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We analyze the transport properties of two artificial magnetic impurities coupled together via a tunable
Ruderman-Kittel-Kasuya-YosidasRKKY d interaction mediated by conduction electrons of a finite-size one-
dimensional wire. We show that the sign of the RKKY interaction can be controlled by gating the wire. We
investigate the interplay between finite-size effects and RKKY interaction and found that the two artificial
impurities start to interact to each other as soon as the Kondo screening cloud length becomes larger than the
length of the wire. This should allow one to give a lower experimental estimate of the Kondo screening cloud
length.
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I. INTRODUCTION

One of the most remarkable triumphs of recent progress
in nanoelectronics has been the observation of the Kondo
effect in a single semiconductor quantum dot.1–3 When the
number of electrons in the dot is odd, it can behave as an
S=1/2 magnetic impurity, interacting via magnetic exchange
with the conductance electrons. One of the main signatures
of the Kondo effect is that the conductance through the quan-
tum dot reaches the named unitary limit 2e2/h at low enough
temperatureT,TK

0, whereTK
0 is the Kondo temperature. In

this temperature regime, the impurity spin is screened and
forms a singlet with a conduction electron belonging to a
very extended many-body wave function known as the
Kondo screening cloud. The size of this screening cloud may
be evaluated asjK

0 <"vF /TK
0, wherevF is the Fermi velocity.

In a quantum dot, the typical Kondo temperature is of order
1 K, which leads tojK

0 <1 mm in semiconducting hetero-
structures. Finite-size effects related to the final extent of this
length scale have been predicted recently in two different
geometries: a quantum dot embedded in a ring threaded by a
magnetic flux4–6 and a quantum dot embedded between two
finite-size wires connected to external leads.7–9 In the former
geometry, it was shown that the persistent current induced by
a magnetic flux is particularly sensitive to screening-cloud
effects and is drastically reduced when the circumference of
the ring becomes smaller thanjK

0.4 In the latter geometry,
signature of the finite-size extension of the Kondo cloud was
found in the temperature dependence of the conductance
through the whole systemswires + dotd.7–9

The previous results were obtained by considering a
single impurity confined in some mesoscopic finite-size en-
vironment. Similar effects have also been predicted in related
geometries.10,11

Nevertheless, a more appropriate and certainly relevant
question for bulk materials would be what is the lower bound
on the average impurity separation necessary to apply the
single impurity theory? As described in Ref. 12, there are at
least three different ways of estimating such a length scale:
sid One can first simply require that the minimum interimpu-
rity distance to be larger thanjK

0. sii d One may require that

the density of electron states within an energyTK
0 of the

Fermi surface be at least as large asni, the impurity concen-
tration sthis constitutes the so-called Nozières exhaustion
principled. siii d Following the mean-field treatment of the
Kondo lattice by Doniach,13 one may also require that the
energy scale related to the average Ruderman-Kittel-Kasuya-
Yosida sRKKY d interaction to be small compared toTK

0.
In one dimension, definitionssid and sii d provide R,jK

0

for the minimum distance at which impurities can be treated
independently, whereas definitionsiii d providesR,sr0Jd2jK

0,
where J is the Kondo coupling between the impurity spin
and the conduction electrons andr0 the density of states.
Definition siii d gives, therefore, a lower estimate for the in-
terimpurity distance to account for multi-impurity effects.

Recent progress in nanolithography allows one to design
complex geometries able to mimic the behavior of a many-
impurity problem. In particular, Craiget al.14 have recently
manufactured a system in which two Kondo quantum dots
are connected to a common open conducting region. Here
both the RKKY and Kondo interactions compete, thus pro-
viding an experimental realization of the two-impurity
Kondo problem.

In this paper, we propose to use a rather similar geometry
to estimate the Kondo screening cloud size. We consider the
following device: two quantum dots connected to a quantum
wire of length 2l. We assume that the quantum dots can be
both tuned via independent plunger gate voltages in the
Kondo regime, and that the finite-size wiresFSWd can be
gated. We also assume the FSW to be weakly connected to a
two-dimensional reservoir. The whole geometry is depicted
in Fig. 1. The setup we want to study is therefore related to a
two-impurity Kondo problem in a confining geometry, a
question recently addressed by Galkinet al.15 using slave
boson mean-field theory. Galkinet al. have shown that the
low-energy behavior of this system strongly depends on the
position of the Fermi energy as for the single-impurity prob-
lem in a confined geometry.15

We intend to show that when 2l @jK
0, the impurities be-

have almost independently, whereas for 2l &jK
0, two-

impurity effect takes place. The analysis of transport through
one of the quantum dots allows one to discriminate between
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a single-impurity behavior and a two-impurity behavior and
may therefore provide an estimate ofjK

0. The plan of the
paper is the following: in Sec. II we present our model
Hamiltonian and derive how the finite size effectssFSEsd
renormalize both the Kondo temperature and the RKKY in-
teraction. In Sec. III we show how FSE quantitatively affects
the transport properties through the quantum dot. Finally in
Sec. IV we give a brief conclusion and discuss the generality
of our results.

II. FINITE-SIZE EFFECTS AND RKKY INTERACTIONS

In such a geometry, the two artificial impurities are con-
nected to both extremities of a quantum gated wire. Since the
wire is also weakly connected to a two-dimensional reser-
voir, its spectrum is continuous. In such a confined geometry,
FSEs are to play an important role, first because they affect
the renormalization of the Kondo couplings of each impurity
as was shown in Ref. 7, but also the RKKY interaction. To
take both effects into account, we choose to use a simple
tight-binding model that should capture the main physical
ingredients of this system.

A. Model Hamiltonian

In order to treat this problem, we may write the following
simple one-dimensionals1Dd tight-binding Hamiltonian:

H = HD + HW + HR + Htun,D + Htun,R s1d

with

HD = o
i=1,2;s

ed,idi,s
† di,s + Uind,i,↑nd,i,↓, s2d

HW = − t o
j=1;s

2l

scj ,s
† cj+1,s + h.c.d + EW o

j=1;s

2l

nc,j ,s, s3d

HR = − to
l=1

`

o
a=1,2;s

sal,a,s
† al+1,a,s + h.c.d, s4d

Htun,D = − t8o
s

sc1,s
† d1,s + c2l,s

† d2,s + h.c.d, s5d

Htun,R = − tWo
s

scl,s
† a1,1,s + scl+1,s

† a1,2,s + h.c.d, s6d

wheredi,s
† creates an electron with spins in dot i , cj ,s

† cre-
ates an electron in the wire at sitej with spins, and, finally,
al,a,s

† creates an electron in the reservoir at sitel, in the
channela with spin s. In Eq. s2d, the two quantum dots are
described by two Anderson impurity models, whereed,i ,Ui
are, respectively, the energy level and the Coulomb repulsion
energy in doti. Equations3d describes a 1D noninteracting
finite-size wiresFSWd of length 2l. In Eq. s4d, we described
the reservoir that coupled to the FSW by an infinite two-
channel wire. This assumption is for further technical conve-
nience, the only ingredient required being that the FSW is
tunnel coupled to a continuumssee Ref. 8 for detailsd. The
last two equationss5d ands6d describe tunneling of electrons,
respectively, between the dots and the FSW and between the
reservoir and the FSW. In the following we also assume a
symmetric geometry, i.e., we supposeed,1=ed,2=ed and U1
=U2=U. In fact, we only require in the sequel that the
Kondo temperatures associated with each dot are compa-
rable, i.e.,TK

0 =TK,1
0 ,TK,2

0 . We have also assumed that the
FSW is connected to a gate controlled byEW. In order to
study transport properties, we need to weakly connect at
least one dot to extra leadsswhich are represented with
dashed lines in Fig. 1d. Such a way of probing the quantum
dot transport properties is more in the spirit of the scanning-
tunnel-microscope-sSTMd-type measurements since it di-
rectly probes the local dot density of states.

We assume that the two dots can be cast in the Kondo
regime. Such a situation has been recently realized experi-
mentally in Ref. 14. We can perform a Schrieffer Wolff trans-
formation in order to writeHD+Htun,D in the following form:

HD + Htun,D → JsSW1 · s1 + SW2 · s2ld, s7d

with J=2t82fs1/−edd+s1/U+eddg andsW 1/2l =c1/2l
† stW /2dc1/2l is

the local spin density at sites 1/2l stW are the Pauli matricesd.
We have neglected potential scattering terms that are not
playing an important role in what follows. Before taking into
account both the Kondo and RKKY interactions, we need to
evaluate these two interactions in a confined geometry.

B. Kondo temperatures

Let us first estimate the Kondo temperature of asingle
artificial impurity assuming that one quantum dot is discon-
nected of the system. This can be achieved by pinching the
wire-dot tunnel junction off. The remaining dot is coupled to
the FSW, and its Kondo temperature can be estimated fol-
lowing Ref. 8. In order to calculateTK, we first diagonalize
the Hamiltonian atJ=0, i.e., we diagonalizeH0;HW+HR
+Htun,R. If tW=0, then the wave functions and eigenvalues of
the wire are

cs jd = s1/Î2l + 1dsinskw,njd,

kw,n = pn/s2l + 1d; 1 ø n ø 2l ,

eskw,nd = − 2t coskw,n + EW. s8d

FIG. 1. Schematic representation of the device under study. The
two quantum dots are connected to a finite-size open wire. The
Fermi level in the wire is controlled by a gate voltageEW.

PASCAL SIMON PHYSICAL REVIEW B71, 155319s2005d

155319-2



For nonzerotW, the spectrum ofH0 becomes continuous.
In order to study how the Kondo interaction renormalizes,
we expressc1,c2l in terms of the eigenstates,ce of H0

cj =E
−2t

2t

deff j
esedce,e + f j

osedco,eg, s9d

with j =1,2l here and the indicese,o are for even or odd
components under parity symmetry under the middle of the
line. IndeedH0 can be decomposed asH0

e+H0
o, which are

obtained by a folding procedure around a vertical axis lo-
cated at the pointj = l +1/2. Wehave normalized the opera-
tors ce/o,e such that hce/o,e

† ,ce/o,e8j=dse−e8d and
hce/o,e

† ,co/e,e8j=0. The local density of states seen by dot 1 is
defined by

r1sed = uf1
esedu2 + uf1

osedu2 = r1
esed + r1

osed s10d

and is normalized according toe−2t
2t der1sed=1. In this basis

the Kondo Hamiltonians7d can be written asH=H0+HK
with

H0 =E deesce,e
† ce,e + co,e

† co,ed, s11d

and

HK =E E dede8hff1
esedf1

ese8dce,e
† sWce,e8

+ f1
osedf1

ose8dco,e
† sWco,e8g · sSW1 + SW2d + f1

esedf1
ose8d

3 fce,e
† sWco,e8 + co,e

† sWce,e8g · sSW1 − SW2dj. s12d

To obtain this equation, we have used the fact thatf2l
e sed

= f1
esed and f2l

o sed=−f1
osed.

The local density of statesr1sed can be computed exactly
for our tight-binding model following Ref. 7 and reads

r1
even/oddskd =

1

pt

gW
2 sin2 kw sink

De/o
2 , s13d

with

De/o
2 = fcosklssinkwsl + 1d 7 sinkwld − gW

2 cosksl + 1d

3sinskwldg2 + fsinklssinkwsl + 1d 7 sinkwld

− gW
2 sinksl + 1dsinskwldg2.

Note that we have definedgW= tW/ t andkw is related tok by

− 2t cosk = − 2t coskw + EW. s14d

If gW=0, the even local density of statessLDOSd r1
e is sim-

ply composed ofl Dirac peaks and levels separated by the
level spacing 2D,"vF / l. r1

o has a similar structure but is
shifted byD. WhengWÞ0, these 2l finite-size levels in the
wire acquire a finite width and their position is slightly
shifted because of the coupling to the continuum spectrum.
r1

e/o now become continuous. An example of such a local
density of states has been plotted forl =11 andgW=0.5 in
Fig. 2. Note that even forgW=1, i.e., a perfect coupling
between the source and the leads, we get a succession of

peaks of broader widths. We have modeled the reservoir by a
two-channel infinite wire in order that both even and odd
sectors couple to the continuum. This density profile is quite
general and does not depend on our particular model Hamil-
tonian. It occurs as soon as we couple a finite-size system to
a continuum.

Different energy scales emerge in the problem, the level
spacingD, which needs to be compared to the bare Kondo
temperatureTK

0 of the dots and the peak widthd. By bare
Kondo temperatureTK

0, we mean the Kondo temperature of a
single independent dot in the Kondo regime, i.e., the Kondo
temperature obtained in the limitl →`. WhenTK

0 ,D, FSE
start taking place. The genuine Kondo temperature of a
single dotTK starts to depend on the fine structure of the
local density of states and can be, in general, very different
from TK

0. In this situation, the Kondo temperatureTK depends
on the wire gate voltageEW being set on a resonanceswhich
gives a Kondo temperatureTK

Rd or off a resonanceswhich
gives a Kondo temperatureTK

NRd. This discussion has been
largely detailed in Refs. 7 and 8. In the limitgW

2 !1 one can
evaluate

TK
R < dSTK

0

D0
DgW

2

= Osdnd, s15d

and

TK
NR< DSTK

0

D0
D1/2gW

2

. s16d

For strong finite effects, one hasTK
NR!TK

R,Osdd. Such dra-
matic dependence of the single-impurity energy scale with
the gate voltage position clearly affects all transport and ther-
modynamic properties.7,8

When both impurities are taken into account, the previous
results can be extended starting from the Hamiltonian in Eq.
s12d. If the RKKY interactions were switched off, both im-
purities would be now coherently screened in a two-stage
procedure. As above, FSEs take place whenTK

0 ,D. When
this situation is met, the two energy scales associated with

FIG. 2. Example of the local density of states seen by the dot 1.
We took 2l =22 andgW

2 =0.25.
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the two-stage screening process depend strongly on the even/
odd local densities of states being on or off resonances. This
situation is similar to the one occurring for a ferromagnetic
RKKY interaction and will be discussed in Sec. II D.

C. RKKY interaction

In Sec. II B we focused on the Kondo temperature of a
single dot ignoring their mutual interactions. Nevertheless,
the two dots also interact through the RKKY interaction. The

RKKY interaction readsHRKKY = I SW1·SW2. This interaction is
automatically generated at second order in the Kondo cou-
pling J and corresponds to the coherent process where an
electron participating in the screening of the artificial first
impurity can also participate in the screening of the second
impurity. Remember that a more dynamical type of screening
is involved here rather than the one occurring for charge
impurities in a Fermi liquid.

1. Usual situation: TK
0 šD

Let us first consider the simple case of a very long wire
connecting the two dots without the reservoirsi.e., gW=0d.
At lowest order inJ, the RKKY interaction reads

I = J2S 2

2l
D2

3 o
eskwdkeF;eskw8 dleF

sinskwdsinskw8 dsins2kwldsins2kw8 ld
eskwd − eskw8 d

,

s17d

where theeskwd have been defined in Eq.s8d and eF is the
Fermi energy. Forl @1 andeF,0, this expression simplifies
and reads16

I =
J2 cosf2kFs2ldg

4pts2ld
=

pl2D cosf2kFs2ldg
8s2ld

, s18d

where l=r0J=J sinskFd / sptd is the dimensionless Kondo
coupling andD=2t is the band width. This is the usual form
of the RKKY interaction in 1D. The above interaction is
always positive at exactly half filling because we take 2l
sites. Had we taken an odd number of sites, we would get an
opposite sign, i.e., a ferromagnetic interaction.

One may argue that the impurity can no longer be re-
garded as independent whenI ,TK

0. This result has been ob-
tained, for example, by applying the slave boson mean-field
theory approximation for the two-impurity problem by Jones
et al.17 From this argument, we have seen in the introduction
that at fixedjK

0, the dots need to be brought rather close
scompared tojK

0d to start feeling the RKKY interaction ef-
fects. However, we have seen that screening-cloud FSEs oc-
cur already whenjK

0 ,2l with a strong renormalization of
TK. This may suggest that FSEs occur first when approaching
the two impurities. Nevertheless, this argument is too naive
since FSEs may also affect the RKKY interaction as we will
see. A more refined analysis is clearly demanded whenTK

0

&D.

2. Unusual situation: TK
0 ™D

In this regime, one has already seen how the Kondo tem-
perature is renormalized depending on the density of states
being on resonance or off resonance. In our general case of a
finite-size wire connected to a source lead, the RKKY inter-
action can be written at lowest order inJ as

HRKKY = ISW1SW2

= J2SW1SW2E
−D

eF

d«E
eF

D

de8
f1sedf2lsedf1se8df2lse8d

e − e8
,

s19d

where thef jsed have been defined in Eq.s9d. In the limit
gW!1, the LDOS can be well approximated as follows

pr jsed = pf j
2sed <

2

2l + 1o
n

sin2skw,njd
dn

se − end2 + dn
2 ,

s20d

and in a similar way

pf1sedf2lsed <
2

2l + 1o
n

sinskw,ndsins2lkw,nd
dn

se − end2 + dn
2 .

s21d

In these expressions, we have defineden=eskw,nd fkw,n

was introduced in Eq.s8dg and dn<gW
2 t sin2kw,n sink/ l cor-

responds to the peak width. This faithful approximation al-
lows us to evaluate the RKKY interaction when finite-size
effects do occur:

I < S J

p
D2S 2

2l + 1
D2

o
n,n8
E

−D

eF

deE
eF

D

de8sin2skndsin2skn8d

3s− 1dn+n8
dndn8

se − e8dfse − end2 + dn
2gfse8 − en8d

2 + dn8
2 g

.

s22d

The terms that contribute mostly in the above summation
are the ones whereen is in the vicinity of eF. We need to
distinguish two different situations.

sid Suppose thatEW is tuned such thateF lies between two
resonance peaks of the local density of states. The integral is
therefore mainly dominated by these two consecutive reso-
nance peaks that implies thatn+n8 is odd. The whole inte-
gral is therefore positive meaning the RKKY interaction is
antiferromagnetic.

sii d Suppose thatEW is tuned such thateF is on a reso-
nance. The integral is mainly dominated by this resonance
peak and thereforen=n8=nF. The whole integral is therefore
negative meaning the RKKY interaction is ferromagnetic.

We can therefore conclude that FSE also plays a crucial
role by fixing the sign of the RKKY interaction as already
noted in Ref. 15. When the LDOS is tuned off resonance, the
RKKY interaction is always antiferromagnetic, when the
LDOS is tuned on resonance, the RKKY interaction is al-
ways ferromagnetic. This strong sign dependence opens the
way for a control of the RKKY interaction.
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Furthermore, these integrals can be estimatedsin the limit
gW!1d using the previous approximations

INR< J22c1 sin4skFd
s2ld2D

< J2c1 sin2kFr0

2l
, s23d

IR < − J2c2 sinskFd
2lpgW

2 t
< − J2 c2r0

2lgW
2 , s24d

with r0=sinskFd / sptd andc1,c2 two numerical factors of or-
der 1.

We see that the RKKY interactionIR is actually enhanced
when the LDOS is tuned on resonancesgW

2 !1d, whereas
INR< I remains almost unchanged. A rather similar behavior
occurs for magnetic impurities in quantum corrals.18 In order
to check these predictions, we have numerically calculated
the integral given by Eq.s22d and plotted the RKKY inter-
actionI as a function ofEW in Fig. 3 whenEW goes through
a resonance. It confirms first that the RKKY interaction can
be varied continuously from positive to negative value and
second that the RKKY interaction becomes ferromagnetic
and considerably enhanced whenEW is nearby a resonance.

D. Discussion

Let us discuss and compare the RKKY interaction
with the Kondo interaction. We assume thatJ and TK

0

,D exp−1/sr0Jd are fixed and the distance between the dots
can be varied. WhenTK

0 @D, i.e., jK
0 ! s2ld, we are in the

usual situation where the impurities can be regarded as al-
most independentfthe overlap between both screening
clouds isOs2l /jK

0dg.12 The RKKY interaction becomes im-
portant when the distancel between the dots satisfiesl
,sr0Jd2jK

0, a condition that is clearly not satisfied in this
limit.

Suppose now that we bring closer together the quantum
dots such thatjK

0 !2l. In order to analyze this limit, we may
integrate out high-energy degrees of freedom resulting from

a change ofJsDd=J to Jef fsDd in the above expressions for
the RKKY interaction.7 The two scales that must be com-
pared are nowTK and I.

sid When the LDOS is tuned off resonance,TK
NR is strongly

reduced compared toTK
0 whereasINR, I increased as 1/2l

when reducingl. We therefore expect a sharp crossover from
an independent regime to a regime where the dots form a
singletsremember thatI .0 off resonanced. This crossover is
mainly due the strong renormalization ofTK

0 into TK
NR rather

than to the increase ofI.
sii d When the LDOS is tuned on resonance thenTK

R

=Osdd with d the peak width, whereas the RKKY interaction
is enhanced by the decrease ofl, but especially by the extra
factorgW

−2@1. As we decreasel, we also expect here a sharp
crossover from a two almost-independent impurity regime to
a two ferromagnetically coupled impurity regime as soon as
TK

R& IR. When two impurities are coupled ferromagnetically,
they form an effective spin-1 impurity. Conduction electrons
try to screen this effective spin-1 impurity. Following the
work by Jayaprakashet al.19 we can write the following
low-energy effective Hamiltonian obtained by integrating out
high-energy degrees of freedom fromD to G,D around the
resonance, whereG is the scale at whichTK

R& IR

Hef f < Hel + Jef fsGdSW · ssW 1 + sW 2ld

< Hel + Jef fsGdSW · ss1
even+ s1

oddd, s25d

where sW 1
even/odd correspond to the even or odd part of the

local spin density of states coupled to the effective impurity.
As we have already seen, this decomposition is obtained by
folding the initial model under the vertical axisj = l +1/2.
The density of states consists of even and odd peaks. There-
fore, we expect at very low energy atwo-stageKondo effect
in this regime. Indeed, suppose we adjustEW on a resonance,
this resonance can be either odd or even under parity. Let us
for example assume this resonance to be even and keep on
integrating out high-energy degrees of freedom. When we
will be close to the resonance,Jef fr1

e will grow rapidly,
whereasJef fr1

o will remain rather small. In the limitgW!1
these two scales can be evaluated easily and correspond ap-
proximately toTK

R andsTK
NRd2/D,TK

NR. We note that the ratio
between these two scales is exponential contrary to what was
claimed in Ref. 15.

In the previous paragraph we comparedjK
0 and 2l. It is of

course not obvious to fine-tune 2l the wire length. On the
other hand, we may find for each dot different Kondo valleys
characterized by different Kondo temperatures and therefore
different Kondo screening lengths. A natural way to proceed
experimentally would be to select for each dot, at least two
distinct Kondo valleys with rather different Kondo scales
sideally by one order of magnituded in order to probe both
regimesjK

0 =jK,1
0 ,jK,2

0 @2l andjK
0 =jK,1

0 ,jK,2
0 &2l. Further-

more, in these Kondo valleys, the Kondo temperatures can
also be varied using the dot-plunger gate voltages.

Finally, in the previous discussion, we assumeT=0 and
exhibit the main energy scales of the problem. An interesting
and controversial issue is to obtain quantitatively the full
phase diagramffor example in thesT,Jd planeg of the two-

FIG. 3. RKKY interaction as a function ofEW. We took the
same parameter as in Fig. 2: 2l =22 andgW

2 =0.25. WhenEW is
tuned on a resonance, the RKKY interaction becomes positive and
gets enhanced by a factor,1/gW

2 as predicted by Eq.s24d.
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impurity and especially Kondo lattice problem. In order to
approach this nontrivial issue, sophisticated techniques are
requiredssee, for example, Ref. 20d.

E. Non-Fermi liquid fixed point

In the two-impurities Kondo problem, the two Fermi liq-
uid phasessthe impurity singlet or the screened impurity
tripletd may be separated atT=0 by a non-Fermi liquid
sNFLd fixed point depending on some realization of the
particle-hole symmetry.21–23 One may wonder whether this
NFL fixed point can be reached in such a geometry. We have
seen that 2l @jK

0 is required in order for the RKKY interac-
tion to take place. In this regime, we need to distinguish
between the LDOS being on or off a resonance. When the
LDOS is on a resonance, the RKKY interaction is ferromag-
netic and no such NFL fixed point is found for this sign of
the RKKY coupling. Suppose now the RKKY interaction is
tuned in between two resonances, therefore, of different par-
ity. In our 1D geometry, this implies, in particular,f1

es−ed
= f1

osed. When this condition is satisfied, it has been demon-
strated by Afflecket al.,23 that the Kondo Hamiltonian has
indeed the wrong particle-hole symmetry and no nontrivial
critical point is expected to occur between the two FL
phases. One can therefore conclude that such one-
dimensional-like geometry is not suitable to reach the vicin-
ity of the NFL fixed point of the two-impurity Kondo prob-
lem. The only way to reach such a NFL fixed point would be
to position the wire gate voltage on a resonancestherefore
I ,0d in order to have the right particle-hole symmetry and
to find an extra way to generate an additional antiferromag-
netic coupling between the two impurities.

III. TRANSPORT PROPERTIES

A. Zero temperature

The transport properties of the dots can be probed indi-
vidually by attaching, for example, two very weakly coupled
leads as depicted in Fig. 1. The conductance is governed by
the local density of the individual dots. Such a three-terminal
measurement provides a spectroscopic analysis of the dot
density of states much like the STM probes the density of a
magnetic impurity adsorbed on a surface.24 From the analy-
sis developed in the previous section, we infer that as soon as
jK

0 ! s2ld, the quantum dots are almost independent. This cor-
responds to the usual situation where the conductance
reaches its maximum value. Extending the scattering ap-
proach developed by Ng and Lee25 to several leadsssee also
Refs. 8 and 26d, this maximum value reads

GU =
2e2

h

4GsGd

sGd + Gs + GWd2 <
2e2

h

4GsGd

GW
2 , s26d

whereGW=pr0t82 is the junction conductance between the
dot and the wire andGs/d is the junction conductance be-
tween the dot and the source-drain lead.

The interesting situation occurs whenjK
0 * s2ld. We have

seen that the sign and the amplitude of the RKKY interaction
depends onEW being adjusted to a resonance or off a reso-

nance. This will have strong implications on transport prop-
erties. In the former caseson resonanced, the impurity is
screened through a two-stage procedure and the conductance
can reach the maximum value given by Eq.s26d. In the latter
case, the impurities form a singlet and the conductance is
expected to be zero. Note that the conductance is, in fact,
nonzero for a generic quantum dot, but instead dominated by
potential scattering terms we neglected here that lead to elas-
tic cotunneling processes. AtT=0, the regimejK

0 @2l can be,
therefore, characterized by a variation of the dot conductance
between 0 andGU when tuning the wire gate voltage. It is
worth looking at the differential conductancedI /dV, whereV
is the voltage bias between the two extra leads. Asnarrowd
peak at zero bias of widthTK

R and heightGU is expected in
the former case, whereas no peak is expected in the latter
case. Furthermore, two extra small peaks are also expected in
the differential conductance ateV= ± I corresponding to
magnetic excitations. These features should allow one to dif-
ferentiate the single-impurity behaviorsjK

0 !2ld from the
two-impurity behaviorsjK

0 @2ld. The qualitative shape of
these extra peaks has been analyzed in Ref. 27.

B. Finite temperature

The previous results can be extended at finite temperature.
When jk

0!2l, the dots behave independently and the finite
temperature conductance of dot 1 simply reads

G1 = GUfsT/TK
0d, s27d

where f is a universal scaling function of the ratioT/TK. Its
asymptotic behavior reads29

fsxd = 1 − spxd2 for x ! 1, s28d

fsxd =
3p2/16

ln2sxd
for x @ 1. s29d

On the other hand, in the limitjk
0@2l, the conductance de-

pends on the artificial impurities forming a singlet or a triplet
state. It is not obvious to read from the transport properties in
which of these two states the impurities are, as it was re-
cently highlighted by the experiment of Craiget al.14 Indeed
for I ,0 sferromagnetic RKKY interactiond, the conductance
takes the form

G1 = GU
p2/2

ln2sT/TK
Rd

for uI u @ T @ TK
R, s30d

and is therefore rather small compared toGU. The conduc-
tance forI .0 being dominated by finite-temperature cotun-
neling processes is also rather small. Therefore the linear
conductance does not really allow one to discriminate in
which states the impurities are in this temperature range.
However, as it was analyzed recently in Refs. 27 and 28,
transport spectroscopy in a finite in-plane magnetic field
should enable one to distinguish between both impurity
ground stateseither singlet or tripletd. From an experimental
point of view, it is, therefore, crucial to gate the wire because
it may offer an opportunity to go continuously from one
regime to another way.
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IV. DISCUSSION OF THE RESULTS

We have seen that when two quantum dots are brought
closer together, they significantly deviate from the single-
impurity behavior as soon asjK

0 @2l. This deviation from the
single-impurity behavior occurs mainly because of the strong
renormalization of the Kondo temperature but also from the
renormalization of the RKKY interaction. When FSEs play
an important role, we also predict that the gating of the wire
should allow one to control the sign of the RKKY interaction
and therefore the wire gate voltageEW might be used to
control the ground state of our systemssinglet or tripletd. By
individually probing the spectral properties of each dot, one
can differentiate the single-impurity transport properties
from the two-impurity ones and therefore provide a lower
estimate of the Kondo screening length.

In order to obtain these results we made some approxima-
tions that we want to discuss here. First we assume that the
wire is thin enough such that we can restrict a single trans-
verse channel. If the wire containsN different transverse
channels, the results derived here can be extended following
Ref. 7. In particular, FSEs start to play a role whenTK

0

&D /N, i.e., forjK
0 *Nl.8 For thick wires, such a condition is

difficult to meet experimentally and the renormalization and
no renormalization of the Kondo temperature occurs when
we vary the wire gate voltage. To see the effects discussed in
this paper, it is therefore preferable to work with thin wires
containing only a few channels.

We have also assumed that the wire is in a ballistic re-
gime, or at least that the mean-free pathld is the largest
length scale by far. If the mean-free pathld would be, for
example, smaller than the length of the short wire, we would
then need to compare the Kondo length scalejK

0 with ld and
not with 2l the wire length. Moreover, it is very likely that
the simple dependences ofTK and of the RKKY interaction
with EW will be washed out. Nevertheless, for a clean semi-
conducting wire of typical length,1 mm, we may expect
ld.2l.

We have also neglected Coulomb interactions in the wire.
Coulomb interactions will first affect both the Kondo tem-
perature and the RKKY interactions. Assuming that the in-
teracting wire can be described by a Luttinger liquid charac-
terized by a dimensionless strength parameterg sg=1
corresponds to the noninteracting cased, the Kondo tempera-

ture takes a power-law fashionTK
0 ,vFsr0Jd2/s1−gd instead of

the conventional exponential dependence.30 It can also be
shown that the RKKY interaction decreases as a power law,
I ,vFsr0Jd2/ s2ldg, with 2l the interimpurity distance.31 For a
Luttinger liquid with repulsive interactionsg,1, it implies
an increase of the Kondo temperaturestherefore a decrease
of the screening cloudd and the RKKY interaction becomes
longer range compared to the noninteracting case. We have
seen in the introduction for the noninteracting case that the
criteria for FSE to occur is 2l &jK

0, whereas the criterionI
.TK

0 provides the more restrictive condition 2l & sr0Jd2jK
0.

On the other hand, in the presence of interactions, both cri-
teria provide the same length scalel* ,sr0Jd2/sg−1d=jK

0 under
which FSE and RKKY interaction comes into play. There-
fore, we expect here an even sharper crossover from a single-
impurity regime to a two-impurity regime. Nevertheless, re-
pulsive interaction also considerably affects transport
properties through the dots. In the low-energy limit, pro-
cesses that transfer one electron between the leads and the
interacting wire become irrelevant.32 Therefore the leads and
the wire decouple as two independentsvery anisotropicd
channels. Because the coupling between the dot and the wire
is much stronger, the screening of the impurity occurs at low
energy in the wire only. The conductance in the leads is
dominated in this low-energy limit by potential scattering
terms that lead to resonant cotunneling processessthat do not
renormalized. The conductance is therefore very small com-
pared toGU whenever a single- or two-impurity scenario
occurs. It seems, therefore, less obvious to differentiate these
two casessand therefore to provide a lower estimate ofjK

0d in
the presence of interactions at least in the equilibrium con-
ductance. The differential conductance may reveal, on the
other hand, interesting features at large bias that may help to
distinguish the single- from the two-impurity regime. A full
quantitative analysis of transport properties consistently in-
corporating both Coulomb interactions and finite level spac-
ing is required but goes beyond the scope of the present
paper.
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