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The scattering of a TE-polarized electromagnetic wave from a metallic cylinder with a slightly random
rough surface is studied by means of the stochastic functional approach. The incoherent scattering distribution
can be calculated from the Wiener coefficients up to the second order and demonstrates the enhanced back-
scattering peak, which is attributed to the participation of the surface plasmon waves supported by the cylin-
drical metal surface as the intermediate scattering processes in multiple scattering.
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I. INTRODUCTION

The scattering of waves from a random rough surface is a
very common physical phenomenon; for instance, the scat-
tering of radio waves from irregular ground, the sea surface,
or irregular-shaped objects; radar clutter echo; diffuse scat-
tering of light by a rough plane; excitation of a surface plas-
mon by a random metallic surface; random scattering in op-
tical waveguides; etc. These are not only important in
practical topics but also interesting theoretical problems, and
a number of works have been published on related theories
using various techniques.

The phenomenon of enhanced backscattering, manifested
as a well-pronounced peak in the antispecular direction in the
angular distribution of waves incoherently scattered by ran-
dom rough surfaces, has attracted a great deal of attention in
recent years.1–6 The backscattering enhancement associated
with the excitation of surface plasmon polaritons was first
studied theoretically by various approaches7–13and lately has
been demonstrated by the experimental observations.14–17

The delay is due largely to the difficulties encountered in the
fabrication of rough surfaces producing adequate polariton
coupling. In a recent experimental study18 on light scattering
in periodicb-aligned carbon nanotubes, which have potential
for a wide range of applications, such as optical switching19

and power limiting,20 the enhanced backscattering effect has
also been observed and was explained using a mechanism of
electromagnetically induced excitation of surface plasmon
polaritons. The existence of plasmon polaritons in the sys-
tems of carbon nanotubes has been reported.20,21

It has been believed that the mechanism responsible for
the enhanced backscattering is the coherent interference in
the multiple-scattered waves, and for slightly rough surfaces
this has been attributed to the participation of unstable or
stable surface electromagneticsEMd waves as the intermedi-
ate scattering processes. Most of the studies, however, have
been concentrated on random rough surfaces in a planar ge-
ometry. A few works22–28 have treated the problems of scat-
tering from cylindrical rough surfaces, but no enhanced
backscattering peak has been demonstrated.

In this paper, the scattering of an electromagnetic wave
from a metallic cylinder with a slightly random rough sur-
face is treated by means of the stochastic functional
approach,24–27 and the effect of surface plasmon waves sup-

ported by the cylindrical metal surface on the enhanced
backscattering is studied. In the stochastic functional ap-
proach, the cylindrical random surface is assumed to be a
homogeneous Gaussian random field, homogeneous with re-
spect to the group of motions on the cylinder—i.e., transla-
tions along the axis and rotations around the axis. The ran-
dom scattered-wave field is regarded as a nonlinear
stochastic functional of the cylindrical random surface and
can be represented as a Wiener-Ito expansion in terms of the
Wiener-Hermite differentials of the cylindrical wave func-
tions. The expansion coefficients up to the second order are
determined by the approximate boundary conditions for
small roughness. Various statistical characteristics of the
scattered wave are obtained from the stochastic-wave field
by making use of the orthogonality of the Wiener-Hermite
differentials. Some numerical calculations are shown for the
angular distribution of incoherent scattering, in which the
enhanced backscattering peak can be clearly observed.

II. SCATTERING FROM A CYLINDRICAL SMOOTH
SURFACE

We first consider the scattering of an EM plane wave from
a metallic smooth cylinder. An incident EM plane wave
whose electric field has a horizontal polarizationsTE cased is
expanded in terms of the cylindrical TE waves. The scattered
fields are determined by making use of the boundary condi-
tions on the surface of the cylinder.

A. Expansion of an incident plane wave in terms of cylindrical
wave

We consider the incident EM plane wave with the incident
wave vectorkW2=(kWt2sbd ,wi ,b), wherewi denotes the incident
angle in thex-y plane with respect to thex axis andb
=k2 cosui, ukWt2sbdu=g0=Îk2

2−b2=k2 sinui, ui being the inci-
dent angle with respect to thez axis. Assume that the electric
field has horizontal polarizationsTE cased, then we have the
following expansion in terms of the cylindrical TE waves for
the incident electric and magnetic field:

EW in = o
m=−`

+`

imeimsw−wid+ibzF m

g0r
Jmsg0rdeWr + iJm8 sg0rdeWwG ,

s1d
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HW in = o
m=−`

+` S−
im

Z0
Deimsw−wid+ibzF ib

k2
Jm8 sg0rdeWr

−
b

k2

m

g0r
Jmsg0rdeWw +

g0

k2
Jmsg0rdeWzG , s2d

wherek2 is the wave number andZ0 the wave impedance in
the space outside the cylinder.

B. Primary scattered fields by a smooth cylinder

Even though the incident electric field is TE polarized, the
scattered electric field is no longer TE polarized. Both the
longitudinalz components of the electric and magnetic fields
exist for the scattered wave. Since the transverse components
of the fields can be expressed in terms of the longitudinal
components of the fields as

EW t =
fib=tEz − ivmeWz 3 =tHzg

ukWtsbdu2
, s3d

HW t =
fib=tHz − iv«eWz 3 =tEzg

ukWtsbdu2
, s4d

where

=t = eWr
]

]r
+ eWw

1

r

]

]r
= eWr

]

]r
+ eWw

im

r
s5d

denotes the transverse operator in the cylindrical coordinates,
merely the longitudinal componentsEz and Hz have to be
determined. Expanding the longitudinal componentsEz

s and
Hz

s of the scattered fields in terms of the cylindrical waves,

Ez
ssHz

sd =5 o
m=−`

+`

Am
0 sCm

0 dF Jms§0rd
Jms§0adGeimw+ibz sr , ad,

o
m=−`

+`

Bm
0 sDm

0 dFHmsg0rd
Hmsg0adGeimw+ibz sr . ad,6

s6d

and the continuous conditions ofEz, Hz, Ew, andHw on the
boundaryr =a wherea is the radius of the cylinder, then we
obtain the expansion coefficientsAm

0 , Bm
0 , Cm

0 , andDm
0 of the

mth cylindrical wave as

Am
0 = Bm

0 =
ih0mb

a
S 1

g0
2 −

1

§0
2D fLmsg0ad − cmsg0adg

Dmsbd
, s7d

Cm
0 = Dm

0 − Sg0

k2
DJmsg0ad

=

fLmsg0ad − cmsg0adgFk1

§0
Lms§0ad −

k2

g0
cmsg0adG

Dmsbd
,

s8d

whereLmsxd=Jm8 sxd /Jmsxd, cmsxd=Hm8 sxd /Hmsxd, and

Dmsbd = Smb

a
D2F 1

g0
2 −

1

§0
2G2

− k2
2FLms§0ad

§0
−

cmsg0ad
g0

G
3Fk1Lms§0ad

§0
−

k2cmsg0ad
g0

G s9d

is the dispersion equation for the surface plasmon modes.

III. SCATTERING FROM A CYLINDRICAL RANDOM
ROUGH SURFACE

We now consider the scattering of an incident TE-
polarized wave from a metallic cylinder with a slightly ran-
dom rough surface shown in Fig. 1 using the stochastic func-
tional approach.24–26 The spectral representation of a
cylindrical random rough surface is given at first. The scat-
tered fields are expanded in terms of the cylindrical wave
functions and represented as a Wiener-Ito expansion in terms
of the Gaussian random measure. The Wiener expansion co-
efficients up to the second order are obtained by applying the
approximate boundary conditions at the interface.

A. Spectral representation of a cylindrical random rough
surface

The geometry of the problem is indicated in Fig. 1. For
brevity, we have here assumed that the cylindrical rough sur-
face is homogeneous in thew direction; that is, the corruga-
tion of the rough surface proceeds only along the axis of the
cylinder, all cross sections being circular, but of radii viewed
as a stochastic process. Letsr ,w ,zd denote the cylindrical
coordinates, and let the random cylindrical surface with
mean radiusa be described by

r = a + fsz;vd, kfsz;vdl = 0, s10d

where f is a homogeneous random function over the cylin-
drical surface,v denotes a sample point in the sample space
which is the ensemble of the realizations off, andk¯l indi-
cates the probabilistic average over the sample space. Then,
as shown in our previous works,24–26 we have the spectral
representation offsz;vd in terms of a Wiener integral:

fsz;vd =E
−`

+`

eilzFslddBsld, s11d

where we have putdBsld;dBsl ;vd and will omit v for
brevity in what follows. HeredBsld denotes the complex

FIG. 1. Geometry of the scattering problem.
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Gaussian random measure. The correlation function of the
cylindrical random rough surface is then obtained by

Rszd = kfsz+ z8;vdfsz8;vdl =E
−`

+`

eilzuFsldu2dl, s12d

and the variance that describes the random surface roughness

s2 = Rs0d =E
−`

+`

uFsldu2dl, s13d

where we have used the relationFsld=F*s−ld. HereuFsldu2
is called the power spectrum of the random cylindrical sur-
face. uFsldu2=0 and thens2=0 corresponds to an ideal
smooth boundary.

B. Wiener-Ito expansion of the scattered fields

The scattered electromagnetic fields can be expanded in
terms of the cylindrical wave functions, and at the same time
the fields are nonlinear functionals of the Gaussian random
rough surface. Since a nonlinear stochastic functional can be
represented as a Wiener-Ito expansion in terms of the Gauss-
ian random measuredBsld, then we have the following ex-
pansion for thez components of the electric and magnetic
fields inside the metallic cylinder,

HEz1

Hz1
= o

m=−`

+`

o
n=0

+` E
−`

+`

¯ E
−`

+` HAm
n sb,l1, . . . ,lnd

Cm
n sb,l1, . . . ,lnd J

3 Jms§nrdeihnz+imwĥnfdBsl1d,dBsl2d, . . . ,dBslndg,J
s14d

and outside the cylinder,

HEz2

Hz2
= o

m=−`

+`

o
n=0

+` E
−`

+`

¯ E
−`

+` HBm
n sb,l1, . . . ,lnd

Dm
n sb,l1, . . . ,lnd J

3 Hmsgnrdeihnz+imwĥnfdBsl1d,dBsl2d, . . . ,dBslndg,J
s15d

where ĥnf¯g denotes thenth-degree complex Wiener-

Hermite differential, which is to be understood as a generali-

zation of Hermite polynomialsnotice ĥ0=1d, the integrals in
the above equations represent then-tuple complex Wiener
integrals, and the coefficientsAm

n , Bm
n , Cm

n , and Dm
n are the

unknown expansion coefficients to be determined by apply-
ing the boundary condition on the random rough boundary.
The parameterhn=b+l1+ . . . +ln is the composed axial
wave number which originates from the scattering by the
random rough boundary.§n and gn are defined as§n

=Îk1
2−hn

2 and gn=Îk2
2−hn

2 with k1 and k2 being the wave
numbers inside and outside the cylinder. The transverse com-
ponents of the scattered fields in terms of the longitudinalz
components of the fields can be obtained as given in Eqs.
s3d–s5d.

C. Approximation solutions for Wiener expansion coefficients

To investigate the scattering characteristics, we have to
determine the Wiener expansion coefficients by applying the
boundary conditions at the random boundaryr =a+ fsz;vd.
For simplicity, we here confine ourselves to the case that the
random boundary is slightly rough—that is,s2!1. Then the
boundary conditions at the interface can be approximated as

5UEw +
]Ew

]r
f +

Er

r

]f

]w
U

r=a

continuous,

UEz +
]Ez

]r
f +

Er

r

]f

]z
U

r=a

continuous,6 s16d

and the same for the components of the magnetic fields.
Substituting the expressions of the fields into the approxi-

mate boundary conditions and making use of the recurrence

formula and the orthogonality relation24–26 for ĥn, we conse-
quently obtain a set of hierarchical equations for the Wiener
expansion coefficients and can solve them by neglecting the
higher-order kernels. The hierarchical equations for the
Wiener expansion coefficients are

HAm
1 sb,l1d

Cm
1 sb,l1d J − HBm

1 sb,l1d
Dm

1 sb,l1d J = F§0Lms§0adHAm
0 sbd

Cm
0 sbd J − g0cmsg0adHBm

0 sbd
Dm

0 sbd JGFsl1d + F b

§0
Lms§0adHAm

0 sbd
Cm

0 sbd J −
b

g0
cmsg0ad

3HBm
0 sbd

Dm
0 sbd JGl1Fsl1d + 35 S ivmm

§0
2a

DCm
0 sbd

S− iv«1m

§0
2a

DAm
0 sbd 6 −5 S ivmm

g0
2a

DDm
0 sbd

S− iv«2m

g0
2a

DBm
0 sbd 64l1Fsl1d s17d

and
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mh1

§1
2a
HAm

1 sb,l1d
Cm

1 sb,l1d J −
mh1

g1
2a
HBm

1 sb,l1d
Dm

1 sb,l1d J = Fmb

§0a
S 1

§0a
− Lms§0adDHAm

0 sbd
Cm

0 sbd JGFsl1d − Fmb

g0a
S 1

g0a
− cmsg0adDHBm

0 sbd
Dm

0 sbd JGFsl1d

−
Jm9 s§0ad
Jms§0adH ivmCm

0 sbd
− iv«1Am

0 sbd JFsl1d −
Hm9 sg0ad
Hmsg0adH ivmDm

0 sbd
− iv«2Bm

0 sbd JFsl1d s18d

for n=1 and

HAm
2 sb,l1,l2d

Cm
2 sb,l1,l2d J − HBm

1 sb,l1,l2d
Dm

2 sb,l1,l2d J = F§1Lms§1adHAm
1 sb,l1d

Cm
1 sb,l1d J − g1cmsg1adHBm

1 sb,l1d
Dm

1 sb,l1d JGFsl2d
2

+ Fh1

§1
Lms§1adHAm

1 sb,l1d
Cm

1 sb,l1d J −
h1

g1
cmsg1adHBm

1 sb,l1d
Dm

1 sb,l1d JGl2Fsl2d
2

+ 35 S ivmm

§1
2a

DCm
1 sb,l1d

S− iv«1m

§1
2a

DAm
1 sb,l1d 6 −5 S ivmm

g1
2a

DDm
1 sb,l1d

S− iv«2m

g1
2a

DBm
1 sb,l1d 64l2Fsl2d

2

+ the same part withsl1 ↔ l2d s19d

and

mh2

§2
2a
HAm

2 sb,l1,l2d
Cm

2 sb,l1,l2d J −
mh2

g2
2a
HBm

2 sb,l1,l2d
Dm

2 sb,l1,l2d J = Fmh1

§1a
S 1

§1a
− Lms§1adDHAm

1 sb,l1d
Cm

1 sb,l1d JGFsl2d
2

− Fmh1

g1a
S 1

g1a
− cmsg1adDHBm

1 sb,l1d
Dm

1 sb,l1d JGFsl2d
2

−
Jm9 s§1ad
Jms§1adH ivmCm

1 sb,l1d
− iv«1Am

1 sb,l1d JFsl2d
2

−
Hm9 sg1ad
Hmsg1adH ivmDm

1 sb,l1d
− iv«2Bm

1 sb,l1d JFsl2d
2

+ the same part withsl1 ↔ l2d s20d

for n=2. The approximate solutions for the Wiener expansion coefficients of the outgoing scattered waves are then obtained
as

Smh1

§1
2a

−
mh1

g1
2a
DHBm

1 sb,l1d
Dm

1 sb,l1d J = HFmb

§0a
S 1

§0a
− Lms§0adD − §0Lms§0ad

mh1

§1
2a
GHAm

0 sbd
Cm

0 sbd JJFsl1d

− HFmb

g0a
S 1

g0a
− cmsg0adD − g0cmsg0ad

mh1

§1
2a
GHBm

0 sbd
Dm

0 sbd JJFsl1d

−
Jm9 s§0ad
Jms§0adH ivmCm

0 sbd
− iv«1Am

0 sbd JFsl1d −
Hm9 sg0ad
Hmsg0adH ivmDm

0 sbd
− iv«2Bm

0 sbd JFsl1d

− Smh1

§1
2a

DF b

§0
Lms§0adHAm

0 sbd
Cm

0 sbd J −
b

g0
cmsg0adHBm

0 sbd
Dm

0 sbd JGl1Fsl1d

− Smh1

§1
2a

D35 S ivmm

§0
2a

DCm
0 sbd

S− iv«1m

§0
2a

DAm
0 sbd 6 −5 S ivmm

g0
2a

DDm
0 sbd

S− iv«2m

g0
2a

DBm
0 sbd 64l1Fsl1d s21d

and
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Smh2

§2
2a

−
mh2

g2
2a
DHBm

2 sb,l1,l2d
Dm

2 sb,l1,l2d J = HFmh1

§1a
S 1

§1a
− Lms§1adD − §1Lms§1ad

mh2

§2
2a
GHAm

1 sb,l1d
Cm

1 sb,l1d JJFsl2d
2

− HFmh1

g1a
S 1

g1a
− cmsg1adD − g1cmsg1ad

mh2

§2
2a
GHBm

1 sb,l1d
Dm

1 sb,l1d JJFsl2d
2

−
Jm9 s§1ad
Jms§1adH ivmCm

1 sb,l1d
− iv«1Am

1 sb,l1d JFsl2d
2

−
Hm9 sg1ad
Hmsg1adH ivmDm

1 sb,l1d
− iv«2Bm

1 sb,l1d JFsl2d
2

− Smh2

§2
2a

DFh1

§1
Lms§1adHAm

1 sb,l1d
Cm

1 sb,l1d J −
h1

g1
cmsg1adHBm

1 sb,l1d
Dm

1 sb,l1d JGl2Fsl2d
2

− Smh2

§2
2a

D35 S ivmm

§1
2a

DCm
1 sb,l1d

S− iv«1m

§1
2a

DAm
1 sb,l1d 6 −5 S ivmm

g1
2a

DDm
1 sb,l1d

S− iv«2m

g1
2a

DBm
1 sb,l1d 64l2Fsl2d

2

+ the same part withsl1 ↔ l2d. s22d

IV. INCOHERENT SCATTERING DISTRIBUTIONS

The angular distribution of incoherent scattering can be
obtained from the Wiener expansion coefficients.4,5 Let
Picsus,wsuui ,ad denote the incoherent scattering angular
distribution—that is, the average power flow scattered inco-
herently from unit surface area into unit solid angle of the
direction sus,wsd when the angle of incidence issui ,ad—we
then have the expression for the incoherent scattering angu-
lar distribution,

Picsus,wsuui,ad = Pic
1 sus,wsuui,ad + Pic

2 sus,wsuui,ad, s23d

where the contribution from the first-order Wiener coefficient
is given as

Pic
1 suswsuui,ad

=
1

cos2 us
FUo

m

Bm
1 ssinui,sinus − sinuideimsws−adU2

+ h0
2Uo

m

Dm
1 ssinui,sinus − sinuideimsws−adU2G s24d

and the contribution from the second-order Wiener coeffi-
cient is given as

Pic
2 sus,uwsuui,ad

=
2

cos2 us
E

−`

+`

dl

3FUo
m

Bm
2 ssinui,l,sinus − sinui − ldeimsws−adU2

+ h0
2Uo

m

Dm
2 ssinui,l,sinus − sinui − ldeimsws−adU2G .

s25d

For the purpose of numerical calculations we conveniently

assume that the power spectrumuFsldu2 of the random rough
surface has a Gaussian form—that is,

uFsldu2 =
s2,

Îp
e−l2,2

, s26d

where, is the correlation length of the rough surface. The
numerical results of the incoherent scattering distributions
are shown in Figs. 2–4 for the different values of the nor-
malized radius of the cylinderka=0.5, 1.0, and 2.0, respec-
tively, as the normalized roughnessks=0.1 and the normal-

FIG. 2. Incoherent scattering distribution from a cylindrical ran-
dom rough metal surface that is uniform in thew direction. The
incident angle isui =10°. The dielectric constant of the metal is
taken as«r =−17.55+i0.1. The normalized roughness and the nor-
malized correlation length areks=0.1 andk,=1.0. The normalized
radius of the cylinder iska=0.5 where the surface can support the
zeroth plasmon mode.
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ized correlation lengthk,=1.0. The incident angle isui
=10°. The dielectric constant of the metal is taken as«r =
−17.55+i0.1. The enhanced backscattering can be evidently
observed in the incoherent scattering distributions for all
three cases and comes from the contribution of the second-
order Wiener coefficients. The enhanced peak is much stron-
ger forka=1.0 since in this case the surface plasmon wave is
less attenuated when it propagates along the cylindrical
rough surface.

V. CONCLUSIONS

In conclusion, we have treated the scattering problem of a
TE-polarized electromagnetic wave from a metallic cylinder
with its radius being a slightly random rough surface by

applying the stochastic functional approach. The enhanced
backscattering is observed in the numerical results for the
incoherent scattering angular distribution and is attributed to
the participation of the surface plasmon waves supported by
the cylindrical metal surface as the intermediate scattering
processes in multiple scattering. It is expected that much
strong enhancement could occur when the cylindrical surface
is also rough inw direction since the higher-order surface
plasmon wave can play a more important role in the scatter-
ing processes.
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