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Fractional charge excitations in fermionic ladders
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The system of interacting spinless fermions hopping on a two-leg ladder in the presence of an external
magnetic field is shown to possess a long-range order: the bond density wave or the staggered flux phase. In
both cases the elementary excitations Zr&inks and carry one half the charge of an electron.
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It has long been established both theoretiddlyand  rungg, producing currents circulating in the same direction
experimentally that quantum numbers of elementary excita-(determined by the fie)d This can be viewed as a staggered
tions in interacting many-body systems are not necessarilgurrent superimposed upon the average, unifuarsistent
limited to the values characterizing free particles. While ex-current.
citations carrying, for example, an electric charge double the |n this paper we show how the above cartoon picture
free-electron charge can be visualized as pairs of the origi- arises starting from the weak coupling limit. Our strategy is
nal particles] the fractionally charged excitations may ap- the following: (i) We diagonalize the Hamiltonian in the ab-
pear counterintuitivé:>®By far the most celebrated example sence of interactionii) linearize the exact spectrum near the
of such excitations is the fractionally charged quasiparticlegg m; points and bosonize the modéii) finally, we solve

in the guantum Hall stafeAt about the same time the notion e posonic problem and find the ground state of the inter-
of fractional charge appeared in the Peierls model applied tgcting system

quasi-one-dimensional  conducting  polymérs. More : - .

recently? fractionally charged excitations were predicted in W Thﬁ Sljr:?rienp?rtr'fl?bsazcnur:z iOf ths ﬁ:ozlim tﬁonniIStsn Ot]:

the context of the extended Hubbard model. 0 one-dimensional bands and Is governed by the magnetic
hflux through a plaquette in units of the flux quantdiras well

In this paper we argue that charge fractionalization, whic ) o .
already exists in simple models of spinless fermions, sur@S the ratio of the transverse and longitudinal hopping am-

vives the application of an external magnetic field affectingPlitudes 7. It is possible to partially fill only one band and
the orbital motion of the particles. Restricting the fermions tohave only two Fermi points. In this case the low-energy
hop on a two-leg laddé® we show that just nearest- Physics of the problem is similar to that of the XXZ spin
neighbor interactior(if it is strong enough leads to long- chain!? If the interaction is weak, then the system is in the
range order(LRO) with a doubly degenerate ground state. Luttinger liquid regime(i.e., similar to the gapless phase of
The elementary excitations are then quantum domain wallthe XXZ chain. If, on the other hand, the two Fermi points
or Z, kinks that carry the charge/2. are commensurate with the lattice and the interaction is suf-

The applied field plays a crucial and somewhat surprisindiciently strong, then the umklapp scattering becomes rel-
role in the problem. In the absence of the field the onlyevantin the renormalization group sense and opens a gap. As
possible LRO is the bond density wayBDW) similar to  in the case of the single XXZ chain, the ground state of this
that of Ref. 6. However, in the presence of the field differentgapful phase possesses LRO and is doubly degenerate. How-
types of LRO are possible. The most spectacular manifestaver, the applied field makes the physics of the ladder richer.
tion of the field is thestaggered flux pha8éCillustrated in  Depending on the sign of the umklapp term different types of
Fig. 1. Note that the staggered order parameter here is il-RO are possible: BDW in the repulsive case, or the stag-
duced by auniform field.!* gered flux phask(or an orbital antiferromagn®) in the case

To build some intuition about the ordered phases, conside?f attraction.
the strong coupling limit of the model where the transverse Having sketched our line of reasoning we now describe
interactionV, is the strongest, so that no rung of the ladderour calculations. In this paper we focus on the particular
can be doubly occupied. For the quarter-filled ladder the
starting point is a state where there is one electron per twc
plaquettes. The hopping terms tend to delocalize the elec
trons along the links. If the longitudinal interaction is repul- Q Q Q + Q + Q + Q Q
sive V>0, then the most favorable configuration is that in
which the electrpns, avoiding to reside on neighborin_g siteS FG. 1. (Color onling The staggered flux phase in the two-leg
of the same chain, get delocalized on rungs thus leading 0 @dder penetrated by a magnetic field. The arrows inside the
commensurate BDW. If, on the other hand,<0 then the  piaquettes indicate the direction of the applied uniform fiedé
system has a natural tendency to phase separate which riscted inside the plane of the figlrérhe arrows along the links
opposed by the flux. If the flux is strong enough the electronsndicate directions of the staggered currents. The central plaguette is
are placed on every other plaquette and are completely deléhe domain wall between the two degenerate ground states. This
calized around therfthus avoiding double occupancy of the excitation carries the chargs 2.
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parameter regimes where the system exhibits the fractional o(k)
charge. Mathematical details and a description of the full
phase diagram of the system, as well as a quantitative de-
scription of the strong-coupling limit, will be discussed
elsewheré? 1
We start with the tight-binding Hamiltonian

1
H=-, |:§ > (t\\(yi)cr(xn)ci(xn+l) +h.c)

i=1,2

+ tJ_CI(Xn)CZ(Xn) + h-C-:| + Hint- (1)
FIG. 2. (Color online The spectrum in the regiomr>1,
wherec;(x,) is the electron annihilation operator on the chain 7 cosf > sin mrf.
j at the sitex,, andt, andt, are the transverse and the
longitudinal hopping amplitudes, respectively. The magnetidor (see Fig. 2 If the flux is not too small, starf
field B is introduced by means of the Peierls substitufibn. > rcos=f, the bands acquire a double-well shape shown in
Choosing the Landau gau@ewith the vector potentialA Fig. 3.
=B(-y,0,0 and defining they coordinates of the chains as  Now we focus on the situation where the lower band is
Yi(2=£b/2, we write the longitudinal hopping amplitude as only partially filled (the upper band is emptynd there are
_ only two Fermi points. The ground state in the absence of
t(y) :tﬁo)ez mitylb, (2 interaction is characterized by the persistent current flowing
along the chains. Indeed, the ground-state expectation value

lattice spacing along the chains. The control parametier of the transverse current E) vanishesJ,)=0, while the

defined aSr:tJ_/t(O)' £(© plays the role of the bandwidth and in-chain current Eq(3) is nonzero as long as the flux is

([ i
hereafter will be set to unity. Expressed in terms of the ﬂuxapphed,

the model is explicitly gauge invariant.

The physical quantities we shall study in this paper are the I = = _
electrical current and particle density. In terms of the lattice 2 ¢tk L sin gsin? arf + 72
operatorsci(x,) the in-chain current is given by

wheref=Bab/ ¢y, with ¢g being the flux quantum aralthe

k
sinwf < sir? g cosf
nm > [T qCosm -cosq|. (9)

The current flows along the two chains in opposite directions
i . (J1=—(J), so that the net current is equal to zero as it
‘]1(2):_E[Cl(Z)(Xn)Cl(Z)(Xn+l)e+m —h.c], () should. The Fermi momentum in E¢9) depends on the
applied field as
while the transverse current is defined as

3, =-irei(x)ey(x) —h.c]. @) . _ oy
o ) ) ) wherew is the chemical potential in units qf.
Similarly, the bond density on transverse links is It is noteworthy thatall (filled) states contribute to the
(5) persistent current E¢9). The persistent current in this prob-
lem is not an infrared phenomenon and thus cannot be ac-
In the absence of interaction the Hamiltonian Eb.can be  counted for by an effective low-energy theory. The low-

coske = - 7 cosaf — 72 + (1L -E)sit «f,  (10)

pL= CI(Xn)C2(Xn) +h.c..

diagonalized with the help of the linear transformation energy effects we discuss below are thus taking place on the
_ ) _ 6 background of thisingle-particlepersistent current. We will
€1(Q) = Ugag + vgBy;  Co(0) = vgaq ~ Ughy, () ot discuss further corrections to E®) in this paper.
where the “coherence factors” alhe signs are explicit in
Eq. (6) so that the coherence factors are positive o)
1 sing sin «f
20 2 —
) =<1+ = = . (7)

e 2[ Vsir? g sir? arf + 72 \ /

The exact spectrum of the system consists of two one- k

dimensional bands, \ \/
€,(5(K) = — cosk cosnf F VsirP ksir? #f + 7, (8)
.(B) o N+~ #
wherek is the momentum along the chains. Since the trans-
formation f — 1—f preserves the spectrum we only need to
consider the fluxes such thats0f<1/2. If the transverse FIG. 3. (Color onling The spectrum in the regiofsin 7f)2/ 7

hopping amplitude is large enough so that coszf the  >cos#f>r. The horizontal line depicts the chemical potential
spectrum possesses a band gap and resembles a band insal&h that there are only two Fermi points.
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To formulate an effective low-energy theory we now lin- 01 =4Vudvi(1-cos X)) +V, (U3 -v3)?, (183
earize the exact spectrum in the vicinity of the Fermi points,
Eq. (10), and assume that the state«aD are far away from
the Fermi levelsee below for detai)s Since only one band g, = - 2V,@%Fudv3. (18b)
is filled, this step is fairly standard and is similar to the case

of a single chairl? Separating fast and slow variables, we tpg first term in Eq.(17) is the density-density interaction
introduce the left and right movers for the lower band ant 4t can be taken into account exactly by means of bosoniza-
find the standard kinetic term tion. The second term is the umklapp interaction that does
R t + not conserve momentum and thus is only relevant wes
Ho= UF% k(ar(K)ar(k) = ay (K)o (k). (11) commensurate with the latti¢ee., for the quarter-filled lad-
den.
where the Fermi velocity is In the commensurate case the Fermi momentigm
e p—— =/2 and the chemical potenti@l=—sir? rf +72. This is
F\‘ ad 77 _ (12)  consistent with the requirement of having only two Fermi
\Sir? kg sir? f + 72 points when 2> |cos 2rf|/cosaf. In this case the combina-
tions of coherence factors in Eq4.7) and (14) simplify to

vg = sink

To obtain the final form of the effective theory we need to

express the physical observables in terms of the low-energy o o ~ ~

fields (in doing so we approximate the coherence factors by Up—vg=(sinmf)/u;  Ugvo= 11t (19

their values at the Fermi pointg andv,). The smooth part

of the particle density is then given by Now we use the standard bosonization procedure and express

the interaction Hamiltonian Eq17) in terms of a bosonic

P1=UpdR+vgd 2= Updrt Ul 13 fielg ¢ and the conjugate morﬁentuﬂl. Combining it with

where Jg. = ag{(L)aR(L);_ Mostly we shall be interested in the kinetic term we arrive to the usual form of the Luttinger

staggeredperators with expectation values vanishing in theIIqUId Hamiltonian(herea is the bosonic cutoff

absence of interaction. The operators of interest are the stag-
gered currentsdefined on linkg

a

v 1 g
H= EF[KH2+ R(a@)z} + —=

272 a?

cos V’Er(ﬁ, (20)

n

J12) (X Xned) = % Ugvo( ey (%) ap(Xns)E ™
_ where the Luttinger liquid paramet&ris determined by the

- o (Xps) ar(%)€™ = h.c), (143  interaction constant Eq(183 as K=[(1-g,/2mv&)/(1

+gu/ 22

j L) =it (= D2 = W) (of (%) ar(X,) — h.c), The behavior of the effective theory E0) is well
(14b) known1? At the critical value of the Luttinger liquid param-
eter K=1/2 (Ref. 17 the system exhibits a Berezinski-

and the staggered bond density Kosterlitz-ThoulessBKT) (Ref. 18 transition to a gapful
S\ — [ T phase with brokerZ, symmetry and LRO. The type of or-

P (%) = (= 1)™(a (%) ar(X,) + h.C). (19 dering depends on the sign of the coupling consgant
Current conservation requir¢§ , )| =2[(j1(»))|- (i) If the umklapp term is repulsivg,>0 then the local

We now turn to the discussion of interaction effects. ForMinima of the potential are achieved @t y7/16+nym/4,

simplicity we consider the nearest-neighbor density-densityn(;o’ t1,.... Inthis case the staggered bond density &§)
interaction p ~siny4mw¢ acquires a nonzero expectation value and
LRO is of the BDW-type. This ordering resembles the
Hint = 2 [VI(01(X) Ny (Xn2) + Na(X)No(Xs1)) charge-density wave in the extended Hubbard nfoatel /4
n filling.

(i) If, on the other handg, <0 (Ref. 19, then the local
VLM (%0) ] (16) minima are a=n\w/4 and now there exists the staggered
with n;=: chcJ-: (colons indicate normal ordering current Eq.(14) j | ~cos/4m¢ leading to the staggered flux

In terms of left and right mover@eglecting trivial renor-  phase illustrated in Fig. 1. Clearly, the currents are nonzero
malizations of the Fermi velociiywe rewrite the interaction only in the presence of the applied field, jas< sin «f. This

Eq. (16) in position space as is a surprise: we find that theniform field causes thestag-
. + geredcurrent.
Hiny = E [91: ar(X) ar(Xi) e (X) e (X)) In both cases the ground state is doubly degenerate and
: the elementary excitation is a “quantum domain wall” or, in
+ (G a(X) ab(Xis) aL (X) e (Xi+1): + h.c)], terms of the effective theory EO0), a Z, kink interpolating
17) between the two neighboring minima. The charge carried by
the kink is related to the distandap between the minimpas
where the new interaction constants!re follows from Eq.(13)]
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A <0 (Ref. 19. In both case$due to their topological natuye
Q= e\_w (21) elementary excitationsi.e., kinkg carry fractional charge.

As such, charge fractionalization appears to be a generic phe-
Since both types of ordering originate from the same internomenon mostly insensitive to the details of the model. As
action term in Eq(20), the dlstance between the minima is long as the basic features of the modiet., the transverse
the same for both casesg=1m/4, which brings us to the hopping and the fluxare in place, any interaction that con-

conclusion that the kinks carry fractional charge tains umklapp process€swill lead to charge fractionaliza-
tion.
e
Q= 15. (22 The applied magnetic field played a crucial role in our

considerations. It led to a nontrivial deformation of the
This statement is the main result of the present paper. Thregingle-particle spectrurtFig. 3), previously unaccounted for,
features of the model were necessary to obtam this rggult: and to the appearance of the staggered flux phase. The Fermi
the electron density is bosonized ﬂsﬁxqs/wr (i) there  momentum became strongly dependent on the flux. For a
were two Fermi points with B-=r; (iii ) the interaction was situation close to half filling this implies the existence of four
strong enough to open the umklapp gap and produce thessentially different Fermi points. This, and other features of
LRO. the model that were not discussed in the present paper, as
To summarize, we have considered the simplest possiblgell as further generalizations of the model to larger number
model of interacting electrons subject to an external magof chains and spinful electrons, is the subject of a future
netic field restricting the motion of electrons to hopping on apypjication’?
two-leg ladder. Despite its apparent simplicity, the model ex-
hibits phase transitions to nontrivial LRO phases, the BDW We are grateful to N. Andrei, T. Giamarchi, and A.M.
phase in the cas€,>0 and the staggered flux phase fgr  Tsvelik for stimulating discussions.
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