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With the solution of the Schrödinger equation for electrons in three-dimensionals3Dd hard wall quantum
channels, the conductance of semiconductor nanowires is studied as a function of length, size, and contact
dimensionality. Within the envelope function approximation, the two-terminal Landauer–Büttiker conductance
has been calculated in the quantum ballistic regime, using themode matchingtechnique. The contacts are
modeled by semi-infinite regions with hard wall confinement along only one of the transverse directions, so
that continuous crossover from quasi-two-dimensional to 3D contacts can be simulated through the increase of
this confinement length. The conductance resonances due to the resonant transmission through quasi-bound
longitudinal states are shown to get much better resolved with 3D contacts, which leads to larger Fabry–Pérot
like conductance oscillations within the 2e2/h quantized plateaus, which are independent of the contact di-
mension. An effective phase shift due to electron reflection at the exit and entrance of the quantum channel is
introduced, which helps the interpretation of the numerical and experimental data on these conductance
oscillations.
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I. INTRODUCTION

After the experimental discovery of the conductance
quantization in semiconductor point contact structures,1,2 its
close connection with the quantum Hall effect was soon rec-
ognized, except for the much smaller precision and the ab-
sence of a magnetic field. In fact, both these effects derive
from the equipartition of the current among an integer num-
ber of propagating modes.3 Since then there has been an
intense effort toward a better understanding of the conduc-
tance quantization which has been observed in semiconduc-
tor nanostructures,4–6 metallic systems,7,8 and atomic
wires.9–11However, larges,20%d deviations from the quan-
tized steps continue to be observed and not well understood,
and it is sometimes referred to as nonuniversal or anomalous
conductance quantization.4,12,13

It is known that such deviations can have different ori-
gins. Electron scatteringsor mode couplingd at the entrance
and exit of the constrictionsquantum channel, point contact,
or nanowired, including the electron transmission by
tunneling,14–18 structure disorder,14,19,20 and nonequilibrium
thermal effects12,21are among them. In particular, theoretical
simulations based on the solution of the Schrödinger equa-
tion for two-dimensionals2Dd models have shown that the
conductance quantization should be seen only in point con-
tacts or nanowires with nonzero length and that the electron
scattering at the two wire ends leads to large conductance
oscillations within the so-called 2e2/h plateaus,14–16 which
are obtained by changing the electron density or the conduct-
ing channel width.3 Such superimposed oscillations have
been observed by different groups.1,4,6 They correspond to
Fabry–Pérot like oscillations due to resonant electron trans-
mission via quasi-boundslongitudinald states inside the chan-

nel; a quantum interference phenomena which is highly sen-
sitive to the specific geometry of the nanowire and contacts.
In fact, the study of these oscillations done so far with 2D
models,15,22 where the out-of-the-plane dynamics is ne-
glected, is not able to answer how these oscillations depend
on the wire cross section and on the dimension of the con-
tacts; three-dimensionals3Dd models are necessary for that.
It is worth mentioning that 3D models are also required in
view of the fabrication of spintronic23 devices based on spin–
orbit coupling, which couples the three coordinates
dynamics.24–26

Here we present, a study of the quantum ballistic conduc-
tance of 3D semiconductor nanowires and its geometric ef-
fects within a simple hard wall quantum channel model. The
Schrödinger equation for independent electrons is solved
with completemode matchingat the entrance and exit of the
nanowire.15,22 The contacts are modeled by semi-infinite re-
gions with hard wall confinement only along one of the
transverse directions. The continuous crossover from
quasi-2D to 3D contacts is simulated through the increase of
this confinement length. Within the envelope function ap-
proximation, we calculate the two-terminal Landauer–
Büttiker conductance27,28 in the quantum coherent regime.
The conductance peaks due to resonant tunneling via longi-
tudinal quasi-bound states are shown to get much better re-
solved with 3D contacts leading to conductance oscillations
with larger amplitudes. It is also shown that these oscillations
can be simply described with an effective phase shift due to
electron scattering at the wire entrance and exit. This shift
corresponds to an effective wire length which depends on the
contact dimension and Fermi energy, and gives the wave-
length of the charge distribution inside the wire. In Sec. II we
present our model calculation and in Sec. III we discuss the
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main results, which are then summarized in the conclusions.

II. MODEL

Let us consider a general constriction, quantum channel
or nanowiresQWRd between two reservoirsscontactsd, all
made with hard walls. Figure 1, schematically represents the
corresponding 2D, quasi-2D, and 3D versions of such quan-
tum wire model. It is important to notice that in all cases the
reservoirs are infinite inz direction sand semi-infinite inxd.
The contact confining length alongy sDyd matches the QWR
width sWyd in the quasi-2D case. On the other hand, in the
3D case,Dy is much larger thanWy. We consider the QWR
and contacts made of the same semiconductor material,
namely GaAs, which means using electron effective mass
m* =0.067 in the numerical results. For the 2D case, simple
solutions for the Schrödinger equation using the so-called
mode matching technique have been presented by
Kirczenow15 and Berggren and Ji.22 Here, we extend such
calculations and present new solutions for the systems rep-
resented in Figs. 1sbd and 1scd with continuous 2D–3D cross-
over. With the same technique, other 3D structures have been
studied by Xu17 and Huaxiang and Xide.18

Let us assume an electron incident from the left contact
with wave vectork =skx,kzd and occupying thelth subband
in y with energyElskd="2/2m*hkx

2+kz
2+slp /Dyd2j. We can

then write the total wave function in the source reservoirsleft
contact,Ld as

CLsr d = eikxx+ikzzflsyd + o
n

fnsydE
−`

+`

dkz8hAnskz8de
−ikx8x+ikz8zj,

s1d

wherefnsyd is the eigenfunction for thenth subband in the
contact and theAnskz8d are the coefficients of the reflected

partial waves due to the electron scattering at the wire en-
trance. The sum is overall transverse states and, due to en-
ergy conservation, the wave vectorkx8=h2m*El /"2−kz8

2

−snp /Dyd2j1/2 assumes real and imaginary values, i.e., the
evanescent partial waves withkx8 / i .0 are also included. The
conventions−1d1/2= + i is used throughout the paper.

Similarly, in the drain or right contactsRd, the wave func-
tion can be written as

CRsr d = o
m

fmsydE
−`

+`

dkz8hCmskz8de
ikx8x+ikz8zj, s2d

where evanescent waves are again fully taken into account.
Inside the QWR, the solution is expanded in terms of the

QWR eigenfunctions, so that it can be written as

CWsr d = o
ny,nz

hBny,nz

+ e+iqny,nz
x + Bny,nz

− e−iqny,nz
xjwny

sydwnz
szd,

s3d

where wnz
szd swny

sydd represents thenz
th sny

thd eigenfunction
for the QWR confining potential inz syd direction. Evanes-
cent, exponentially growing and freely propagating states
are considered withqny,nz

=h2m*El /"2−snyp /Wyd2−snzp /
Wzd2j1/2. L, Wy andWz are the dimensions of the QWR inx,
y, z directions, respectively.

In order to obtain the conductance, we calculate the cur-
rent through the QWR which is given as a function of the
coefficientsBny,nz

+ and Bny,nz

− . These in turn, are determined
with the solution of a system of linear equations which re-
sults from the matching of the wave functions and their de-
rivatives with respect tox at x= +L /2 andx=−L /2, plus the
elimination of the coefficientsAnskz8d and Cmskz8d. For the
quasi-2D case these equations read:

o
nz

Bny,nz

+ e−isqny,nz
L/2dsTmz,nz

+ Wzpqny,nz
dnz,mz

d

+ o
nz

Bny,nz

− e+isqny,nz
L/2dsTmz,nz

− Wzpqny,nz
dnz,mz

d

=
2Î2
ÎWy

kxe
−iskxL/2dM+kz,mz

dl,ny
, s4ad

o
nz

Bny,nz

+ e+isqny,nz
L/2dsTmz,nz

− Wzpqny,nz
dnz,mz

d

+ o
nz

Bny,nz

− e−isqny,nz
L/2dsTmz,nz

+ Wzpqny,nz
dnz,mz

d = 0,

s4bd

wherednz,mz
is the usual Kronecker delta and

Tmz,nz
=E

−`

+`

dkz
*kx

*M+kz
* ,mz

M−kz
* ,nz

, s5ad

FIG. 1. Schematic representation of 2Dsad, quasi-2Dsbd, and
3D scd systems. The QWR is the connection between leftsLd and
right sRd reservoirs, which are infinite inz direction for all systems.
The origin of the axes is the center of the QWR.
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M−kz
* ,nz

=E
−Wz/2

+Wz/2

dzwnz
szde−iskz

*zd, s5bd

where kx
* =h2m*El /"2−kz

*2 −snp /Dyd2j1/2 is function of kz
*

through the energy conservation in the contacts.
Similarly, for the 3D case we have

o
ny,nz

Bny,nz

+ e−isqny,nz
L/2dSo

ly

Mly,my
Mly,ny

Tmz,nz

+
Wy

4
WzDypqmy,mz

dmy,ny
dmz,nzD + o

ny,nz

Bny,nz

− e+isqny,nz
L/2d

3So
ly

Mly,my
Mly,ny

Tmz,nz
−

Wy

4
WzDypqmy,mz

dmy,ny
dmz,nzD

= 2pÎ2Dykxe
−iskxL/2dM+kz,mz

Ml,my
, s6ad

o
ny,nz

Bny,nz

+ e+isqny,nz
L/2dSo

ly

Mly,my
Mly,ny

Tmz,nz

−
Wy

4
WzDypqmy,mz

dmy,ny
dmz,nzD + o

ny,nz

Bny,nz

− e−isqny,nz
L/2d

3So
ly

Mly,my
Mly,ny

Tmz,nz
+

Wy

4
WzDypqmy,mz

dmy,ny
dmz,nzD

= 0, s6bd

with

Mly,ny
=E

−Wy/2

+Wy/2

dy fly
* sydwny

syd, s7d

where fly
syd swny

sydd is the eigenfunction for thely
th sny

thd
subband in the contactsQWRd.

The equations for the quasi-2D casefEq. s4dg are much
simpler snote the absence of the sum overnyd. This is be-
cause the wire and contacty-confined modes are the same.
As a consequence, with only the first subband occupied, i.e.,
for the first conductance plateau, the obtained quasi-2D con-
ductance and that in the 2D limit are the same except for the
energy shift due to the extra confinement in the quasi-2D
case. For higher plateaus, contributions from initial states
with different subbands must be added through independent
solutions of Eq.s4d for the different possible values ofl fsee
the dl,ny

term in Eq.s4dg. On the other hand, in the 3D case,
the sets ofy-confined states are different in the wire and
contacts, and we haveMly,ny

Þdly,ny
fsee Eq.s7dg. In this

case, the only possible simplification is thatTmz,nz
andMly,ny

are nonzero only for indexes with the same parity.
Finally, assuming zero temperature and a weak potential

difference between the reservoirs, the wire conductance can
be calculated by22

GF2e2

h
G = −

m*

eh
o
l=1

lmaxE
−p/2

+p/2

du j luskduuk u=kF
, s8d

where the sum is over all possible initial subbands,kF is the
modulus of the Fermi wave vector,k =kFscossud ,sinsudd and

the single mode electrical currentj l is given by

j lskd = −
"e

m*

Wy

2

Wz

2 H o
ny,nz

sRdqny,nz
suBny,nz

+ u2 − uBny,nz

− u2d

+ o
ny,nz

sImdqny,nz
sBny,nz

+ Bny,nz

−* − Bny,nz

+* Bny,nz

− dJ , s9d

whereR sImd indicates sum over realsimaginaryd values of
qny,nz

.
In practical calculations, Eqs.s4d and s6d for the coeffi-

cientsBny,nz

s+,−d are solved numerically by truncating the number
of transversal modes. Fortunately, the contribution of modes
with energy above the Fermi level decreases rapidly with the
mode index. Good convergence of the resultsswithin 1%d
have been obtained already with only two modes above the
Fermi level. In the results shown in the following, this cor-
responds to the use of up to five modes for the wider dimen-
sion. The 3D results are obtained withDy=200 nm and 300
y-confined levels used to perform the sums overly in Eq. s6d.
The obtained solutions of Eq.s6d reproduce exactly previous
3D results, including the double plateaus due to mode
degeneracy17 and Eq.s4d, in the appropriate limit, also repro-
duce exactly previous results for strictly 2D channels.15 In
Sec. III, we discuss the results for the quasi-2D case and the
2D–3D quantum ballistic conductance crossover, including
the discussion of the conductance oscillations in terms of
effective wire length.

III. RESULTS AND DISCUSSIONS

Figure 2 shows typical results of the quasi-2D model. We
have plotted there the obtained conductance as a function of
the electron Fermi energy for two 20310 nm2 rectangular
QWRs, 100 nm long, being one with the longer side parallel
to the quasi-2D contactsupper curved and one perpendicular
slower curved, as illustrated in the figure. It is seen that in the
perpendicular case the oscillations are stronger correspond-
ing to better defined transmission resonances. Note that in

FIG. 2. Conductance in quasi-2D systems as a function of Fermi
energy for QWRs withL=100 nm,Wy=10 nm,Wz=20 nmsupper
curved andWy=20 nm,Wz=10 nmslower curved. The upper curve
is offset for clarity.
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the limit Wz→`, one cannot distinguish wire and contact,
there is no scatteringsor reflectiond at the entrance and exit
of the wire and, as a consequence, no conductance oscilla-
tions. AsWz is reduced, the electron modes inside and out-
side the wire become more and more dissimilar, increasing
the electron scattering at the entrance and exit of the wire,
which leads to better defined longitudinal resonances and
larger oscillation amplitudes.

In Fig. 3, we compare the conductance of nanowires with
varying lengthL obtained with the 3Dsleft paneld, quasi-2D
sright paneld, and 2Dsinsetd models. The wire lengthL con-
trols the conductance oscillation frequency; the longer the
wire the more longitudinal resonances can be seen by in-
creasing the Fermi energy. In the limit of very short wires,
the first oscillation period cannot be completed within the
respective plateaus which are no more distinguishable also
due to an increasing tunneling contribution to the electron
transport. As a result, in this limit, an almost linear behavior
is obtained for the conductance in all three models. Electron
tunneling also occurs at energies smaller than the QWR fun-
damental transversal eigenenergy and that is why there is no
conductance threshold energy for short QWRs in 3D and 2D
cases. In the quasi-2D case instead, there is a threshold en-
ergy due to the electron confinement in the contacts. How-
ever the main difference between 3D and quasi-2D results is
the much larger oscillation amplitude obtained with 3D con-
tacts. As discussed earlier, this means that with 3D contacts
the transmission resonances get better resolved as a result of
the smaller electron transparency of the entrance and exit of
the QWR. The obtained 2D and quasi-2D results for the first
conductance plateau, in all cases considered, turned out to be
exactly the same, except for the energy shift, as expected.

In order to further understand these increased conduc-
tance oscillations with 3D contacts, in Fig. 4 we have plotted
their amplitudesaveraged over the first plateaud as a function
of Dy, showing the mentioned quasi-2D to 3D crossover.
Three important features should be noted:sid the fast in-

crease when leaving the quasi-2D limit,sii d the oscillations
for smallDy, andsiii d the saturation in the 3D limit. All these
features can be understood by recalling that the conductance
oscillations are a result of the electron scattering at the en-
trance and exit of the QWR, which in turn is determined in a
complicated wayfsee Eqs.s4d and s6dg by the overlap inte-
grals M−kz

* ,nz
and Mly,ny

fEqs. s5bd and s7dg. The description
of their contribution to the solutions of Eq.s6d is highly
nontrivial. Despite this, for the first plateau, the sum of the
overlap integrals between the fundamental mode in the QWR
and the different modes in the contactsol=1

lmaxMl,1d gives a
useful measure of their effects. Indeed, as shown in the inset
of Fig. 4, this sum as a function ofDy presents the same
three features. In the 3D limit, a larger number of contact
modes are required and this sumswith lmax=300, used in this
limit for the required numerical precisiond, as the amplitude
of the conductance oscillations, is seen to saturate. Near the
quasi-2D limit, only a small number of contact modes is
required and the obtained sumswith lmax=21d oscillates as
the conductance amplitude. The fast increase for small de-
viations from the quasi-2D limit is also observed. Note that
in the quasi-2D case, they-confined modes inside and out-
side the wire are the same and due to their orthogonality only
M1,1 is different from zero. With the break of symmetry with
Dy.Wy the observed fast increase in the oscillation ampli-
tude is explained with the contribution of the many different
overlap integrals which immediately became different from
zero.

As seen, in analogy with the usual parallel mirrors Fabry–
Pérot oscillations, the amplitude of the conductance oscilla-
tions, corresponding to a series of resonant transmissions,
increases with decreasing transparency of the mirrorssi.e.,
channel entrance and exitd as the resonances become better
resolved, with longer lifetimes. Besides for this resonance
broadening, the Fabry–Pérot analogy is helpful also in the

FIG. 3. Obtained conductance with 3Dsleft paneld and quasi-2D
sright paneld contacts as a function of Fermi energy for QWRs with
Wy=10 nm andWz=20 nm. L varies from 1 to 100 nm as indi-
cated. Inset: 2D system results forL=1 nm. The upper curves are
offset for clarity.

FIG. 4. Mean oscillation amplitude in the first conductance pla-
teau as a function of the contact lengthDy. The QWR dimensions
areL=200 nm,Wy=10 nm, andWz=20 nm. The dashed line is just
a guide to the eyes. Inset: sum of overlap integrals for the funda-
mental QWR modefEq. s7dg as a function of contact lengthDy. The
same QWR dimensions are considered with 21sfull lined and 300
sdashed lined contact modes.
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description of the energy positions of these resonances,
which can be determined by simple phase relations for the
constructive interference between multiple reflected waves.
Despite the fact that the electron wave functions in 3D quan-
tum channels have many different components due to the
lateral confinementsone from each quantized subbandd, one
can introduce a single effective phase-shiftf due to reflec-
tion at the exit and entrance of the channel so that the usual
constructive interference condition will reads2p /lFdL+f
=np, wherelF is the de Broglie wavelength of the Fermi
electrons at resonance andn is the corresponding resonance
index. In Fig. 5, this effective phase shift for the resonances
in the first plateau and different channels is plotted. Asa
posteriori validation of the analogy, it is seen to be small
swith respect topd and independent of the channel lengthL.
Compared to 3D contacts, quasi-2D ones are seen to lead to
effective phase shifts twice as big. For the experimental data,
this phase shift can be easily obtained to give a measure of
the contact dimension.

There is a very simple physical picture for this phase
shift. By settingf=s2p /lFddL, we can alternatively use the
simpler resonance conditions2p /lFdLeff=np with an effec-
tive wire lengthLeff=L+dL; which gives the wavelength of
the resonant states inside the wire. As shown in Fig. 6,dL /L
decreases with increasing wire length and, except near the
plateau edge, where it oscillates, it is nearly independent of
the Fermi energy. It is of the order of 10−2 as in the 2D case15

and, for the same wire,dL /L with quasi-2D contacts is sen-
sibly larger than with 3D ones. This can be viewed as due to
the extra confinement in the quasi-2D contacts which favors
a longer wave-function penetration of the quasi-bound lon-
gitudinal states into the contacts along the wire axis. To bet-
ter see it, in Fig. 7, we have plotted, for example, the result-
ing density of probability inside the wiresL=120 nmd along
its axis, for the resonancesn=2 andn=6 in the two cases,
i.e., with 3D and quasi-2D contacts, which clearly supports

the present simple picture for the conductance resonances.
The n=2 resonance is seen to correspond in fact tol=Leff
snote that, in the figure, we plotucu2, not cd, and as expected
in accord with Fig. 6, we getlq2D.l3D.L. Similarly, for
n=6 we have 3l=Leff.

IV. SUMMARY AND CONCLUSIONS

We have studied the quantum ballistic conductance of
semiconductor QWRs and their geometric effects with a
comparative analysis of 2D, quasi-2D and 3D hard wall
models. We have employed themode matchingtechnique
and Landauer–Büttiker formalism to calculate the quantum

FIG. 5. Effective phase shift for electron reflection at the QWR
exit and entrance with 3Dsopen symbolsd and quasi-2Dsclosed
symbolsd contacts, as a function of Fermi energy. The QWR dimen-
sions are Wy=10 nm, Wz=20 nm and L=120 nm scirclesd, L
=200 nmstrianglesd, L=400 nmssquaresd. The lines are just guides
to the eyes.

FIG. 6. Effective phase shift in terms ofsdL /Ld for the cases
with 3D sleft paneld and quasi-2Dsright paneld contacts, as a func-
tion of Fermi energy for QWRs withWy=10 nm,Wz=20 nm and
L=120 nmscirclesd, L=200 nmstrianglesd, L=400 nmssquaresd.

FIG. 7. Density of probability inside the wiresalong its axisd at
two different resonances, sixthsupper paneld and secondslower
paneld, for a QWR with L=120 nm,Wy=10 nm, andWz=20 nm.
Results with both 3Dsdashed lined and quasi-2Dsfull lined contacts
are shown. In the lower panel, the respective effective wavelengths
are indicated. Different arbitrary units are used to better compare
the resulting wavelengths.
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ballistic conductance in the linear response regime. The con-
ductance oscillations due to resonant transmissions for the
same nanowire are shown for example to present with 3D
contacts amplitudes much larger than with quasi-2D ones.
The continuous quasi-2D to 3D contact crossover in the
quantum conductance of nanowires is obtained and ex-
plained in terms of the different electron scattering at the
nanowire entrance and exit. An effective phase shift in the
electron wave function due to this scattering, with a very
simple physical picture, is introduced and shown to be par-
ticularly helpful in the analysis and interpretation of both

numerical and experimental data. The present results on the
geometrical aspects of the quantum ballistic conductance of
3D nanowires should be checked experimentally and can
help the characterization and fabrication of actual nanoelec-
tronic devices.
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