PHYSICAL REVIEW B 71, 155333(2005

Non-Boltzmann classical correction to the velocity auto-correlation function for isotropic
scattering in two dimensions

Alexander Dmitrievt2 Michel Dyakonovt and Rémi Jullief
ILaboratoire de Physique Mathématique, Université Montpellier 2, place E. Bataillon, 34095 Montpellier, France
2A. F. loffe Physico-Technical Institute, 194021 St. Petersburg, Russia
SLaboratoire des Verres, Université Montpellier 2, place E. Bataillon, 34095 Montpellier, France
(Received 26 November 2004; published 29 April 2D05

The classical correction to the velocity autocorrelation function of noninteracting particles due to memory
effects, which are beyond the Boltzmann equation, is calculated both analytically and numerically for the case
of isotropic scattering in two dimensions.
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I. INTRODUCTION ridor of width d allowing the first part of the journey guar-

) . . antees a collisionless return. This effect also gives a
Some forty years ago a number of pioneering theoreticalyrrection to the diffusion coefficient on the orderds.

works appeared;” which were d.evoted to the calculation. of  The role of memory effects becomes greatly enhanced in
the memory-effect(non-Markovian corrections to the ki-  he presence of an applied magnetic field since the circling
netic coefficients and to the velocity autocorrelation func-mation of an electron naturally increases the probability of

tion, through which they can be expressed. It was shown thagyins, and many works were devoted to classical magne-
such quantities as the diffusion coefficient, the electrical consgresistance. which for a degenerate 2D electron gas is en-

ductivity, viscosity, etc., cannot be expanded in powers ofjrely due to memory effect¥. In particular, it was shown
density, as was assumed previously. Later, it was also dempat the irreversibility introduced by the magnetic field de-
onstrated that the velocity autocorrelation functiowhich  g6vs the corridor effect resulting in an anomalous magne-
we abbreviate below as “correlation functiordoes not de-  (gresistance in classically weak magnetic fiéfian analyti-

cay exponentially at large times, as the Boltzmann equatiogy| theory of the anomalous low-field magnetoresistance was
predicts, but rather contains a slow power-law taif recently developed in Ref. 15.

These important deviations from the conventional picture ¢ existing derivatioh’ of the memory effect correc-

based on the Boltzmann equation are due to memory effecig)g is rather long and cumbersome being based on a special
neglected in the Boltzmann approach. For the case of noningcnhnique of the so-called ring diagrams. In the present paper
teracting particles performing diffusion in a static random,,o develop a relatively simple approach to the problem. We
potential field these effects are due to returns of the particleynsider classical noninteracting particles with a fixed en-

to previously visited regions. _In the two-dimensional case itergy in two dimensions scattered by randomly positioned
was shown by Ernst and Wejlahthat, because of returns, centers with a given differential cross section in the absence
for timest much greater than the mean free flight timehe o magnetic field. We start with deriving a modified kinetic

correlation function has a negative tail decaying a$2.1_/ equation, which takes into account single returns after an
Bruin'® has performed numerical calculations for scattering

by hard disks, which showed that this asymptotic behavior O
for t> 7 may appear only at very long times, it is not reached O
even att=10r.
Returns after a single collisigrsee Fig. 1a)] are impor-
tant att< 7. Fort< 7 they give a contribution to the prob-
ability of return increasing as L/This, in turn, leads to a
nonanalytical in the small parametétl =Nd? correction to
the diffusion coefficient on the order &d/1)In(l/d), whered
is the effective scattering diametéx,(Nd)~ is the mean free
path, and N is the two-dimensional concentration of
scattererg>1112Returns after two or more collisionsee
Fig. 1(b)] give a smaller correction on the order @fl. /
In our previous work® we have drawn attention to an-
other memory effecfthe corridor effegtimportant in back-
scattering events. If a particle travels a distaredter which @ )
it is backscattered and returns to the initial point, the prob-
ability of this round trip of length 2 is proportional to FIG. 1. lllustration of the memory effect due to return to the

exp(—x/1), not to exg—2x/1), as would suggest the conven- same scattering center after a single collisiahor several colli-
tional Boltzmann approach, since the existence of a free cosions(b).
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arbitrary number of collisions. We then derive the leading

logarithmic correction to the diffusion coefficient for an ar- f(r,¢,0) = 8(r) (), f f(r,p,hdrdgp=1. (3
bitrary angular dependence of the differential cross section.

Finally we find analytically the complete time dependence of Then

the velocity correlation function for the special case of iso- om

tropic scattering taking into account the corridor effect and K(t) =J er dep cosg(F(r, 1)), (4)
calculate the correction to the diffusion coefficient for this 0

case. We perform numerical simulations for the cases of iso-

tropic scattering and scattering by hard disks, and we find a 02 (*
good agreement between the numerical and analytical re- D:Ef K(t)dt. (5)
sults. 0

The angular brackets in E@4) denote averaging over the
positionsr; of the scattering centers.

The derivation of the conventional Boltzmann equation We now develop a method to calculd€ét) andD taking
from the Liouville equation for a particle moving in the pres- into account non-Boltzmann memory effects due to returns
ence of randomly positioned scattering centers involves af the particle to previously visited scattering centers. As a
number of simplifying assumptions. First, it is assumed thafirst approximation we choose the solutioc®@(r-r’, ¢,
the mean free pathis much greater than the effective scat- ¢',t) of the conventional Boltzmann equation
tering diameten or, otherwise thaNd®< 1, whereN is the
concentration of scatterers. Second, it is assumed that the @H/@Jr NTG=0

o ) v = (6)
distribution function does not change much on the space
scale on the order af and on the time scale on the order of
d/v, wherev is the modulus of the particle velocity, which is
conserved since the scattering is elastic. These two condi- G(r=r',¢,¢',00=8r -r")8(p— ).
tions make it possible to describe scattering in terms of the . .
differential cross section(¢) attributed to scattering centers ~ We rewrite Eq.(1) in the form
positioned at given points in space. Third, memory effects of o R R
are neglected: the Boltzmann approach is equivalent to ran- —+v—+NoTf =—p(r)Tf, (7)
domly redistributing the scattering centers after each colli- a
sion. Neglecting memory effects allows to take the averagguherew(r)=3,8(r —r;)-N is the fluctuation of the scatterer’s
over the positions of scatterers in the Liouville equation,concentration and(r))=0. As above, the distribution func-

rather than use the average of its solution. _ tion f in this equation depends on the actual positions of the
Restricting ourselves by the first two assumptions Onlyscattering centers.

we can V\(rite down the following gquation for the distribu- Equation(7) may be also written in an integral form using
tion functionf(r, ¢,t) (see Appendix A and Ref. 15 for the ihe formal solution of Eq(6):
derivation of this equation in the simplest case of scattering

by hard diskk f(r,é,t) =G(r,#,0,t) —vGTf, (8)
of +V‘7_f +v> & - ri)'AI'f =0, (1) where G is the integral operator with the kerné(r-r’,
ot r i b, ¢ t-t").
) _ ~ We now substitutd given by Eq.(8) into the right-hand
wherer; are the coordinates of the scattering centers, Bnd sjde of Eq.(7) and we take the average of the resulting
is the scattering operator proportional to the Boltzmann colequaﬁon over the positions of the scattenerdn doing this

II. DERIVATION OF THE BASIC EQUATION

with the initial condition

lision integral we must deal with the product of functionsr), »(r’), and
R 2m the distribution functionf, which all depend on the coordi-
Tf:f a(dp—d)f(r,p,t)—f(r,¢',t)]de’. (2 natesr;. We decouplef from the averaging procedure by
0 writing
Note, that the distribution functiohin Eqg. (1) depends on () u(r')E) = (w(r) w(r)XF).

the positions of scatterens for a given realization. Also,

since the scattering is elastic, the distribution function de-This approximation takes into account single returns to the
pends only on the polar angigof the velocity vectov. The ~ same scattering center, but neglects multiple returns.
conventional Boltzmann equation can be obtained from Eq. In the absence of correlation in the positions of the scat-
(1) by replacing the actual density of scatter®s(r —r;) by  terers, which we assume to be true, we have

its average valud\. "y — e
The correlation functiorK(t) [normalized by the condi- r)w(r')) =Na(r =r7).

tion K(0)=1] and the diffusion coefficienD can be ex- Hence, we obtain the following equation for the averaged
pressed through the solution of E@.) with the following  distribution function(to simplify the notations we replace
initial and normalization conditions: hereafterf) by f):
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of  of A
—+v_—+NoT
aor

2 t
:NUZJ d¢’f dt' TG(0,¢" — &' t—t)TF.  (9)
0 0

On the right-hand side of this equation the functibhis a

function of ¢’, the left operatoiT acts on a function of the
variable ¢".

The Green functios(0,¢" - ¢’ ,1) is the probability for a
particle to return to the initial point after timewith velocity
directed at anglep”, provided that the initial velocity is di-
rected at angley’. Obviously, this probability should depend
on the differencep”— ¢’ only [this is not the case foG(r
-r', ", ' t)if r#Er’].

The correction in the right-hand side of H§) coincides
with the result of Weijland and Van Leeuwenbtained by
the ring-diagram technique. Equati¢®) is the basis for the
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2
Grl0) = f expl— IMA)G(0,,0db.
TJo

Equation(13) allows us to calculate any moment of the dis-
tribution function with the corrections due to returns taken
into account.

As seen from Eq94), (5), and(10), the correlation func-
tion and the diffusion coefficients can be expressed via the
functionsF,(t) andF_y(t)=F(t):

K(t) = 2w ReFy(t). (14

Equation(13) can be solved exactly. However, it should be
noted that this equation, similar to our basic £9), takes

into account single returns only and consequently gives the
correct results only in the leading order in the small param-
eter NcP. For this reason, as we have already mentioned
above, the right-hand term in E¢L3) should be considered
as a small perturbation. This means that in this term one can

following calculations. The solution of this equation is Use the Boltzmann expression féx(t):

needed for calculating the correlation functikitt) and the
diffusion coefficientD with the help of Egs(4) and (5). In

fact, because of the approximations made during our deriva-

Fult) =5 expl 30, (15)

tion the right-hand side of this equation should be considereg/here the factof1/27) appears because of the initial con-

as a small perturbation.

Ill. DERIVATION OF THE CORRELATION FUNCTION
AND THE DIFFUSION COEFFICIENT

To calculateK(t) we need to know the integral of the
distribution function over the coordinate

F(¢,t)=ff(r,¢,t)dr- (10
Integrating Eq.(9) overr we get
dE R 2m t R .
ot NoTF = szf d¢'f dt'TG(0,¢" — &', t—t")TF.
0 0

(11)

This equation can be further simplified by using the prop-

erty that the functions expn¢) are the eigenfunctions of the
scattering operator:

NoT exp(img) = v, explima),

2

Ym=Nv | [1-cosme)]o(p)de. (12
0

Expanding the functions andG in Eq. (11) in Fourier se-
ries, we obtain

dF
— 7+ YmFm=

27T ' ! ! !
m Wﬁ“fo dt' G0t = t')Fr(t),  (13)

where

2
Fm() = %_J exp(-im¢)F(¢,t)de,
0

dition F(¢,0)=68(¢). Substituting this expression into the
right-hand side of Eq(13), for m=1 we get
dF;

——+F =

ai (16)

,yz t
s f G4(0,t —t")exp— y')dt,
N 0

where
2
y=vy=7t= Nvoy, = Nvf a(¢p)(1 - cosg)dg
0

is the inverse momentum relaxation time, or transport time
The solution of Eq(16) can be easily found. After some
manipulation it can be presented as follows:

l t
Fi(t) = — exp(— ) + fJ G;1(0,t —t")exp(— yt")t'dt’.
277 N 0

17

Finally, using Eq.(14) we obtain the following expression
for the correlation function:

K(t) = Ko(t) + SK(1),

t
5|<(t)=277ﬁ2 f G,(0,t—t")exp— H)t'dt’,  (18)
0

where 5K(t) is the correction to the Boltzmann resilg(t)
=exp(—yt).

Substituting this expression into E¢p) and changing the
order of integrations over andt’, we obtain a formula for
the diffusion coefficient:

02

D:D0+5D, Do:2_,
Y

2 o)
D=2 f G4(0,1)dt.
N 0

(19
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Here Dy represents the Boltzmann result, whii® gives
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noring the finite radius of the scattering center. To avoid the

the correction due to returns, which is beyond the Boltzmanmlivergence, we will replace in the denominator of the ex-
equation. One can see that calculation of these corrections Eession Eq(233 by t+t,, where the cutoff time, is on the

reduced to findingG,(0,t), which is equivalent to finding

G(0,¢,1), the Boltzmann probability of return to the initial

point r =0 with velocity directed at anglé with respect to
the initial velocity.

IV. CONTRIBUTION OF RETURNS AFTER A SINGLE
COLLISION

order of o/v. Such a regularization seems reasonable, since
it makes the return probability to be finite &0, as it
should be if the finite radius of the scattering center is taken
into account, and since our entire theory is applicable for
time scales larger tham/v.

Equation(23a must be also corrected to include the cor-
ridor effect!315which we mentioned in the Introduction and
which is not taken into account by E). This effect is

We have mentioned in the Introduction that the |eadingrelevant for backscattering events, when the particle follows
(logarithmid correction to the diffusion coefficient is due to Practically the same patfin the opposite directionafter a

returns after a single collisiofsee Fig. 1. We will now show

collision. The probability to make this round trip without

that the contribution of this process can be easily found fofollisions during timet should be ex@-t/2) rather than
an arbitrary angular dependence of the scattering cross se‘%xp_(‘?’ot) as Eq.(2$a) says, because once the path-2
tion o(¢). To do this, we must find the corresponding con-during the timet/2 is collisionless, we are sure to have no

tribution to the functionG(0, ¢,t).
We rewrite Eq.(6) in an integral form

2
G(r,¢,1) = o(r = vot) S(p)exp(— yot) + Nvf d¢'o(¢p-¢")
0

t
><J expd— yo(t—t)]G[r —v'(t—t'), ¢’ ,t']dt’,
0

(20)

where y,=Nuvo, o is the total scattering cross section, is
the initial velocity (with ¢=0), and ¢’ is the angle of the
vectorv’.

Equation(20) is convenient for obtaining the contribution
of a given number of collisions before return by iterations.
Since we are now interested in returns after a single colli-

sion, we can insert the zero approximation fGr into
the right-hand side of Eg. (20, equal to &(r

collisions on the return path-2 1. This effect can be taken
into account by a more accurate evaluation of @g. which
(within the approximation of pointlike scattergntains all
memory effects, including the corridor effect, see Ref. 15
where this was done for scattering by hard disks. Here
we will simply modify Eqg. (233 “by hand” replacing
exp(—yot) by exg—vyqt/2).

Thus, we replace Eq233 by

i eXF(— ’yOt/Z)

6G4(0,t) =— om L4t
0

o(m). (23b)
We then obtain the correction to the diffusion coefficient

due to returns after a single collision

oD 1
D_O_NU"U(W)[_M(E> +C-lIn 2}, (24)

as oG, we get

27 t
oG(r, 1) = Nvf do'o(¢p— d>’)f exfg— yo(t—t') = yt']
0 0
XAr=v'(t—t") —vgt']dt’. (21)
Puttingr =0 and taking into account the relation
I(t 4! 11— 6(¢, — 77) _ !
qv'(t-t)+vt']= 2(-1) St-2t"),
we find
N exp(= yot)
3G(0,9,1) = ;f&(b- mo(h). (22
Thus, for §G4(0,t) we obtain
5G40, = - P KD (233
27 t

To find the correctiorsD to the diffusion coefficient we
must substitute this expression in E49). The integral in

coefficient andC=0.577 is the Euler constant. Since the ex-
act numerical coefficient in the argument of the logarithm is
unknown, the constar@ —In 2 could be safely discarded. We
prefer to keep it in order to compare E&4) with the more
general formula derived in Sec. V and to have a clear defi-
nition of the cutoff parametet; when discussing numerical
results in Sec. VI.

With regard to this formula it should be noted that the
argument of the logarithm contains the constgftwhich is
expressed through the total scattering cross section. The lat-
ter is equal to infinity for any realistic scattering potential
that does not drop to zero at a finite distafag it is the case
for scattering on hard disks when the total scattering diam-
eter is of course equal to the disk diametdihe divergency
of the total cross section is due to very small scattering
angles. Since we consider the scattering centers as points,
any scattering event will deviate the particle from its path
connecting two scattering centers, however small the scatter-
ing angle may be. If the finite radius of the scatterer is taken
into account, then scattering angles less thatl will not
matter anymore. This means that the integral apewhich
gives the total scattering cross section, entering the definition

Eq. (19) diverges logarithmically, which is the result of ig- of y,, should in fact be truncated to exclude scattering angles
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less thard/l. Because of the logarithmic dependencesDf 2 ' ' '
on v,, the exact value, which should be attributed to this e
cutoff, is not very important.
Substituting Eq(23b) into Eq.(18), we obtain the correc-
tion to the correlation function in the time intervej<t 15 s 1
< ‘yal: I ’/ﬁ"\\ ¥
SK(t) = = Noyo(m) yt In(t/ty). 25 { s\
R AN 1
To conclude this section we note that returns after mul- * ,,!,,’ WA 01 L - !
tiple collisions, which are important for timesz 7, give a | f,' \\:\ 10 1)90 10
correction to the diffusion coefficient on the ordermﬁ. i S
Thus, as one can see from E84) the logarithmic correction 05 L ,,i‘,’ RN _
dominates ifo() is not too small, i.e., in all cases when the i ‘1:\
backscattering is not strongly suppressed. L N
4
V. CORRELATION FUNCTION FOR ISOTROPIC 0 / ) ) ‘ .
SCATTERING (@) 0 2 4 gt 6 8 10
xX=
For the special case of isotropic scatterimg=o, o(m) 10, -
=o/2m, and yo=y=71=Nvo. This simplification allows to ;
find analytically the Green functios(0,¢,t) for arbitrary
times (that are larger than the cutoff tinig). 10° .
The details of the calculation are given in Appendix B. ‘
The functionG;(0,t), through which the corrections to the i
correlation function and the diffusion coefficient are ex- | i
pressed, has the form = :
exp—x/2) 1-exg—x *
G,(0,1) = 7 2(‘ HoX2), A=) 1072 3
47y X+ Xo X
+ 2 exg— X)[Ei(x) - Ei(2x)]), (26) 10 | |
where we have introduced the notatiost/ 7, xg=ty/ 7<<1,
and Eix)=-/Z,dyexp(-y)/y is the integral exponent. Since 107 —— L S
10 10 10

to~ o/v and 7=(Nov)™?, the cutoff parameter can be pre- )
sented a,=aNo?, wherea is an unknown constant on the
order of unity. FIG. 2. (a) Plot of k(x)=—(2m/No?)5K(x) versusx=t/r for
Comparing Eqs(26) and(23b), one can see that the first different values of the cutoff parametey. Continuous, dotted, and
term in Eq.(26) represents the contribution from returns af- dashed curves correspondxg=0.01, 0.02, and 0.04, respectively.
ter a single collision with the cutoff at— 0 and the corridor  The inset shows the dependence of the maximum vajuen Inxo.
effect taken into account as described in the previous sectiofib) The long time part is emphasized in a log-log plot to show that
The other terms in Eq26) correspond to returns after two or the different curves become quickly superimposed o5 and
more collisions and do not contain any singularities. reach very slowly the asymptotic regime, X#2asx— < (shown
A direct calculation using Eq$19) and(26) gives us the by the long-dashed line
correction to the diffusion coefficient

x=t/T

8D _ No? 1
D_:2_ =Inf—]+C-2In2 (27
o %o K(X) = 367~ 2672 — 1 + 2672(Ei(2x) — Ei(Y)]
which differs from Eq.(24) describing the contribution of +
returns after a single collision by an additional teffin 2) +(x+ xo)e‘x[ Ei(ﬂ) _ Ei(x_0>]
in the brackets, which is the contribution of returns after 2 2
muiltiple collisions. , | +e{(x-2[Ei(x) - C - Inx] +x+2(x - 1)In 2}.
The correction to the correlation functiofiK(t) can now 28

be calculated by using the Eq®6) and (18). A direct cal-

K= : values of the cutoff parametgg. In inset is shown the linear
(here agaix=t/7) | fth ff p 5 | h he |
No2 dependence of the maximum value &) on Inx.
K(t) = - ZK(X)’ For small timesx,<x<1, Eq.(28) gives
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2 ' ' ' ' ' ' ' ' - larger than the mean free path, even for the smallest concen-
trations that we have considered. The valud/Gs chosen to
obtain the desired value for the dimensionless concentration,
Nd?/L2=Nd?. Numerical simulations were performed for
1 Nd? equal to 0.064, 0.032, and 0.016. To calculate the veloc-
ity correlation functionK(t), as well as the diffusion coeffi-
cient D given by Eq.(5), we first choose an initial point at
random inside the box with an initial velocity direction arbi-
1 trarily chosen along the direction. We then determine the
trajectory of a pointlike particle by joining the successive
impact points, an impact point being the first intersection,
calculated analytically, of the linear trajectory with a disk
\) periphery, the particle always coming from outside of the

N disk. We use standard numerical tricks to accelerate the
~2 search for impacts. When choosing the initial position, the
----- =~ disk interiors are not excluddit was checked that excluding

0 2 4 6 8 10 them introduces only a weak numerical difference, which

x=t/T vanishes in the limitNd®— 0). The trajectory is made of

FIG. 3. Plot of(x) (continuous lingand(x) (dot-dashed lirg successive straightline segments between collisions. Periodic

given by Eqs(28) and(B8), respectively, for the same value of the boundary conditions are imposed at the edges of the square

cutoff parameterxy=0.01. The relative differencéx—«)/« is box. ] .
shown in the inset. In the hard-disKor Lorentz model the scattering angtg

is related to the impact parametgrby p=(d/2)coq ¢/2)
B (we consider 6< ¢ <2, so thatp may be negative The
K(X) =X In(x/Xo), (29 gifferential cross sectionr(¢)=|dp/dd|=(d/4)sin(¢/2) is
so that 5K(t) coincides with the expression given by Eq. anisotropic, with enhanced backscatteriimgcontrast to iso-
(25), if one takes into account that for isotropic scatteringtropic scattering by hard spheres in three dimengioks a
oy=0 ando(7) =/ 2. At large timesx> 1, the correlation ~ consequence, the transport cross section is larger than the
function is dominated by the contribution of returns overtotal cross sectionr=(4/3)d. . .
long diffusive trajectories involving many collisions. It can ~ To simulate isotropic scattering we define the scattering
be presented as a series in inverse powers bfsing Eq. angle by the relationp=(d/2)(1-¢/m), so that o(¢)
(29) in this limit, we obtain the leading terms of this expan- =d/2. This relation is somewhat artificial, it leads to unre-

15+

K(x)

sion alistic situations, in which the disk may be cut by the scat-
tering trajectory. This isotropic model, which is built to have

K(X):i(lJr?)_ (30) an angle-independent differential scattering cross section,

22 X does not correspond to any realistic potential and is consid-

ered for the sole purpose to check our analytical theory.
In order to calculate the correlation functiéitx) and its
dimensionless integral up to a tintexr, I(t):ngK(x)dx

S . - ) . =X(t)/vr, whereX(t) is the overall displacement of the par-
correction is a universal result, which can be derived in the,. . . ; . . .
ticle in the x direction during timet, we consider a set of

diffusion approximatiofand which does not depend on the 000 discrete values. of the reduced time=t/+ reqularl

scattering cross-section. It can be seen that the asymptotsc aced up tox _zgxf‘an d we calculate bo_th T’uargl'titiesyfor
1/t? behavior is approached very slowly, so that eventfor P P 1n=2Y, q

—50r (x=50) the correction still makes 10%ee Fig. 20)]. eachx,. The values oK(x,) andl(x,) are averaged over 100

. : . . ' isk configurations and $arials for the starting point, ex-
This explains why the predicted asymptotic behavior was noijIS . ’
reacheg in the r){umeﬁcal simulat?:)ng done by Biias cept for the lowest concentratidid®=0.016 where only 10

well as in our simulations to be presented in the next sectiontrlals for the starting point were considered. In this way we

Finally, in Fig. 3, we present, for comparison, the functionget practically continuous curves for bait) andI(y). The
%) giveh in Ap.pe’ndix B Eq(,BS) in which th'e corridor  educed value of the diffusion coefficieBt/ Dy is obtained

effect is not taken into account. One can see that the role ot?y extr_apolatlon of the results fd(t.) o t—e.
the corridor effect is noticeable, but rather small. In Fig. 4, we present the numerical results kat) for the

isotropic scattering together with the pure exponential curve
Ko(t)=e7V" expected from the Boltzmann approach. The en-
V1. NUMERICAL SIMULATIONS larged scale in Fig. @) allows us to clea_rly see the negati\_/e

departure from the exponential behavior and the long-time

Using a random number generator, the centetdalisks  tail of the correlation function. We have also calculated nu-

of diameterd are uniformly randomly positioned on a plane merically the correlation function for the hard disk scatter-

inside a square box of edge lendthWe takeL/d=1000 to ing. The results are qualitatively similar to the isotropic case
be sure thal. remains more than one order of magnitudeand agree with the numerical simulations of Brifin.

The leading terni~1/t?) coincides with the known result
obtained by Ernst and Weylafdyhile the second one gives
the first correction. We note that the leading tebut not the
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3 ‘ J ‘ J -0.05 :
4 8 12 16 20 5 10 15 20
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FIG. 4. (a) Results of the numerical calculations for the isotropic ~ FIG. 5. (&) The results of the preceding figures are reported in a
model as a plot oK(x) for different concentrations. Dotted, dashed, plot of «(x). Only 200 points are selected in the range %< 20.
and long-dashed curves correspond No?=0.064, 0.032, and Crosses, plus signs, and filled circles correspondNtB=0.064,
0.016, respectively. The pure exponentigkexp(-x) is shown by ~ 0.032, and 0.016, respectively. The continuous lines correspond to
the continuous curveb) Fort>4r the scale is enlarged by a factor the fits obtained using E§28) with the same proportionality factor.

10* to better show the difference betwekfx) and Kq(x). a=0.424, between, andNd? in the three cases. The error bars are
smaller than the symbol sizé&) The regionx>5 is shown with a

Figure 5 presents the comparison of the numerical resultgrger scale. At this new scale one can see the fluctuations of the
for the normalized correction to the correlation functie(x) numerical data giving an idea of the magnitude of the error bars
for isotropic scattering with the theoretical formula given by (which are larger in the cas&ld?=0.016 due to the poorer
Eq. (28). The only fitting parameter is the constanin the  statistics.
definition of the cutoff value oky,=aNd®. By choosinga
=0.424 we obtain a practically perfect fit to the theoretical=0.283, to fit the maxima of the numerical curves. As it can
curves for several values ™d®. The numerical errors are be seen from Fig. 5, though the resulting fit could be consid-
responsible for the noisy character of the simulation data foered as satisfactory, the difference is well beyond the numeri-
x>10, however they are practically negligible for smaller cal errors, in particular the numerical data points for%
values ofx, the error bar being smaller than the symbol size.<10 are systematically above the theoretical curves. Com-

Because of the high precision of our numerical simula-paring Figs. 5 and 6, one can see that taking the corridor
tion, we are able to verify the theoretical prediction concern-effect into account makes the agreement between the theo-
ing the role of the corridor effect. For this purpose we try toretical and numerical curves substantially better.
fit the numerical data to the functiG¥(x) given by Eq.(B8), Finally, in Fig. 7 we present the numerical results for the
which does not take care of this effect, see Fig. 6. It is nocorrection to the diffusion coefficienfD/Dg in units of
possible to have a good fit with the same choice of the conNd?/ 27 versus Iif1/Nd?), see Eq.(27). Data for both the
stant « as before. Thus we chose a different value, hard-disk scattering and isotropic scattering are presented for
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10 + o) B

~(2mINd')3D/D,
o

4 1
2.5 3 35 4 45
In(/Nd')

FIG. 7. Numerical results for the diffusion coefficient as a plot
of =(2m/Nd?) 6D /Dy versus lit1/Nd?) for the hard disk scattering
(open circleg and for isotropic scatterinilled circles. The linear
behavior predicted by formulé27) in the isotropic case, withw
=0.424 as in Fig. 5, is represented by the straight (ofeslope 2.

A linear fit through the three points in the hard disk case gives a
slope of 1.95+0.10 in good agreement with the theoretical predic-
tion of 2.094.

0.15

In the particular case of isotropic scattering, we were able
to provide a full analytical expression for the correction to
the Boltzmann result, due to returns of the particles to pre-
viously visited regions, in excellent agreement with the re-
sults of numerical simulations. Furthermore, the comparison
between analytical and numerical results demonstrates that it

~0.05 : 10 : 15 : 20 is essential to take care of the “corridor effect” associated
®) x=t/t with backscattering events. In the case of hard disk scattering
(Lorentz mode), we obtain a good agreement for the depen-
dence of the diffusion coefficient on the concentration of
scattering centers. A full theory taking into account both
classical and quanturfweak localization memory effects is
needed to understand the relative role of classical and quan-
tum corrections depending on the ratio of the De Broglie
wavelength to the scattering diameter.

FIG. 6. (a) The same numerical results are fitted by Eg8),
which does not take care of the corridor effect. Here, to fit the
maximum values, we take a different proportionality factor than in
Fig. 5, namely,a=0.283. (b) The regionx>5 is shown with a
larger scale.

several values dflc?. For the case of isotropic scattering we
get an excellent agreement with E87), in which the cutoff
parameter is chosen as in Fig.)=0.424Nd?. The slope of ACKNOWLEDGMENTS

the dependence on(tb/Nd?) in the general case is given by )

Eq. (24). For the hard-disk scattering the slope is equal to_ | NS work has been supported by RFBR, a grant from the
1.95+0.10, which is close to what follows from E(4).  Russian Academy of Science, and a grant of the Russian
Indeed, for a given diametat, the ratio ofa,a(m) for the  Scientific School, No. 2192.2003.2.

two cases is equal to/®23=2.094.

APPENDIX A

VII. CONCLUSION For the case of scattering by hard disks, the Liouville

) ) equation has the forfr{-1°
In this paper, we have presented a simple approach to the

problem of classical corrections to the Boltzmann equation,
which are due to memory effects. We have performed both
analytical and numerical calculations of the velocity autocor- ~ .
relation function for noninteracting particles scattered bywhere the operator3_ and T, describe scattering by the
randomly located centers in two dimensions. disks. They are defined by the equations

of of ~ ~
—+v—+u(T_+T,)f=0, (A1)
ot or
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overlap. The termT_f describes the outflux of particles from
v the state with velocity at the pointr;+d/2 on the disk

edge, while the ternT,f describes the influx of particles to
— the state with velocity at the pointr;—d/2 (see Fig. 8.
v If we make the assumption that the distribution function
- f(r,¢,t) can be regarded as constant on distances on the
v order ofd, we can neglect the vectdr 2 in the arguments of
the & functions in Eqs(A2) and(A3). Then we immediately
obtain Eq.(2).

APPENDIX B

FIG. 8. Scattering of a particle by a hard disk. Scattering events

described by the operatofs andT, are shown. For the case of isotropic scattering, we write the Boltz-

mann equation for the functio@ in the form

- 2m G oG
T-f(f,¢,t)zzf de's(r —ri—di2)a(¢ - ¢")f(r,¢,1), E+Va_+7(6 Go) = 8(r) 8() (1), (B1)
i 0
(A2)  where
R 2m 1 2m
T+f(f,¢,t)=—2f de¢'8(r —ri+d/2)a(p— ¢)f(r,¢',1). Go(f,t)zzf G(r,¢,t)d¢
i 0 0
(A3)

is the isotropic part ofG(r,¢,t). Performing the Fourier
Hereo(¢)=(d/4)sin(¢/2) is the differential cross section transformation of this equation in variablesandt, we ob-

for a disk of diameted, the vectord is expressed through tain

the velocities before and after the collisionandv’ by the

relation (see Fig. 8 —i(w-k-V)G(k,p,0) + {G(K, },0) = Go(k,w)] = 5(¢h).

(B2)

If we find G(k, ¢, w) from this equation and take its av-
. R erage over the anglé, we will have an algebraic equation

Equation(Al) is exact, the operatof& andT, describing  for Gy(k,w). Solving it and using Eq(B2), we obtain the
the mechanics of collision@ssuming that the disks do not following expression for the functio®(k, ¢, w):

v -v
V2(v?=v-Vv') A4

o (ko)
—iw+ikv cos¢, 2m[y—iw+ikv codd - d)](y—iw+ikv cosg gk w) - v]’

G(k,¢,w) = (B3)
Y

where ¢, is the angle of the vectok and g(k,w) >0. We begin the Fourier transformation of the second term

= (y-iw)?+k%?. by calculating the integral over the anglg, using the
Now we can easily find the expression Bk(k, w): formulat®
1 T exp-ig) _ cos¢ 2mVl-a’-1
Gik,0) = — dep= =
27(y—iw+ikv cosey) _,l+acos¢ 1+acos¢ a Jl-a

. yexp—idy) gk o) - y+io Then we have
2mikv  (y—iw+ikv cosg)[g(k w) — y]’

(B4) G.(0,t)=- 2m7% Zf

oy f dk [g(k,w) = y+ i)
0

o 27T k g(k,0)[g(k,®) = y]
The functionG,(0,t) entering Eqs(18) and(19) is given by (B5)
the Fourier transform of EqB4) for r=0. The first term in
Eq. (B4) then becomes expyt)S(vot). This contribution Instead ofk we now introduce a new variable=g(k, )

should be omited, since it does not describe returnst for — y+iw, which gives us
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vy “do . 7 zdz the cutoff atty=xy/y as described in Sec. IV, we obtain Eq.
G1(0,t) =~ —e ot
n - o [z+2(y

22 . PRE (26).
(@m* lo)](z=i0) If we neglect the corridor effectbut still introduce the
(B6)  cutoff atty), Eq. (B7) can be used directly to calculate the
correction to the correlation function. Inserting EB7) into
Eqg. (18) we get, instead ok(x) given by Eq.(28), the fol-
lowing expression fok(x), which does not take into account

o 27T

The integral over can be now easily calculated and the
remaining integral ovez gives

exp—x) 1-exg-X the corridor effect:
G0 =2 2(_ =X H=%)
47y X X B _ _ _
k(X)=— 1+ 2" 2Ei(2x) — Ei(x)] + €*| 1 + (x— 2)[Ei(x)
+ 2 exg— X)[Ei(x) — Ei(2x)]) , (B7)
X
-C-Inx]+2(x—-1)In 2+(x+x0)ln<1+—”.
where x=+t. After replacing exp-x) by exg-x/2) in the Xo
first term to account for the corridor effect and introducing (B8)
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