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The mechanisms of energy and spin transfer in quantum dot pairs coupled via the Coulomb interaction are
studied. Exciton transfer can be resonant or phonon-assisted. In both cases, the transfer rates strongly depend
on the resonance conditions. The spin selection rules in the transfer process come from the exchange and
spin-orbit interactions. The character of energy dissipation in spin transfer is different than that in the tradi-
tional spin currents. The spin-dependent photon cross-correlation functions reflect the exciton transfer process.
In addition, a mathematical method to calculate Förster transfer in crystalline nanostructures beyond the
dipole-dipole approximation is described.
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A new field of research, spintronics, studies the principles
of manipulation of the spin degree of freedom in solids and
molecules,1 whereas traditional electronics utilizes electric
charges. Spintronics is also closely related to quantum infor-
mation science since the spin is an important element of
quantum computing. In most cases, transport of spins in sol-
ids and molecular systems comes from transfer or tunneling
of charged electrons and, therefore, is accompanied by elec-
tric currents. In electronic materials, the electric interactions
are often much stronger than the spin-related ones and, there-
fore, when manipulating charged particles with spins, usual
electronics has often obvious advantages compared to spin-
tronics. However, spin may have advantages over charge. In
contrast to charge or mass, the angular momentum or spin
can be transferred without tunneling or ballistic transport.
One particular mechanism of spin transfer without tunneling
can occur in optically excited semiconductor quantum dots
sQDsd; spin-polarized excitons can be transferred between
QDs via the long-range noncontact Coulomb interaction.2 It
is important to note that CoulombsFörsterd transfer of spin
in QDs becomes possible due to the strong spin-dependent
interactions in semiconductors, such as spin-orbit and ex-
change couplings.2

Here we study theoretically the microscopic mechanisms
of spin-dependent Förster transfer in a molecule composed
of two self-assembled QDssFigs. 1 and 2d. In the typical
scheme of Förster transfer,3 an optically excited exciton in
QD1 s“donor”d becomes transferred to QD2s“acceptor”d via
the Coulomb interactionfFig. 2sadg. The traditional methods
to observe this transfer are time-resolved photoluminescence
sPLd spectroscopy4 and photon correlations.5 In the case of
resonant transfer in self-assembled QDs, the spin selection
rules are determined by the electron-hole exchange interac-
tion in an exciton and by the spin-orbit interaction in the
valence band. In a symmetric QD molecule, transfer occurs
with conservation of the exciton spin configuration, whereas
in QD molecules with broken symmetry, the exciton spin
becomes partially lost in the transfer process. The transfer
rates exhibit a strong dependence from the exciton energy
difference in a QD pair,DE=Eexc,dot1−Eexc,dot2. In the reso-
nant regimeDE<0, exciton and spin transfer is fast. In the
nonresonant regime, transfer can be assisted by acoustic
phonons. Again, it strongly depends onDE. In contrast to the

previous paper on spin transfer,2 we include here the
electron-hole exchange interaction and consider the fine
structure of exciton states. In addition, we show that the
dipole-dipole approximation is not reliable for the typical
interdot distances in experimental structures and describe a
method to compute Coulomb matrix elements beyond the
dipole approach. Our method is valid whenR@alattice, where
R is the interdot distance andalattice is the lattice period. In
addition, we note that the Förster transfer mechanism con-
sidered in this paper has the electrostatic, near-field nature;
this is in contrast to the recent paper on the radiative cou-
pling between QDs.6

Experimentally, Förster transfer of excitons can be studied
using time-resolve photoluminescence4 or the photon cross-
correlation method.5,7,8 Experiments on energy transfer in
nanostructures were done with colloidal nanocrystals4 and
recently with self-assembled InAs QDs.5 It is important to
note that QDs can also be coupled via tunneling.9 However,
the tunneling amplitude decreases exponentially with in-
creasing the distance between QDs and with the hight of the
barrier between QDs. At the same time, the Förster transfer

FIG. 1. sColor onlined sad Schematics of the systems of two
QDs. sbd Geometry of a pair of self-assembled QDs and the corre-
sponding crystallographic axes.scd Geometry of two QDs with bro-
ken symmetry; the vectord describes the shift.
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rate demonstrates a power laws~R−6d and is independent of
the hight of the potential barrier between QDs. To avoid
tunneling in a QD molecule, one can grow an AlGaAs barrier
between the QDs or one can use QDs with stronger confine-
ment. Another important factor is that the resonance condi-
tions for Förster and tunneling transfers are different. There-
fore it seems to be possible, by using self-organization
growth, to design self-assembled QDs with predominantly
Förster transfer. The recent experiment5 indicates that indeed
such pairs of QDs with Coulomb-induced coupling can be
designed using the self-organization growth method. Another
recent experimental papersRef. 10d describes the spin-
response of colloidal QDs bridged with biomolecules which
may assist direct tunnel transport between nanocrystals.10,11

The spin current of mobile polarized electrons is accom-
panied by the electric charge flow. This brings back the old
issue of energy dissipation in electronic devices, given by the
Joule heat,Q= jE shere j is the electric current andE the
driving electric fieldd. In the case of Coulomb-induced trans-
fer between QDsfFigs. 2sad and 9g, the energy dissipation
has a different character and comes from phonon-assisted
relaxation. The energy loss in this process is equal to the
energy level difference in the donor and acceptor QDs:DE
=Eexc,dot1−Eexc,dot2="vph. In such processes, the energyDE
turns into the phonon energy"vph. If a pair of QDs is reso-
nant sDE,0d, the coupling between QDs can become
coherent;12–14such a process of spin transfer resembles Rabi
oscillations between QDsfFig. 2sbdg. Coherent spin transfer
can occur without dissipation.

The paper is organized as follows: Sec. I describes the
model of the QD system, Sec. II includes the results on spin-
dependent transfer rates, Sec. III is devoted to the phonon-
assisted transfer, and Secs. IV and V are about the photon
correlation functions and transfer under strongly resonant
conditions.

I. MODEL

We now consider a model of a pair of self-assembled
QDs.5,9,15 Our model incorporates two oblate asymmetric
QDs fFigs. 1sad and 1sbdg; the vertical,z-size of QDs is as-
sumed to be much less than the lateral ones. To model the
lateral motion of electrons and holes, we use the harmonic
functions16 with the characteristic lengths, leshd,x

=Î" /vx
eshdmeshd and ly

eshd=Î" /vy
eshdmeshd, wherevxsyd

eshd are the

harmonic-oscillator frequencies for electronssed and holes

shd, meshd are the effective masses of particles, andsx,yd are
the in-plane coordinates. The complete envelope functions

used below have a form:fe,k=Ae,ke
−x2/2le,x

2 −y2/2le,y
2

sinfpsz
−zkd /Lg and fh,k=Ah,ke

−x2/2lh,x
2 −y2/2lh,y

2
sinfpsz−zkd /Lg, where

i =x,y, k=1,2 is the dotnumber,zk is thez-coordinate of the
center ofk-dot, Ak,eshd are the normalizing coefficients, andL
is the “vertical” size of QDs. In the following, we will use
the system of coordinatessx,yd fFig. 1sbdg which corre-
sponds to the typical orientation of elongated self-assembled
QDs grown on the “001” surface.17 The lowest excitonic
states in QDs responsible for PL are composed of heavy
holes and electrons and correspond to thes-like envelope
wave function. Taking into account the only heavy-hole
wave functions, we can write the spin Hamiltonian of exci-
ton of an individual QD in the following form:17,18

He-h
spin= azĵzŝz + o

i=x,y,z
bi ĵ i

3ŝi , s1d

where ŝi is the electron spin matrices andŝi are the 232
angular-momentum operators of heavy holes. The exchange
parametersaz andbi depend on a particular QD. By using the
operators1d, we find the exciton wave functions and their
energies. The bright excitons are composed of the states with
Jtot= jz+sz= ±1:

cx
b =
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1

2
;−

3

2
L + U−
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; +
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2
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Î2
,

cy
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1
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;−
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2
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2
L

Î2
, s2d

where we used the notationusz; jzl. The corresponding ener-
gies ex

b=−s 3
4az+

27
16bzd+ 3

8sbx−byd and ey
b=−s 3

4az+
27
16bzd− 3

8sbx

−byd. The lower indexesx,y reflect the character of spin
orientation in an exciton and the optical selection rules. In
the PL process, the excitonscx

b and cy
b create photons with

linear x and y polarizations, respectively. The dark excitons
are composed of the states withJtot= jz+sz= ±2:

cx
d =
U +
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; +
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Î2
,

cy
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U +

1
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; +
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2
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. s3d

Their energiesex
b=−s 3

4az+
27
16bzd+ 3

8sbx+byd and ey
b=−s 3

4az

+ 27
16bzd− 3

8sbx+byd. Typically, the two lowest states in the ex-
citon spectrum are dark whereas the two upper ones are
bright sFig. 2d. In this model, the normal magnetic field does
not lead to mixing between dark and bright states, inducing
an additional splitting in the pairs of states. In the limitB
→`, the wave functions become the states in which the an-
gular momentum is a good quantum number.

FIG. 2. sColor onlined Schematics of transfer processes between
two QDs. sad Phonon-assisted mechanism.sbd Resonant coherent
transfer.
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The exchange spin-dependent interaction in excitons and
the dark-bright energy splitting are quite strong, about
0.5 meV.17 The other types of interaction in crystalline QDs,
inter-dot Coulomb and electron-phonon couplings, can be
weaker and we are going to involve them as perturbation. We
note that the intradot Coulomb interaction is quite strong, but
it does not lead to the interdot exciton transfer; it mostly
shifts down the exciton energies. Then, the perturbation
Hamiltonian is

Ĥperturb= UCoulsr1,r2d + Ĥe-ph + Ĥh−ph, s4d

whereUCoul is the interdot Coulomb interaction. The opera-

tors Ĥe-ph andĤh-ph represent the interaction between acous-
tic phonons and particles.

II. SPIN-DEPENDENT COULOMB MATRIX ELEMENTS

First we compute the interdot Coulomb matrix elements.
The complete set of electron-hole wave functions includes
eight states:

U ±
1

2
, ±

3

2
;kL, U ±

1

2
, ±

3

2
;kL , s5d

wherek=1,2 in the QDindex. For the one-exciton states, we
have usz8 , jz8 ;1lu0,2l and u0;1lusz8 , jz8 ;2l; here u0;kl denotes
the state of thek-dot without an exciton. Then we write the
interdot Coulomb matrix elements as

k0;1uks2, j2;2uUCoulus1, j1;1lu0,2l. s6d

In most papers, the matrix elementss6d are calculated within
the dipole-dipole approximation which is valid in the limit
R! ldot, whereR is the interdot distance andldot is a charac-
teristic size of QDssldot, leshd,xsydd. Now we are going to use
a method beyond the dipole-dipole approximation. Namely,
we are going to use the quantityalattice/R as a small param-
eter, wherealattice is the crystal-lattice period. Since,alattice
! ldot, our approximation is much better compared with the
standard dipole-dipole approximation,R@ ldot. To evaluate
the matrix elements6d, it is convenient to return to the pure
electron representation and to consider two electrons in each
QD explicitly:

M us1,j1;dot1l→us2,j2;dot2l

= k0;1uks2, j2;2uUCoulus1, j1;1lu0,2l

=E dj1dj18dj2dj28fC j1,1sj1dC−j1,1sj18dCs2,2sj2dC j2,2sj28dg
*

3UCoulsr1,r18,r2,r28dC j1,1sj1dCs1,1sj18dC j2,2sj2dC−j2,2sj28d,

s7d

herej1=sr 1,s1d andj18=sr 18 ,s18d are the spatial and spin co-
ordinates of two electrons in QD1;j2=sr 2,s2d and j28
=sr 28 ,s28d are similar coordinates for QD2.s1s2d are the
z-components of spin in the conduction band of QD1s2d; j1s2d
are thez-components of angular momentum of the valence
band-electrons.C jk,k

is the electron state in the valence band

of the k-QD sk=1,2,jk= ±3/2d. The functionCsk,k
is the

state for the conduction bandssk= ±1/2d. Within the
envelope-function approachC j ,ksjd=x jsr ,sdfh,isrd and
Cs,ksjd=xssr ,sdfe,isrd, wherex j andxs are the Bloch func-
tions in the valence bandsheavy-holed and in the conduction
band, respectively;fhsedsrd is the holeselectrond envelope
function. The Förster process involves one electron in QD1
with coordinater1 and one electron in QD2 with coordinate
r2 sFig. 3d and therefore we can integrate overr1s2d8 . For
smooth envelope functions and long-range Coulomb poten-
tial, we can rewrite the integrals7d as follows:

o
a1,a2

fe,1sRa1
dfh,1sRa1

dfe,2sRa2
dfh,2sRa2

d

3 E
Va1

E
Va2

dDj1dDj2fx j1
sj1d*xs2

sj2d*

3UCoulsRa1
+ DRa1

,Ra2
+ DRa2

dxs1
sj1dx j2

sj2dg, s8d

where the summation is performed over all the unit cells in
both QDs;a1s2d are the unit cell indexes;Vak

andRak
are the

unit cell volumes and unit cell coordinates, respectivelysk
=1,2d. Djk=sDRak

,skd, whereDRak
is the spatial coordinate

relative to the center of thea-cell andsk is the spin coordi-
nate. Assumingalattice/ ldot,alattice/R!1, we expand the
Coulomb potential in terms ofDRak

and take into account the
leading term responsible for the Förster transfer:

UCoulsRa1
+ DRa1

,Ra2
+ DRa2

d

=
e2

e

DRa1
DRa2

− 3fsDRa1
Ra1,a2

dsDRa2
Ra1,a2

dg/uRa1,a2
u2

uRa1,a2
u3

,

s9d

whereRa1,a2
=Ra1

−Ra2
. The Coulomb potential was taken in

FIG. 3. sColor onlined Electron configurations for the initial and
final states of the transfer processes withsad and withoutsbd con-
servation of the exciton angular momentum. The processsbd be-
comes possible in QD pairs with broken symmetrysdÞ0d.
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the usual form:UCoul=e2/ seur1−r2ud. Changing the summa-
tion in Eq. s8d to integration, we obtain

M us1,j1;dot1l→us2,j2;dot2l

=
e2

e
E dR1dR2fe,1sR1dfh,1sR1dfe,2sR2dfh,2sR2d

3E
V1

E
V2

dDj1dDj2Fx j1
sDj1d*xs2

sDj2d*

3
DR1DR2 − 3fsDR1R12dsDR2R12dg/uR12u2

uR12u3

3xs1
sDj1dx j2

sDj2dG , s10d

whereR12=R1−R2 andDjk=sDRk,skd. In the next step, we
derive the matrix elements for the heavy-hole excitons using
the Bloch functions, x1/2= uSl↑, x−1/2= uSl↓, x+3/2=suXl
+ i uYld↑ /Î2, x−3/2=suXl− i uYld↓ /Î2,

M0 = M us1=+1/2,j1=−3/2;dot1l→us2=+1/2,j2=−3/2;dot2l

= M us1=−1/2,j1=+3/2;dot1l→us2=−1/2,j2=+3/2;dot2l

= E0E dR1dR2FcvsR1,R2d
1 −

3

2

sX1 − X2d2 + sY1 − Y2d2

uR1 − R2u2

uR1 − R2u3
,

M1 = M us1=+1/2,j1=−3/2;dot1l→us2=−1/2,j2=+3/2;dot2l

= M us1=−1/2,j1=+3/2;dot1l→us2=+1/2,j2=−3/2;dot2l
*

= − E0E dR1dR2FcvsR1,R2d
3

2

fX1 − X2 − isY1 − Y2dg2

uR1 − R2u5
.

s11d

Here E0=e2d0
2/e, FcvsR1,R2d

=fe,1sR1dfh,1sR1dfe,2sR2dfh,2sR2d and d0=kSuxuXl. The ma-
trix element kSuxuXl can also be written as −" / sim0d
3sPcv /Egd, wherePcv and Eg are the interband optical ma-
trix element and the band gap energy of the bulk crystal,
respectively.

The matrix elementM0 describes the transfer process with
conservation of spin, whereasM1 relates to the spin-flip pro-
cess. The exciton states withJtot= ±2 have no matrix ele-
ments in our model.19 The transfer processes with bright ex-
citons fEq. s2dg have the following amplitudes:

Mcx
b,dot1→cx

b,dot2 = M0 + RefM1g,

Mcy
b,dot1→cy

b,dot2 = M0 − RefM1g,

Mcx
b,dot1→cy

b,dot2 = − i ImfM1g

Mcy
b,dot1→cx

b,dot2 = i ImfM1g. s12d

The matrix elementss12d strongly depend on symmetry. Es-
pecially, it is related to the off-diagonal transfer processes
x↔y. The off-diagonal amplitudes can be written as

Mcx
b,dot1→cy

b,dot2 = M
cy

b,dot1→cx
b,dot2

*

= − E0E dR1dR2FcvsR1,R2d

3
3sX1 − X2dsY1 − Y2d

uR1 − R2u5
. s13d

If the double-dot system is symmetric with respect to the
inversion operationsR1s2d→−R1s2d, M1=0 and the transfer
process conserves the linear polarization of excitons, i.e.,
x-exciton in QD1 turns intox-exciton in QD2 and the same
rule is applied toy-excitons. Therefore spin information can
be transferred without losses in the system with spatial-

FIG. 4. sColor onlined Calculated transfer am-
plitudes for QD pairs of various parameters and
symmetry. ad Transfer amplitudes ford=0. Mxx

=Myy describe the processes with spin conserva-
tion; uMxyu= uMyxu=0. sbd Transfer amplitudes at
dÞ0. scd Calculated transfer amplitudesM0 sspin
conservationd andM1 sspin-flipd describing trans-
fer processes at high magnetic fields andd=0. In
scd the QDs are strongly asymmetric.
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inversion symmetryR→−R. If the dots are shifted with re-
spect to each other in thexy-planefFig. 1scdg, spin informa-
tion in the transfer process becomes partially lost sinceM1
Þ0; if the shift d is small,M1~dxdy. The calculated ampli-
tudes of various transfer processes are shown in Fig. 4. For
both QDs, we used the following parameters:L=2 nm,
vxsyd

h =vxsyd
e /3, me=0.07m0, andmh=0.25m0. The above pa-

rameters are typical for InAs-based QDs.16

We note that it is very important to compute the matrix
elements beyond the dipole-dipole approach since the ampli-
tudesx↔y vanish within the dipole-dipole approximation.
Also, the generalized dipole approachsR@alatticed used in
this paper is necessary to obtain reliable numbers for all the
matrix elements at interdot distancesR, ldot which are typi-
cal for experiments. The amplitudes of processes with spin-
flip, ucx

b,dot1l→ ucy
b,dot2l and ucy

b,dot1l→ ucx
b,dot2l, can-

not be obtained within the dipole-dipole approach: ImfM1g
~R−5 for R→`. At the same time, the Förster transfer ele-
ments with conservation of exciton spin has the usual
asymptotic behavior atR→`: M0~R−3.

In a normal magnetic field, the Hamiltonians1d has an
additional term

He-h
mag= mBSgeŝz +

gh,z

3
ĵ zDB, s14d

whereB is the normal magnetic field, andge andgh,z are the
g factors. The eigenstates of the Hamiltonian in a strong
magnetic field are pure states of the total angular momentum:
usk= ±1/2,jk= ±3/2l. Thus the transfer matrix elements in
the limit B→` are given by Eqs.s11d. The transfer process
with conservation of spin is given by the elementM0,
whereas the spin-flip transfer processes are given beM1.
Again, it is important to stress the role of symmetry for ex-
citon transfer with spin-flip. If the double-dot system is cy-

lindrically symmetric, the spin-flip transfer processes vanish,
M1=0. In the case of asymmetric QDs,M1Þ0. Figure 4
shows the calculated amplitudes for the cased=0 and
strongly asymmetric QDs. One can see that the spin-flip pro-
cesses become important at small interdot distances. Again,
the dipole approach would not describe such spin-flip effects.

III. PHONON-ASSISTED COULOMB TRANSFER

In real QD systems, it is very difficult to find QDs with
the same exciton energy. Therefore one should involve
acoustic phonons to satisfy the energy conservation require-
mentfFig. 2sadg. The operator of exciton-phonon interaction
reads20

Ĥexc-ph = o
q

Î "q

2rVcph
fsee

iqr esĉq + ĉ−q
+ d + she

iqr hsĉq + ĉ−q
+ dg.

s15d

Here ĉq is the phonon annihilation operator,reshd are the
electronsholed coordinates,cph=5.63105 cm/s is the speed
of longitudinal sound,seshd=−8.0 eVs1.0 eVd are the defor-
mational potentials, andr=5.3 g/cm3 is the crystal mass
density. The rate of phonon-assisted transfer includes two
second-order processessFig. 5d:

Wdot1,a→dot2,a8
ph =

2p

"
o
q

U kdot2uĤexc-phudot2lkdot2uUCouludot1l
DE

+
kdot2uUCouludot1lkdot1uĤexc-phudot1l

− "cphuqu
U2

dsDE − "cphuqud,

s16d

whereudot1l= ua ;1lu0;2l and udot2l= u0;1lua8 ;2l denote the
states in which an exciton is in QD1 or in QD2, respectively;
a=x,y is the spin index of exciton. The notationu0;kl means
an empty QD.

Then, the rates16d is reduced to

Wdot1,a→dot2,a8
ph =

1

2p"

uMdot1,a→dot2,a8u
2

DE3

"q0
4

rcph

3Fsq0dfNsDEd + 1g, s17d

whereMdot1,a→dot2,a8 is the interdot Coulomb matrix element
between the excitonic statesa anda8 given by Eqs.s12d and

s13d, the indexa=x,y, q0=DE/ s"cphd, Fsq0d is a function
given by an integral, andNsDEd is the Bose distribution
function at temperatureT.

The rates calculated from Eq.s17d strongly depend on the
energy differenceDE sFig. 6d. At smallDE and low tempera-
tureT, the rate decreases due to the phonon density of states,
whereas at largeDE, it becomes small due to the matrix
elements of the functioneiqr. The calculated rate is maximum
at DE,2 meV and is about ns−1. Since the exciton-phonon
interactions15d does not include spin-dependent operators,
the spin information is not lost in the phonon-emission pro-
cess. Therefore the spin-selection rules are given by the Cou-
lomb matrix elements while the phonon matrix elements

FIG. 5. sColor onlined Two contributions to phonon-assisted
transfer with different virtual intermediate states.
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conserve the exciton spin configuration.21 In a symmetric
pair of QDs with d=0, the spin of exciton is conserved.
However, it is important to note that we have neglected the
mixing between heavy and light holes; this mixing together
with the electron-phonon interaction can result in an addi-
tional spin relaxation. In oblate QDs considered here, our
approximation is justified since the heavy hole-light hole
mixing is suppressed due to the large slitting between heavy-
and light-hole levels in the valence band.

IV. SPIN-DEPENDENT CROSS-CORRELATION
FUNCTIONS

Similar to the molecular systems,8 the coupling between
QDs can be seen in the photon correlation measurements.5

Here we are going to introduce spin-dependent correlation
functions for the case of two coupled QDs. The second-order
correlation function is defined asgij

s2d=kI istdI jst+tdl / kI istdl
3kI jstdl, whereI istd is the emission intensity of thei-exciton
state. The functiongij

s2d is proportional to a number of photon
pairs arriving with time intervalt.

The nonlinear dynamics of a double-dot system can be
quite complex. For simplicity, we will consider the limit of
weak pumping when the biexciton contribution to the density
matrix is small. Assuming nonresonant unpolarized excita-
tion of low intensity, we can describe the exciton dynamics
with a system of linear equations:

ṅ0 = Grsnx,1 + ny,1 + nx,2 + ny,2d − 4GPn0,

ṅx,1 = − sGr + Gt + Gt,s + Gsdnx,1 + Gsny,1 + GPn0,

ṅx,2 = − sGr + Gsdnx,2 + Gt,sny,1 + Gsny,2 + GPn0, s18d

ṅy,1 = − sGr + Gt + Gt,s + Gsdnx,1 + Gsnx,1 + GPn0,

ṅy,2 = − sGr + Gsdny,2 + Gt,snx,1 + Gsnx,2 + GPn0,

wheren0 is the “vacuum” exciton state,na,k are the numbers
of excitons,a=x,y is the type of exciton atB=0, and k
=1,2 is the QDnumber. The rateGr describes radiative re-
combination,Gt is the energy transfer rate from QD1 to QD2

with conservation of spin,Gt,s is the interdot transfer rate
with spin flip, Gs is the intradot spin-flip rate, andGP is the
pumping rate proportional to the light intensity. This simple
model resembles the ones used in Refs. 5 and 22. For our
calculations we choose:Gt=1 ns−1, Gr =1 ns−1, Gt,s=Gs
=0.1 ns−1, andGP=0.1 ns−1. The pumping rateGP=0.1 ns−1

corresponds to the regime of low intensitysn0,1d. The
small phenomenological spin-flip rates are chosen to take
into account spin-flip events which are typically slow. The
calculated cross-correlation functions are shown in Figs. 7
and 8.

First we describe one-exciton cross-correlation functions
gx,1;x,2

s2d and gx,1;y,2
s2d which turn out to be spin-independent in

our model for the weak pumping regime:gx,1;x,2
s2d =gx,1;y,2

s2d

=g1;2
s2d . The time delayt is positive when the photon with

energyEexc,dot1 arrives before the photon withEexc,dot2. At t
=0, emission of the photonEexc,dot1 projets the system from
the stateudot1,xl to the “vacuum” state. Therefore the initial
conditions for Eqs.s18d are set asn0=1 andna,k=0. For t
.0, g1;2

s2d ~nx,2std=ny,2std, wherenxsyd,2std are the solutions
of Eqs. s18d for the above initial conditions. Fort,0, g1;2

s2d

~nx,1std=ny,1std. The functiong1;2
s2d is not symmetric with

respect tot because of directional exciton transfer from QD1
toward QD2. The effective exciton lifetime in QD1 is shorter
since an exciton can be transferred to QD2. This is reflected
as a faster increase ofg1;2

s2d at t,0. In a magnetic field, the
cross-correlation functions can become polarization-
dependentsgx,1;x,2

s2d Þgx,1;y,2
s2d d since the resonance conditions

can be different for various transfer processes. This can be
incorporated in the model through appropriate spin-
dependent transfer ratesGt,Jtot→Jtot8 .

Spin transfer processes can be observed using the biexci-
ton lines. Even at small pumping, weak biexciton lines exist.
The energy of biexciton lines are redshifted by a few meV
and can be distinguished from the one-exciton lines. In ad-
dition, the biexciton lines have a quadratic power depen-

FIG. 6. sColor onlined Calculated rates of phonon-assisted trans-
fer as a function of the resonanceDE at T=4 K. The QD pair has
inversion symmetry,d=0.

FIG. 7. Calculated cross-correlation functions for a QD pair
with one exciton. The correlation function is independent of the
spin state of excitons. The parameters of relaxation are shown in the
figure and correspond to a QD pair withR=5 nm, d=0, andDE
,2 meV. Inset: the energy diagram.
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dence. Consider now the biexciton in QD1. It decays in a
radiative cascade emitting two photons with the same polar-
izations sx, x or y, y photon pairsd.24 If the first emitted
photon has thex-polarization, the remaining exciton in QD1
has thex-character. This exciton can recombine or can be
transferred to QD2. Since the exciton spin is mostly con-
served in the transfer process, we expect that QD2 will
strongly radiatex-photons shortly after emission of the
x-photon from QD1. This means thatgxx,1;x,2

s2d .gxx,1;y,2
s2d ,

where the indexxx labels thex-photon emitted by the biex-
citon in QD1. In other words, we use a biexciton in QD1 as
a tool to prepare thex-exciton state att=0. Then, the initial
conditions att=0 aren0=0, na,k=1 if sa ,kd=sx,1d and 0
otherwise. Figure 8 demonstrates the striking difference be-
tween the polarized correlation functionssgxx,1;x,2

s2d and
gxx,1;y,2

s2d d in the important regiont.0. In this way, by com-
paringgxx,1;x,2

s2d andgxx,1;y,2
s2d , directional spin transfer between

QDs can be observed experimentally.

V. STRONGLY RESONANT COULOMB TRANSFER

The convectional Förster mechanism is based on the reso-
nance condition between the “donor” and “acceptor:”3 the
ground-state energy of the donor molecule coincides with the
energy of an excited state of the acceptor. In the QD system,
such a condition can be realized if the grounds-s exciton
transition in the QD1 has the same energy as thep-p transi-
tion in QD2 sFig. 9d. Heres andp are the shell indexes in a
QD. In this process, thes-exciton in QD1 is first transferred
to the p-state of QD2; then it relaxes to the ground state of
the QD2. The transfer rate of this process consists of two
contributions:

Wdot1→dot2
res = Wph + Wdir , s19d

whereWph is the phonon-assisted transfer rate given by Eq.
s16d in which DE is the energy difference betweens- and

p-excitons in QD1 and QD2, respectively. The rateWdir de-
scribes direct resonant transfer between QDs. The latter can
be calculated in the spirit of the convectional Förster theory
as

Wdir =
2p

"
uMdot1,a→dot2,a8u

2JsDEd, s20d

where JsDEd=1/"pGen/2 /sDE2/"2+Gen
2 /4d is the normal-

ized effective density of states in the QD2,Gen is the energy
relaxation rate in the QD2, andDE=Eexc,dot1−Eexc,dot2. To
obtain the equations20d one should solve the master equa-
tion involving the density matrix and assume that"Gen
. uMdot1→dot2u. The latter condition can be easily satisfied
because the excitedp-states are quasistationary and the
phonon-induced relaxation in QDs is fast usually; the typical
relaxation times of self-assembled QDs are in the range of
50 ps.23 In the opposite limit"Gen, uMdot1→dot2u, the cou-
pling between the grounds-state of QD1 and the excited
p-state of QD2 is coherent; it has the character of Rabi os-
cillations. Then, in the case of"Gen, uMdot1→dot2u, the char-
acteristic time for transfer from thes-state of QD1 to the
s-state of QD2 will be about 1/Gen.

FIG. 8. sColor onlined Upper
part: schematics of processes con-
tributing to the correlation func-
tion gxx,1;x,2

s2d . In the first step, a
biexciton in QD1 emits the
x-photon; the second step is inter-
dot transfer; the last step is emis-
sion of the x-photon by QD2.
Lower part: calculated functions
gxx,1;x,2

s2d andgxx,1;y,2
s2d . Since interdot

transfer mostly conserves spin,
gxx,1;x,2

s2d
.gxx,1;y,2

s2d . The parameters
of relaxation are shown in the fig-
ure and correspond to a QD pair
with R=5 nm, d=0, and DE
,2 meV.

FIG. 9. sColor onlined Resonant transfer process involving the
s-state in QD1 and thep-state in QD2. Relaxation in QD2 is
phonon-assisted.
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We now calculate the resonant transfer rate for typical
parameters of self-assembled QDs. Again, the rate strongly
depends on the resonance conditionssee Fig. 10d. The calcu-
lated rate demonstrates strong enhancement forDE,"Gen
and also has the structure due to the phonon-assisted pro-
cesses discussed above.

The transfer rateWres is proportional touMdot1,a→dot2,a8u
2

and therefore the spin-selection rules are given by the Cou-
lomb matrix elements. However, the complete transfer pro-
cess contains energy relaxation inside QD2sFig. 9d. This
relaxation can lead to spin flip. Then, the efficiency of spin
transfer will also depend on the ratio between intradot relax-
ation rates with and without spin flip. If energy relaxation
inside QD2 involves mostly the heavy-hole states, spin-flip
relaxation will be weak, since the main contributions to
electron-phonon scattering are not spin-dependent and, si-
multaneously, the heavy-hole exciton functions are
factorized.21 It concerns both the acoustic-phonon interaction
s15d and the Fröhlich scattering with emission of
LO-phonons.20 To conclude this section, we note that the
resonant transfer process can involve a localized state in the
wetting layer, instead of thep-state in QD2. Such a possibil-
ity was discussed in Ref. 5.

VI. DISCUSSION

In Secs. III and V, we discussed incoherent transfer as-
sisted by phonons or involving a broadened state in QD2.
The phonon-assisted transfer regime between ground states
in QD1 and QD2 assumes that the energy differenceDE is
larger than the Coulomb matrix elementuMdot1→dot2u. Now
we briefly consider the case of coherent resonant coupling in
the regimeDE,uMdot1→dot2u.12–14 This regime requires fine-
tuning of energies of QDs; this can be done, for example,
with magnetic and electric fields. The QDs can be designed
from different materials and therefore may have different

g-factors. By changing a magnetic field, one can changeDE.
A similar principle can be used in the case of an applied
electric field; if the QDs have different dipole moments,DE
can be controlled by the electric field.

The calculated Coulomb matrix elementsssee Fig. 4d are
in the range of 0.05 meV forR=5 nm. The corresponding
time is quite short:Dt=" / uMdot1→dot2u,10 ps. This time is
much shorter than the typical recombination time of ground-
state excitons in QDs, which is about 1 ns. Therefore the
coherent Coulomb-induced coupling can exist in resonant
pairs of QDs. In the case ofDE=0 and a QD molecule with
d=0, the one-exciton wave functions are given by the linear
combinations:

Cx =
udot1,xludot2,0l ± udot1,0ludot2,xl

Î2
,

Cy =
udot1,yludot2,0l ± udot1,0ludot2,yl

Î2
. s21d

The energy splitting within the pairs of states is given by
2uMdot1→dot2u. This energy can be regarded as a Rabi fre-
quency. If the exciton is created initially in the QD1, the time
to transfer the exciton to the neighboring dot would beDt
=" / uMdot1→dot2u,10 ps for the QD pair withR=5 nm. With
increasingR, the transfer times will become longer. In the
regime of coherent coupling, transfer of spin information oc-
curs coherently, without any energy dissipation. The coherent
spin-Rabi oscillations between QDs can probably be ob-
served with modern optical methods.

To conclude, we have described the spin-dependent Cou-
lomb interaction in a QD pair. Such a coupling suggests the
possibility to transfer spin information between individual
nanocrystals without transfer of charge or mass. The spin-
dependent transfer originates from the exchange and spin-
orbit interactions in semiconductors and strongly depends on
symmetry and shapes of nanocrystals. If symmetry of a QD
pair is high enough, spin information can be transferred
without losses. If symmetry is broken, spin relaxation in the
transfer process can become significant. To calculate the
transfer rates in the realistic model, we use a generalized
dipole-dipole approximation which is valid ifR@alattice. The
usual dipole-dipole approximationsR@ ldotd gives too large
numbers for the realistic interdot distances. As a method to
observe spin transfer, we consider spin-dependent photon
correlations in a pair of QDs.
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FIG. 10. Resonant transfer rate corresponding to the process
shown in Fig. 8. The parameters of the QD pair areR=5, "vx

e

=20 meV, "vy
e=30 meV, d=0, and 1/Gen=40 ps. TemperatureT

=4 K. The exciton spin is conserved in the transfer process.
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