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Kondo screening cloud in a double quantum dot system
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We analyze the transport properties of two artificial magnetic impurities coupled together via a tunable
Ruderman-Kittel-Kasuya-YosidéRKKY) interaction mediated by conduction electrons of a finite-size one-
dimensional wire. We show that the sign of the RKKY interaction can be controlled by gating the wire. We
investigate the interplay between finite-size effects and RKKY interaction and found that the two artificial
impurities start to interact to each other as soon as the Kondo screening cloud length becomes larger than the
length of the wire. This should allow one to give a lower experimental estimate of the Kondo screening cloud
length.
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I. INTRODUCTION the density of electron states within an enefy of the
Fermi surface be at least as largengghe impurity concen-
One of the most remarkable triumphs of recent progressration (this constitutes the so-called Noziéres exhaustion
in nanoelectronics has been the observation of the Kondprinciple). (iii) Following the mean-field treatment of the
effect in a single semiconductor quantum &dtWhen the Kondo lattice by Doniach? one may also require that the
number of electrons in the dot is odd, it can behave as agnergy scale related to the average Ruderman-Kittel-Kasuya-
S=1/2 magnetic impurity, interacting via magnetic exchangeYosida (RKKY') interaction to be small compared T&.
with the conductance electrons. One of the main signatures In one dimension, definitiond) and (i) provide R~§ﬁ
of the Kondo effect is that the conductance through the quarfor the minimum distance at which impurities can be treated
tum dot reaches the named unitary limé2h at low enough  independently, whereas definitidiii ) providesR~ (p°J)2&2,
temperaturel < T2, WhereTﬂ is the Kondo temperature. In whereJ is the Kondo coupling between the impurity spin
this temperature regime, the impurity spin is screened anénd the conduction electrons apll the density of states.
forms a singlet with a conduction electron belonging to aDefinition (iii) gives, therefore, a lower estimate for the in-
very extended many-body wave function known as theterimpurity distance to account for multi-impurity effects.
Kondo screening cloud. The size of this screening cloud may Recent progress in nanolithography allows one to design
be evaluated a&; ~five/ Ty, wherevg is the Fermi velocity.  complex geometries able to mimic the behavior of a many-
In a quantum dot, the typical Kondo temperature is of ordeimpurity problem. In particular, Craigt all* have recently
1 K, which leads to£}~1 um in semiconducting hetero- manufactured a system in which two Kondo quantum dots
structures. Finite-size effects related to the final extent of thisre connected to a common open conducting region. Here
length scale have been predicted recently in two differenboth the RKKY and Kondo interactions compete, thus pro-
geometries: a quantum dot embedded in a ring threaded bywiding an experimental realization of the two-impurity
magnetic flu#=® and a quantum dot embedded between twakondo problem.
finite-size wires connected to external ledddn the former In this paper, we propose to use a rather similar geometry
geometry, it was shown that the persistent current induced by estimate the Kondo screening cloud size. We consider the
a magnetic flux is particularly sensitive to screening-cloudfollowing device: two quantum dots connected to a quantum
effects and is drastically reduced when the circumference ofiire of length 2. We assume that the quantum dots can be
the ring becomes smaller th@ﬁ.“ In the latter geometry, both tuned via independent plunger gate voltages in the
signature of the finite-size extension of the Kondo cloud wakondo regime, and that the finite-size wWitESW) can be
found in the temperature dependence of the conductanagated. We also assume the FSW to be weakly connected to a
through the whole systertwires + doj.”® two-dimensional reservoir. The whole geometry is depicted
The previous results were obtained by considering an Fig. 1. The setup we want to study is therefore related to a
single impurity confined in some mesoscopic finite-size entwo-impurity Kondo problem in a confining geometry, a
vironment. Similar effects have also been predicted in relatequestion recently addressed by Galkih all® using slave
geometrieg?!t boson mean-field theory. Galkiet al. have shown that the
Nevertheless, a more appropriate and certainly relevarlbw-energy behavior of this system strongly depends on the
question for bulk materials would be what is the lower boundposition of the Fermi energy as for the single-impurity prob-
on the average impurity separation necessary to apply thiem in a confined geometty.
single impurity theory? As described in Ref. 12, there are at We intend to show that whenl 2 £, the impurities be-
least three different ways of estimating such a length scalenave almost independently, whereas forszﬁ, two-
(i) One can first simply require that the minimum interimpu- impurity effect takes place. The analysis of transport through
rity distance to be larger thag}. (i) One may require that one of the quantum dots allows one to discriminate between
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Hunr= ~tw> (€ ya115+ (Clhyp12,+hC),  (6)

ag
S J ‘ whered’r creates an electron with spinin doti, cJr cre-

v .| wiTE |‘ a:tres an electron in the wire at sitavith spin o, and, flnally,
d et 1 ‘ [ dot 2 a, ., Creates an electron in the reservoir at diten the

channela with spin o. In Eq. (2), the two quantum dots are
/7 2DEG described by two Anderson impurity models, whegg, U,
are, respectively, the energy level and the Coulomb repuIS|on
FIG. 1. Schematic representation of the device under study. Thenergy in doti. Equation(3) describes a 1D noninteracting
two quantum dots are connected to a finite-size open wire. Théinite-size wire(FSW) of length 2. In Eq. (4), we described
Fermi level in the wire is controlled by a gate voltagg. the reservoir that coupled to the FSW by an infinite two-
channel wire. This assumption is for further technical conve-
a single-impurity behavior and a two-impurity behavior andnience, the only ingredient required being that the FSW is
may therefore provide an estimate &. The plan of the tunnel coupled to a continuuitsee Ref. 8 for details The
paper is the following: in Sec. Il we present our modellast two equationg5) and(6) describe tunneling of electrons,
Hamiltonian and derive how the finite size effe¢ESES respectively, between the dots and the FSW and between the
renormalize both the Kondo temperature and the RKKY in-reservoir and the FSW. In the following we also assume a
teraction. In Sec. Il we show how FSE quantitatively af“fectssymmemC geometry, i.e., we SUPPO&E;=¢q =€y and Uy

the transport properties through the quantum dot. Finally irFU2=U. In fact, we only require in the sequel that the
Sec. IV we give a brief conclusion and discuss the generality<ondo temperatures associated with each dot are compa-
of our results. rable, i.e., TR=T%, TK2 We have also assumed that the

FSW is connected to a gate controlled By. In order to

study transport properties, we need to weakly connect at
Il. FINITE-SIZE EFFECTS AND RKKY INTERACTIONS least one dot to extra leadsvhich are represented with
dashed lines in Fig.)1 Such a way of probing the quantum

nected to both extremities of a quantum gated wire. Since thdot transport properties Is more in the spirit of thg scanning-
unnel-microscope{STM)-type measurements since it di-

wire is also weakly connected to a two-dimensional re:serrectl robes the local dot density of states.
voir, its spectrum is continuous. In such a confined geometry, yp y :
We assume that the two dots can be cast in the Kondo
FSEs are to play an important role, first because they affec
fegime. Such a situation has been recently realized experi-

the renormallza_tlon of the Kondo couplings of_ each |r_npur|tymentally in Ref. 14. We can perform a Schrieffer Wolff trans-
as was shown in Ref. 7, but also the RKKY interaction. To
formatlon in order to writtHp+Hy,,p in the following form:

take both effects into account, we choose to use a simple
tight-binding model that should capture the main physical ) ]
ingredients of this system. Ho+ Huno = ISy 01+ S+ 72), ™

In such a geometry, the two artificial impurities are con-

with J= 2t’2[(1/_6d) +(1/U + €d)] and 5’1/2| :CI/Z(;/Z)CZL/Z is
the local spin density at sites 1l/¢ are the Pauli matrices
We have neglected potential scattering terms that are not
In order to treat this problem, we may write the following playing an important role in what follows. Before taking into
simple one-dimensiondlLD) tight-binding Hamiltonian: account both the Kondo and RKKY interactions, we need to
evaluate these two interactions in a confined geometry.

A. Model Hamiltonian

H=Hp+Hw+Hr+Huynp + Hunr (1)
. B. Kondo temperatures
with _ _ _
Let us first estimate the Kondo temperature osiagle

H. = d' d +Ung Ny 2 artificial impurity assuming that one quantum dot is d|_scon-
P i:%-,, CdioTho T ST @ Nected of the system. This can be achieved by pinching the

wire-dot tunnel junction off. The remaining dot is coupled to
. ) the FSW, and its Kondo temperature can be estimated fol-

lowing Ref. 8. In order to calculat€, we first diagonalize

=— e . o ) o .

Hw = t._zl_ (Ci,frCJ+1v”+h'C')+EW4_21_ Nejor 3 the Hamiltonian at)=0, i.e., we diagonalizéd,=H,+Hg
= = +Hunr If tw=0, then the wave functions and eigenvalues of

the wire are
He=-t2 2 (@, ,As100*h.C), 0 Py = (LN21+ 1)sin(Kynl),
1=1 a=1,2;0
Kyn=mn/(2l+1); 1l=<n=<2l,
Hunp = —t' 2 (¢] 1o+ Chy yda o thc),  (5)
o €(ky,n) = — 2t cosky,n + Ey. (8)
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For nonzeray, the spectrum oH, becomes continuous.
In order to study how the Kondo interaction renormalizes,
we express;,Cy in terms of the eigenstates, of Hy

2t
6= f def%(e)Ce .+ F2A)Co ], ©) _ _

-2t

tho 1(Ew)

with j=1,2 here and the indices,o are for even or odd
components under parity symmetry under the middle of the | il
line. IndeedH, can be decomposed &t5+Hg, which are

obtained by a folding procedure around a vertical axis lo- 05
cated at the poini=1+1/2. Wehave normalized the opera- } \

tors  Cgo. sSuch that {ce,OE,ce,oe} Sle-€') and
{cdoG,co,eE} 0. The local density of states seen by dot 1is , |
defined by -1 0.5

pa(e) =[f1(e)? +[f1(e)* = pi(e) + pi(e) (10 :
FIG. 2. Example of the local density of states seen by the dot 1.
and is normalized according T,EEthepl(s):l. In this basis  we took 2=22 andy2,=0.25.
the Kondo Hamiltonian(7) can be written adH=Hy+Hy

with peaks of broader widths. We have modeled the reservoir by a
two-channel infinite wire in order that both even and odd
Hozf dee(Cl'ECeye+ cgvecoyé), (11 sectors couple to the continuum. This density profile is quite
general and does not depend on our particular model Hamil-
and tonian. It occurs as soon as we couple a finite-size system to
a continuum.
Different energy scales emerge in the problem, the level
HK_JJdede {[fi(e)5(€ e Ce spacingA, which needs to be compared to the bare Kondo
temperatureT0 of the dots and the peak width By bare
+f(e)f(e co OCoer] - (Sl+ Sz) +f5(e)f3(€) Kondo temperatur@y, we mean the Kondo temperature of a
.. . single independent dot in the Kondo regime, i.e., the Kondo
X [c] 5Co 0 + €} GCe ]+ (S-S} (12 temperature obtained in the limit- . WhenTOK~A, FSE
start taking place. The genuine Kondo temperature of a
single dotTy starts to depend on the fine structure of the
local density of states and can be, in general, very different
from Tﬁ. In this situation, the Kondo temperaturg depends

o =4

0.5 1

To obtain this equation, we have used the fact tigle)
=f{(e) and 3 (e)=—f(e).
The local density of states;(e) can be computed exactly

for our tight-binding model following Ref. 7 and reads on the wire gate voltagE,, being set on a resonanéhich
1 ¥ sirP k, sink gives a Kondo temperatur€) or off a resonancéwhich
pf'e k) = pare = D2 ; (13)  gives a Kondo temperaturg,"). This discussion has been
elo largely detailed in Refs. 7 and 8. In the I|mr§\,<1 one can
with evaluate
=[coskl(sink,(l + 1) ¥ sink,l) — 13, cosk(l + 1) (To )yw
TR= 4 =0(4, 15
xsin(k,) 12 + [sinkl(sink,(I + 1) F sink,/) Do (%) (15
= ¥, sink(l + 1)sin(k,1) 2. and
Note that we have defineg,=t,,/t andk, is related tok by 10 129,
TR~ A(—K> . (16)
— 2t cosk=- 2t cosk,, + Ey. (14) Dg

If %y=0, the even local density of statdsDOS) p¢ is sim-  For strong finite effects, one hag~< Tk~ O(d). Such dra-

ply composed of Dirac peaks and levels separated by thematic dependence of the single-impurity energy scale with
level spacing & ~7%ve/l. p{ has a similar structure but is the gate voltage position clearly affects all transport and ther-
shifted byA. When yy# 0, these Rfinite-size levels in the modynamic propertie&®

wire acquire a finite width and their position is slightly ~ When both impurities are taken into account, the previous
shifted because of the coupling to the continuum spectrunresults can be extended starting from the Hamiltonian in Eqg.
p§’° now become continuous. An example of such a local12). If the RKKY interactions were switched off, both im-
density of states has been plotted ferll andy,=0.5 in  purities would be now coherently screened in a two-stage
Fig. 2. Note that even fory,=1, i.e., a perfect coupling procedure. As above, FSEs take place whgn-A. When
between the source and the leads, we get a succession tbfs situation is met, the two energy scales associated with
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the two-stage screening process depend strongly on the even/ 2. Unusual situation: TR<A
odd local densities of states being on or off resonances. This |, this regime, one has already seen how the Kondo tem-

situation is similar to the one occurring for a ferromagneticperature is renormalized depending on the density of states
RKKY interaction and will be discussed in Sec. Il D. being on resonance or off resonance. In our general case of a
finite-size wire connected to a source lead, the RKKY inter-
C. RKKY interaction action can be written at lowest order Jmas

In Sec. II B we focused on the Kondo temperature of a =S §2
. . . . . . RKKY 1
single dot ignoring their mutual interactions. Nevertheless, 5
the two dots also interact through the RKKY interaction. The T i Fi(e)fy(e)f(e)fy(e’)
=JSS,| de| de
-D €

RKKY interaction read$Hgkxy =!I S;-S,. This interaction is
automatically generated at second order in the Kondo cou- (19)
pling J and corresponds to the coherent process where an

electron participating in the screening of the artificial firstwhere thef;(e) have been defined in E9). In the limit
impurity can also participate in the screening of the second,, <1, the LDOS can be well approximated as follows
impurity. Remember that a more dynamical type of screening

is involved here rather than the one occurring for charge ij(e)zwsz(e) ~ LE SIr(Ky, ni)
impurities in a Fermi liquid. 20+ 17

e—¢€

%
(f_en)2+ 5ﬁ,

_ (20)
1. Usual situation: ,>A
Let us first consider the simple case of a very long wireand in a similar way
connecting the two dots without the reserv@ie., y,=0). 2 _ _ 4
At lowest order inJ, the RKKY interaction reads mfi(e)fa(e) = 2 sin(ky,)sin(2lky, ) — 2
21+ 1% (e—€)+ &,
I= J2<£)2 2y
2l In these expressions, we have def_ir@,d=e(l_<wvn) [Ku.n
sin(k,,)sin(k;,)sin(2k,)sin(2k;|) was introduced in Eq8)] and &,~ yat sirtk,,, sink/1 cor-
X > (k,) - e(K.) ) responds to the peak width. This faithful approximation al-
elky)(epie(k),))ep elkw) = elky lows us to evaluate the RKKY interaction when finite-size
(17) effects do occur:
) ] ) J 2 2 2 € D
where thee(k,) have been defined in E¢8) and ¢ is the | ~ (-) ( ) > j dff de’sir(k,)sirt(k,)
Fermi energy. Fof>1 ande-~ 0, this expression simplifies m)\2A+1) D)o e
and read®¥
X(— 1)n+nr 5n5n’
_ J? cog 2ke(21)] _ D cog 2ke(21)] 18) (6= €)(e- €)2+ S[(€ - &)+ 5ﬁ,]'

where N=pgJ=Jsin(kg)/(nt) is the dimensionless Kondo  The terms that contribute mostly in the above summation
coupling andD =2t is the band width. This is the usual form are the ones where, is in the vicinity of -. We need to
of the RKKY interaction in 1D. The above interaction is distinguish two different situations.
always positive at exactly half filling because we take 2 (i) Suppose thaE,y is tuned such that- lies between two
sites. Had we taken an odd number of sites, we would get afesonance peaks of the local density of states. The integral is
opposite sign, i.e., a ferromagnetic interaction. therefore mainly dominated by these two consecutive reso-
One may argue that the impurity can no longer be remnance peaks that implies tha#n’ is odd. The whole inte-
garded as independent when Tg. This result has been ob- gral is therefore positive meaning the RKKY interaction is
tained, for example, by applying the slave boson mean-fieléintiferromagnetic.
theory approximation for the two-impurity problem by Jones  (ii) Suppose thaE,, is tuned such thag- is on a reso-
et al!” From this argument, we have seen in the introductiomance. The integral is mainly dominated by this resonance
that at fixed&}, the dots need to be brought rather closepeak and therefore=n’=n. The whole integral is therefore
(compared toéy) to start feeling the RKKY interaction ef- negative meaning the RKKY interaction is ferromagnetic.
fects. However, we have seen that screening-cloud FSEs oc- We can therefore conclude that FSE also plays a crucial
cur already wherg ~2| with a strong renormalization of role by fixing the sign of the RKKY interaction as already
Tk. This may suggest that FSEs occur first when approachingoted in Ref. 15. When the LDOS is tuned off resonance, the
the two impurities. Nevertheless, this argument is too naiveRKKY interaction is always antiferromagnetic, when the
since FSEs may also affect the RKKY interaction as we willLDOS is tuned on resonance, the RKKY interaction is al-
see. A more refined analysis is clearly demanded W'F%n ways ferromagnetic. This strong sign dependence opens the
=<A. way for a control of the RKKY interaction.
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a change ofl(D)=J to J+(A) in the above expressions for
the RKKY interaction’ The two scales that must be com-
pared are now andl.

(i) When the LDOS is tuned off resonand@; is strongly
reduced compared td whereasINR~1 increased as 112
when reducingd. We therefore expect a sharp crossover from
an independent regime to a regime where the dots form a
singlet(remember that> 0 off resonanck This crossover is
mainly due the strong renormalization 8 into Ty~ rather
than to the increase of

(i) When the LDOS is tuned on resonance thER
=0(6) with § the peak width, whereas the RKKY interaction
is enhanced by the decreasel obut especially by the extra
factor y\‘NZ> 1. As we decreask we also expect here a sharp
crossover from a two almost-independent impurity regime to

FIG. 3. RKKY interaction as a function dty. We took the aRtwoF:‘erromagneti_cally QQUpIEd impurity regime as Sc_)on as
same parameter as in Fig. 21=22 and13,=0.25. WhenEy is ~ Tk=" When two impurities are coupled ferromagnetically,
tuned on a resonance, the RKKY interaction becomes positive ant'ey form an effective spin-1 impurity. Conduction electrons

gets enhanced by a facterl/», as predicted by Eq(24). try to screen this effective spin-1 impu_rity. Following the
work by Jayaprakaslet all® we can write the following

low-energy effective Hamiltonian obtained by integrating out
high-energy degrees of freedom frdinto I' <A around the
resonance, wherE is the scale at whiciif<IR

Furthermore, these integrals can be estimétethe limit
yw<1) using the previous approximations

2201 Sll’l4(k,:) . chl Sinzkppo

INR ~ 23 S ..
(21)°A 2l @3 Hetr = Hei + Jeit(I) S (01 + 02)
. ~ He+ Ji(1)S- (05°™+ 6399, 25
IR~ _ ) SIﬂ(k,:) __ > C2po (24) el eff( ) (0'1 (og} d) ( )
2yt 2148, where ¢$"®"°% correspond to the even or odd part of the

local spin density of states coupled to the effective impurity.
As we have already seen, this decomposition is obtained by
folding the initial model under the vertical axjs=l+1/2.

hWe fhee tr&tgg RtKKY dmteractldﬁ IS gﬁc:l;allly enr?anced The density of states consists of even and odd peaks. There-
V‘,(,Ren e L IS tuned on resonan ,)’ Whereas -~ ¢4re, we expect at very low energytao-stageKondo effect
I"*=1 remains almost unchanged. A rather similar behaworin this regime. Indeed, suppose we adjEigton a resonance
occurs for magnetic Impurities in quantum co_rr’aﬂm order s resonance can be either odd or even under parity. Let us
to check these predictions, we have numerically calculate

: i ; r example assume this resonance to be even and keep on
the integral given by Eq(22) and plotted the RKKY inter- e qrating out high-energy degrees of freedom. When we

actionl as a function ok, in Fig. 3 whenE, goes through will be close to the resonancdy;p® will grow rapidly,

a resonance. I'F confirms first thaF .the RKKY interaction Car\NhereasJeffp‘l’ will remain rather small. In the limity,<1
be vage?hc?lzﬁnugt‘is&);ffotm pof't'v% to negatlfve value art‘_okhese two scales can be evaluated easily and correspond ap-
secon at the interaction becomes ferromagneti ; R NR\2 NR ;
and considerably enhanced whEy is nearby a resonar?ce. (Erommately toTi¢ and(Tic") /A<Ty". We note that the ratio
etween these two scales is exponential contrary to what was
claimed in Ref. 15.
D. Discussion In the previogs paragraph we compq@é&hnd 2. Itis of
i . _course not obvious to fine-tund the wire length. On the
Let us discuss and compare the RKKY interactiongther hand, we may find for each dot different Kondo valleys
with the Kondo interaction. We assume thatand Ty characterized by different Kondo temperatures and therefore
~D exp—1/p°) are fixed and the distance between the dotsjifferent Kondo screening lengths. A natural way to proceed
can be varied. Wheifg>A, i.e., & <(2l), we are in the experimentally would be to select for each dot, at least two
usual situation where the impurities can be regarded as alfistinct Kondo valleys with rather different Kondo scales
most independen{the overlap between both screening (ideally by one order of magnitugién order to probe both
clouds isO(21/£&)].*? The RKKY interaction becomes im-  regimes£o=¢ ,~ £ ,>2l and&=¢£ ,~ & ,<2l. Further-
portant when the distanck between the dots satisfids more, in these Kondo valleys, the Kondo temperatures can
~(p°))?&2, a condition that is clearly not satisfied in this also be varied using the dot-plunger gate voltages.
limit. Finally, in the previous discussion, we assufe0 and
Suppose now that we bring closer together the quanturexhibit the main energy scales of the problem. An interesting
dots such tha§ﬁ<2l. In order to analyze this limit, we may and controversial issue is to obtain quantitatively the full
integrate out high-energy degrees of freedom resulting fronphase diagranifor example in theT,J) plang of the two-

with pg=sin(kg)/(7t) andc,,c, two numerical factors of or-
der 1.
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impurity and especially Kondo lattice problem. In order to nance. This will have strong implications on transport prop-
approach this nontrivial issue, sophisticated techniques arerties. In the former caséon resonande the impurity is
required(see, for example, Ref. 20 screened through a two-stage procedure and the conductance
can reach the maximum value given by E26). In the latter
case, the impurities form a singlet and the conductance is
expected to be zero. Note that the conductance is, in fact,
In the two-impurities Kondo problem, the two Fermi lig- nonzero for a generic quantum dot, but instead dominated by
uid phases(the impurity singlet or the screened impurity potential scattering terms we neglected here that lead to elas-
triplet) may be separated at=0 by a non-Fermi liquid tic cotunneling processes. At0, the regimes: > 2| can be,
(NFL) fixed point depending on some realization of thetherefore, characterized by a variation of the dot conductance
particle-hole symmetr§i~2* One may wonder whether this petween 0 ands, when tuning the wire gate voltage. It is
NFL fixed point can be reached in such a geometry. We havgyorth looking at the differential conductandé/dV, whereV
seen that I2>>§ﬁ is required in order for the RKKY interac- s the voltage bias between the two extra leadgnérrow
tion to take place. In this regime, we need to distinguishpeak at zero bias of widtlﬁﬁ and heightG is expected in
between the LDOS being on or off a resonance. When thehe former case, whereas no peak is expected in the latter
LDOS is on a resonance, the RKKY interaction is ferromag-case. Furthermore, two extra small peaks are also expected in
netic and no such NFL fixed point is found for this sign of the differential conductance atV=+I Corresponding to
the RKKY coupling. Suppose now the RKKY interaction is magnetic excitations. These features should allow one to dif-
tuned in between two resonances, therefore, of different paferentiate the single-impurity behavic(gfﬂ<2l) from the
ity. In our 1D geometry, this implies, in particulafi(~€)  two-impurity behavior(¢£2>2l). The qualitative shape of
=fJ(e). When this condition is satisfied, it has been demonthese extra peaks has been analyzed in Ref. 27.
strated by Afflecket al,?? that the Kondo Hamiltonian has
indeed the wrong particle-hole symmetry and no nontrivial

critical point is expected to occur between the two FL ) o
phases_ One can therefore conclude that such one- The pl’eVIOUS I’eSU|tS can be eXtended atflnltetemperature.

dimensional-like geometry is not suitable to reach the vicin-\When &<2I, the dots behave independently and the finite
ity of the NFL fixed point of the two-impurity Kondo prob- teémperature conductance of dot 1 simply reads

lem. The only way to reach such a NFL fixed point would be -

to position the wire gate voltage on a resonaftberefore Gy = GUf(T/T{’i)’ 27

| <0) in order to have the right particle-hole symmetry andwheref is a universal scaling function of the rafid T. Its

to find an extra way to generate an additional antiferromagasymptotic behavior reatfs

netic coupling between the two impurities.

E. Non-Fermi liquid fixed point

B. Finite temperature

f(x)=1-(mx)?> forx<1, (28)
IIl. TRANSPORT PROPERTIES 3716
f(x)=—— forx>1. (29
A. Zero temperature In“(x)

The transport properties of the dots can be probed indiOn the other hand, in the limg > 2I, the conductance de-
vidually by attaching, for example, two very weakly coupled pends on the artificial impurities forming a singlet or a triplet
leads as depicted in Fig. 1. The conductance is governed tate. It is not obvious to read from the transport properties in
the local density of the individual dots. Such a three-terminalyhich of these two states the impurities are, as it was re-
measurement provides a spectroscopic analysis of the deently highlighted by the experiment of Craég al'* Indeed
density of states much like the STM probes the density of dor | <0 (ferromagnetic RKKY interaction the conductance
magnetic impurity adsorbed on a surf&d=rom the analy- takes the form
sis developed in the previous section, we infer that as soon as
§ﬂ< (21), the quantum dots are glmost independent. This cor- G, =G, 2772/2R for [I| > T T8, (30)
responds to the usual situation where the conductance In“(T/Ty)
reaches its maximum value. Extending the scattering ap-

proach developed by Ng and 1%¢0 several leadésee also and is therefore rather small comparedGg. The conduc-
Refs. 8 and 25 this maximum value reads tance forl >0 being dominated by finite-temperature cotun-

neling processes is also rather small. Therefore the linear

2¢? 4rJry 26?4 Iy conductance does not really allow one to discriminate in

U:TW ~h r2 (26 which states the impurities are in this temperature range.
d s W, W . .

However, as it was analyzed recently in Refs. 27 and 28,
whereT=mp%’? is the junction conductance between thetransport spectroscopy in a finite in-plane magnetic field
dot and the wire and’yq is the junction conductance be- should enable one to distinguish between both impurity
tween the dot and the source-drain lead. ground statdeither singlet or triplet From an experimental

The interesting situation occurs whéﬁlz(ZI). We have point of view, it is, therefore, crucial to gate the wire because
seen that the sign and the amplitude of the RKKY interactiorit may offer an opportunity to go continuously from one
depends orky, being adjusted to a resonance or off a resoregime to another way.
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IV. DISCUSSION OF THE RESULTS ture takes a power-law fashiofg ~ ve(ped)?*9 instead of

We have seen that when two quantum dots are brougﬁf‘e conventional exponential dependefftét can also be
closer together, they significantly deviate from the single-shown that the RKKY interaction decreases as a power law,
impurity behavior as soon @& > 21. This deviation from the |~ ve(pod)?/(21), with 21 the interimpurity distanc: For a
single-impurity behavior occurs mainly because of the strond-uttinger liquid with repulsive interactiong<1, it implies
renormalization of the Kondo temperature but also from thean increase of the Kondo temperatiteerefore a decrease
renormalization of the RKKY interaction. When FSEs play of the screening cloydand the RKKY interaction becomes
an important role, we also predict that the gating of the wirdonger range compared to the noninteracting case. We have
should allow one to control the sign of the RKKY interaction Seen in the introduction for the noninteracting case that the
and therefore the wire gate voltadg, might be used to criteria for FSE to occur is|2< gﬁ whereas the criterioh
control the ground state of our systéginglet or triplel. By ~ >Tg provides the more restrictive conditiort =2 (peJ)2&y.
individually probing the spectral properties of each dot, oneOn the other hand, in the presence of interactions, both cri-
can differentiate the single-impurity transport propertiesteria provide the same length scéle- (p,J)297V =¢; under
from the two-impurity ones and therefore provide a lowerwhich FSE and RKKY interaction comes into play. There-
estimate of the Kondo screening length. fore, we expect here an even sharper crossover from a single-

In order to obtain these results we made some approximampurity regime to a two-impurity regime. Nevertheless, re-
tions that we want to discuss here. First we assume that theulsive interaction also considerably affects transport
wire is thin enough such that we can restrict a single transproperties through the dots. In the low-energy limit, pro-
verse channel. If the wire contairl$ different transverse cesses that transfer one electron between the leads and the
channels, the results derived here can be extended followinigteracting wire become irrelevaft Therefore the leads and
Ref. 7. In particular, FSEs start to play a role wh@?@ the wire decouple as two independeery anisotropit
=<A/N,i.e., forgﬁz NI.8 For thick wires, such a condition is channels. Because the coupling between the dot and the wire
difficult to meet experimentally and the renormalization andis much stronger, the screening of the impurity occurs at low
no renormalization of the Kondo temperature occurs wherenergy in the wire only. The conductance in the leads is
we vary the wire gate voltage. To see the effects discussed lominated in this low-energy limit by potential scattering
this paper, it is therefore preferable to work with thin wiresterms that lead to resonant cotunneling proceéb@s do not
containing only a few channels. renormalize¢. The conductance is therefore very small com-

We have also assumed that the wire is in a ballistic repared toGy whenever a single- or two-impurity scenario
gime, or at least that the mean-free paghis the largest occurs. It seems, therefore, less obvious to differentiate these
length scale by far. If the mean-free pdthwould be, for  two casegand therefore to provide a lower estimat@fb)‘in
example, smaller than the length of the short wire, we wouldhe presence of interactions at least in the equilibrium con-
then need to compare the Kondo length sélevith |yand  ductance. The differential conductance may reveal, on the
not with 2 the wire length. Moreover, it is very likely that other hand, interesting features at large bias that may help to
the simple dependences ©f and of the RKKY interaction distinguish the single- from the two-impurity regime. A full
with Ey, will be washed out. Nevertheless, for a clean semi-quantitative analysis of transport properties consistently in-
conducting wire of typical length~1 um, we may expect corporating both Coulomb interactions and finite level spac-
[4>2I. ing is required but goes beyond the scope of the present

We have also neglected Coulomb interactions in the wirepaper.

Coulomb interactions will first affect both the Kondo tem-

perature and the RKKY interactions. Assuming that the in- ACKNOWLEDGMENTS
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