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We extend a theory of well-width fluctuations for inhomogeneous exciton broadening in quantum wells by
expressing the fluctuation of the width in terms of the statistical characteristics of the morphological rough-
nesses of each interface forming the well. This allows us to take into account a possibility of cross correlations
between the interfaces. We show that these correlations strongly suppress a contribution of interface disorder
to the inhomogeneous linewidths of excitons. We also demonstrate that the vertical cross correlations are
crucial for explaining the variety of experimental data on the dependence of the linewidth upon thickness of the
quantum well.
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I. INTRODUCTION

Absorption and luminescence exciton spectroscopy are
among the most important tools for studying quantum wells
sQWsd as well as other semiconductor heterostructures.
Therefore, one of the most fundamental problems in the
physics of these systems is establishing connections between
the spectral line shapes and the microscopic properties of the
respective structures. A great deal of effort was devoted to
this problem over the last half of the 20th century, and it has
been established that at low temperatures the exciton line-
width in absorption and photoluminescence spectra in quan-
tum wells is predominantly inhomogeneous.1 The shapes of
the spectra in this case are determined by various types of
disorders present in a structure, and it is currently generally
accepted that the spectral widths in QWs are directly related
to the quality of the interfaces, so that the luminescence
spectra provide a quick and simple quality-assurance tool for
QW growth.2 However, as it will be seen in this paper, in
spite of all the efforts, the existing theories of the inhomoge-
neous broadening of excitons in QWs still cannot satisfacto-
rily explain all the diverse experimental data collected in this
area.

The current theoretical approaches of interface-roughness
effects on photoluminescencesPLd and absorption spectra in
QWs are usually based on the concept of well-width
fluctuation.2–6According to this theory a small fluctuationdL
of QW width results in the fluctuation of the confinement
electron and hole energies:dEn,s]En/]LddL. Therefore, the
inhomogeneous broadening is proportional to the statistical
averagekdEnl over all possible topological configurations.
Despite a qualitative success in the prediction of the major
exciton characteristics in PL and absorption spectra, this
theory suffers from a lack of ability to fit the whole variety of
the experimental data.sSee a comparison of the theory well-
width fluctuations with experiments in Sec. IId. Also, the
concept of a locally varying well widthimplicitly assumes
that the surface corrugations of two QW interfaces are sta-
tistically independent, and can, therefore, be described by a
single random functiondL. However, there exists much evi-
dence that this assumption does not correspond to realistic
quantum well structures, in which the “vertical” correlations

between two interfacesswhen the later-grown interface “re-
members” the profile of the first-grown interfaced are
present. One can mention, for instance, direct morphological
analysis done with cross-sectional scanning tunnel
microscopy,7 scattering ellipsometry,8 and x-ray reflection
measurements.9,10Another relevant example of such correla-
tions is the vertical stacking of quantum dots,11 where verti-
cal correlation length is observed up to an 80-monolayer
thickness. The well-width fluctuation theory cannot describe
an effect of these correlations on the exciton linewidths.

The goal of this paper is to develop a generalized theory,
which would be able not only to clarify the importance of
interwall correlations, especially for narrow QWs, but could
also provide tools to deal with more complicated systems
such as asymmetric QWs or superlattices. We explicitly
show here that the presence of interwall correlations signifi-
cantly modifies optical spectra, and that taking these corre-
lations into account is necessary in order to achieve even a
qualitative agreement between the theory and the experimen-
tal results. One of the important practical conclusions of this
work is that narrow lines do not always mean a good-quality
interfaceswhich is often assumed in experimental publica-
tionsd, but can be the result of a line-narrowing effect due to
the interwall correlations.

This paper is organized in the following way. In the Sec.
II we shall provide a brief review and critical analysis of the
existing experimental results and relevant theories. In Sec. III
we will generalize the earlier theories of interface disorder2–6

to include the effects of the vertical correlations. In the Sec.
IV we will compare the results of our analysis with experi-
ments.sFor comparison of our theory with the theory of local
width fluctuations see discussions at the end of Sec. III Ad.
The paper is concluded by an Appendix, in which we com-
ment on the role of the lateralsin-planed correlation length in
the optical spectra of QW.

II. COMPARISON BETWEEN CURRENT THEORIES
AND EXPERIMENT: CRITICAL REVIEW

Since a QW is generally a heterostructure formed by a
binary semiconductorsABd and a ternary disordered alloy
sAB1−xCxd, there are two types of disorders responsible for
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the inhomogeneous broadening. One is compositional disor-
der caused by concentration fluctuations in a ternary compo-
nent of the QW as well as random diffusion across the
interface.12,13 The other source of inhomogeneous broaden-
ing in QWs is associated with the roughness of the interface
caused by the formation of monolayer islands at the inter-
faces, resulting in local changes in the well thickness.2–6 The
quality of the interfaces is very sensitive to the ambient pa-
rameters of the growth process. Depending on growth con-
ditions, the atoms deposited on the surface can form “is-
lands” of various lateral sizes with different correlation
scales. These morphological changes manifest themselves in
the shape and width of the optical spectra of QW excitons.
Since both types of disorders can be ultimately traced to
local changes in concentration, an accurate distinction be-
tween them is not a trivial task, and it was first elucidated in
Ref. 3.

Theoretical studies of effects due to compositional and
interface disorders on absorption and photoluminescence
spectra have a long historysfor review articles see, for ex-
ample, Refs. 1, 14, and 15 and references therein.d. In gen-
eral, absorption and photoluminescence spectra, apart from
the Stokes shift, have also different lineshapes. The calcula-
tion of the exciton absorption line shape is equivalent in the
dipole approximation to the estimation of the optical density
function1 As«d which is determined by the properties of the
underlined random potential. In turn, the emission peak
should be treated as a more complicated average over only
partially thermalized exciton occupation numbers. Below we
concentrate on calculation of the exciton absorption peak.
This problem can be divided into two fairly independent
parts. The first deals with the derivation of the random po-
tentials acting on excitons in QWs from the properties of
microscopic fluctuating parameterssconcentrations, well
thickness, etc.d. Its main objective is to calculate the corre-
lation functions of these potentials. The second part of the
problem consists of calculations of the characteristics of ex-
citons subjected to these potentials and in establishing rela-
tions between the characteristics of optical spectrasline-
width, shaped and the properties of the potentialsfroot-mean-
squaresrmsdg fluctuation and correlation lengthd. Both of
these problems were carefully studied in the past, but since
the focus of the present work is on the former, we shall
discuss it in more detail.

The main object of our discussion is the rms value of the
random potentialsW, defined asW=ÎkVef fsRd2l, and its de-
pendence on the microscopic parameters of the QW. Here
Vef f is the effective potential acting on excitons due to both
compositional and interface disorders. The current
theories3,13 predict distinctly different properties for contri-
butions to the potential from these two types of disorders.
These properties can be devised from the behavior of the
single-particle electron and the hole QW wave functions. In
particular, the dependence ofW upon the width of the wellL
for a narrow well is predicted as being~L for the interface
disorder. For the compositional disorder, it depends on
whether the QW is formed by a ternary alloy or a binary
system.13 In the former casesas in InxGa1−xAs/GaAsd W
~L3/2, while in the case in which the QW is formed by a
binary material, the dependence isW~ÎL. In the three-

dimensional limitL→` the contributions of the two types of
disorders toWsLd are also different. The contribution of the
interface disorder for largeL decreases as 1/L3, while the
role of the alloy disorder again depends upon the type of the
structure. If QW is formed by a ternary alloyW decreases
with the width only weakly, as 1/ÎL, before reaching a con-
stant three-dimensional limit. If, however, the alloy forms
barriers,W decreases withL much faster as exps−k0Ld /L3,
where k0 is an inverse penetration length of ground-state
wave function in the barrier region. Although in both cases
the functionWsLd has a maximum at some intermediate val-
ues ofL, the position of the maximum and the shape of the
function WsLd differ for the two types of disorders.

While the qualitative picture of disorder-induced broaden-
ing is understood rather well, attempts at a quantitative com-
parison of the theoretical predictions with the experiments
face significant difficulties. In Fig. 1 we collected experi-
mental data for the dependencies of low-temperature photo-
luminescence exciton linewidths on QWs of average
thickness,L. All of the data are for InxGa1−xAs/GaAs het-
erostructures and represent experimental results from several
research groups.16–19 While all the results show a nonmo-
notonous dependence in accord with theoretical expectations,
the maxima have different positions and do not seem to have
a regular dependence on the concentration; the peak forx
=0.18 lies between the peaks forx=0.12 andx=0.135. The
maxima also have different heights and sharpness. For ex-
ample, the fullwidths at half maximumsFWHMd for x
=0.09 andx=0.11 have very smooth behaviors more charac-
teristic of compositional disorder, while other data have
rather sharp features more typical of interface disorder. Fi-
nally, the values of FWHM at largeL, which are determined
mainly by compositional disorder, are scattered over quite a
broad range.

It is not surprising that different samples show different
behaviors in Fig. 1, since they were prepared under different
growth conditions, and, as a result, they have different alloy
disorder and interface-roughness characteristics. It is more
surprising that if we try to analyze these data in light of the
current theories3,13 of interface-roughness and alloy-disorder
inhomogeneous broadening, then we encounter difficulties in
fitting all these curves with the parameters in hand. Regard-
ing the alloy contribution to the linewidth, we note that in the
quantum mechanical approaches to this problem3,12,13,20this

FIG. 1. Experimental dependences of the low-temperature exci-
ton’s full width half maximumsFWHMd on the QW average size,
L. All the data are presented for the InxGa1−xAs/GaAs QW’s. The
results were taken from the following references: Patanèet al. sRef.
16d, Kirby et al. sRef. 17d, Bertolet,et al. sRef. 18d, and Reithmaier
et al. sRef. 19d.
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contribution is completely determined by the alloy concen-
tration and QW width; the theories do not contain any un-
known parameters that could be used to fit the theoretical
predictions to the experiments. Therefore, one can directly
compare the theoretical predictions with the experimental re-
sults using the largeL asymptote of the linewidth. The initial
calculations for the alloy-induced disorder in the bulk12,21

and in the quantum wells13 were done in the adiabatic ap-
proximation, where the Bohr’s radius of an excitonaB was
assumed to be much larger than a correlation length of the
effective potential,c. If one applies that theory13 to the case
of an In0.12Ga0.88As/GaAs QW, the FWHM comes out to be
equal to 0.36 meV forL=150 Å. This value is much smaller
than the observed bulk value.38 The same order of magnitude
results are obtained in the semiclassical limit of the
theory22,23 with the Gaussian shape of the exciton linewidth.
One can reasonably argue1 that the adiabatic approximation
fails for a heavy hole and a light electronsmh@med, both
being subject to short-range energy fluctuations. Even for the
underlying “white-noise” disorder, the effective potential felt
by an exciton has two different correlation lengths. A rather
massive hole will average only a small volume around the
center of masssCOMd of the exciton, whereas a light elec-
tron is spread out over a much larger area of the order ofaB

2.
As a result, the hole will be much more sensitive to compo-
sitional fluctuations, and its contribution to the effective dis-
order potential will be enhanced by the factorsM /med,2
whereM =me+mh. However, the linewidths found using the
improved theories3,20 turn out to be much larger than the
experimental resultsssee also Fig. 8 belowd. Thus, existing
theories cannot produce an accurate result for the alloy-
disorder contribution to the exciton linewidth.

It is less straightforward to compare the theory with the
experiments for interface-roughness-induced broadening be-
cause it is difficult to separate the contributions from the two
types of disorders in the regime of the small and intermediate
values ofL. One could hope to identify the most important
contribution by the slope of theWsLd dependence at smallL,
but, unfortunately, the accuracy of the existing data does not
allow one to distinguish between theL or L3/2 dependencies.
The manifestation of the interface disorder in optical spectra
is clearer in the case of systems in which growth interruption
resulted in the formation of sufficiently large, monolayer is-
lands. It was shown in Ref. 6 that these islands could be
responsible for the observed splitting of the exciton spectra.
Also, interface roughness has been studied directly by such
experimental techniques as microphotoluminescence,
cathodoluminescence, transition electron microscopy, or
scanning tunneling microscopy.2,5,14,16–19,24–27

The diversity of the experimental behavior for the FWHM
shown in Fig. 1 presents a significant difficulty for the exist-
ing theories of the interface contribution to the linewidth,3,28

even from the point of view of the qualitative interpretation
of the results. Indeed, the statistical properties of an interface
are usually characterized by two length parameters: the
thickness fluctuationh and the lateralsin-planed correlation
lengths'. With some reservations they are often taken to be
equivalent to the average height and the lateral size of the
islands at the interface. The size of the height fluctuationsh
usually has a very restricted range of variations of one or two

monolayers. In the semiclassical limit of the Gaussian-
shaped linewidth, the broadening is proportional to the prod-
uct hs', which is really only one flexible parameter of the
theory. With the help of this parameter it is possible to adjust
the relative heights of the maxima, but not their positions and
particularly not the sharpness of these maxima. Even if one
takes into account the contributions from both types of dis-
orders, it is still not possible to explain the variations be-
tween the optical spectra of different samples, a problem
addressed in Sec. IV.

It is clear from the provided analysis that the existing
theories of the inhomogeneous broadening of excitons are
unable to quantitatively explain the experimental data. We
suggest in this paper that one of the reasons for this failure is
the neglect of the interwall correlations mentioned in the
Introduction. While this idea does not fix the problems
caused by wrong estimates of the alloy-disorder contribution,
we will show in the subsequent sections of this paper that it
does allow us to explain all varieties of experimental results
related to the properties of the curves in Fig. 1 in the vicinity
of their maxima.

III. STATISTICAL PROPERTIES OF THE INTERFACES
AND EXCITON EFFECTIVE POTENTIAL

A. A model of the interface disorder

In order to make the problem tractable, we introduce stan-
dard simplifications assuming that both conduction and va-
lence bands are nondegenerate and that they both have an
isotropic, parabolic dispersion characterized by the masses
me andmh, respectively. Throughout the paper we use effec-
tive atomic unitssa.u.d, which means that all distances are
measured in the units of the effective Bohr radiusaB
="2e /m*e2, energies in units ofEa.u.=m*e4/"2e2;2Ry, and
masses in units of reduced electron-hole massm* , where
1/m* =1/me

* +1/mh
* . In this notationme,h=me,h

* /m* , where
me,h

* are the effective masses of an electron and a heavy hole.
We will choose thez axes in the direction of growth of the
structuresvertical directiond. The plane perpendicular to this
direction is the lateral planessee Fig. 2d. We measure the
electron and hole energies in the QW from the conduction
and valence band edges of the barrier, respectively. Then the
potential of a QW with interface roughness is given by

Ue,hsr d = − Ve,h„ufz+ L/2 − h1sx,ydg − ufz− L/2 − h2sx,ydg…

< Ue,h
s0dszd + dUe,h

int fsr d, s1d

whereuszd is a step function,Ve,h are differences in the offset
band energies, and

FIG. 2. Characteristic length scales describing the interface
roughness of a QW.
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Ue,h
s0dszd = − Ve,hfusz+ L/2d − usz− L/2dg, s2d

dUe,h
int fsr d = Ve,hfh1sx,yddsz+ L/2d − h2sx,yddsz− L/2dg.

s3d

The random functionsh1,2sx,yd, with zero mean, character-
ize the deviation of theith interface from its average posi-
tion. The perturbation expansion of theu function is justified
because an interface roughness is almost always small for the
typical parameters in semiconductor heterostructures. The
presence of the two functionsh1,2sx,yd distinguishes Eq.s2d
and Eq.s3d from the respective equations of Ref. 3, where
the roughness of only one interface was taken into account.

The statistical properties of the interfacial roughness in
multilayered systems can be characterized by the height-
height correlation functions,

khisr1dh jsr2dl = h2f ijzsur1 − r2ud, s4d

whereh is an average height of interface inhomogeneity, and
k¯l denotes an ensemble average. We assume here that the
dependence of both the diagonal and the nondiagonal corre-
lations on the lateral coordinatesr is described by the same
function zsrd. The diagonal elementsf ii are the constants,
and the respective functions describe the lateral correlation
properties of a given interfacesself-correlation functionsd.
The non-diagonal elements withi Þ j introduce correlations
between different interfaces; the respective quantity
f12sL /s"d, which can be called across- or vertical-
correlation function, is a function of the average width of the
well and is characterized by the vertical correlation length
s". sA subscript “"” denotes that the direction of the vertical
correlation is parallel to the direction of growth.d

The effect of the interwall vertical correlations has been
previously considered in studies of the conductivity of thin
metallic films.29–31 To the best of our knowledge, in all pre-
vious microscopic studies of the exciton line shape in the
optical spectra of QWs, these correlations were omitted.
Such an approximation is valid for wide QWs, but in the
case of narrow QWs the vertical correlations are experimen-
tally confirmed7–11 and should be taken into account. In the
limit L /s"!1 it is reasonable to assume thatf11= f22 and
that the interwall correlation functionf12 tends to sf11

+ f22d /2, which means that for the very small separation be-
tween the interfaces one random surface spatially repeats the
pattern of the otherssee Fig. 3d. As we shall see below, the
effect of the interface disorder in this case tends to cancel out

at least in the first order of the perturbation theory. For the
sake of concreteness we will assume below that

2f12 = sf11 + f22dexps− L2/s"
2d. s5d

The value of the vertical correlation lengths' depends on
the growth process. In the following analysis we will also
assume the Gaussian form for the lateral correlation function:

zsRd = exps− R2/2s'
2 d. s6d

The limit s'→0 corresponds to the white-noise correlator,

zsRd = 2ps'
2 dsRd. s7d

Following the standard procedure12 described in numer-
ous papers we derive the Schrödinger equation for the
center-of-masssCOMd exciton motion subjected to an effec-
tive random potential,

F−
DR

2M
+ UeffsRdGcisRd = «icisRd, s8d

with UeffsRd given by

UeffsRd =E sdUe + dUhdf2srdxe
2szedxh

2szhdd2rdzedzh

; UesRd + UhsRd, s9d

where dUe,h are defined in Eq.s3d, r=re−rh, and R
=smere+mhrhd /M. For the symmetric QWs,xs−L /2d
=xsL /2d, and from Eq.s3d we obtain

Ue,hsRd = Ve,hxe,h
2 sL/2d E fh1sR ± bh,erd

− h2sR ± bh,erdgf2srdd2r. s10d

Herebh,e=mh,e/M. Hereafter we will omit an explicit depen-
dence on L for the electron and hole wave functions
xe,h

2 sL /2d, always assuming that their values are taken at the
position of the interface. The correlation function for the
effective potentialUeffsRd can then be expressed as

kUsR1dUsR2dl ; Tee+ Thh + 2Teh, s11d

where

Tii = h2Vi
2xi

4ff11 + f22 − 2f12sLdg

3E d2rd2r8f2srdf2sr8dz„uR − b jsr − r8du…,

s12d

Teh= h2VeVhxe
2xh

2ff11 + f22 − 2f12sLdg

3E d2rd2r8f2srdf2sr8dzsuR − bhr + ber8ud,

s13d

wherei , j =e or h andR=R1−R2.
In all of these expressions, the terms in front of the inte-

grals determine the dependence of the correlation function
on the QW widthL, while the integrals themselves determine

FIG. 3. The limiting case of the absolutely correlated interfaces,
h1=h2.
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the spacial correlations in the lateral dimensions. Each of
these terms can be presented in the form

TijsL,Rd = h2ViVjFijsLdGijsRd, s14d

FijsLd = xi
2x j

2ff11 + f22 − 2f12sLdg, s15d

GijsRd =E d2rd2r8f2srdf2sr8dzsuR − b jr8 + birud,

s16d

where the indexesi , j take the valuese andh. sNote that the
order of these indices in the integrand is important.d

Equationss14d–s16d can be considered as an extension of
an often-used theory of well-width fluctuations.3 According
to this theory the width of a QW is given byL=kLl+dL,
where dL is a random variable with a correlator
kdLsr1ddLsr2dl=2h2 exps−ur1−r2u2/2s'd. Our approach in-
troduces independent roughnesses for each of the two inter-
facesh1 andh2 so thatdL=h1−h2. This results in the addi-
tional independent statistical parametersf ij and s". In the
first order of the perturbation theory, in the case of a sym-
metrical sequal potential heightsd QW both approaches can
be reconciled by a proper choice of the correlation function
kdLsr1ddLsr2dl for the QW-width fluctuations. However, al-
ready in the second order of the perturbation theory the pre-
sented approach differs qualitatively from the approach of
Ref. 3. An easy way to see the difference is by considering
the limit of the absolutely correlatedsparalleld interfacesssee
Fig. 3d h1=h2. Now, dL;0, and the interface-roughness
contribution in the theory of well-width fluctuations vanishes
completely. In our approach, the result is zero,FijsLd=0,
only in the first order of the perturbation expansion. The
second order brings “mixing” of thez and in-plane coordi-
nates:k=h1srd=h1sr8dxx9l~h2/ sLs'd2 and similar terms.
sThese results will be published elsewhere.d Corrections of
this type can play an essential role for a not very smooth
surface corrugation. Also, the advantage of the multiple
interface-roughness approach is that it can be easily extended
to the more complicated cases of an asymmetric QW, a QW
in the external fields, or multiple QWs and superlattices,
where a right guess for the width-fluctuation correlator is not
so obvious.

Another apparent difference of Eq.s15d from the results
of Ref. 3 is that the interface disorder potential is determined
there by the derivative of the locally varying confinement
energy, but it does not depend on the value of the electron
and hole wave functions at the interfaces. These results can
be easily reconciled after using Ehrenfest’s theorem,

]Eh,e

]L
=Kxh,eU ]Ĥh,e

]L
Uxh,eL = kxh,eudUh,e

int fsr h,eduxh,el,

wheredUint f is given by Eq.s3d. In the more general cases,
in which the confinement energy depends on more than one
parameter, a perturbation theory leaves the only consequent
choice of expressing the interface disorder potential through
the values of the corresponding wave functions on the inter-
faces.

B. Dependence on well thickness

Let us first focus on the functionsFijsLd, which determine
the dependence of the total correlation function on the QW
width L. For the sake of concreteness we consider in detail
the functionFhh. The analysis of the other functions is simi-
lar. The dependence ofFhh on L comes from two factors. The
first factor is the 4th degree of the electron’s QW wave func-
tion xh

4 calculated at the interfaces,z= ±L /2. This depen-
dence in the In0.12Ga0.88As/GaAs QW is shown in Fig. 4 by
a dashed line. It is easy to understand the behavior ofxh

4 for
the cases of large and small widths. The characteristic scale
here is given by 1/k0h=1/Î2mhVh, since this scale deter-
mines the number of energy levels in a finite QWsN=1
+fkhL /pgd.

For a finite QW the ground-state wave function has a
piecewise form,

xszd = H A cosskzd, zø uL/2u
B exps− kuzud, zù uL/2u,J s17d

where k=Îk0
2−k2, and k is the ground-state wave vector.

From the normalization and matching conditions, one can
readily obtain the value of the square of the wave function at
the interface

x2 = B2 exps− kLd = F k

1 + k2/k2 + kLk0
2/s2k2dG . s18d

In the case of a wide QW, there are many discrete levels in
the well, and the well is “almost infinite:”k<p /L
−2p /L2k0, k<k0, and

x2 <
2p2k0

k0
3L3 + 2k0

2L2 + 2p2 ,
1

L3 . s19d

Since for large well widths the vertical interwall correlations
are negligible,f12→0, Eq.s19d determines the total decrease
of the interface correlator with increasing width.

In the opposite case of very narrow QWs, there is only
one shallow level, which can be determined from the
d-functional potential approximation:k<k0−L2k0

3/8, k
<k0

2L /2, and

FIG. 4. Dependence of the correlation function of the hole-hole
interface-roughness potential on the well width in an
In0.12Ga0.88As/GaAs QW. The solid line is the functionFhhsLd. The
dashed line is the fourth degree of the hole wave function at the
interface. The dot-dashed line shows the approximations of this
function for small and largeL, given by Eqs.s19d and s20d. The
maximum ofxhsLd4 is approximately located at 1/k0h=1/Î2mhVh.
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x2 <
k0

2L

2
. s20d

If one neglects vertical correlations, this expression describes
the suppression of the interface disorder for narrow wells
because of a decreased portion of the holeselectrond wave
function inside the well. This result was obtained earlier in,
for instance, Ref. 22. Interwall correlations, however, signifi-
cantly modify this dependence. For lengths smaller than the
vertical correlation lengths" we have

f11 + f22 − 2f12 , S L

s"

Dg

, s21d

whereg is determined by the form of the interwall correla-
tion factor f12. For example, for Gaussian or Lorentzian de-
pendences off12sLd, the parameterg=2, while for the expo-
nential form of this functiong=1. Thus we obtain that, in
narrow QWs, interface correlations are strongly suppressed
by the factor,

FijsLd , L2+g, L , s",1/k0. s22d

While the transition between the two asymptotic behaviors
of x is determined by the parameterk0, the behavior off12
depends on the correlation lengths", which is a completely
independent parameter. The experimental data suggest that it
is quite possible fors" to be much larger thenk0. In this
case, interwall correlations can affect not only theL→0
asymptotic ofW, but also its behavior atL@k0. Instead of
1/L3 behavior one would have a much slower decrease ofW
with L, W~Lg−3.

From the behavior of the wave functions18d we can see
that the maximum ofFhhsLd is reached in the vicinity ofL
,1/k0h. However, as the previous analysis demonstrates, the
vertical correlation functionf12 can significantly shift this
position; it can also change the height and shape of the peak.
Thus, the presence of the interwell correlation termf11+ f22
−2f12 in the functionFhh can naturally explain all variety of
experimental results related to the properties of the curves in
Fig. 1 in the vicinity of their maxima. The graph of function
Fhh, with interwall correlations taken into account, is shown
in Fig. 4. One can see that these correlations indeed signifi-
cantly affect the shape of this function. While we only dis-
cussed the properties of the hole-hole correlator, it is clear
that the behavior of the electron-electron and hole-electron
terms is similar.

C. Dependence on lateral correlation length

In order to investigate the results of the interplay between
the lateral and interwall correlations, let us now analyze the
lateral correlation functionsGijsRd. Their behavior is deter-
mined by the ratio of the potential correlation lengths' to
the average size of the exciton in a plane, as well as by
dimensionless parametersbe andbh. In order to evaluate the
respective integrals, we chose the normalized ground-state
function of the exciton relative motion in a quasi-two-
dimensional form,32

fsrd =Î 2

pl2 exps− r/ld, s23d

wherel is a variational parameter that indicates the average
exciton size.

For the ground state function, Eq.s23d, and the height-
height correlation function, Eq.s6d, the lateral dependence of
the correlatorGijsRd can be presented as a function of two
parametersGijsRd;GijsR;yj ,ad, where

yi =
Î2s'

bil
, s24d

anda=minsbi ,b jd /maxsbi ,b jd. The parametera is equal to
unity for the electron-electron and the hole-hole correlator.
For the cross termGeh this parameter is equal tome/mh,
which is much less than unity for the majority of the semi-
conductor materials. This fact allows for additional simplifi-
cations when evaluating the integrals. The parameteryeshd
defines the ratio of the renormalized lateral correlation length
beshdl of the effective holeselectrond potential to the original
correlation length of the interface fluctuations. For holes with
mh@me this renormalized correlation length is much smaller
than the corresponding length for the electrons. The latter
implies that the interface disorder has a bigger impact on the
holes than on the electrons. This is also true for the contri-
bution of the alloy disorder to the broadening.12 Thus, the
lateral correlation function can be rewritten in the following
form:

GijsR;yj,ad =
4yj

4

a2p2 E d2rd2r8 expf− 2yjsr8 + a−1rdg

3exps− uR − r8 + ru2d. s25d

We shall focus on its value at the originGijs0;yj ,ad which
determines the variance of the potentialW. The expression
for W in this case can be presented in the following form:

W2 = h2ff11 + f22 − 2f12gfVh
2xh

4Ghhs0;ye,1d

+ 2VeVhxe
2xh

2Gehs0;yh,ad + Ve
2xe

4Gees0;yh,1dg.

s26d

The calculations are easier for the cross termGeh, because
we can take advantage of the smallness ofa!1,

Gehs0;yh,ad = 4yh
2E dtt exps− t2 − 2yhtd + Osa2d = 2yh

2/s1

+ ad2 − 2yh
3 expsyh

2dÎpf1 − erfsyhdg + Osa2d,

s27d

where erfsyd is the error function. The functions27d is shown
in Fig. 5. It has the following behavior for small and largey:
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Gehs0;yh,0d < 5
4s'

2

l2 − 2Îpyh
3 + ¯ , yh ! 1

1 −
3

2yh
2 , yh @ 1. 6 s28d

The calculations are more cumbersome for the electron-
electron and the hole-hole contributionsGiis0,yj ,1d. It is
convenient to perform a transformation to the new set of
coordinates which reflect the symmetry of the integral,33

s= r1 + r2, t = r1 − r2, u = r12 = Îr1
2 + r2

2 − 2r1r2 cosu.

s29d

After this transformation39 the calculations forGii are re-
duced to the one-dimensional integral,

Giis0,yj,1d = yj
4E

0

`

dse−2yjsFs+ s2s2 − 1de−s2Îp erfsisd
2i

G .

s30d

The term in square brackets in the integrand of Eq.s30d is a
smooth function that behaves as,s8/3ds3 for small s and
changes its behavior to,2s for s.1. These dependencies
allow one to estimate the asymptotic behavior for the cor-
relatorGiis0;yj ,1d,

Giis0;yj,1d < 5yj
2

2
−

23yj
4

84
, yj ! 1

1 − 3/yj
2, yj @ 1.

6 s31d

The first terms in the series expansions of Eqs.s28d ands31d
for smally correspond to the white-noise limit of the height-
height correlation function, Eq.s7d, and they were obtained
previously in Ref. 34. They can be readily derived by the
substitution of ad function instead of the last exponent in the
integrand of Eq.s25d. The consecutive terms in these formu-
las describe deviations from the white-noise model in the
case of the short-range correlations. The dependence of the
correlatorsGijs0;y,ad on the respective parametersyi is
shown in Fig. 5, from which one can see that corrections to
the white-noise approximation become significant, even at
relatively small values of the correlation length,s'.

For the white-noise interface roughness, Eq.s7d, the ana-
lytical results can be obtained for the more elaborate exciton
ground-state trial function,35

fsrd =
2 expsgd

Î2pl2s1 + gd
exps− Îr2/l2 + g2/4d, s32d

which more accurately takes into consideration the three-
dimensional character of the exciton. The parameterg
=2d/l determines the ratio of the finite average distanced
between the electron and the hole in the QW to the two-
dimensional Bohr radiusl. In this case, one can obtain for
the most important hole-hole correlatorsa=1d the following
expression:

Gs0,s", hl,gj,b,1d =
s"

2

b2l2

1 + 2g

s1 + gd2 . s33d

This result formally coincides with the short-range limity2/2
of Eq. s31d after the introduction of the renormalized effec-

tive Bohr radiusl̃=ls1+gd /Î1+2g. Since the parameterg
in this expression is usually less than or of the order of unity,
this renormalization is not significant, and we can conclude
that an approximation of the exciton wave function by Eq.
s23d gives reasonable results, at least for the short-range in-
terface disorder. Collecting together all of the results for the
variance, we obtain in the limit of the short-range interface
disorder,

W2 = h2ff11 + f22 − 2f12sL/s"dg
s'

2

l2

3FVh
2xh

4

be
2 + 8VeVhxe

2xh
2 +

Ve
2xe

4

bh
2 G . s34d

Apart from the vertical-correlation factor,f11+ f22−2f12, this
expression coincides with the results obtained in Ref. 34. As
expected, in the case in which holes have a significantly
larger mass than electronssthe typical situation for the
InxGa1−xAs/GaAs or AlxGa1−xAs/GaAs quantum wellsd, the
hole-hole term in square brackets in Eq.s34d dominates. In
the opposite limit of the long-range interface correlations the
result is

W2 = h2ff11 + f22 − 2f12sL/s"dgsVhxh
2 + Vexe

2d2, s35d

which agrees with the conclusion of Ref. 6 obtained for a
different model of the interface disorder: in the regime of the
long-range correlations the distribution of the effective po-
tential reproduces the distribution of the interface roughness.

IV. COMPARISON WITH EXPERIMENTAL RESULTS

In order to compare the calculations ofW with the experi-
mental absorption spectra one needs to evaluate the dynam-
ics of the excitons in a random potential with the given cor-
relation properties. This problem was intensively discussed
in the literature,1,13,15,21and we are going to use the results of
the cited papers in conjunction with our analysis of the ef-
fective potential. There are two main models of exciton dy-
namics in a random model. One of them treats excitons
quantum-mechanically in the limit of negative and large en-
ergies, while describing a most important intermediate region
using an interpolation procedure.13,21 In this approach the

FIG. 5. The thick solid line is the lateral correlation function
Gs0;y,1d. The dashed lines are its asymptotes given by Eq.s31d.
The thick dotted-dashed line is a cross-term correlatorGs0;y,0d. Its
asymptotessdashed linesd are given by Eq.s28d.
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absorption line has an asymmetric shape with the linewidth
proportional to W2. In the second approach excitons are
treated semiclassically;1 if the underlying compositional or
interface-roughness disorder is described by the Gaussian
random process, then the shape of the exciton line is also
approximately Gaussian with a FWHM equal toD
=2Î2 lns2dW. A transition between the quasiclassical and
quantum regimes of exciton dynamics is determined by the
parametern=W/Kc. HereKc="2/2M,c

2 is the kinetic energy
of an exciton confined in a spatial region of size,c, where,c
is a suitably defined correlation length of the random
potential15 salso see the Appendixd. The quantum limit cor-
responds to the casen&1, while the semiclassical approxi-
mation is valid whenn@1.

In order to compare the results obtained here with optical
experimental data, we will make use of the semiclassical
theory of exciton absorption, which, according to Ref. 15,
can be reliably applied to the situation under consideration.
sThe typical material parameters for an InxGa1−xAs/GaAs
QW yield n,5 for s'=2alat, wherealat=5.87 Å is a lattice
constant andn increases with an increase of the correlation
length.d Using the semiclassical relation forD, we plot the
dependence of the interface-roughness contribution to the ex-
citon linewidth as a function of the well width in Figs. 6 and
7. Figure 6 represents curves for different lateral correlation
lengthss“island sizes”d, while Fig. 7 shows how these results
are modified by the interwall correlations. The first thing to
notice is that the changes in the lateral correlation length

affect the height, but not the position of the maximum and
the shape of the curve. A comparison with the experimental
data reproduced in this figure shows that an increase ins'

drives the curves away from the experimental results. This
has to be compared with the results of incorporating the in-
terwall correlationssFig. 7d. An increase ins" not only sig-
nificantly reduces the height of the curve maximum, but also
shifts its position toward larger values ofL and widens it.

It would be interesting to try to fit the experimental data
presented in Fig. 1 with the results of our calculations. To
this purpose one also needs to know the contribution of the
alloy disorder to the total linewidth. Making use of the model
of short-range compositional disorder in a QW13 without the
adiabatic approximation, one can obtain the following
formula3 for the alloy-disorder-induced varianceW2:

alat
3 xs1 − xd

8pl2 Fah
2

be
2E

−L/2

L/2

xhszd4dz+ 8ahae

3E
−L/2

L/2

xhszd2xeszd2dz+
ae

2

bh
2E

−L/2

L/2

xeszd4dzG , s36d

wherealat is the lattice constant andae,h=dVe,h/dx charac-
terizes the rate of the shift of the conduction and valence
bands with the composition,x. The formula is given for the
case of a QW made of a ternary alloy. The semiclassical
theory of the exciton linewidth again yieldsD=2Î2 lns2dW,
while the interpolation procedure for the quantum limit13 in
effective atomic units40 gives D<0.59MW2. The
In0.12Ga0.88As/GaAs QW is intermediate between these two
limits, sincen,1. In Fig. 8 we present both of theD depen-
dencies on the well thickness. Unfortunately, as we can see,
there exists a strong discrepancy between the theoretical es-
timates of the contribution from the alloy disorder and the
experimental results. Note that Eq.s36d has two enhance-
ment factors. The first one is determined by the lateral
shrinkage of the quasi-two-dimensional Bohr’s radius of the
exciton s0.5,l,1d. Another stronger enhancement param-
eter, 1 /be

2=sM /med2, is due to heavy hole’s mass. It is not
the goal of this paper to uncover the causes of this discrep-

FIG. 6. Dependence of the interface-roughness-induced broad-
ening on the perpendicular correlation lengths“island size”d s'.
The correlation length is given in terms of a number of lattice
constantssalat=5.869 Åd. For all curves the composition concentra-
tion is x=0.12, and the vertical correlation length parameter is fixed
by s"=alat. The dotted line is the rescaled alloy disorder contribu-
tion. The experimental data, shown by triangles, are taken from Ref.
18 and are presented here for comparison only.

FIG. 7. Dependence of the interface broadening on the vertical
correlation lengths“island size”d s". All curves are drawn fors'

=2alat.

FIG. 8. The thick solid line is the best fit for the total linewidth
displayed together with the experimental resultsstrianglesd from
Ref. 18. The separate contributions of the interface disordersDintd
and of the rescaled alloy disordersDalloyd are also shown. The
parameter-free theory for the alloy-disorder contribution discussed
in Ref. 13 is shown by the dash-dotted lineswithout adiabatic ap-
proximationd. The semiclassical limit of the alloy-disorder contri-
bution sRef. 3d is shown by the dotted line. The fitted parameters
ares"=3alat, s'=1alat.
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ancy. However, common wisdom tells us that in the bulk
limit of a very wide QWsL.aBd only alloy-disorder contri-
bution should survive. The simplest way to adjust the theory
is to introduce a phenomenological scaling down ofDcomp to
the value that should coincide with the experimental results
in the limit of the largeL asymptote. Although at present the
reason for such rescaling is unknown, it is hard to imagine
that the proper theory of alloy-disorder contribution will
change the dependence of the variance on the well thickness
L determined by the integrals in Eq.s36d. Since our main
purpose is to elucidate the role of the interwall correlations
rather than to revise the existing theories of the alloy disor-
der, we carry out this operation, keeping in mind its purely
technical nature. The results of the best fit performed in this
way are shown in Fig. 8 along with the best fit values of the
lateral and vertical correlation lengths. Performing a similar
fitting procedure for other experimental dependencies of the
FWHM on well thicknesssshown in Fig. 1d we obtained the
following valuessnormalized on lattice constantalatd for the
lateral and inter wall correlation lengths in InxGa1−xAs/GaAs
QWs: for x=0.09 s'=1, s"=20, for x=0.18 s'=1, s"

=10, forx=0.11s'=1, s"=5, for x=0.12s'=1, s"=3, for
x=0.135 s'=4, s"=13. The most important result of this
exercise is the demonstration that the fit would not be pos-
sible at all without taking into account the interwall correla-
tions. We would also like to stress that it is not possible to
achieve a good agreement with the experimental results by
omitting the interwall correlations and using only the alloy-
disorder scaling as an additional fitting parameter. We con-
clude, therefore, that the interwall correlations play an im-
portant role and must be taken into account when
interpreting the experimental results.

V. CONCLUSION

In conclusion, in this paper we address the influence of
vertical interwall correlations between the rough interfaces
on the exciton line shape. We show that the presence of these
correlations strongly suppresses the interface-disorder contri-
bution into an inhomogeneous broadening. The latter means
that for narrow quantum wells it might happen that the exci-
ton linewidth tells more about the quality of the barrier ma-
terial than about the quality of the interface, contrary to what
is often claimed in the experimental literature. On the other
hand, the differences in the interwall correlation lengths can
account for the variety of the positions, strengths, and sharp-
ness of the FWHM dependence on the well width for experi-
mental data obtained by different research groups.
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APPENDIX: DEPENDENCE OF THE LATERAL
CORRELATION FUNCTION ON R

The calculation of the exciton absorption line shape is
equivalent in the dipole approximation to the estimation of
the optical density function,1

As«d =Ko
i
UE d2RcisRdU2

ds« − «idL , sA1d

where«i and cisRd are the corresponding energy and wave
functions of the Schrödinger equations8d for the exciton’s
COM. The shape ofAs«d depends on the strength of the
disorder. The latter can be roughly measured by the param-
eter n=W/Kc, where W=ÎkUeffsRd2l is a variance of the
potential energy induced by fluctuations, andKc="2/2M,c

2

is the kinetic s“correlational”d energy of the exciton. The
parameter,c determines the confinement of the exciton’s
COM wave function. It can be extracted from the
knowledge15 of the lateral dependence onR for the correla-
tion functionsGijsR,yj ,ad since

,c
D =E dDR8kUsRdUsR − R8dl/W2. sA2d

For the “white-noise” height-height correlators7d one can
show that all of the distances are scaled by factorsslbid /2,

i.e., R̃=2R/ slbid. For the cross-term correlator in the limit of
heavy holes and light electrons the result is simple again,

GehsR;yh,ad < GehsR;yh,0d = 2yh
2 exps− R̃d, sA3d

while for the diagonal terms we haveGiisR;yj ,0d
=yj

2/2fsR̃id, where

fsR̃d =
4

p
E

0

p

duE
0

`

drr exps− r − ÎR̃2 − 2rR̃cosu + r2d.

sA4d

The function fsR̃d has the following limits for small and
large distances:

FIG. 9. Semilog arithmic plot of the normalized lateral correla-
tion functionsGij sR;yj ,ad. The normalization is chosen in a way to
have the hole-hole correlator equal to unity atR=0. Data are given
for yh=0.1. The ratiome/mh=0.178 was chosen to depict the real-
istic case of the InGaAs/GaAs QW. The dotted-dashed lines for the

hole-hole correlator are limits of small and largeR̃ fsee Eq.sA5dg.
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fsR̃d < 51 −
1

4
R̃2 +

1

12
R̃3, R̃, 1

ÎpR̃3

8
exps− R̃d, R̃@ 1.6 sA5d

Thus, even though the initial correlator of the interface fluc-
tuations was of the white-noise type, the effective noise for
the exciton potential is colored with exponential tails and
with a correlation length of the order of the exciton radius.
Similar results were obtained earlier for the bulk composi-
tional fluctuations36 and for the island model of interfacial

roughness.6 One can show that such exponential asymptotes
also persist for the long-range Gaussian correlatorfEq. s6dg
whenR/y@1. Since

GeesRd = Sme

mh
D2

GhhSR
me

mh
D , sA6d

we can see that the lateral part of the electron-electron cor-
relation function is suppressed by the factorsme/mhd2, but it
has a larger correlation length. Overall, the localization
length ,c is determined however by the hole-hole term,c
,lbe. The normalized lateral correlation functionsGijsRd
are shown in Fig. 9.
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