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We study theoretically the transport properties of a molecular two-level system with large electron-vibron
coupling in the Coulomb blockade regime. We show that when the electron-vibron coupling induces polaron
states, the current-voltage characteristic becomes strongly asymmetric because, in one current direction, one of
the polaron state blocks the current through the other. This situation occurs when the coupling between the
polaron states is smaller than the coupling to the leads. We discuss the relevance of our calculation for
experiments onC140 molecules.

DOI: 10.1103/PhysRevB.71.155408 PACS numberssd: 73.63.Kv, 85.65.1h, 85.35.Gv

I. INTRODUCTION

The possibility of designing molecular junctions that be-
have as rectifiers was suggested by Aviram and Ratner1

based on an asymmetric two-level donor molecular system,
with one level empty and one filledsan acceptor and a donor
leveld. In one bias direction the levels are tuned closer to
resonance, whereas for the reverse bias they are further de-
tuned, giving rise to an asymmetric current-voltagesI-Vd
characteristic. This scenario has been investigated in molecu-
lar systems for a number of years.2 The transport properties
depend crucially on both the Coulomb interactions and the
relaxation of the nuclei during the electron transfer pro-
cesses. The Coulomb interactions limit the allowed charge
configurations, while the electron-vibron coupling deter-
mines the overlap between the different configurations as
well as provides channels for energy relaxation.

Molecular transistors with strong electron-vibron cou-
pling has recently become an active research area, both
experimentally3–6 and theoretically.7–17 Different types of vi-
brational modes have been observed. In the original work of
Parket al.3 clear signatures of phonon sidebands were seen
in the tunnel spectrum. The size of the individual steps in the
I-V curves agreed well with a simple model based on
Franck-Condon physics.3 Furthermore, sidebands caused by
internal vibration of the molecular systems have also been
identified experimentally and, in particular, in a recent ex-
periment by Pasupathyet al.6 where tunneling through
dimerized C70 molecules was measured. These authors
claimed that a vibrational mode at 11 meV due to the relative
motion of the twoC70 molecules was seen in the experiment.

In this paper, we study theoretically transport through a
dimer molecule with a single internal vibration. As a generic
model, we include a coupling between the charge on the two
parts of the dimer. The electron-vibron coupling thus intro-
duces a possibility of forming polaronic states. Transport in
systems with polarons18 is a well-studied subject and the
polaron formation is known to reduce the mobility. In single-
electron transistor systems polaronic effects have also been
studied theoretically, in particular for single-level systems7–15

and only recently for a two-level system.17 Here we study a
similar system but with the important modification that the
two levels in addition are coupled by tunneling, in which

case an internal polaron can form. The main point of our
study is that when this electron-vibron coupling is suffi-
ciently strong and a polaron state is formed, it may lead to
rectification effects and negative differential conductance,
depending on how the molecule is situated in the constric-
tion.

The paper is organized as follows. In Sec. II we set up the
model describing the dimer and the electron-vibron coupling,
in Sec. III we discuss the physical concepts in a semiclassical
picture, and in Sec. IV we calculate the transport in the situ-
ation where the tunneling rates are smaller than the polaron
couplings, whereas Sec. V discusses the situation when the
polarons are localized on the time scale set by tunneling to
the leads. The crossover between these two regime is studied
in Sec. VI and finally Sec. VII discusses the experimental
relevance and concludes.

II. MOLECULAR DIMER MODEL

The molecular model that we studyssee Fig. 1d is a dimer
with two electron sites or, in a different terminology, a
“double quantum dot.” For simplicity, we neglect both spin
and possible orbital degeneracies in the model. The two sites
are coupled by tunneling. Furthermore, due to an electric
field across the gap, the internal molecular vibrational mode
couples to the charges difference on the two sites. The elec-
tric field is produced either by the bias voltage, local charge
traps, or image charges created in the leads by the charged
molecule. In total our model Hamiltonian for the molecule
reads

FIG. 1. Dimer model studied in this paper. The two parts of the
dimer are represented by single electronic levelsa andb connected
by a tunneling amplitudet. The intramolecular vibration is illus-
trated as a spring connecting the two levels. A force acts on the part
of the dimer that is occupied by an electron due to an electric field
in the gap.
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HD =
p2

2m
+

1

2
mv2x2 + Dsna − nbd + eVgsna + nbd + Unanb

− tsca
†cb + cb

†cad + lsna − nbdx. s1d

Herecj
† scjd s j =a,bd are the electron creationsannihilationd

operators, whereasb† sbd is the vibron creationsannihilationd
operator andnj =cj

†cj. Furthermore,Vg is the gate voltage
which couples to the total charge on the molecule,D de-
scribes the energy difference between the two sites, and, fi-
nally, U the Coulomb repulsion between electrons occupying
the two levels. The total Hamiltonian describing the mol-
ecule, the leads, and the coupling between them is

H = HD + o
h=L,R

sHh + HThd, s2d

where

Hh = o
k

jkhckh
† ckh, h = L,R, s3d

HTh = o
k,j=a,b

sTkh,jckh
† cj + Tkh,j

* cj
†ckhd. s4d

Throughout, we will assume largeU and a gate voltage
tuned such that the total occupancy is either zero or one. The
subspace with zero electrons is, of course, easily diagonal-
ized. With one electron on the dimer, the situation is more
complicated. Introducing Pauli matrices for the electronic
degree of freedom and the dimensionless parameterssusing
"=1d

a =
l2

mv2t
, g =

l2

2mv3, d =
D

v
, s5d

we are left with the Hamiltonian

HD/v = b†b +
1

2
+ Îgŝzsb† + bd −

2g

a
ŝx + dŝz + eVg, s6d

whereb andb† are the usual boson annihilation and creation
operators. This Hamiltonian can be solved numerically in a
truncated boson Hilbert space, which is done below in order
to determine the eigenenergies and the overlap factors be-
tween the empty and occupied molecules. Ata=1 there is a
crossover to a regime where the fermion and boson degrees
of freedom become strongly correlated due to the formation
of polaron states. When the levels are nondegenerate the po-
laron leads to an increased localization of the electronic
wave function. In both cases there is a strong reduction of the
effective tunneling amplitude between the two sites, which
has consequences for conductance through the molecule.

III. SEMICLASSICAL ANALYSIS

In order to understand the polaron formation, we start by
a semiclassical analysis of the spin-boson model. This is
done in order to illustrate the physics and will not be used in
the actual description described in the following sections.
The semiclassical treatment is formally valid whenv! teff,
but in the examples taken below this is not the case, and we

instead resort to numerical diagonalization of the Hamil-
tonian in Eq.s6d.

Treating the harmonic oscillator classically, the model can
be solved in electronic Hilbert space. The electronic Hamil-
tonian then becomes

HDe = vSÎ2gX+ d − 2g/a

− 2g/a − Î2gX− d
D , s7d

whereX=x/, and,=Î1/mv. For each of the two electronic
eigenstates we thus have an effective potential for the oscil-
lator degree of freedom. These Born-Oppenheimer surfaces
are

V±

v
=

1

2
X2 ±Î2gX2 +

4g2

a2 + 2Î2gXd + d2. s8d

In the electronic ground stateV− there is only one minimum
for a,1, whereas fora.1 there are two minima. Thus a
bifurcation occurs ata=1. In the bifurcated domain, the
electronic and bosonic degrees of freedom become highly
correlated, because when the oscillator is localized in one of
the two minima, the electron wave function is changed ac-
cordingly. Thus the physics is similar to that of a small po-
laronsssee Fig. 2d. In Fig. 2 we show the bifurcated poten-
tial, the exact numerical eigenvalues, and the effective
tunneling coupling between the polaron states. From our ex-
act diagonalization we thus find that the difference in energy
between the ground state and the first excited state becomes
exponentially small in the polaron regime.

In the semiclassical picture, the splitting of the polaron
states occurs because of tunneling. The tunneling amplitude
is small, because in order to move, it must drag the oscillator
displacement with it. Furthermore, a coupling to a dissipative
environment will tend to localize the polaron even more,
because it couples to displacement coordinate and thus tends
to destroy the coherence between the two states,19 resulting
in a small effective tunneling couplingteff. When the effec-
tive coupling becomes very small, the two lowest eigenstates
uc0l anduc1l form two polaron states which are approximate
eigenstates:

FIG. 2. Left panel: the semiclassical potential forg=5 anda
=2 and the exact eigenvaluesshorizontal linesd found by numerical
diagonalization of Eq.s6d. Note that the two lowest eigenvalues are
almost degenerate, corresponding to two polaron states split by a
small effective tunneling couplingteff. The effective coupling is
shown in the right panel as a function ofa together with the elec-
tron population of levela in the polaron statecap

, defined in Eq.
s9d. The remaining eigenenergies are not degenerate and therefore
the corresponding eigenstates are delocalized on the molecule.
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ucap
sbpdl = suc0l ± uc1ld/Î2. s9d

As long as the splitting in energy is larger than the tun-
neling broadening of the levels, the polaron formation is not
important for the transport other than it influences the
Franck-Condon factors and the molecule can still be re-
garded as one quantum systemssee Fig. 3d. This situation is
analyzed in Sec. IV. However, if the effective tunneling rate
teff is smaller than the tunneling rates to and from the leads,
a different physical picture emerges, because the dimer will
behave as a “double dot” with weak interdot coupling but
strong Coulomb interactionssee Fig. 4d. Thus a master equa-
tion treatment should take into account that the molecular
system has more internal states, which is done in Sec. V. This
regime is where the rectification occurs as discussed in detail
below.

IV. TRANSPORT PROPERTIES FOR G™ teff

As argued, the transport properties of the dimer transistor
depend on the ratio between tunneling rates and internal time
scales of the molecule. Let us first assume that all tunneling
ratesGRa, GRb, GLa, andGLb are much smaller thanteff. Fur-
thermore, throughout we consider the weak-tunneling limit
in the sense that the vibrational degrees of freedom are as-
sumed to relax between tunneling events—i.e.,v /Q@G,
whereQ is the quality factor of the vibrational mode.11 If this
limit is not satisfied, the nonequilibrium vibron distribution
should also be determined; however, for the physics dis-
cussed here this is not important. Also, the broadening of the
vibron sidebands is not included and assumed dominated by
the thermal smearing such thatkBT@v /Q. To describe this
situation, we now use the master equation approach and only

FIG. 3. sColor onlined Left panel: contour plot showing the differential conductance for the dimer molecule in the regime Eq.s12d where
holds. The parameters areg=5, a=2, D=0, GRa=0, GRb/GLa=0.04,GLb/GLa=0.96, andT=0.1v. The bias voltage is applied symmetrically,
so thatVL=−VR=V/2. Notice the suppression of the differential conductance at low bias voltage which is due to a overlap between the filled
and empty states. The right panel showsI-V curves for the same parameterssbut T=0.05vd for Vg−Vg0=0 scurve without gap atV=0d, −2v
sdashed curved, and 2v. HereVg0 defines the gate voltage at which the ground states of the two charge states are degenerate.

FIG. 4. sColor onlined Left
panel: contour plots showing the
differential conductance for the
dimer molecule when Eq.s19d
holds, for a=2 stopd and a=4
sbottomd. Other parameters areg
=5, D=0, GRa=0, GRb/GLa=0.04,
GLb/GLa=0.96, andT=0.1v. The
bias voltage is applied symmetri-
cally, so thatVL=−VR=V/2. Right
panels show correspondingI-V
curves for different gate voltages
as in Fig. 3 and withT=0.05v.
Note the strong blocking of the
current in one direction and the
negative differential resistances.
For a=2 the current in the
blocked direction is larger than for
a=4, because the polaron is less
localized on one electron level
ssee Fig. 2d.
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the occupations of the different charge states need to be de-
termined by the kinetics. Allowing only two charge states,
with occupationsP0 andP1, the master equation is

− P1G01 − P0G10 = 0, s10d

together with the normalization condition

P0 + P1 = 1. s11d

Here Gi j is the tunneling rate from statej to state i. The
expression for the current then becomes

I = s− ed
G10

R G01
L − G01

R G10
L

G10
R + G10

L + G01
R + G01

L sG ! teffd. s12d

In Eqs.s10d ands12d the tunneling rates are calculated using
Fermi’s golden rule. When calculating the rates in Eq.s12d
we encounter tunneling densities of states of the formGh

=2pokjuTkh,ju2dsjkhd sh=L ,Rd. The evaluation of the cross

termsokTkh,a
* Tkh,bdsjkhd requires detailed knowledge of the

relative phases of the tunneling amplitudes to the two parts
of the dimer. Fortunately, a simplification is possible because
Tkh,a

* Tkh,b,expsikdd, where d is the distance between the
two parts of the dimer andk is the wave number of the lead
electrons. Typically, one haskd@1 and the cross terms av-
erage to zero when summing overk. Thus, no interference
effects between the two tunneling paths onto the molecule is
expected. With these observations, we obtain

G10
h = o

j=a,b
Gh j o

i0,f1

ukf1ucj
†ui0lu2

e−bEi0

Z0
nhsEf1

− Ei0
d s13d

and

G01
h = o

j=a,b
Gh j o

i1,f0

ukf0ucjui1lu2
e−bEi1

Z1
f1 − nhsEi1

− Ef0
dg.

s14d

Here, ui0l, ui1l suf0l , uf1ld denote initial sfinald states of the
empty s0d and filled s1d dimer and

nhsEd = 1/hexpfsE − eVhd/kBTg + 1j s15d

are the Fermi functions in the leadh with applied voltages
Vh. Finally, Ein

and Efn
are the total dimer energies for the

initial and final states withn electrons andZ0 and Z1 the
corresponding partition functions.

Because we are interested in the asymmetric situation, we
study the situation where one electrode couples stronger than
the other to the molecule,GR!GL. Furthermore, we also
allow for a skewed configuration as in Fig. 1, and in this
geometry, we haveGRa,GRb and GLa.GLb. In Fig. 3, we
show examples of the differential conductance in theV-Vg
plane in the situation where the intramolecular coupling be-
tween polaron states is strong—i.e., whenG! teff and Eq.
s12d applies. Furthermore, the bias voltage is applied sym-
metrically, so thatVL=−VR=V/2.

V. TRANSPORT PROPERTIES FOR Gš teff

In the opposite caseG@ teff, the situation is very different.
In this case, an electron that tunnels onto levela does not

resolve the tunneling splitting of the two polaron states and
the molecule no longer relaxes between tunneling and there-
fore the two polaron states can be considered as decoupled.
In this case, we must treat the filled molecule as a quantum
system havingmorepossible states, since it can be occupied
in one of the two polaron states, from now on denoted byap
andbp. Furthermore, the molecule may be occupied in one of
the delocalized statesssee Fig. 2d.

Moreover, we consider the hierarchy of energiesv
.kBT.v /Q.G. teff. The last two inequalities imply that
between tunnelings the molecule relaxes to a thermal distri-
bution within each polaron subspace. Since the current drives
the occupancies of the two polaron states out of equilibrium,
we need to determine the distribution functions of the two
polaron statesPap

and Pbp
, respectively. If the molecule is

occupied in a delocalized state, it is in either polaron state
with equal probability. The new set of master equations thus
readsswith t=ap or t=bpd

− PtG01
t − P0G10

t = 0, s16ad

− P0o
t

G01
t − o

t

PtG10
t = 0, s16bd

together with the condition

P0 + o
t

Pt = 1. s16cd

The tunneling rates in Eq.s16d have contributions from both
leads:

Gt = o
h=L,R

Gh,t. s16dd

The tunneling rate for tunneling from leadh into ap is sagain
the oscillating cross terms are ignoredd

G10
h,ap = o

j=a,b
Gh j o

i0,f1
ap

ukf1
apucj

†ui0lu2
e−bEi0

Z0
nhsEf

1
ap − Ei0

d,

s17d

and similarly for tunneling into the polaron statesbp. Here
uf1

apl and uf1
bpl mean the polaron states in Eq.s9d if they are

degenerate—i.e.,suf1
s1dl± uf1

s2dl /Î2, whereuf1
sidl, i =1,2, are the

two degenerate statessmeaning that eigenenergies differ by
less thanGd. For the nondegenerate states,uf1

apl= uf1
bpl= uf1l,

implying that the system ends up in either polaron state with
equal probability.

For the tunneling-out processes the rates are

G01
h,ap = o

j=a,b
Gh j o

i1
ap,f0

ukf0ucjui1
aplu2

e−bEi1

ap

Z1
ap

f1 − nhsEi
1
ap − Ef0

dg,

s18d

where the initial polaron states are defined in the same way
as above. Similar expression holds for tunneling out of the
polaron statebp. Thus, treating the dimer as separate polaron
states, we find a different expression for the current:
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I = s− ed
o

t

fG10
RtG01

Lt − G10
LtG01

Rtg/G01
t

1 + o
t

sG10
t /G01

t d
sG @ teffd. s19d

In Fig. 4 we show the results in the case whereG@ teff and
Eq. s19d holds. TheI-V characteristics are seen to be strongly
asymmetric even though the bias is applies in a symmetric
way—i.e.,VL=−VR=V/2. The reason for the asymmetry is
that the polaron state, which is weakly coupled to the right
lead, can block current through the other, more strongly
coupled state. However, this blockade only happens in one
current direction—namely, when the electrons run toward the
weakly coupled electrode.

VI. CROSSOVER REGIME: GENERALIZED MASTER
EQUATION

In the regime whereG and teff are of the same order, we
cannot use any of the two approaches above, because when
two states in the molecular system are degenerate or closer
than G in energy, the current through the system has to be
described as one coherent process. This is in general a diffi-
cult problem. However, in the limit of large bias voltage a
generalized master equations20–23 has been developed. To
study how the asymmetry of the large bias conductance, we
here adopt this method. The large bias assumption implies
that the voltage must be large compared to the temperature
and theseffectived tunneling couplings as well molecular en-
ergies. The assumption of large bias leads to the a set of
Markovian master equations for the density matrix.20–23Thus
at large bias there is no correlation between individual tun-
neling events, but still the transfer of electrons is described
coherently. The generalized master equation approach can, in
fact, describe the crossover we discuss here, because the
blocking effect found in Sec. V does not depend on time
correlations between tunnel events, but on how strongly a
single electron is localized on the molecule during tunneling.

Furthermore, in order to simplify the problem we consider
only the two lowest states which correspond to the two po-
laron states located to the left or to the right with some ef-
fective couplingteff. The generalized master equations are
then a modification of those developed in Ref. 21 for a
double-dot system, because here we allow for in and out
tunnelings on both dots. For the case when the electron cur-
rent is from left to rightsi.e., V,0d, we have

]traa = GLapr0 − GRapraa + iteffsrba − rabd, s20ad

]trbb = GLbpr0 − GRbprbb − iteffsrba − rabd, s20bd

]trab = f− 1
2sGRap + GRbpd + iDgrab + iteffsrbb − raad,

s20cd

]trba = f− 1
2sGRap + GRbpd − iDgrba − iteffsrbb − raad.

s20dd

The stationary solution forr is found by setting]tri j =0 and
the current is thenI =s−edsraaG

Rap+rbbG
Rbpd, which be-

comes, forV,0,

IV,0

=
s− edGLGRsxRGR + GRapGRbp/GRd

sGR + 2GLdxRGR + GRapGRbps1 + GLap/GRap + GLbp/GRbpd
,

s21d

where

GR = GRap + GRbp, GL = GLap + GLbp, s22d

and where

xR =
4teff

2

4D2 + sGRd2 s23d

contains all theteff andD dependences. WhenxR is large, the
current reduces to the incoherent result of a dot with a dou-
bly degenerate level:

IV,0 =
s− edGLGR

GR + 2GL . s24d

In the opposite limit of smallxR the time an electron spends
on the dimer is too short for hopping between the sites to
occur, and the current reduces to

IV,0 =
s− edGL

1 + GLap/GRap + GLbp/GRbp
, s25d

which is also the largeV limit of Eq. s19d or the sequential
tunneling limit of a double-dot system in the absence of in-
terdot tunneling.

The current for positive voltage is easily found from Eq.
s21d by interchanging left and right,L↔R.

Let us now focus on the limit considered in the examples
in the previous two sections—namely,sGR,teffd!GL and
sGRa,teffd!GRb—and in these limits we find the following
ratio between the currents for the two bias polarizations:

U IV,0

IV.0
U =

GRap/GR + xR

GLap/GL + 2xR
. s26d

From this expression it is evident that degree of rectification
is limited by the smallest tunneling-out rate through the right
junction,GRap, or the the interpolaron tunneling coupling,teff,
through the parameterxR in Eq. s23d. Equation s26d also
shows that when asymmetry is limited byxR—i.e., when
GRap/GR!xR—increasingD in fact enhances the rectifica-
tion, because a finiteD suppresses tunneling between the two
sites.

VII. DISCUSSION AND SUMMARY

Last, we discuss the relevance for the experimental sys-
tem in Ref. 6, where a single-electron transistor setup was
made with single C140 molecules as the active element. Of
course, our two-level model cannot fully describe the real
molecule; nevertheless, a comparison is interesting. Signa-
tures of a 11-meV intramolecular vibrational mode were ob-
served in Ref. 6 and the coupling parameterg was estimated
to be between 1 and 5.24 If the polaron physics discussed
here should have relevance for this or similar dimer systems,
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we must havea*2 or, correspondingly,t,50 meV, which
is not unrealistic. In fact, rectification effects very similar to
those predicted in the present paper have indeed been seen in
some C140 devices.25

In conclusion, we have studied molecular system with an
internal vibrational mode coupled to the charge difference
between two hybridized molecular levels giving rise to po-
laron formation. The polaron has distinct consequences for
the transport properties, which we have calculated using dif-
ferent master equation approaches. First, we analyzed the
case when the internal hybridization between polarons is
larger than tunneling rates to the leads. This gives more or
less symmetricI-V characteristics, but with a number of vi-
bron sidebands. Second, we studied the case when the two
polarons are weakly coupled and the tunneling rates to the
leads dominate the kinetics. Is this case, another set of master
equation was needed and highly asymmetricI-V characteris-
tics are predicted. Finally, we have analyzed the crossover

regime by a generalized master equation capable of describ-
ing the coherent tunneling, but only for large bias voltages.

The rectification mechanism suggested in this paper
should be experimentally observable. Generally, the current-
voltage characteristics of complex molecular transistors with
strong coupling between charge and vibrational degrees of
freedom is a promising tool for studying the details of such
devices.
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