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The system of interacting spinless fermions hopping on a two-leg ladder in the presence of an external
magnetic field is shown to possess a long-range order: the bond density wave or the staggered flux phase. In
both cases the elementary excitations areZ2 kinks and carry one half the charge of an electron.
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It has long been established both theoretically1,2 and
experimentally3 that quantum numbers of elementary excita-
tions in interacting many-body systems are not necessarily
limited to the values characterizing free particles. While ex-
citations carrying, for example, an electric charge double the
free-electron chargee can be visualized as pairs of the origi-
nal particles,4 the fractionally charged excitations may ap-
pear counterintuitive.2,5,6 By far the most celebrated example
of such excitations is the fractionally charged quasiparticles
in the quantum Hall state.5 At about the same time the notion
of fractional charge appeared in the Peierls model applied to
quasi-one-dimensional conducting polymers.2 More
recently,6 fractionally charged excitations were predicted in
the context of the extended Hubbard model.

In this paper we argue that charge fractionalization, which
already exists in simple models of spinless fermions, sur-
vives the application of an external magnetic field affecting
the orbital motion of the particles. Restricting the fermions to
hop on a two-leg ladder,7,8 we show that just nearest-
neighbor interactionsif it is strong enoughd leads to long-
range ordersLROd with a doubly degenerate ground state.
The elementary excitations are then quantum domain walls
or Z2 kinks that carry the chargee/2.

The applied field plays a crucial and somewhat surprising
role in the problem. In the absence of the field the only
possible LRO is the bond density wavesBDWd similar to
that of Ref. 6. However, in the presence of the field different
types of LRO are possible. The most spectacular manifesta-
tion of the field is thestaggered flux phase9,10 illustrated in
Fig. 1. Note that the staggered order parameter here is in-
duced by auniform field.11

To build some intuition about the ordered phases, consider
the strong coupling limit of the model where the transverse
interactionV' is the strongest, so that no rung of the ladder
can be doubly occupied. For the quarter-filled ladder the
starting point is a state where there is one electron per two
plaquettes. The hopping terms tend to delocalize the elec-
trons along the links. If the longitudinal interaction is repul-
sive Vi .0, then the most favorable configuration is that in
which the electrons, avoiding to reside on neighboring sites
of the same chain, get delocalized on rungs thus leading to a
commensurate BDW. If, on the other hand,Vi ,0 then the
system has a natural tendency to phase separate which is
opposed by the flux. If the flux is strong enough the electrons
are placed on every other plaquette and are completely delo-
calized around themsthus avoiding double occupancy of the

rungsd, producing currents circulating in the same direction
sdetermined by the fieldd. This can be viewed as a staggered
current superimposed upon the average, uniformspersistentd
current.

In this paper we show how the above cartoon picture
arises starting from the weak coupling limit. Our strategy is
the following: sid We diagonalize the Hamiltonian in the ab-
sence of interaction;sii d linearize the exact spectrum near the
Fermi points and bosonize the model;siii d finally, we solve
the bosonic problem and find the ground state of the inter-
acting system.

The single-particle spectrum of the problem consists of
two one-dimensional bands and is governed by the magnetic
flux through a plaquette in units of the flux quantumf as well
as the ratio of the transverse and longitudinal hopping am-
plitudest. It is possible to partially fill only one band and
have only two Fermi points. In this case the low-energy
physics of the problem is similar to that of the XXZ spin
chain.12 If the interaction is weak, then the system is in the
Luttinger liquid regimesi.e., similar to the gapless phase of
the XXZ chaind. If, on the other hand, the two Fermi points
are commensurate with the lattice and the interaction is suf-
ficiently strong, then the umklapp scattering becomes rel-
evant in the renormalization group sense and opens a gap. As
in the case of the single XXZ chain, the ground state of this
gapful phase possesses LRO and is doubly degenerate. How-
ever, the applied field makes the physics of the ladder richer.
Depending on the sign of the umklapp term different types of
LRO are possible: BDW in the repulsive case, or the stag-
gered flux phase9 sor an orbital antiferromagnet10d in the case
of attraction.

Having sketched our line of reasoning we now describe
our calculations. In this paper we focus on the particular

FIG. 1. sColor onlined The staggered flux phase in the two-leg
ladder penetrated by a magnetic field. The arrows inside the
plaquettes indicate the direction of the applied uniform fieldsdi-
rected inside the plane of the figured. The arrows along the links
indicate directions of the staggered currents. The central plaquette is
the domain wall between the two degenerate ground states. This
excitation carries the chargee/2.
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parameter regimes where the system exhibits the fractional
charge. Mathematical details and a description of the full
phase diagram of the system, as well as a quantitative de-
scription of the strong-coupling limit, will be discussed
elsewhere.13

We start with the tight-binding Hamiltonian

H = − o
n
F1

2 o
i=1,2

stisyidci
†sxndcisxn+1d + h.c.d

+ t'c1
†sxndc2sxnd + h.c.G + Hint, s1d

wherecjsxnd is the electron annihilation operator on the chain
j at the sitexn, and t' and ti are the transverse and the
longitudinal hopping amplitudes, respectively. The magnetic
field B is introduced by means of the Peierls substitution.14

Choosing the Landau gauge15 with the vector potentialA
=Bs−y,0 ,0d and defining they coordinates of the chains as
y1s2d= ±b/2, we write the longitudinal hopping amplitude as

tisyd = ti
s0de2pi fy/b, s2d

wheref =Bab/f0, with f0 being the flux quantum anda the
lattice spacing along the chains. The control parametert is
defined ast= t' / ti

s0d; ti
s0d plays the role of the bandwidth and

hereafter will be set to unity. Expressed in terms of the flux
the model is explicitly gauge invariant.

The physical quantities we shall study in this paper are the
electrical current and particle density. In terms of the lattice
operatorscjsxnd the in-chain current is given by

J1s2d = −
i

2
fc1s2d

† sxndc1s2dsxn+1de7pi f − h.c.g, s3d

while the transverse current is defined as

J' = − itfc1
†sxndc2sxnd − h.c.g. s4d

Similarly, the bond density on transverse links is

r' = c1
†sxndc2sxnd + h.c.. s5d

In the absence of interaction the Hamiltonian Eq.s1d can be
diagonalized with the help of the linear transformation

c1sqd = uqaq + vqbq; c2sqd = vqaq − uqbq, s6d

where the “coherence factors” arefthe signs are explicit in
Eq. s6d so that the coherence factors are positiveg

uq
2svq

2d =
1

2F1 7
sinq sinpf

Îsin2 q sin2 pf + t2G . s7d

The exact spectrum of the system consists of two one-
dimensional bands,

easbdskd = − cosk cospf 7 Îsin2 k sin2 pf + t2, s8d

wherek is the momentum along the chains. Since the trans-
formation f →1− f preserves the spectrum we only need to
consider the fluxes such that 0ø f ø1/2. If the transverse
hopping amplitude is large enough so thatt.cospf the
spectrum possesses a band gap and resembles a band insula-

tor ssee Fig. 2d. If the flux is not too small, sin2 pf
.t cospf, the bands acquire a double-well shape shown in
Fig. 3.

Now we focus on the situation where the lower band is
only partially filled sthe upper band is emptyd and there are
only two Fermi points. The ground state in the absence of
interaction is characterized by the persistent current flowing
along the chains. Indeed, the ground-state expectation value
of the transverse current Eq.s4d vanisheskJ'l=0, while the
in-chain current Eq.s3d is nonzero as long as the flux is
applied,

kJ1l =
sinpf

2 o
q=−kF

kF F sin2 q cospf
Îsin2 q sin2 pf + t2

− cosqG . s9d

The current flows along the two chains in opposite directions
kJ1l=−kJ2l, so that the net current is equal to zero as it
should. The Fermi momentum in Eq.s9d depends on the
applied field as

coskF = − m̃ cospf − Ît2 + s1 − m̃2dsin2 pf , s10d

wherem̃ is the chemical potential in units ofti
s0d.

It is noteworthy thatall sfilledd states contribute to the
persistent current Eq.s9d. The persistent current in this prob-
lem is not an infrared phenomenon and thus cannot be ac-
counted for by an effective low-energy theory. The low-
energy effects we discuss below are thus taking place on the
background of thissingle-particlepersistent current. We will
not discuss further corrections to Eq.s9d in this paper.

FIG. 2. sColor onlined The spectrum in the regiont.1,
t cospf .sin2 pf.

FIG. 3. sColor onlined The spectrum in the regionssinpfd2/t
.cospf .t. The horizontal line depicts the chemical potential
such that there are only two Fermi points.
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To formulate an effective low-energy theory we now lin-
earize the exact spectrum in the vicinity of the Fermi points,
Eq. s10d, and assume that the states atk=0 are far away from
the Fermi levelssee below for detailsd. Since only one band
is filled, this step is fairly standard and is similar to the case
of a single chain.12 Separating fast and slow variables, we
introduce the left and right movers for the lower band and
find the standard kinetic term

H0 = vF
ao

k

k„aR
†skdaRskd − aL

†skdaLskd…, s11d

where the Fermi velocity is

vF
a = sinkF

Îs1 − m̃2dsin2 pf + t2

Îsin2 kF sin2 pf + t2
. s12d

To obtain the final form of the effective theory we need to
express the physical observables in terms of the low-energy
fields sin doing so we approximate the coherence factors by
their values at the Fermi pointsu0 andv0d. The smooth part
of the particle density is then given by

r1 = u0
2JR + v0

2JL; r2 = v0
2JR + u0

2JL, s13d

where JRsLd¬aRsLd
† aRsLd:. Mostly we shall be interested in

staggeredoperators with expectation values vanishing in the
absence of interaction. The operators of interest are the stag-
gered currentssdefined on linksd

j1s2dsxn,xn+1d =
s− 1dn

2
u0v0„aL

†sxndaRsxn+1de−ipf

− aL
†sxn+1daRsxndeipf − h.c.…, s14ad

j'sxnd = it's− 1dnsv0
2 − u0

2d„aL
†sxndaRsxnd − h.c.…,

s14bd

and the staggered bond density

r'
ssdsxnd = s− 1dn

„aL
†sxndaRsxnd + h.c.…. s15d

Current conservation requiresuk j'lu=2uk j1s2dlu.
We now turn to the discussion of interaction effects. For

simplicity we consider the nearest-neighbor density-density
interaction

Hint = o
n

fVi„n1sxndn1sxn+1d + n2sxndn2sxn+1d…

+ V'n1sxndn2sxndg, s16d

with nj¬cj
†cj: scolons indicate normal orderingd.

In terms of left and right moverssneglecting trivial renor-
malizations of the Fermi velocityd we rewrite the interaction
Eq. s16d in position space as

Hint < o
i

fg1:aR
†sxidaRsxidaL

†sxidaLsxid:

+ „g2:aR
†sxidaR

†sxi+1daLsxidaLsxi+1d: + h.c.…g,

s17d

where the new interaction constants are16

g1 = 4Viu0
2v0

2s1 − cos 2kFd + V'su0
2 − v0

2d2, s18ad

g2 = − 2Vie2ikFu0
2v0

2. s18bd

The first term in Eq.s17d is the density-density interaction
that can be taken into account exactly by means of bosoniza-
tion. The second term is the umklapp interaction that does
not conserve momentum and thus is only relevant whenkF is
commensurate with the latticesi.e., for the quarter-filled lad-
derd.

In the commensurate case the Fermi momentumkF

=p /2 and the chemical potentialm̃=−Îsin2 pf +t2. This is
consistent with the requirement of having only two Fermi
points when 2t. ucos 2pf u /cospf. In this case the combina-
tions of coherence factors in Eqs.s17d and s14d simplify to

u0
2 − v0

2 = ssinpfd/m̃; u0v0 = t/m̃. s19d

Now we use the standard bosonization procedure and express
the interaction Hamiltonian Eq.s17d in terms of a bosonic
field f and the conjugate momentumP. Combining it with
the kinetic term we arrive to the usual form of the Luttinger
liquid Hamiltoniansherea is the bosonic cutoffd

H =
vF

a

2
FKP2 +

1

K
s]xfd2G +

g2

2p2a2 cosÎ16pf, s20d

where the Luttinger liquid parameterK is determined by the
interaction constant Eq.s18ad as K=fs1−g1/2pvF

ad / s1
+g1/2pvF

adg1/2.
The behavior of the effective theory Eq.s20d is well

known.12 At the critical value of the Luttinger liquid param-
eter K=1/2 sRef. 17d the system exhibits a Berezinski-
Kosterlitz-ThoulesssBKTd sRef. 18d transition to a gapful
phase with brokenZ2 symmetry and LRO. The type of or-
dering depends on the sign of the coupling constantg2.

sid If the umklapp term is repulsiveg2.0 then the local
minima of the potential are achieved atf=Îp /16+nÎp /4,
n=0, ±1, . . .. Inthis case the staggered bond density Eq.s15d
r

'

ssd,sinÎ4pf acquires a nonzero expectation value and
LRO is of the BDW-type. This ordering resembles the
charge-density wave in the extended Hubbard model6 at 1/4
filling.

sii d If, on the other hand,g2,0 sRef. 19d, then the local
minima are atf=nÎp /4 and now there exists the staggered
current Eq.s14d j',cosÎ4pf leading to the staggered flux
phase illustrated in Fig. 1. Clearly, the currents are nonzero
only in the presence of the applied field, asj'~sinpf. This
is a surprise: we find that theuniform field causes thestag-
geredcurrent.

In both cases the ground state is doubly degenerate and
the elementary excitation is a “quantum domain wall” or, in
terms of the effective theory Eq.s20d, aZ2 kink interpolating
between the two neighboring minima. The charge carried by
the kink is related to the distanceDf between the minimafas
follows from Eq.s13dg
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Q = e
Df

Îp
. s21d

Since both types of ordering originate from the same inter-
action term in Eq.s20d, the distance between the minima is
the same for both cases,Df=Îp /4, which brings us to the
conclusion that the kinks carry fractional charge

Q = ±
e

2
. s22d

This statement is the main result of the present paper. Three
features of the model were necessary to obtain this result:sid
the electron density is bosonized asr=]xf /Îp; sii d there
were two Fermi points with 2kF=p; siii d the interaction was
strong enough to open the umklapp gap and produce the
LRO.

To summarize, we have considered the simplest possible
model of interacting electrons subject to an external mag-
netic field restricting the motion of electrons to hopping on a
two-leg ladder. Despite its apparent simplicity, the model ex-
hibits phase transitions to nontrivial LRO phases, the BDW
phase in the caseVi .0 and the staggered flux phase forVi

,0 sRef. 19d. In both casessdue to their topological natured
elementary excitationssi.e., kinksd carry fractional charge.
As such, charge fractionalization appears to be a generic phe-
nomenon mostly insensitive to the details of the model. As
long as the basic features of the modelsi.e., the transverse
hopping and the fluxd are in place, any interaction that con-
tains umklapp processes16 will lead to charge fractionaliza-
tion.

The applied magnetic field played a crucial role in our
considerations. It led to a nontrivial deformation of the
single-particle spectrumsFig. 3d, previously unaccounted for,
and to the appearance of the staggered flux phase. The Fermi
momentum became strongly dependent on the flux. For a
situation close to half filling this implies the existence of four
essentially different Fermi points. This, and other features of
the model that were not discussed in the present paper, as
well as further generalizations of the model to larger number
of chains and spinful electrons, is the subject of a future
publication.13
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