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With the solution of the Schrédinger equation for electrons in three-dimensi@balhard wall quantum
channels, the conductance of semiconductor nanowires is studied as a function of length, size, and contact
dimensionality. Within the envelope function approximation, the two-terminal Landauer—Biittiker conductance
has been calculated in the quantum ballistic regime, usingrtbéde matchingechnique. The contacts are
modeled by semi-infinite regions with hard wall confinement along only one of the transverse directions, so
that continuous crossover from quasi-two-dimensional to 3D contacts can be simulated through the increase of
this confinement length. The conductance resonances due to the resonant transmission through quasi-bound
longitudinal states are shown to get much better resolved with 3D contacts, which leads to larger Fabry—Pérot
like conductance oscillations within thee2h quantized plateaus, which are independent of the contact di-
mension. An effective phase shift due to electron reflection at the exit and entrance of the quantum channel is
introduced, which helps the interpretation of the numerical and experimental data on these conductance

oscillations.
DOI: 10.1103/PhysRevB.71.155330 PACS nunt®er73.21.Hb, 73.23.Ad, 73.63.Nm
[. INTRODUCTION nel; a quantum interference phenomena which is highly sen-

sitive to the specific geometry of the nanowire and contacts.

After the experimental discovery of the conductanceln fact, the study of these oscillations done so far with 2D
quantization in semiconductor point contact structdréls ~ models!®>22 where the out-of-the-plane dynamics is ne-
close connection with the quantum Hall effect was soon recglected, is not able to answer how these oscillations depend
ognized, except for the much smaller precision and the aben the wire cross section and on the dimension of the con-
sence of a magnetic field. In fact, both these effects deriveacts; three-dimensiong8D) models are necessary for that.
from the equipartition of the current among an integer num4t is worth mentioning that 3D models are also required in
ber of propagating modésSince then there has been an view of the fabrication of spintronfé devices based on spin—
intense effort toward a better understanding of the conducerbit coupling, which couples the three coordinates
tance quantization which has been observed in semicondugynamics?4-26
tor nanostructure§® metallic system$® and atomic Here we present, a study of the quantum ballistic conduc-
wires®-However, large~20%) deviations from the quan- tance of 3D semiconductor nanowires and its geometric ef-
tized steps continue to be observed and not well understoofkcts within a simple hard wall quantum channel model. The
and it is sometimes referred to as nonuniversal or anomalouSchrédinger equation for independent electrons is solved
conductance quantizatidri?13 with completemode matchingt the entrance and exit of the

It is known that such deviations can have different ori-nanowire!®2?? The contacts are modeled by semi-infinite re-
gins. Electron scatteringpr mode couplingat the entrance gions with hard wall confinement only along one of the
and exit of the constrictiofquantum channel, point contact, transverse directions. The continuous crossover from
or nanowirg, including the electron transmission by quasi-2D to 3D contacts is simulated through the increase of
tunnelingt4—8 structure disorde¥:1%2%and nonequilibrium  this confinement length. Within the envelope function ap-
thermal effect®?are among them. In particular, theoretical proximation, we calculate the two-terminal Landauer—
simulations based on the solution of the Schrodinger equaBiittiker conductancé?® in the quantum coherent regime.
tion for two-dimensional2D) models have shown that the The conductance peaks due to resonant tunneling via longi-
conductance quantization should be seen only in point contudinal quasi-bound states are shown to get much better re-
tacts or nanowires with nonzero length and that the electrosolved with 3D contacts leading to conductance oscillations
scattering at the two wire ends leads to large conductano®ith larger amplitudes. It is also shown that these oscillations
oscillations within the so-callede?/h plateaus;~6 which  can be simply described with an effective phase shift due to
are obtained by changing the electron density or the conductlectron scattering at the wire entrance and exit. This shift
ing channel widt Such superimposed oscillations have corresponds to an effective wire length which depends on the
been observed by different group$® They correspond to contact dimension and Fermi energy, and gives the wave-
Fabry—Pérot like oscillations due to resonant electron trandength of the charge distribution inside the wire. In Sec. Il we
mission via quasi-boundongitudina) states inside the chan- present our model calculation and in Sec. Il we discuss the
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z partial waves due to the electron scattering at the wire en-
trance. The sum is ovall transverse states and, due to en-
ergy conservation, the wave vectdd,={2m'E,/#%-k.?
-(nw/D,)?*2 assumes real and imaginary values, i.e., the
evanescent partial waves wikl)/i >0 are also included. The
convention(-1)*?=+i is used throughout the paper.

Similarly, in the drain or right conta¢R), the wave func-
tion can be written as

WWFZ%MJdM%MWW@, 2

ly S where evanescent waves are again fully taken into account.
- ~ Inside the QWR, the solution is expanded in terms of the
8 5 QWR eigenfunctions, so that it can be written as
- - W) = 3 (B o€+ B € M0 g (V)0 (2
ny.nz vz y z
FIG. 1. Schematic representation of 2B), quasi-2D(b), and (3

3D (c) systems. The QWR is the connection between (leftand
right (R) reservoirs, which are infinite indirection for all systems.

where @n, (2) (¢ (y)) represents thcm (n‘h) eigenfunction
The origin of the axes is the center of the QWR.

for the QWR confining potential iz (y) dlrect|on Evanes-
cent, exponentially growing and freely propagating states
main results, which are then summarized in the conclusiongre considered Wlthqn n, ={2m'E,/h%- (nyw/W) —(nym!
.. MODEL W22 L, W, and W, are the dimensions of the QWR i
Y, Z d|rect|ons respectively.
Let us consider a general constriction, quantum channel |y order to obtain the conductance, we calculate the cur-
or nanowire(QWR) between two reservoircontacts, all  rent through the QWR which is given as a function of the
made with hard walls. Figure 1, schematically represents thgoeﬁ,C,entan o, and B, .. These in turn, are determined

corresponding 2D, quasi-2D, and 3D versions of such quangs, the solution of a system of linear equations which re-

tum wire model. ]!t is |mp(()jrtant to nouge that mfall cases theg, s from the matching of the wave functions and their de-
reservoirs are infinite iz direction (and semi-infinite ). - ues with respect ta at x= +L/2 andx=—-L/2, plus the

The contact confining length along(D,) matches the QWR  oimination of the coefficient#\,(k.) and C(k.). For the
width (W) in the quasi-2D case. On the other hand, in the quaS| -2D case these equations read:

3D caseD, is much larger thawW,. We consider the QWR
and contacts made of the same semiconductor material, _

namely GaAs, which means using electron effective mass 2 B;y,nze_l(qny'”Zle)(Tmz,nz+Wzﬂ'qny,nz‘snz,mz)
m"=0.067 in the numerical results. For the 2D case, simple

solutions for the Schrddinger equation using the so-called +E B"
mode matching technigue have been presented by

Kirczenow® and Berggren and 3% Here, we extend such

calculations and present new solutions for the systems rep- - Qk eikdLi2p
resented in Figs.(b) and Xc) with continuous 2D-3D cross- wa

over. With the same technique, other 3D structures have been

studied by X4’ and Huaxiang and Xid&

Let us assume an electron incident from the left contact ' B +i(Qny,nZL/2)(T
with wave vectork =(k,,k,) and ozccuzpying théth subband n, e
in y with energyE,(k)=7%2/2m {k;+k:+(I7/D,)?}. We can L
then write the total wave function in the sour(y:e reseryeiit + ? Bny,nze I(qny’nzuz)(Tmz,nz + W, Qny,nﬁnz,mz) =0,
contact,L) as

L/2)
+|(qn e (Tmz,nz_ ZWQny,nzanZ,mz)

k mzé],ny’ (4a)

n,~ quny,nZ‘Snz,mz)

+o (4b)
WHr) = 92 (y) + X y(y) f dK A () e ke

WhereénzmZ is the usual Kronecker delta and

(1)
where ¢,(y) is the eigenfunction for.theth subband in the Tmz,nzzf dk;k;M+k*,rnzM-k*,nZ, (5a)
contact and theA (k) are the coefficients of the reflected - ?
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+W,/2 .
M_y n, = f dz g, (2072,
7wy ‘
where K,={2m'E,/%2-K;” - (nm/Dy)#*2 is function of K,
through the energy conservation in the contacts.
Similarly, for the 3D case we have

(5b)

+ —i L/2
E Bny’nze '(q”y'”z )(; MIV’mVMly'nmiz'nz
y

ny,n,

W, .
Yy - +Hi(dn o L/2)
+ WZDywqwmzéwnyﬁmznz> - nEn By €
'z

W,

E _ Y
X( ; Mly,myMly,nmiZ,nZ 4 WszWme,nE‘Smy,nygmz,nz)
y

= ZWV”z_ljykxe'i(ka/Z)M+kz,mZ'V'|,my’ (68

i L/2
E B;yynzeﬂ(Qny’nz )<IE Mly'myMIy'nmiZ'nZ
y

ny.n,

W, L
_ QYWsz”qmy,mﬁn\,ynﬁmz,nz) + %Z Bn, 0.8 (G n,L12)

W,
X (IE My My o T, n, ZXWZDywqmy,mZ&myvnyémZ’nz)
y
= 0' (Gb)
with
+Wy/2
My n, = f dy ¢, (Y)en (¥), @)

—Wy/ 2

where ¢, (¥) (¢n (¥)) is the eigenfunction for thé" (n{f)
subband in the conta¢QWR).

The equations for the quasi-2D cadeg. (4)] are much
simpler (note the absence of the sum owg). This is be-
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FIG. 2. Conductance in quasi-2D systems as a function of Fermi
energy for QWRs with. =100 nm,W,=10 nm,W,=20 nm(upper
curve andW, =20 nm,W,=10 nm(lower curvg. The upper curve
is offset for clarity.

the single mode electrical currejjtis given by

he W, W.
L= W Wi 5 R 2_|gs |2
(k) w2 2 {nyznz qny,nz(|Bny,nz| |Bny,nz| )
+ > (Im)Qn n (B, n B;*,n - B;*.n B ¢ (9
oz Y- ARLYIL BRLVIL 4 otz —Tlyllz

whereR (Im) indicates sum over redimaginary values of
qny,nz-

In practical calculations, Eq$4) and (6) for the coeffi-
cientst:;;) are solved numerically by truncating the number
of transversal modes. Fortunately, the contribution of modes
with energy above the Fermi level decreases rapidly with the
mode index. Good convergence of the resitihin 1%)
have been obtained already with only two modes above the
Fermi level. In the results shown in the following, this cor-

cause the wire and contagtconfined modes are the same. responds to the use of up to five modes for the wider dimen-
As a consequence, with only the first subband occupied, i.esjon. The 3D results are obtained wily=200 nm and 300
for the first conductance plateau, the obtained quasi-2D cony-confined levels used to perform the sums dyén Eq. (6).
ductance and that in the 2D limit are the same except for th&he obtained solutions of Ep) reproduce exactly previous
energy shift due to the extra confinement in the quasi-2D8D results, including the double plateaus due to mode
case. For higher plateaus, contributions from initial stategiegeneracy and Eq.(4), in the appropriate limit, also repro-
with different subbands must be added through independenfuce exactly previous results for strictly 2D chanrél$n

solutions of Eq(4) for the different possible values bfsee

Sec. lll, we discuss the results for the quasi-2D case and the

the §, term in Eq.(4)]. On the other hand, in the 3D case, 2D-3D quantum ballistic conductance crossover, including
the sets ofy-confined states are different in the wire andthe discussion of the conductance oscillations in terms of

contacts, and we havM|y,ny¢5| n [see Eq.(7)]. In this
case, the only possible simplification is tﬁ-f?ﬁz,nz andM|yvny
are nonzero only for indexes with the same parity.

effective wire length.

IIl. RESULTS AND DISCUSSIONS

Finally, assuming zero temperature and a weak potential _ .
difference between the reservoirs, the wire conductance can Figure 2 shows typical results of the quasi-2D model. We

be calculated bA?

JZ|--m%

h eh.5

+7/2

doj; (K)|jkj=k.» (8)
—7/2

where the sum is over all possible initial subbarigsis the
modulus of the Fermi wave vectde=kg(cog 6),sin(6)) and

have plotted there the obtained conductance as a function of
the electron Fermi energy for two 2010 nn? rectangular
QWRs, 100 nm long, being one with the longer side parallel
to the quasi-2D contadtpper curvg and one perpendicular
(lower curve, as illustrated in the figure. It is seen that in the
perpendicular case the oscillations are stronger correspond-
ing to better defined transmission resonances. Note that in
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FIG. 4. Mean oscillation amplitude in the first conductance pla-
teau as a function of the contact lend). The QWR dimensions
areL=200 nm,W,=10 nm, and/,=20 nm. The dashed line is just
a guide to the eyes. Inset: sum of overlap integrals for the funda-
mental QWR modg¢Eg. (7)] as a function of contact lengt,. The
same QWR dimensions are considered with(dl line) and 300

the limit W,— o, one cannot distinguish wire and contact, (dashed ling contact modes.

there is no scatteringor reflection at the entrance and exit ) _ o .
of the wire and, as a consequence, no conductance oscill§l€ase when leaving the quasi-2D limii) the oscillations

tions. ASWZ is reduced, the electron modes inside and out_for Sma"Dy, and(lll) the saturation in the 3D limit. All these
side the wire become more and more dissimilar, increasin§eatures can be understood by recalling that the conductance
the electron scattering at the entrance and exit of the wiregscillations are a result of the electron scattering at the en-
which leads to better defined longitudinal resonances an#fance and exit of the QWR, which in turn is determined in a
larger oscillation amplitudes. complicated waysee Eqs(4) and (6)] by the overlap inte-

In Fig. 3, we compare the conductance of nanowires wittgralsM.¢ » andM, , [Egs.(5b) and (7)]. The description
varying lengthL obtained with the 30left pane), quasi-2D  of their contribution to the solutions of Ed6) is highly
(right pane), and 2D(insey models. The wire length con-  nontrivial. Despite this, for the first plateau, the sum of the
trols the conductance oscillation frequency; the longer theverlap integrals between the fundamental mode in the QWR
wire the more longitudinal resonances can be seen by inand the different modes in the conta(&lg’fXM,,l) gives a
creasing the Fermi energy. In the limit of very short wires,useful measure of their effects. Indeed, as shown in the inset
the first oscillation period cannot be completed within theof Fig. 4, this sum as a function dd, presents the same
respective plateaus which are no more distinguishable alsinree features. In the 3D limit, a larger number of contact
due to an increasing tunneling contribution to the electrormodes are required and this suwith I ,,,,=300, used in this
transport. As a result, in this limit, an almost linear behaviorlimit for the required numerical precisipnas the amplitude
is obtained for the conductance in all three models. Electromf the conductance oscillations, is seen to saturate. Near the
tunneling also occurs at energies smaller than the QWR funguasi-2D limit, only a small number of contact modes is
damental transversal eigenenergy and that is why there is mequired and the obtained sugwith |,,,,=21) oscillates as
conductance threshold energy for short QWRs in 3D and 2@he conductance amplitude. The fast increase for small de-
cases. In the quasi-2D case instead, there is a threshold eviations from the quasi-2D limit is also observed. Note that
ergy due to the electron confinement in the contacts. Howin the quasi-2D case, thgconfined modes inside and out-
ever the main difference between 3D and quasi-2D results iside the wire are the same and due to their orthogonality only
the much larger oscillation amplitude obtained with 3D con-M, , is different from zero. With the break of symmetry with
tacts. As discussed earlier, this means that with 3D contac®, > W, the observed fast increase in the oscillation ampli-
the transmission resonances get better resolved as a resulttafie is explained with the contribution of the many different
the smaller electron transparency of the entrance and exit averlap integrals which immediately became different from
the QWR. The obtained 2D and quasi-2D results for the firskzero.
conductance plateau, in all cases considered, turned out to be As seen, in analogy with the usual parallel mirrors Fabry—
exactly the same, except for the energy shift, as expected. Pérot oscillations, the amplitude of the conductance oscilla-

In order to further understand these increased condudions, corresponding to a series of resonant transmissions,
tance oscillations with 3D contacts, in Fig. 4 we have plottedncreases with decreasing transparency of the mirfioes,
their amplitude(averaged over the first plateeas a function  channel entrance and exis the resonances become better
of Dy, showing the mentioned quasi-2D to 3D crossoverresolved, with longer lifetimes. Besides for this resonance
Three important features should be notéd: the fast in- broadening, the Fabry—Pérot analogy is helpful also in the

FIG. 3. Obtained conductance with 3[@ft pane) and quasi-2D
(right pane) contacts as a function of Fermi energy for QWRs with
Wy=10 nm andW,=20 nm. L varies from 1 to 100 nm as indi-
cated. Inset: 2D system results for1 nm. The upper curves are
offset for clarity.
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FIG. 5. Effective phase shift for electron reflection at the QWR

exit and entrance with 3Dopen symbolsand quasi-2D(closed FIG. 6. Effective phase shift in terms ¢8L/L) for the cases
symbol3 contacts, as a function of Fermi energy. The QWR dimen-With 3D (left pane} and quasi-2Qright pane) contacts, as a func-
sions areW,=10 nm, W,=20 nm and L=120 nm (circles, L tion of Fermi energy for QWRs withy=10 nm, W,=20 nm and
=200 nm(triangles, L=400 nm(squares The lines are just guides =120 nm(circles, L=200 nm(triangles, L=400 nm(squares
to the eyes.

the present simple picture for the conductance resonances.
description of the energy positions of these resonancedhen=2 resonance is seen to correspond in fack td e
which can be determined by simple phase relations for thénote that, in the figure, we plé¢|?, not ), and as expected
constructive interference between multiple reflected wavedn accord with Fig. 6, we gekgp>N3p>L. Similarly, for
Despite the fact that the electron wave functions in 3D quann=6 we have 3 =Lgy.
tum channels have many different components due to the
lateral confinementone from each quantized subbandne IV. SUMMARY AND CONCLUSIONS
can introduce a single effective phase-skiftiue to reflec-

tion at the exit and entrance of the channel so that the usual We hzvet SIUd'\?\?Rthe %U?Etgm ball|stt|q co]rclfdu;:tan(.:t(ra] of
constructive interference condition will red@w/\g)L+ ¢ semiconductor QWRs an €ir geometric eliects with a

=n, where ¢ is the de Broglie wavelength of the Fermi comparative analysis of 2D, quasi-2D anq 3D ha_rd wall
electrons at resonance ands the corresponding resonance models. We have employed theode matchingechnique

index. In Fig. 5, this effective phase shift for the resonanceélnd Landauer—Bittiker formalism to calculate the quantum

in the first plateau and different channels is plotted. &s

posteriori validation of the analogy, it is seen to be small N=6
(with respect torr) and independent of the channel length “IA
Compared to 3D contacts, quasi-2D ones are seen to lead to
effective phase shifts twice as big. For the experimental data,
this phase shift can be easily obtained to give a measure of
the contact dimension.

There is a very simple physical picture for this phase
shift. By setting¢p=(27/\g) 5L, we can alternatively use the
simpler resonance conditid7/\g)Les=n7 with an effec-
tive wire lengthL =L+ éL; which gives the wavelength of
the resonant states inside the wire. As shown in FigL6|
decreases with increasing wire length and, except near the
plateau edge, where it oscillates, it is nearly independent of
the Fermi energy. It is of the order of Tas in the 2D casé
and, for the same wirejL/L with quasi-2D contacts is sen-
sibly larger than with 3D ones. This can be viewed as due to
the extra confinement in the quasi-2D contacts which favors g5 7 Density of probability inside the wir@long its axi at
a longer wave-function penetration of the quasi-bound 10Ny gifferent resonances, sixtupper pangl and secondlower
gitudinal states into the contacts along the wire axis. To betyane), for a QWR withL=120 nm,W,=10 nm, andw,=20 nm.
ter see it, in Fig. 7, we have plotted, for example, the resultresulits with both 30idashed lingand quasi-20full line) contacts
ing density of probability inside the wir.=120 nm along  are shown. In the lower panel, the respective effective wavelengths
its axis, for the resonances=2 andn=6 in the two cases, are indicated. Different arbitrary units are used to better compare
i.e., with 3D and quasi-2D contacts, which clearly supportshe resulting wavelengths.

L=120 nm

Density of probabillity (a.u.)

60 -40 20 0 20 40 60
x (nm)
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ballistic conductance in the linear response regime. The comumerical and experimental data. The present results on the
ductance oscillations due to resonant transmissions for thgeometrical aspects of the quantum ballistic conductance of
same nanowire are shown for example to present with 3[3D nanowires should be checked experimentally and can
contacts amplitudes much larger than with quasi-2D oneshelp the characterization and fabrication of actual nanoelec-
The continuous quasi-2D to 3D contact crossover in theronic devices.

quantum conductance of nanowires is obtained and ex-

plained in terms of the different electron scattering at the ACKNOWLEDGMENTS

nanowire entrance and exit. An effective phase shift in the
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