to the
standard linear elasticity theory with a nonzero shear modu-
lus. Indeed, in the linear regime Eq.s18d takes the form

]usj,td
]t

= vsj,td, s83d

whereu=x−j is the displacement vector. The deformation
tensor reduces to the common linearized expression,
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gmn = dmn −
]um

]jn −
]un

]jm . s84d

Assuming for simplicity that the unperturbed state is homo-
geneous, and substituting Eqs.s83d and s84d into Eq. s82d,
we get the following equation of motion for the displacement
vector:

mn0
]2um

]t2
−

]smn

]jn + n0
]dU

]jm = 0. s85d

The linearized stress tensorsmn takes the standard elastic
form

smn = dmnK
]ua

]ja + mS ]um

]jn −
]un

]jm − dmn

2

3

]ua

]jaD , s86d

whereK= 5
3P0 andm=P0 are the bulk modulus and the shear

modulus of a Fermi gas, respectively.19,20,28

The full nonlinear set of equations, Eqs.s82d ands18d, is
equivalent to the generalized collisionless hydrodynamics
derived in Refs. 19 and 20ssee also Ref. 29d. In fact, Eqs.
s82d ands18d and the generalized hydrodynamics of Refs. 19
and 20 correspond to the same theory in the Lagrangian and
Eulerian formulations, respectively. An advantage of the
present Lagrangian formulation is the explicit form of the

stress tensorP̃mn, Eq. s81d. The Lagrangian point of view
also gives a very clear microscopic picture of the fast colli-
sionless dynamics. This is a kind of evolution of a many-
body system with almost time-independent distribution of
particles inside every moving and deforming fluid element.
Using the nonadiabatic equation of state in the Lagrangian
frame, Eq.s81d, we can easily recover the corresponding
expression for the stress tensorPmnsx ,td in the laboratory
frame,

Pmnsx,td =
]ja

]xm

]jb

]xn P̃absjsx,td,td = ḡmnsx,tdÎḡsx,tdP0sjsx,tdd.

s87d

Here ḡmnsx ,td is Cauchy’s deformation tensor,1

ḡmnsx,td =
]ja

]xm

]ja

]xn , ḡ = 1/g. s88d

One can check thatPmnsx ,td of Eq. s87d is a solution to the
equation for the stress tensor derived in Refs. 19 and 20. The
stress tensorPmnsx ,td, Eq. s87d, enters the force balance
equation in the laboratory frame, Eq.s16d. This is a hydro-
dynamic equation of motion in the Eulerian description. It is
quite natural that Pmnsx ,td depends onḡmnsx ,td since
Cauchy’s tensor is a common characteristics of deformations
in the Eulerian picture.

In contrast to the stress tensor in the Lagrangian frame,
Eq. s81d, the stress tensor of Eq.s87d is a highly nonlocal
function. It is proportional to the pressureP0 at the initial
position of a fluid element which is currently atx fx is an
independent variable in Eq.s16dg. The locality of the stress
force in Eq.s82d is a key property of the present Lagrangian
formulation of nonadiabatic continuum mechanics of a Fermi
gas. This formulation should be much more convenient for

applications to particular nonlinear problems.

V. CONCLUSION

We applied the idea of the Lagrangian description in con-
tinuum mechanics to the theory of nonequilibrium quantum
many-body systems. Reformulation of the microscopic
many-body theory in terms of Lagrangian coordinates corre-
sponds to the transformation to the local noninertial refer-
ence frame moving with the flowsthe co-moving Lagrangian
framed. This transformation allows to separate the convective
motion of particles, which is a direct generalization of the
common separation of the center-of-mass motion in homo-
geneous systems. The motion of particles in the Lagrangian
frame is influenced by the external forces and by generalized
inertia forces. We have shown that the inertia forces can be
described in purely geometric terms of Green’s deformation

tensorgmn and the skew-symmetric vorticity tensorF̃mn. Ten-

sorsgmn and F̃mn enter equations of motion as an effective
metric tensor and an effective magnetic field, respectively.
Our results demonstrate a close relation of the many-body
dynamics in Lagrangian frame to the quantum dynamics on
curved manifolds.

We also derived local conservation laws for the number of
particles and for momentum in the Lagrangian frame, and
presented closed microscopic expressions for the stress ten-
sor and for the corresponding stress force. The local momen-
tum conservation law in the Lagrangian frame reduces to a
zero force condition. The inertia forces exactly compensate
the external force and the stress force in every point of the
Lagrangianj-space. The net force, exerted on every fluid
element, is exactly zero, which results in zero current density
and a time-independent density distribution. This property is
the main advantage of the Lagrangian description. It suggests
one of the most promising application of our formalism,
which is a new reformulation of TDDFT in a form similar to
the static theory. Indeed the main practical problem of TD-
DFT is an inevitable strong nonlocality of exchange correla-
tion potentials.4,7,8 The physical reason for this is just the
nonadiabatic motion of fluid elements. When time is flowing,
new and new fluid elements arrive at a given pointx, and
bring an information about surrounding space, producing the
above nonlocality. Using our reformulation of the many-
body theory as a basis for TDDFT one can completely re-
move the very source on the nonlocality, which is of extreme
practical importance. In this paper we did not touch these
questions since it required an extended special consideration.
A detailed formulation of TDDFT in the Lagrangian frame
will be presented in the next paper of this series.30

In this paper we also considered two illustrative examples
of application. The most interesting of them is the descrip-
tion of a nonlinear semiclassical dynamics of a collisionless
Fermi gas. We have shown that the full problem can be sepa-
rated into two independent parts. The first one is the solution
of a universal kinetic problem, which defines the stress ten-
sor as a universal functional ofgmn andFmn. This stress ten-
sor is used as an input for the second “hydrodynamic” part of
the problem, determining the dynamics of the velocity vec-
tor. This separation of the initial many-body problem can be
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viewed as a particular realization of TDDFT in the hydrody-
namic formulation.4,22 In the case of a fast long wavelength
dynamicsssimilar to that for plasma oscillationsd, the univer-
sal kinetic problem can be solved explicitly. The solution is
extremely simple—the Wigner function in the Lagrangian
frame is time independent. The corresponding “hydrody-
namic” problem also can be formulated in the explicit form.
It reduces to a closed nonlinear elasticity theory of a Fermi
gas. This elasticity theory is, in fact, the Lagrangian formu-
lation of the generalized hydrodynamics derived in Refs. 19
and 20. The generalized hydrodynamics proved to be useful
in the description of a small-amplitude collective dynamics
of an electron gas. It gives the correctsconsistent with the
kinetic treatmentd dispersion of plasma waves in homoge-
neous systems19,20 and recovers the exact dispersion of the
edge modes in a confined geometry.31 The results for the
standing plasma waves in a parabolically trapped electron
gas are also quite reasonable.32,33The Lagrangian “elasticity
theory” of a Fermi gas, derived in Sec. IV B is structurally
much more simple than the Eulerian formulation of Refs. 19
and 20. Therefore, we believe that it should provide a good
basis for the description of nonlinear dynamical effects in
inhomogeneous many-electron systems.
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APPENDIX: THE DIVERGENCE REPRESENTATION OF
THE INTERACTION STRESS FORCE

By definition the infraction stress forceF̂int is the commu-
tator of the current operatorĵ and the interaction Hamiltonian

Ŵ,

F̂intsxd = mfĵ sxd,Ŵg−. sA1d

In the coordinate representation operatorsĵ and Ŵ are de-
fined as follows:

ĵ sxd = o
i

fp̂i,dsx − xidg+, sA2d

Ŵ=
1

2o
i,j

wsxi,x jd, sA3d

wherei and j label particles. Calculating the commutator of
Eq. sA1d we get the force in the following form:

F̂intsxd =
1

2o
i,j
Sdsx − xid

]wsxi,x jd
]xi

+ dsx − x jd
]wsxi,x jd

]x j
D .

sA4d

If the interaction potential satisfies the Newton’s third law,

]wsxi,x jd
]xi

= −
]wsxi,x jd

]x j
, sA5d

Eq. sA4d takes the form

F̂intsxd =
1

2o
i,j

fdsx − xid − dsx − x jdg
]wsxi,x jd

]xi
. sA6d

The difference of delta-functions in Eq.sA6d can be trans-
formed as follows:

dsx − xid − dsx − x jd = s1 − esxi−x jds]/]xdddsx − xid

= − sxi − x jd
]

]x
E

0

1

dlelsxi−x jds]/]xddsx − xid

= −
]

]x
sxi − x jdE

0

1

dldfx − xi − lsx j − xidg. sA7d

Inserting Eq.sA7d into Eq. sA6d we get the final representa-
tion for the interaction stress force,

F̂m
intsxd =

]

]xnŴmnsxd, sA8d

whereŴmnsxd is the interaction stress tensor operator,

Ŵmnsxd = −
1

2o
i,j
E

0

1

dldfx − xi − lsx j − xidg

3 sxi
n − xj

nd
]wsxi,x jd

]xi
m . sA9d

The l-integration in Eq.sA9d is along the line that connects
two interacting particles.
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