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We study evolution of electron spin coherence having nonhomogeneous direction of spin polarization vector
in semiconductor heterostructures. It is found that the electron spin relaxation time due to the D’yakonov-
Perel’ relaxation mechanism essentially depends on the initial spin polarization distribution. This effect has its
origin in the coherent spin precession of electrons diffusing in the same direction. We predict a long spin
relaxation time of a novel structure: a spin coherence standing wave and discuss its experimental realization.
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There is growing interest in the emerging field of spin-
tronics with the aim of controlling and manipulating electron
spins in microelectronic devices. Major achievements
were attained in the metal spintronics, exploiting the giant
magnetoresistance and tunnelling magnetoresistance effects
in ferromagnetic-metal-layer and metal-insulator-metal
structures.1,2 A number of metal spintronic devices are al-
ready commercialized, for example, magnetic field sensors,3

hard disk recording heads, and magnetic random access
memory. Significant experimental and theoretical progress in
semiconductor spin structures has been reported recently.4–14

Current research in semiconductor spintronics is mainly fo-
cused on spin injection7 and spin control,8,9 including ma-
nipulations of spin relaxation time. Long spin relaxation
times are desirable for spintronic device operation.

Of particular interest in semiconductor spintronics are ef-
fects of spin-orbit interaction.15–28 On the one hand, electri-
cally controlled spin-orbit interaction can be used for spin
coherence manipulation, as with one of the most prominent
device proposals—the spin-field-effect transistor of Datta
and Dass.25 On the other hand, spin-orbit interaction causes
electron spin relaxation. The corresponding relaxation
mechanism is called D’yakonov-Perel’ relaxation
mechanism,29,30arising from bulk asymmetry of a crystalsas
with zincblende semiconductorsd and/or asymmetry of con-
fining potential. The D’yakonov-Perel’ relaxation mechanism
is identified as the leading spin relaxation mechanism in
many important situations. All previous studies of electron
spin relaxation in two-dimensional semiconductor hetero-
structures at zero applied electric field have focused either on
properties of spatially homogeneous or spatially inhomoge-
neous spin polarization but with the same direction of spin
polarization vector.

In this paper we investigate how the initial distribution of
direction of spin polarization affects the spin lifetimes for
electrons in quantum wells. The system under investigation
is electrons in 2DEG with specific distribution and orienta-
tion of electron spins at initial moment of time. Specifically,
the spin dynamics of two initial spin configurations, namely
a spin polarization strip and a structure—spin coherence
standing wave, is studied. In the spin coherence standing
wave, the initial direction of the spin polarization is a peri-
odic function of coordinate. We show that such a structure is

more robust against relaxation than the electron spin polar-
ization having the same direction of the spin polarization
vector. This interesting phenomenon could open a different
approach to semiconductor spintronic device operation.

The dynamics of electron spin polarization in an infinite
2DEG is modelled using a Monte Carlo simulation program
described in Ref. 16 and subsequently used by us for studies
of spin relaxation in 2DEG with an antidote lattice.23 Within
the Monte Carlo simulation algorithm, the space motion of
2DEG electrons is considered in the framework of the semi-
classical approximation. The electrons are treated as classical
particles, except that their kinetic energies are determined in
the effective-mass approximation, which accounts for the
semiconductor energy bands. We assume that electrons move
along linear trajectories interrupted by the bulk scattering
events. Our modelling involves spin-independent bulk scat-
tering processes, which could be caused, e.g., by phonon
scatterings or impurities. For the sake of simplicity, the scat-
tering due to such events is assumed to be elastic and isotro-
pic, i.e., the magnitude of the electron velocity is conserved
in the scattering, while the final direction of the velocity
vector is randomly selected. The time scale of the bulk scat-
tering events can then be fully characterized by a single rate
parameter,16 the momentum relaxation time,tp. It is con-
nected to the mean free path byLp= unW utp. Here unW u is the
mean electron velocity.

In our simulations the electron spin polarization is conve-

niently described by the spin polarization vectorSW =TrsrsW d,
wherer is the single-electron density matrix.31 We consider
the spin Hamiltonian consisting solely of the Rashba spin-
orbit term32

HR = a"−1ssxpy − sypxd, s1d

where a is the interaction constant,sW is the Pauli-matrix
vector corresponding to the electron spin, andpW is the mo-
mentum of the electron confined in a two-dimensional geom-
etry. It is assumed thatHR influences only the spin coordi-
nate, while the reciprocal effect of the spin on electron space
motion is ignored. From the point of view of the electron
spin, the effect of the Rashba spin-orbit coupling can be
regarded as an effective magnetic field. In the presence of a
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magnetic field, the electron spin feels a torque and precesses
in the plane perpendicular to the magnetic field direction
with angular frequencyVW . Momentum scattering reorients
the direction of the precession axis, making the orientation of
the effective magnetic field random and trajectory dependent,
thus leading to an average spin relaxationsdephasingd. The
quantum mechanical evolution ofSW can be described by the
classical equation of motiondSW /dt=VW 3SW.31

To make a long story short, at the initial moment of time
t=0 the electron coordinatesrWst=0d and direction of velocity
are randomly generated, while the spin direction is selected
as described below. The main loop of the Monte Carlo simu-
lation algorithm involves the following steps: generation of a
time interval ti+1− ti between two consecutive scattering
events, calculation ofrWst= ti+1d andSWst= ti+1d susing the clas-
sical equations of motiond, and random generation of a new
direction of electron velocity due to the scattering att= ti+1.
Consecutive applications of these operations allow finding
the electron position and spin direction at any arbitrary mo-

ment of time. We calculatekSWl as a function of time and
coordinate by averaging over an ensemble of 107 electrons.
The spin relaxation time is evaluated by fitting the time de-

pendence ofkSWl to an exponential decay.
Mention should be made about the validity of the semi-

classical approximation to the electron space motion. The
semiclassical approximation is justified if the typical distance
between impurities is much longer than the de Broglie wave-
length, and the de Broglie wavelength is much longer than
the unit cell. This hierarchy of lengths is met, for example, in
lightly doped semiconductors and high-mobility heterostruc-
tures. The second requirement on the de Broglie wavelength
implies that variations of the spin-orbit interaction on the
unit cell length scale are averaged and the spin-orbit param-
eter a is considered as a space-independent constant. Ex-
amples of using the semiclassical approximation in model-
ling of spin-related phenomena in semiconductors can be
found, e.g., in Refs. 16, 18, 19, and 23.

Evolution of a spin polarization strip.We start our con-
sideration from a simple example, which will help to under-
stand the main idea of our approach. Let us consider
evolution of a spin polarization strip. We assume that at the

initial moment of timet=0 the spin polarization isSW =S0ẑ for
ux−x0u,a and 0 otherwisesẑ axis is perpendicular to the
heterostructured. Initial spin polarization is homogeneous in
y direction. Figure 1 shows results of our simulations. Evo-
lution of spin polarization components in the central region
of the strip is similar to the evolution of the homogeneous
spin polarizationfsee Fig. 1sadg, Sz component decreases
with time andSx=Sy=0. However, behavior ofSx component
near the edges of the strip is unusual, it has two pronounced
peaks with amplitude comparable toz component of spin
polarization. These peaks have the same amplitude but dif-
ferent polarity.

The amplitude of the spin polarization as a function of
coordinate is shown in Fig. 1sbd. Peaks of spin polarization
amplitude in the edge regions reveal that relaxation in these
regions occurs appreciably slowly than in the bulk region. To
understand this phenomenon, consider evolution of homoge-

neous spin polarization. The direction of electron spin pre-
cession between two consecutive scattering events is defined
by the direction of electron motion. Since the system is ho-
mogeneous inx andy directions, the averageSx andSy spin
polarization components of electrons coming to an arbitrary
selected space region are zero. When the symmetry of the
system is broken, the transfer of spin polarization fromSz to
Sx and Sy may occur. Consider the electrons, for example,
near the left edge of initial spin polarization profile. The
polarized electrons diffuse out of the area of initial spin po-
larization, from right to left. Their spins precess coherently,
and, since there are no spin-polarized electrons coming to
this area from the opposite direction,Sx component becomes
uncompensated and conserved. This explains slower spin re-
laxation in the edge regions. The peaks ofSx in Fig. 1sad
have a different polarity because of the opposite diffusion
direction of spin-polarized electrons near the left and right
edge.5 Using the Monte Carlo simulation algorithm we stud-
ied spin coherence evolution varying shape of initial spin
polarization profile. It was found that the effect of spin po-
larization transfer to in-plane components is more prominent
with decrease of space dimensions of areas with spin polar-
ization gradients. Similar findings were observed by the au-
thors of Ref. 15, who studied evolution of a pulse of spin
polarization.

Spin coherence standing wave.Motivated by observation
of longer spin relaxation time near the strip edges, we study
evolution of a spin coherence standing wave, which is sche-
matically shown in Fig. 2sad. Direction of spin polarization

FIG. 1. sColor onlined Evolution of the spin polarization strip,
time dependence of spin polarization vector componentssad and
amplitudesbd.
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in the spin coherence standing wave is a periodic function of
x with the componentsf−S0sins2px/ad, 0, S0 coss2px/adg,
wherea is the period of the spin coherence standing wave
andS0 is its amplitude. Intuitively, the longest spin relaxation
time will be, if after passing the distancea, the spin preces-
sion angle of an electron spin due to the Rashba spin-orbit
interaction is equal to 2p. In this case the spin orientation of
electrons moving along thex direction will coincide with the
initial direction of spin polarization vector and diffusion
along thex axis will not lead to relaxation. The electron spin
relaxation will be associated only with the electron diffusion
in the y direction.

Figure 2sbd shows the distribution of the amplitude and
components of spin coherence standing wave polarization at
some time momentt.0. In our numerical simulations, the
spin coherence standing wave was of a finite length, from
x=0 to x=100Lp, which explains the decrease of the spin
coherence standing wave amplitude near the edges of this
interval. However, we are mostly interested in evolution of
spin coherence standing wave in the central region. It is
found that in the central region the amplitude of spin coher-
ence standing wave is a periodic function ofx with mini-
mums corresponding to maximums ofSz and with maxi-
mums corresponding to maximums ofSx. We attribute the
transition from constant spin polarization amplitude att=0 to
a periodic one at subsequent time moments to the depen-
dence of spin relaxation times on the initial direction of spin
polarization vector. It is well known that spin relaxation time
of in-plane spin polarization is two times longer then the spin
relaxation time of the spin polarization perpendicular to the
plane.29

Spin relaxation time of the spin coherence standing wave
as a function of its period is depicted in Fig. 3. This depen-
dence has a maximum exactly ata=2pLp/h, whereh is the
electron spin precession angle per mean free path. At the

maximum, the relaxation time is 6 times as large for the spin
coherence standing wave as for the homogeneous spin polar-
ization in thez direction. It is easy to understand why the
spin relaxation time has a maximum ata=2pLp/h. Follow-
ing the discussion above, if we consider an electron moving
from rWst=0d=sx,yd to rWst= t1d=sx+dx,yd then it is clear that

the direction ofSWst1d coincides with the initial spin polariza-
tion of electrons atsx+dx,yd. Thus, at this particular value of
a the spin polarization dephasing due to the diffusion in the
x direction is completely eliminated, and the spin relaxation
occurs because of the diffusion in they direction only.

We note that the dependence of spin relaxation time of
spin coherence standing wave on its period could be useful
for future spintronic applications. Potentially, this property
allows transformation of space characteristics into the time
domain. Moreover, spin coherence standing wave has an-
other interesting property, namely, its phase. For instance,
position of spin coherence standing wave minima could be
used to encode the information. An applied electric field inx
direction induces sliding of the spin coherence standing
wave allowing reading, writing, and manipulating the infor-
mation.

From the experimental point of view, nonequlibrium spin
polarization can be introduced into a semiconductor at the
interface between semiconductor and ferromagnetic metal or
magnetic semiconductor, or by using optical pumping
techniques.12 Although both of these methods could be used
to create a spin coherence standing wave, we concentrate our
attention on the second method. Absorption of circularly po-
larized light in semiconductors generates spin-polarized elec-
trons with spin polarization in the line of laser beam, while
the direction of electron spin polarizationsalong or opposite
to the beamd is determined by the light helicity.33 Two pos-
sible experimental setups are illustrated in Fig. 4. In the first
case fFig. 4sadg, a lattice of plain alternate right and left
circularly polarized laser beams is used. After scattering on a
light diffuser ssuch as, for example, opal diffusing glassd,
laser beamssapplied in a pulsed polarize 2DEG electrons to a
structure similar to the spin coherence standing wave. In the

FIG. 2. sColor onlined sad Schematic of the spin coherence
standing wave, direction of spin polarization vector is indicated by
the arrows.sbd Total polarization and polarization components of
the spin coherence standing wave att=5tp, with a=20.94Lp and
hLp=0.3.

FIG. 3. Dependence of the electron spin relaxation time on the
spin coherence standing wave period. The straight line shows the
spin relaxation time of homogeneous spin polarization in thez di-
rection in the same system. This plot was obtained using the param-
eter valuehLp=0.3.
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second experimental setupfFig. 4sbdg, circularly polarized
laser beam travels from top to bottom of the sample with a
constant velocity. Correspondingly, spin polarized electrons
are created at different places at different moments of time.
An external magnetic field is applied. The initial spin polar-
ization direction of all electrons is nearly the same, however
the electron spin precession angles due to the magnetic field
are different for electrons excited at different moments of

time. This allows obtaining the final spin configuration in the
form of spin coherence standing wave. When the beam
reaches the bottom of the sample, the magnetic field is
switched offfFig. 4sbdg.

In conclusion, it was shown that the electron spin relax-
ation time in two-dimensional systems with inhomogeneous
direction of electron spin polarization could be significantly
longer as compared to the spin relaxation time in systems
with homogeneous spin polarization. A structure, spin coher-
ence standing wave characterized by periodicity of direction
of spin polarization in one dimension was proposed and stud-
ied. Long spin relaxation time of this structure is explained
by coherent spin precession of electrons diffusing in the
same direction. Two distinctive features of the spin coher-
ence standing wave, namely its long spin relaxation time and
its phase, make it attractive for spintronic applications. Pos-
sible methods of spin coherence standing wave creation were
discussed. It should be pointed out that the proposed struc-
ture allows reducing spin relaxation only due to D’yakonov-
Perel’ relaxation mechanism. When D’yakonov-Perel’ relax-
ation is reduced, other relaxation mechanism could be
dominant. We can outline the following possible relaxation
mechanisms: Elliot-Yafet,34,35 Bir-Aronov-Pikus,36 relax-
ation due to fluctuations of spin-orbit interaction,21 and re-
laxation by nuclear spins.37 Another possible source of spin
dephasing is many body inhomogeneous broadening pro-
posed by Wu.13 Investigation of joint action of these mecha-
nisms is out of scope of this paper.
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