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I. INTRODUCTION

Some forty years ago a number of pioneering theoretical
works appeared,1–7 which were devoted to the calculation of
the memory-effectsnon-Markoviand corrections to the ki-
netic coefficients and to the velocity autocorrelation func-
tion, through which they can be expressed. It was shown that
such quantities as the diffusion coefficient, the electrical con-
ductivity, viscosity, etc., cannot be expanded in powers of
density, as was assumed previously. Later, it was also dem-
onstrated that the velocity autocorrelation functionswhich
we abbreviate below as “correlation function”d does not de-
cay exponentially at large times, as the Boltzmann equation
predicts, but rather contains a slow power-law tail.8–10

These important deviations from the conventional picture
based on the Boltzmann equation are due to memory effects
neglected in the Boltzmann approach. For the case of nonin-
teracting particles performing diffusion in a static random
potential field these effects are due to returns of the particle
to previously visited regions. In the two-dimensional case it
was shown by Ernst and Wejland9 that, because of returns,
for timest much greater than the mean free flight timet, the
correlation function has a negative tail decaying as 1/t2.
Bruin10 has performed numerical calculations for scattering
by hard disks, which showed that this asymptotic behavior
for t@t may appear only at very long times, it is not reached
even att.10t.

Returns after a single collisionfsee Fig. 1sadg are impor-
tant at t&t. For t!t they give a contribution to the prob-
ability of return increasing as 1/t. This, in turn, leads to a
nonanalytical in the small parameterd/ l =Nd2 correction to
the diffusion coefficient on the order ofsd/ ldlnsl /dd, whered
is the effective scattering diameter,l =sNdd−1 is the mean free
path, and N is the two-dimensional concentration of
scatterers.2,5,11,12 Returns after two or more collisionsfsee
Fig. 1sbdg give a smaller correction on the order ofd/ l.

In our previous work13 we have drawn attention to an-
other memory effectsthe corridor effectd important in back-
scattering events. If a particle travels a distancex after which
it is backscattered and returns to the initial point, the prob-
ability of this round trip of length 2x is proportional to
exps−x/ ld, not to exps−2x/ ld, as would suggest the conven-
tional Boltzmann approach, since the existence of a free cor-

ridor of width d allowing the first part of the journey guar-
antees a collisionless return. This effect also gives a
correction to the diffusion coefficient on the order ofd/ l.

The role of memory effects becomes greatly enhanced in
the presence of an applied magnetic field since the circling
motion of an electron naturally increases the probability of
returns, and many works were devoted to classical magne-
toresistance, which for a degenerate 2D electron gas is en-
tirely due to memory effects.14 In particular, it was shown
that the irreversibility introduced by the magnetic field de-
stroys the corridor effect resulting in an anomalous magne-
toresistance in classically weak magnetic fields.13 An analyti-
cal theory of the anomalous low-field magnetoresistance was
recently developed in Ref. 15.

The existing derivation6,7 of the memory effect correc-
tions is rather long and cumbersome being based on a special
technique of the so-called ring diagrams. In the present paper
we develop a relatively simple approach to the problem. We
consider classical noninteracting particles with a fixed en-
ergy in two dimensions scattered by randomly positioned
centers with a given differential cross section in the absence
of magnetic field. We start with deriving a modified kinetic
equation, which takes into account single returns after an

FIG. 1. Illustration of the memory effect due to return to the
same scattering center after a single collisionsad or several colli-
sionssbd.
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arbitrary number of collisions. We then derive the leading
logarithmic correction to the diffusion coefficient for an ar-
bitrary angular dependence of the differential cross section.
Finally we find analytically the complete time dependence of
the velocity correlation function for the special case of iso-
tropic scattering taking into account the corridor effect and
calculate the correction to the diffusion coefficient for this
case. We perform numerical simulations for the cases of iso-
tropic scattering and scattering by hard disks, and we find a
good agreement between the numerical and analytical re-
sults.

II. DERIVATION OF THE BASIC EQUATION

The derivation of the conventional Boltzmann equation
from the Liouville equation for a particle moving in the pres-
ence of randomly positioned scattering centers involves a
number of simplifying assumptions. First, it is assumed that
the mean free pathl is much greater than the effective scat-
tering diameterd or, otherwise thatNd2!1, whereN is the
concentration of scatterers. Second, it is assumed that the
distribution function does not change much on the space
scale on the order ofd and on the time scale on the order of
d/v, wherev is the modulus of the particle velocity, which is
conserved since the scattering is elastic. These two condi-
tions make it possible to describe scattering in terms of the
differential cross sectionssfd attributed to scattering centers
positioned at given points in space. Third, memory effects
are neglected: the Boltzmann approach is equivalent to ran-
domly redistributing the scattering centers after each colli-
sion. Neglecting memory effects allows to take the average
over the positions of scatterers in the Liouville equation,
rather than use the average of its solution.

Restricting ourselves by the first two assumptions only,
we can write down the following equation for the distribu-
tion function fsr ,f ,td ssee Appendix A and Ref. 15 for the
derivation of this equation in the simplest case of scattering
by hard disksd:

]f

]t
+ v

]f

]r
+ vo

i

dsr − r idT̂f = 0, s1d

wherer i are the coordinates of the scattering centers, andT̂
is the scattering operator proportional to the Boltzmann col-
lision integral

T̂f =E
0

2p

ssf − f8dffsr ,f,td − fsr ,f8,tdgdf8. s2d

Note, that the distribution functionf in Eq. s1d depends on
the positions of scatterersr i for a given realization. Also,
since the scattering is elastic, the distribution function de-
pends only on the polar anglef of the velocity vectorv. The
conventional Boltzmann equation can be obtained from Eq.
s1d by replacing the actual density of scatterersoidsr −r id by
its average valueN.

The correlation functionKstd fnormalized by the condi-
tion Ks0d=1g and the diffusion coefficientD can be ex-
pressed through the solution of Eq.s1d with the following
initial and normalization conditions:

fsr ,f,0d = dsr ddsfd, E fsr ,f,tddrdf = 1. s3d

Then

Kstd =E drE
0

2p

df cosfkfsr ,f,tdl, s4d

D =
v2

2
E

0

`

Kstddt. s5d

The angular brackets in Eq.s4d denote averaging over the
positionsr i of the scattering centers.

We now develop a method to calculateKstd andD taking
into account non-Boltzmann memory effects due to returns
of the particle to previously visited scattering centers. As a
first approximation we choose the solutionGsr −r 8 ,f ,
f8 ,td of the conventional Boltzmann equation

]G

]t
+ v

]G

]r
+ vNT̂G = 0 s6d

with the initial condition

Gsr − r 8,f,f8,0d = dsr − r 8ddsf − f8d.

We rewrite Eq.s1d in the form

]f

]t
+ v

]f

]r
+ NvT̂f = − nsr dT̂f , s7d

wherensr d=oidsr −r id−N is the fluctuation of the scatterer’s
concentration andknsr dl=0. As above, the distribution func-
tion f in this equation depends on the actual positions of the
scattering centersr i.

Equations7d may be also written in an integral form using
the formal solution of Eq.s6d:

fsr ,f,td = Gsr ,f,0,td − vĜnT̂f , s8d

where Ĝ is the integral operator with the kernelGsr −r 8 ,
f ,f8 ,t− t8d.

We now substitutef given by Eq.s8d into the right-hand
side of Eq. s7d and we take the average of the resulting
equation over the positions of the scatterersr i. In doing this
we must deal with the product of functionsnsr d, nsr 8d, and
the distribution functionf, which all depend on the coordi-
natesr i. We decouplef from the averaging procedure by
writing

knsr dnsr 8dfl < knsr dnsr 8dlkfl.

This approximation takes into account single returns to the
same scattering center, but neglects multiple returns.

In the absence of correlation in the positions of the scat-
terers, which we assume to be true, we have

knsr dnsr 8dl = Ndsr − r 8d.

Hence, we obtain the following equation for the averaged
distribution functionsto simplify the notations we replace
hereafterkfl by fd:
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]f

]t
+ v

]f

]r
+ NvT̂f

= Nv2E
0

2p

df8E
0

t

dt8T̂Gs0,f9 − f8,t − t8dT̂f . s9d

On the right-hand side of this equation the functionT̂f is a

function of f8, the left operatorT̂ acts on a function of the
variablef9.

The Green functionGs0,f9−f8 ,td is the probability for a
particle to return to the initial point after timet with velocity
directed at anglef9, provided that the initial velocity is di-
rected at anglef8. Obviously, this probability should depend
on the differencef9−f8 only fthis is not the case forGsr
−r 8 ,f9 ,f8 ,td if r Þ r 8g.

The correction in the right-hand side of Eq.s9d coincides
with the result of Weijland and Van Leeuwen7 obtained by
the ring-diagram technique. Equations9d is the basis for the
following calculations. The solution of this equation is
needed for calculating the correlation functionKstd and the
diffusion coefficientD with the help of Eqs.s4d and s5d. In
fact, because of the approximations made during our deriva-
tion the right-hand side of this equation should be considered
as a small perturbation.

III. DERIVATION OF THE CORRELATION FUNCTION
AND THE DIFFUSION COEFFICIENT

To calculateKstd we need to know the integral of the
distribution function over the coordinate

Fsf,td =E fsr ,f,tddr . s10d

Integrating Eq.s9d over r we get

dF

dt
+ NvT̂F = Nv2E

0

2p

df8E
0

t

dt8T̂Gs0,f9 − f8,t − t8dT̂F.

s11d

This equation can be further simplified by using the prop-
erty that the functions expsimfd are the eigenfunctions of the

scattering operatorT̂:

NvT̂ expsimfd = gm expsimfd,

gm = NvE
0

2p

f1 − cossmfdgssfddf. s12d

Expanding the functionsF andG in Eq. s11d in Fourier se-
ries, we obtain

dFm

dt
+ gmFm =

2p

N
gm

2E
0

t

dt8Gms0,t − t8dFmst8d, s13d

where

Fmstd =
1

2p
E

0

2p

exps− imfdFsf,tddf,

Gms0,td =
1

2p
E

0

2p

exps− imfdGs0,f,tddf.

Equations13d allows us to calculate any moment of the dis-
tribution function with the corrections due to returns taken
into account.

As seen from Eqs.s4d, s5d, ands10d, the correlation func-
tion and the diffusion coefficients can be expressed via the
functionsF1std andF−1std=F1

*std:

Kstd = 2p ReF1std. s14d

Equations13d can be solved exactly. However, it should be
noted that this equation, similar to our basic Eq.s9d, takes
into account single returns only and consequently gives the
correct results only in the leading order in the small param-
eter Nd2. For this reason, as we have already mentioned
above, the right-hand term in Eq.s13d should be considered
as a small perturbation. This means that in this term one can
use the Boltzmann expression forFmstd:

Fmstd =
1

2p
exps− gmtd, s15d

where the factors1/2pd appears because of the initial con-
dition Fsf ,0d=dsfd. Substituting this expression into the
right-hand side of Eq.s13d, for m=1 we get

dF1

dt
+ gF1 =

g2

N
E

0

t

G1s0,t − t8dexps− gt8ddt8, s16d

where

g ; g1 = t−1 = Nvstr = NvE
0

2p

ssfds1 − cosfddf

is the inverse momentum relaxation time, or transport timet.
The solution of Eq.s16d can be easily found. After some

manipulation it can be presented as follows:

F1std =
1

2p
exps− gtd +

g2

N
E

0

t

G1s0,t − t8dexps− gt8dt8dt8.

s17d

Finally, using Eq.s14d we obtain the following expression
for the correlation function:

Kstd = K0std + dKstd,

dKstd = 2p
g2

N
E

0

t

G1s0,t − t8dexps− gt8dt8dt8, s18d

wheredKstd is the correction to the Boltzmann resultK0std
=exps−gtd.

Substituting this expression into Eq.s5d and changing the
order of integrations overt and t8, we obtain a formula for
the diffusion coefficient:

D = D0 + dD, D0 =
v2

2g
, dD =

pv2

N
E

0

`

G1s0,tddt.

s19d
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HereD0 represents the Boltzmann result, whiledD gives
the correction due to returns, which is beyond the Boltzmann
equation. One can see that calculation of these corrections is
reduced to findingG1s0,td, which is equivalent to finding
Gs0,f ,td, the Boltzmann probability of return to the initial
point r =0 with velocity directed at anglef with respect to
the initial velocity.

IV. CONTRIBUTION OF RETURNS AFTER A SINGLE
COLLISION

We have mentioned in the Introduction that the leading
slogarithmicd correction to the diffusion coefficient is due to
returns after a single collisionssee Fig. 1d. We will now show
that the contribution of this process can be easily found for
an arbitrary angular dependence of the scattering cross sec-
tion ssfd. To do this, we must find the corresponding con-
tribution to the functionGs0,f ,td.

We rewrite Eq.s6d in an integral form

Gsr ,f,td = dsr − v0tddsfdexps− g0td + NvE
0

2p

df8ssf − f8d

3E
0

t

expf− g0st − t8dgGfr − v8st − t8d,f8,t8gdt8,

s20d

whereg0=Nvs, s is the total scattering cross section,v0 is
the initial velocity swith f=0d, and f8 is the angle of the
vectorv8.

Equations20d is convenient for obtaining the contribution
of a given number of collisions before return by iterations.
Since we are now interested in returns after a single colli-
sion, we can insert the zero approximation forG into
the right-hand side of Eq. s20d, equal to dsr
−v0tddsfdexps−g0td. Denoting the correction thus obtained
asdG, we get

dGsr ,f,td = NvE
0

2p

df8ssf − f8dE
0

t

expf− g0st − t8d − g0t8g

3dfr − v8st − t8d − v0t8gdt8. s21d

Putting r =0 and taking into account the relation

dfv8st − t8d + v0t8g =
dsf8 − pd
v2st − t8d

dst − 2t8d,

we find

dGs0,f,td =
N

v

exps− g0td
t

dsf − pdssfd. s22d

Thus, fordG1s0,td we obtain

dG1s0,td = −
N

2pv

exps− g0td
t

sspd. s23ad

To find the correctiondD to the diffusion coefficient we
must substitute this expression in Eq.s19d. The integral in
Eq. s19d diverges logarithmically, which is the result of ig-

noring the finite radius of the scattering center. To avoid the
divergence, we will replacet in the denominator of the ex-
pression Eq.s23ad by t+ t0, where the cutoff timet0 is on the
order ofs /v. Such a regularization seems reasonable, since
it makes the return probability to be finite att→0, as it
should be if the finite radius of the scattering center is taken
into account, and since our entire theory is applicable for
time scales larger thans /v.

Equations23ad must be also corrected to include the cor-
ridor effect,13,15which we mentioned in the Introduction and
which is not taken into account by Eq.s9d. This effect is
relevant for backscattering events, when the particle follows
practically the same pathsin the opposite directiond after a
collision. The probability to make this round trip without
collisions during timet should be exps−g0t /2d rather than
exps−g0td as Eq.s23ad says, because once the path 1→2
during the timet /2 is collisionless, we are sure to have no
collisions on the return path 2→1. This effect can be taken
into account by a more accurate evaluation of Eq.s1d, which
swithin the approximation of pointlike scatterersd contains all
memory effects, including the corridor effect, see Ref. 15
where this was done for scattering by hard disks. Here
we will simply modify Eq. s23ad “by hand” replacing
exps−g0td by exps−g0t /2d.

Thus, we replace Eq.s23ad by

dG1s0,td = −
N

2pv

exps− g0t/2d
t + t0

sspd. s23bd

We then obtain the correction to the diffusion coefficient
due to returns after a single collision

dD

D0
= NstrsspdF− lnS 1

g0t0
D + C − ln 2G , s24d

where D0=v2/2g is the Boltzmann value of the diffusion
coefficient andC=0.577 is the Euler constant. Since the ex-
act numerical coefficient in the argument of the logarithm is
unknown, the constantC−ln 2 could be safely discarded. We
prefer to keep it in order to compare Eq.s24d with the more
general formula derived in Sec. V and to have a clear defi-
nition of the cutoff parametert0 when discussing numerical
results in Sec. VI.

With regard to this formula it should be noted that the
argument of the logarithm contains the constantg0, which is
expressed through the total scattering cross section. The lat-
ter is equal to infinity for any realistic scattering potential
that does not drop to zero at a finite distancesas it is the case
for scattering on hard disks when the total scattering diam-
eter is of course equal to the disk diameterd. The divergency
of the total cross section is due to very small scattering
angles. Since we consider the scattering centers as points,
any scattering event will deviate the particle from its path
connecting two scattering centers, however small the scatter-
ing angle may be. If the finite radius of the scatterer is taken
into account, then scattering angles less than,d/ l will not
matter anymore. This means that the integral overf, which
gives the total scattering cross section, entering the definition
of g0, should in fact be truncated to exclude scattering angles
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less thand/ l. Because of the logarithmic dependence ofdD
on g0, the exact value, which should be attributed to this
cutoff, is not very important.

Substituting Eq.s23bd into Eq.s18d, we obtain the correc-
tion to the correlation function in the time intervalt0! t
!g0

−1:

dKstd = − Nstrsspdgt lnst/t0d. s25d

To conclude this section we note that returns after mul-
tiple collisions, which are important for timest*t, give a
correction to the diffusion coefficient on the order ofNstr

2.
Thus, as one can see from Eq.s24d the logarithmic correction
dominates ifsspd is not too small, i.e., in all cases when the
backscattering is not strongly suppressed.

V. CORRELATION FUNCTION FOR ISOTROPIC
SCATTERING

For the special case of isotropic scatteringstr=s, sspd
=s /2p, andg0=g=t−1=Nvs. This simplification allows to
find analytically the Green functionGs0,f ,td for arbitrary
times sthat are larger than the cutoff timet0d.

The details of the calculation are given in Appendix B.
The functionG1s0,td, through which the corrections to the
correlation function and the diffusion coefficient are ex-
pressed, has the form

G1s0,td =
g2

4p2v2S−
exps− x/2d

x + x0
+

1 − exps− xd
x

+ 2 exps− xdfEisxd − Eis2xdgD , s26d

where we have introduced the notationsx= t /t, x0= t0/t!1,
and Eisxd=−e−x

` dy exps−yd /y is the integral exponent. Since
t0,s /v and t=sNsvd−1, the cutoff parameter can be pre-
sented asx0=aNs2, wherea is an unknown constant on the
order of unity.

Comparing Eqs.s26d ands23bd, one can see that the first
term in Eq.s26d represents the contribution from returns af-
ter a single collision with the cutoff att→0 and the corridor
effect taken into account as described in the previous section.
The other terms in Eq.s26d correspond to returns after two or
more collisions and do not contain any singularities.

A direct calculation using Eqs.s19d ands26d gives us the
correction to the diffusion coefficient

dD

D0
=

Ns2

2p
F− lnS 1

x0
D + C − 2 ln 2G s27d

which differs from Eq.s24d describing the contribution of
returns after a single collision by an additional terms−ln 2d
in the brackets, which is the contribution of returns after
multiple collisions.

The correction to the correlation function,dKstd can now
be calculated by using the Eqs.s26d and s18d. A direct cal-
culation gives the following, rather cumbersome, expression
shere againx= t /td:

dKstd = −
Ns2

2p
ksxd,

ksxd = 3e−x − 2e−x/2 − 1 + 2e−2xfEis2xd − Eisxdg

+ sx + x0de−xFEiSx + x0

2
D − EiSx0

2
DG

+ e−xhsx − 2dfEisxd − C − ln xg + x + 2sx − 1dln 2j.

s28d

The function ksxd is presented in Fig. 2sad for several
values of the cutoff parameterx0. In inset is shown the linear
dependence of the maximum value ofksxd on lnx0.

For small times,x0!x!1, Eq. s28d gives

FIG. 2. sad Plot of ksxd=−s2p /Ns2ddKsxd versusx= t /t for
different values of the cutoff parameterx0. Continuous, dotted, and
dashed curves correspond tox0=0.01, 0.02, and 0.04, respectively.
The inset shows the dependence of the maximum valuekM on lnx0.
sbd The long time part is emphasized in a log-log plot to show that
the different curves become quickly superimposed forx.5 and
reach very slowly the asymptotic regime, 1/2x2, asx→` sshown
by the long-dashed lined.
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ksxd = x lnsx/x0d, s29d

so that dKstd coincides with the expression given by Eq.
s25d, if one takes into account that for isotropic scattering
str=s andsspd=s /2p. At large times,x@1, the correlation
function is dominated by the contribution of returns over
long diffusive trajectories involving many collisions. It can
be presented as a series in inverse powers oft. Using Eq.
s28d in this limit, we obtain the leading terms of this expan-
sion

ksxd =
1

2x2S1 +
5

x
D . s30d

The leading terms,1/t2d coincides with the known result
obtained by Ernst and Weyland,9 while the second one gives
the first correction. We note that the leading termsbut not the
correctiond is a universal result, which can be derived in the
diffusion approximation9 and which does not depend on the
scattering cross-section. It can be seen that the asymptotic
1/t2 behavior is approached very slowly, so that even fort
=50t sx=50d the correction still makes 10%fsee Fig. 2sbdg.
This explains why the predicted asymptotic behavior was not
reached in the numerical simulations done by Bruin,10 as
well as in our simulations to be presented in the next section.

Finally, in Fig. 3, we present, for comparison, the function
k̃sxd given in Appendix B, Eq.sB8d, in which the corridor
effect is not taken into account. One can see that the role of
the corridor effect is noticeable, but rather small.

VI. NUMERICAL SIMULATIONS

Using a random number generator, the centers ofN disks
of diameterd are uniformly randomly positioned on a plane
inside a square box of edge lengthL. We takeL /d=1000 to
be sure thatL remains more than one order of magnitude

larger than the mean free path, even for the smallest concen-
trations that we have considered. The value ofN is chosen to
obtain the desired value for the dimensionless concentration,
Nd2/L2=Nd2. Numerical simulations were performed for
Nd2 equal to 0.064, 0.032, and 0.016. To calculate the veloc-
ity correlation functionKstd, as well as the diffusion coeffi-
cient D given by Eq.s5d, we first choose an initial point at
random inside the box with an initial velocity direction arbi-
trarily chosen along thex direction. We then determine the
trajectory of a pointlike particle by joining the successive
impact points, an impact point being the first intersection,
calculated analytically, of the linear trajectory with a disk
periphery, the particle always coming from outside of the
disk. We use standard numerical tricks to accelerate the
search for impacts. When choosing the initial position, the
disk interiors are not excludedsit was checked that excluding
them introduces only a weak numerical difference, which
vanishes in the limitNd2→0d. The trajectory is made of
successive straightline segments between collisions. Periodic
boundary conditions are imposed at the edges of the square
box.

In the hard-disksor Lorentzd model the scattering anglef
is related to the impact parameterr by r=sd/2dcossf /2d
swe consider 0,f,2p, so thatr may be negatived. The
differential cross sectionssfd= udr /dfu=sd/4dsinsf /2d is
anisotropic, with enhanced backscatteringsin contrast to iso-
tropic scattering by hard spheres in three dimensionsd. As a
consequence, the transport cross section is larger than the
total cross section:str=s4/3dd.

To simulate isotropic scattering we define the scattering
angle by the relationr=sd/2ds1−f /pd, so that ssfd
=d/2p. This relation is somewhat artificial, it leads to unre-
alistic situations, in which the disk may be cut by the scat-
tering trajectory. This isotropic model, which is built to have
an angle-independent differential scattering cross section,
does not correspond to any realistic potential and is consid-
ered for the sole purpose to check our analytical theory.

In order to calculate the correlation functionKsxd and its
dimensionless integral up to a timet=xt, Istd=e0

t/tKsxddx
=Xstd /vt, whereXstd is the overall displacement of the par-
ticle in the x direction during timet, we consider a set of
5000 discrete valuesxn of the reduced timex= t /t, regularly
spaced up toxm=20, and we calculate both quantities for
eachxn. The values ofKsxnd andIsxnd are averaged over 100
disk configurations and 108 trials for the starting point, ex-
cept for the lowest concentrationNd2=0.016 where only 107

trials for the starting point were considered. In this way we
get practically continuous curves for bothKstd and Istd. The
reduced value of the diffusion coefficientD /D0 is obtained
by extrapolation of the results forIstd to t→`.

In Fig. 4, we present the numerical results forKstd for the
isotropic scattering together with the pure exponential curve
K0std=e−t/t expected from the Boltzmann approach. The en-
larged scale in Fig. 4sbd allows us to clearly see the negative
departure from the exponential behavior and the long-time
tail of the correlation function. We have also calculated nu-
merically the correlation function for the hard disk scatter-
ing. The results are qualitatively similar to the isotropic case
and agree with the numerical simulations of Bruin.10

FIG. 3. Plot ofksxd scontinuous lined andk̃sxd sdot-dashed lined,
given by Eqs.s28d andsB8d, respectively, for the same value of the
cutoff parameterx0=0.01. The relative differencesk− k̃d /k is
shown in the inset.
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Figure 5 presents the comparison of the numerical results
for the normalized correction to the correlation functionksxd
for isotropic scattering with the theoretical formula given by
Eq. s28d. The only fitting parameter is the constanta in the
definition of the cutoff value ofx0=aNd2. By choosinga
=0.424 we obtain a practically perfect fit to the theoretical
curves for several values ofNd2. The numerical errors are
responsible for the noisy character of the simulation data for
x.10, however they are practically negligible for smaller
values ofx, the error bar being smaller than the symbol size.

Because of the high precision of our numerical simula-
tion, we are able to verify the theoretical prediction concern-
ing the role of the corridor effect. For this purpose we try to
fit the numerical data to the functionk̃sxd given by Eq.sB8d,
which does not take care of this effect, see Fig. 6. It is not
possible to have a good fit with the same choice of the con-
stant a as before. Thus we chose a different value,a

=0.283, to fit the maxima of the numerical curves. As it can
be seen from Fig. 5, though the resulting fit could be consid-
ered as satisfactory, the difference is well beyond the numeri-
cal errors, in particular the numerical data points for 5,x
,10 are systematically above the theoretical curves. Com-
paring Figs. 5 and 6, one can see that taking the corridor
effect into account makes the agreement between the theo-
retical and numerical curves substantially better.

Finally, in Fig. 7 we present the numerical results for the
correction to the diffusion coefficientdD /D0 in units of
Nd2/2p versus lns1/Nd2d, see Eq.s27d. Data for both the
hard-disk scattering and isotropic scattering are presented for

FIG. 4. sad Results of the numerical calculations for the isotropic
model as a plot ofKsxd for different concentrations. Dotted, dashed,
and long-dashed curves correspond toNd2=0.064, 0.032, and
0.016, respectively. The pure exponentialK0=exps−xd is shown by
the continuous curve.sbd For t.4t the scale is enlarged by a factor
104 to better show the difference betweenKsxd andK0sxd.

FIG. 5. sad The results of the preceding figures are reported in a
plot of ksxd. Only 200 points are selected in the range 0,x,20.
Crosses, plus signs, and filled circles correspond toNd2=0.064,
0.032, and 0.016, respectively. The continuous lines correspond to
the fits obtained using Eq.s28d with the same proportionality factor.
a=0.424, betweenx0 andNd2 in the three cases. The error bars are
smaller than the symbol size.sbd The regionx.5 is shown with a
larger scale. At this new scale one can see the fluctuations of the
numerical data giving an idea of the magnitude of the error bars
swhich are larger in the caseNd2=0.016 due to the poorer
statisticsd.
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several values ofNd2. For the case of isotropic scattering we
get an excellent agreement with Eq.s27d, in which the cutoff
parameter is chosen as in Fig. 4:x0=0.424Nd2. The slope of
the dependence on lns1/Nd2d in the general case is given by
Eq. s24d. For the hard-disk scattering the slope is equal to
1.95±0.10, which is close to what follows from Eq.s24d.
Indeed, for a given diameterd, the ratio ofstrsspd for the
two cases is equal to 2p /3=2.094.

VII. CONCLUSION

In this paper, we have presented a simple approach to the
problem of classical corrections to the Boltzmann equation,
which are due to memory effects. We have performed both
analytical and numerical calculations of the velocity autocor-
relation function for noninteracting particles scattered by
randomly located centers in two dimensions.

In the particular case of isotropic scattering, we were able
to provide a full analytical expression for the correction to
the Boltzmann result, due to returns of the particles to pre-
viously visited regions, in excellent agreement with the re-
sults of numerical simulations. Furthermore, the comparison
between analytical and numerical results demonstrates that it
is essential to take care of the “corridor effect” associated
with backscattering events. In the case of hard disk scattering
sLorentz modeld, we obtain a good agreement for the depen-
dence of the diffusion coefficient on the concentration of
scattering centers. A full theory taking into account both
classical and quantumsweak localizationd memory effects is
needed to understand the relative role of classical and quan-
tum corrections depending on the ratio of the De Broglie
wavelength to the scattering diameter.
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APPENDIX A

For the case of scattering by hard disks, the Liouville
equation has the form6,7,15

]f

]t
+ v

]f

]r
+ vsT̂− + T̂+df = 0, sA1d

where the operatorsT̂− and T̂+ describe scattering by the
disks. They are defined by the equations

FIG. 6. sad The same numerical results are fitted by Eq.sB8d,
which does not take care of the corridor effect. Here, to fit the
maximum values, we take a different proportionality factor than in
Fig. 5, namely,a=0.283. sbd The regionx.5 is shown with a
larger scale.

FIG. 7. Numerical results for the diffusion coefficient as a plot
of −s2p /Nd2ddD /D0 versus lns1/Nd2d for the hard disk scattering
sopen circlesd and for isotropic scatteringsfilled circlesd. The linear
behavior predicted by formulas27d in the isotropic case, witha
=0.424 as in Fig. 5, is represented by the straight linesof slope 1d.
A linear fit through the three points in the hard disk case gives a
slope of 1.95±0.10 in good agreement with the theoretical predic-
tion of 2.094.
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T̂−fsr ,f,td = o
i
E

0

2p

df8dsr − r i − d/2dssf − f8dfsr ,f,td,

sA2d

T̂+fsr ,f,td = − o
i
E

0

2p

df8dsr − r i + d/2dssf − f8dfsr ,f8,td.

sA3d

Heressfd=sd/4dsinsf /2d is the differential cross section
for a disk of diameterd, the vectord is expressed through
the velocities before and after the collision,v andv8 by the
relation ssee Fig. 8d

d = d
v8 − v

Î2sv2 − v ·v8d
. sA4d

EquationsA1d is exact, the operatorsT̂− andT̂+ describing
the mechanics of collisionssassuming that the disks do not

overlapd. The termT̂−f describes the outflux of particles from
the state with velocityv at the pointr i +d /2 on the disk

edge, while the termT̂+f describes the influx of particles to
the state with velocityv at the pointr i −d /2 ssee Fig. 8d.

If we make the assumption that the distribution function
fsr ,f ,td can be regarded as constant on distances on the
order ofd, we can neglect the vectord /2 in the arguments of
thed functions in Eqs.sA2d andsA3d. Then we immediately
obtain Eq.s1d.

APPENDIX B

For the case of isotropic scattering, we write the Boltz-
mann equation for the functionG in the form

]G

]t
+ v

]G

]r
+ gsG − G0d = dsr ddsfddstd, sB1d

where

G0sr ,td =
1

2p
E

0

2p

Gsr ,f,tddf

is the isotropic part ofGsr ,f ,td. Performing the Fourier
transformation of this equation in variablesr and t, we ob-
tain

− isv − k ·vdGsk,f,vd + gfGsk,f,vd − G0sk,vdg = dsfd.

sB2d

If we find Gsk ,f ,vd from this equation and take its av-
erage over the anglef, we will have an algebraic equation
for G0sk ,vd. Solving it and using Eq.sB2d, we obtain the
following expression for the functionGsk ,f ,vd:

Gsk,f,vd =
dsfd

g − iv + ikv cosfk
+

ggsk,vd
2pfg − iv + ikv cossf − fkdgsg − iv + ikv cosfkdfgsk,vd − gg

, sB3d

where fk is the angle of the vectork and gsk,vd
=Îsg− ivd2+k2v2.

Now we can easily find the expression forG1sk ,vd:

G1sk,vd =
1

2psg − iv + ikv cosfkd

+
g exps− ifkd

2pikv

gsk,vd − g + iv

sg − iv + ikv cosfkdfgsk,vd − gg
.

sB4d

The functionG1s0,td entering Eqs.s18d ands19d is given by
the Fourier transform of Eq.sB4d for r =0. The first term in
Eq. sB4d then becomes exps−gtddsv0td. This contribution
should be omited, since it does not describe returns fort

.0. We begin the Fourier transformation of the second term
by calculating the integral over the anglefk using the
formula16

E
−p

p exps− ifd
1 + a cosf

df = 2E
0

p cosf

1 + a cosf
df =

2p

a

Î1 − a2 − 1
Î1 − a2

.

Then we have

G1s0,td = −
g

s2pd2v2E
−`

` dv

2p
e−ivtE

0

` dk

k

fgsk,vd − g + ivg2

gsk,vdfgsk,vd − gg
.

sB5d

Instead ofk we now introduce a new variablez=gsk,vd
−g+ iv, which gives us

FIG. 8. Scattering of a particle by a hard disk. Scattering events
described by the operatorsT− andT+ are shown.
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G1s0,td = −
g

s2pd2v2E
−`

` dv

2p
e−ivtE

0

` zdz

fz+ 2sg − ivdgsz− ivd
.

sB6d

The integral overv can be now easily calculated and the
remaining integral overz gives

G1s0,td =
g2

4p2v2S−
exps− xd

x
+

1 − exps− xd
x

+ 2 exps− xdfEisxd − Eis2xdgD , sB7d

where x=gt. After replacing exps−xd by exps−x/2d in the
first term to account for the corridor effect and introducing

the cutoff att0=x0/g as described in Sec. IV, we obtain Eq.
s26d.

If we neglect the corridor effectsbut still introduce the
cutoff at t0d, Eq. sB7d can be used directly to calculate the
correction to the correlation function. Inserting Eq.sB7d into
Eq. s18d we get, instead ofksxd given by Eq.s28d, the fol-
lowing expression fork̃sxd, which does not take into account
the corridor effect:

k̃sxd = − 1 + 2e−2xfEis2xd − Eisxdg + e−xF1 + sx − 2dfEisxd

− C − ln xg + 2sx − 1dln 2 + sx + x0dlnS1 +
x

x0
DG .

sB8d
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