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We investigate the interaction effect between oxygen impurities in crystalline germanium on the basis of a
quantum rotor model. The dipolar interaction of nearby oxygen impurities engenders nontrivial low-lying
excitations, giving rise to anomalous behaviors for oxygen-doped germaniumsGe:Od below a few degrees
Kelvin. In particular, it is theoretically predicted that Ge:O samples with oxygen-concentration of 1017–18cm−3

show sid power-law specific heats below 0.1 K, andsii d a peculiar hump in dielectric susceptibilities around
1 K. We present an interpretation for the power-law specific heats, which is based on the picture of local
double-well potentials randomly distributed in Ge:O samples.
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I. INTRODUCTION

Rotational states of impurity atoms in crystalline solids
affect the essential properties of solids at low temperatures.
This is because the rotational degree of freedom of an impu-
rity yields low-energy excitations that manifest themselves
such low temperatures. A typical example is an interstitial
oxygen impurity in covalent semiconductors such as Si,1–4

Ge,5–7 and GaAs.8–10 The microscopic structure around oxy-
gen impurities in those systems has been thoroughly studied
in the past. As-grown Ge, for instance, is usually contami-
nated by more than 1017 oxygen atoms per cubic centimeter
with a spatially random distribution. Oxygen breaks a cova-
lent bond between two Ge atoms, establishing a puckered
Ge-O-Ge segment. At low temperatures, those interstitial
oxygen atoms are quantum-mechanically delocalized in the
annulus around the original bond center of Ge-Ge.11–13 The
rotational degree of freedom of oxygen yields low-lying ex-
citations in the far-infrared spectral region, which has been
observed in phonon spectroscopy measurements.11 The en-
ergy spectra deduced from these measurements can be accu-
rately reproduced by a quantum rotor model.13–15Each rotat-
ing Ge2O unit within this model is mapped onto a quantum
rigid rotor rotating in a two-dimensional plane that is perpen-
dicular to the Ge-Ge axis.

Since the electronegativity of oxygen is larger than that of
germanium, puckered segments of Ge-O-Ge carry electric
dipole moments. In the dilute limit, the interaction between
the dipole moments is negligible because the dipolar interac-
tion decreases with the third power of distance. However, for
actual concentrations of oxygenr,1017–1018 cm−3, a ran-
dom distribution of oxygen impurities causes the occurrence
of clusters of nearby dipole moments with a large coupling
energy. If the coupling is strong, such that it is sufficient to
interfere with the nearly free rotation of individual Ge2O
units, the quantum nature of the Ge2O units that are involved
in the clusters is completely different from those of the iso-
lated Ge2O units. Recently, anomalous dielectric responses
in coupled dipolar rotors have been reported,16,17wherein the
anomalies originate from peculiar low-lying excitations of
the interacting dipolar rotors. Therefore, it is expected that
ensembles of clustered Ge2O units play an important role in
the low-temperature properties of Ge:O; specific heats and
dielectric susceptibilities are cases in point.

The present article theoretically investigates the effect of
the dipolar interaction of rotating Ge2O units on the low-
temperature properties of Ge:O. It is shown that the strong
dipolar interaction between clustered Ge2O units results in
peculiar low-energy states, which in turn give rise to a
power-law temperature dependence in specific heatsCsTd
~T0.5 below 0.1 K under our numerical conditions. Further,
dipolar transitions between the low-lying levels of the inter-
acting Ge2O units engender a nontrivial maxima in the di-
electric susceptibilitiesxsTd around 1 K. The power-law be-
havior of specific heats is described by a scenario based on
the presence of local double-well potentials in crystalline Ge.
It should be noted that this picture ofcrystalline solids is
exceedingly analogous to the theoretical model, referred to
as the two-level tunneling model, which describes the power-
law specific heats inamorphoussolids.18

The outline of this article is as follows. In Sec. II, we
introduce a quantum rotor model that accounts for the quan-
tum rotation of the Ge2O unit and formulate the Hamiltonian
for interacting quantum rotors that are coupled via dipolar
interaction. Section III focuses on the low-energy excitations
of paired and clustered rotors; the distribution functionPs«d
of the lowest excitation energy« is evaluated in line with the
theory of the two-level tunneling systems. Section IV shows
the calculated results of the specific heatCsTd for Ge:O. The
power-law behavior ofCsTd is understood by taking into
account the distribution functionPs«d of strongly coupled
rotors. Section V describes the results of the dielectric sus-
ceptibilities xsTd of Ge:O. An anomalous hump inxsTd
around 1 K is understood by considering the selection rule
for dipolar transition. Section VI comprises remarks on the
relevance of our findings to other systems. The final section
concludes the present article.

II. SYSTEM

A. Isolated quantum-rotor model

We first describe the microscopic structure of an isolated
Ge2O unit, taking no account of interaction between them.
Figure 1sad illustrates the atomic disposition of a puckered
Ge-O-Ge segment together with six Ge atoms next nearest to
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the interstitial oxygen. At sufficiently low temperatures, the
oxygen atom is quantum-mechanically delocalized around
the Ge-Ge axis. The delocalized oxygen is subjected to re-
pulsive force from the six next-nearest neighboring Ge at-
oms, thus experiencing an azimuthal potential having sixfold
rotational symmetry.11 Hereafter, we call it a “hindering po-
tential.”

Recent isotope-shift measurements13 have revealed that
the two Ge atoms neighboring O are not fixed, but loosely
bound around an external axis. As a consequence, all three
atomssGe and Od rotate in phase around the external axis as
shown in Fig. 1sbd. The difference of the electronegativity
between Ge and O causes the occurrence of an electric dipole
moment in the direction perpendicular to the Ge-Ge axis.
This allows us to map a rotating Ge2O unit onto a quantum
rotor having the moment of inertia11,13 I =10.6 amu Å2 and
an electric dipole moment19 p=1 Debye.

The HamiltonianH for an isolated rotor consists of two
parts:

H = K + V. s1d

The first termK accounts for the kinetic energy of the rotor
associated with its rotation, given by

K = −
"2

2I

]2

]u2 . s2d

The quantityEK="2/ s2Id determines the energy scale of the
quantum rotation. The secondV corresponds to a hindering
potential, which reads

V = V0 coss6u + fd s3d

with a constantf. In the following, we fixEK=2.3 K and
V0=1.5EK in accordance with the values deduced from the
spectroscopy measurement.11 The Schrödinger equation for
the Hamiltonians1d can be solved analytically by mapping it
onto the Mathieu equation; the details of these calculations
are given in Refs. 20 and 21.

B. Dipolar interaction of quantum rotors

When quantum rotors get sufficiently close to each other,
they can no longer be regarded as being isolated, thus, inter-

action between rotors should be taken into account. Let us
consider two rotors with dipolar momentspi andpj separated
by a distance vectorR. Expanding the interaction potential in
terms of 1/R, the lowest-order approximation yields the di-
polar term

Wij =
1

4p«r
Hpi ·pj

R3 − 3
spi ·Rdspj ·Rd

R5 J . s4d

Here«r is the dielectric constant of Ge crystals. Discarding a
numerical factor, the energy scale of dipolar-interaction po-
tential s4d is characterized by the quantity

J =
p2

4p«rR
3 . s5d

For the caseEK@J, the rotors are nearly isolated so that the
interaction potentials4d can be treated as a perturbation.
When EKøJ, on the other hand, the quantum nature of
coupled rotors is completely different from that of isolated
ones because of their strong dipolar interaction.

At finite temperatures, the thermal fluctuation suppresses
the dipolar interaction between the rotors. Therefore, we in-
troduce the upper cut-off lengthRmax defined byJsRmaxd
<kBT, or equivalently,

Rmax= S p2

4p«rkBT
D1/3

. s6d

Within this cut-off length, the two rotors correlate via dipolar
interaction. The value ofRmax depends on the temperatureT.
For example,T=10 mK results in the cut-off lengthRmax
,30 Å. For actual oxygen concentration r
=1017–1018 cm−3, this length is much less than the mean
separation of adjacent rotors in Ge:O. The lengthRmax fur-
ther shortens with increasing temperatures. Therefore, most
rotors may be considered as noninteracting rotors above the
mK range. However, it should be noted that the inhomoge-
neous distribution of rotors makes the formation of clusters
consisting of two or more rotors. These clustered rotors yield
peculiar low-energy excitations originating from the dipolar
interaction between rotors, which significantly affect the
properties of Ge:O at 1 K and below, as will be shown in the
subsequent sections. Hereafter, we fix the cut-off length
Rmax=30 Å for the temperature range under consideration;
for simplicity, we do not consider the discreteness of the
lattice of Ge crystals.

Before closing this section, the spatial correlation of im-
purity distribution should be mentioned. We have assumed
that no correlation exists in the distribution of oxygen impu-
rities. Yet this assumption is not always correct. When the
sample is prepared by pulling from the melt, the correlation
may be established at temperatures where oxygen impurities
can diffuse. Subsequently the correlated distribution of oxy-
gen would be fixed on quenching. It is difficult to definitely
account for this correlation since it depends essentially on
the history of the sample preparation. Therefore, as a rule,
we take a random distribution for oxygen with no spatial
correlation, bearing in mind that it is valid for the case of the
absence of correlations.

FIG. 1. sad The atomic coordinate of a puckered Ge2O unit
together with six Ge atoms next nearest to the interstitial oxygen.
sbd Microscopic details of a rotating Ge2O unit. The whole Ge2O
unit rotates in phase around an external axis. The difference of the
electronegativity between Gesd+d and O s2d−d causes the occur-
rence of an electric dipole momentp in the direction perpendicular
to the rotational axis.
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III. LOW-ENERGY EXCITATIONS OF PAIRED ROTORS

In this section, we focus mainly on the quantum character
of paired rotorssn=2d. This is because the behavior of clus-
tered rotors withnù3 is essentially understood by referring
to those of paired rotors. Emphasis will be placed on the fact
that strongly interacting rotors give rise to peculiar low-lying
excitations; the eigenenergies of these excitations are well
below the energies of first-excited states for anisolatedrotor.
We will see that the low-lying excitations of paired rotors
markedly contribute to low-temperature properties of Ge:O
below 1 K.

A. Paired-rotor system

Suppose that two quantum rotors with dipole moment
pisi =1,2d are positionally separated by the vectorR as de-
picted in Fig. 2. The Hamiltonian for paired rotors is given
by

H = K1 + K2 + V1 + V2 + W12, s7d

where the definitions ofKi, Vi, andWij are the same as those
in Eqs. s2d–s4d, respectively. The explicit form ofW12 as a
function of su1,u2d is given in Ref. 16.

As seen from Eq.s7d, the quantum state of paired rotors is
identified with that of single quantum particle moving in a
potential field

Fsu1,u2d = V1su1d + V2su2d + W12su1,u2d. s8d

For later use, we plot the spatial profile of the potentialF in
Fig. 3. The anglessa1,a2,bd defined in Fig. 2 are taken to be
sp /4 ,−p /6 ,p /3d, and the interaction energyJ is taken to be
equal to the amplitude of the hindering potential. The dark
regions correspond to negative values of the potentialF,
while the white regions correspond to the positive. A spatial
fluctuation with a periodp /3 stems from the hindering term
Vi ~cos 6ui. We notice that two global minimasmaximad ap-
pear at the antiparallelsparalleld dipolar configurations as
indicated by a whitesblackd dashed line. These global
minima and maxima indicate that two dipoles prefer to

adopting an antiparallel configuration. The positions of two
minima sand maximad generally deviate from the linesuu2
−u1u=0 anduu2−u1u=p due to the effect of the finite angles
sa1,a2,bd. For any set of anglessa1,a2,bd, however, the
relative difference between the position of the minimum and
the maximum are invariant withDu1=Du2=p.

B. Eigenenergies for paired rotors

The Schrödinger equationHCsu1,u2d=ECsu1,u2d for the
Hamiltonians7d is solved by taking the solution in the form

Csu1,u2d = o
l1,l2

Cl1,l2
exph− isl1u1 + l2u2dj, s9d

where l i si =1,2d takes an integer value l i
=0, ±1, ±2, ±3, . . . . ThecoefficientsCl1,l2

are obtained nu-
merically by diagonalizing the finite matrix ofH in the sub-
set of basis states withul1uø l1

c and ul2uø l2
c. The cut-off val-

ues l1
c and l2

c are increased until the considered eigenvalues
converge within the desired accuracy. For actual calcula-
tions, we setl1

c= l2
c=30 in order to obtain precise low-energy

states.
Figure 4 shows the eigenenergy spectra for paired rotors

as a function of the dipolar interaction energyJ. Angles
sa1,a2,bd were chosen to besp /4 ,−p /6 ,p /3d as an ex-
ample. WhenJ=0, the eigenenergies are almost degenerate
at E/EK= l1

2+ l2
2=0,1,2,4,5,8, . . .. Anincrease inJ leads to a

split off of the degeneracies atJ=0, followed by a spread
along the ordinate. Note that the energy difference between
the ground state and the first-excited state decreases monoto-
nously with increasingJ. For largeJùEK, these two eigen-
levels form a doublet with very small energy splitting. Be-
sides, a part of higher eigenlevels also form doublets atJ
ùEK as shown in Fig. 4. As a consequence, a few doublets
locate within the low energy regionfEG,EG+EKg, whereEG

is the eigenenergy of the ground state. Those doublets locat-
ing at the above energy region are what we call “very-low-
energy excitations” of paired rotors. We notice that the very-

FIG. 2. Definitions of the coordinates of two quantum rotors
carrying dipole momentsp1 andp2. The two rotors are separated by
a vectorR and interact with each other via the dipolar interaction
potentialW12.

FIG. 3. Spatial profile of the potential fieldF in the su1,u2d
plane. The dark regions correspond to negative values of the poten-
tial F, while the white regions correspond to the positive. Two
global minima smaximad are indicated by whitesblackd dashed
circles.
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low-energy excitations of paired rotors are generated only
when the rotors are strongly coupled.

The occurrence of the doublets forJùEK is attributed to
the spatial profile of the potential fieldFsu1,u2d defined in
Eq. s8d. For strongly paired rotors satisfying the condition
JùEK, the depth of the two minima in theu1-u2 plane be-
come so large that the fieldF eventually forms a double-well
potential ssee Fig. 3d. As a result, the behavior of paired
rotors is described by a quantum particle moving in a
double-well potential whose barrier height is the order of the
interaction energyJ. When the kinetic energy of the particle
is much smaller than the barrier height, eigenfunctions at low
energies are described by a superposition of two wave func-
tions localized in the respective wells. A slight overlap of the
localized wave functions results in a doublet with small en-
ergy splitting. By raising the interaction energyJ, therefore,
the barrier height becomes so large that the energy splitting
monotonously decreases as shown in Fig. 4.

C. Low-energy excitations in clustered rotors

Doublets locating at very-low energies also occur in clus-
tered rotors with larger sizesnù3. Figure 5 gives the energy
spectra of the clustered rotors; twenty clusters of various
sizes and various spatial configurations were randomly cho-
sen. For any clusters, the ground state energies are fixed at
zero for the sake of illustration. Most eigenlevels are located
densely at specific energiesE/EK=0,1,2, . . ., i.e., at
eigenenergies of an ensemble of isolated rotors. This indi-
cates that the rotor’s interaction within individual clusters is
not significantly large. Nevertheless, a limited number of
eigenlevels form doublets showing energy splitting much
smaller thanEK. These doublets originate from the small
separationR of the rotors involved in each cluster. Namely,
very-low-energy excitations in clustered rotors can be found

in clusters of any size because of a statistical fluctuation of
the rotor’s spatial distribution.

Recall that the value of the kinetic energyEK for an actual
Ge2O unit equals 2.3 K. This implies that only the very-low-
energy excitations satisfying the conditionE/EK,0.5 are
relevant to the properties of Ge:O below 1 K. Further, when
considering the properties of Ge:O far below 1 K, the pres-
ence of doublets with thelowest energies would be espe-
cially important. In the next subsection, we discuss the en-
ergy distribution of such the lowest-energy excitations,
which would contribute to the specific heat of Ge:O far be-
low 1 K.

D. Two-level tunneling systems in Ge:O

As mentioned before, the occurrence of peculiar very-
low-energy excitations stems from the potential field
Fsu1,u2d defined in Eq.s8d. For strongly coupled rotors, the
field F forms a double-well potential in theu1-u2 plane, and
the quantum behavior of the rotors is described by a quantum
particle moving in the double-well potential. Thereby,
strongly coupled rotors yields locally a quantum tunneling
system. Those tunneling systems are randomly distributed in
Ge:O due to an inhomogeneous distribution of oxygen im-
purities. The height of the potential barrierU separating the
two potential minima depends on the distanceR between
rotors as well as the internal configuration of interacting ro-
tors. Discarding numerical factors, the energy scale of the
barrier heightU is estimated of the order of the interaction
energyJ.

The existence of tunneling systems in crystalline solids
has also been demonstrated in alkali halides with substitu-
tional impurities such as KCl:Li, NaCl:OH, and KBr:CN.22

In these solids, tunneling occurs due to a substitutional single
defect sitting in sites offered by the host lattice. Each defect
has an electric or elastic dipole moment. The possible orien-
tation of the dipole is determined by the local potential
minima in crystalline environment surrounding the defect.
As a result, the defect atom can tunnel through several
equivalent potential minima.

Regarding KBr:CN, Solf and Klein23 have theoretically
investigated the energy spectra of the system with paired
tunneling dipoles. Polar molecules of CN− dissolved in KBr
form interacting dipoles oriented in eight directions. For

FIG. 4. The eigenenergy spectrum for paired rotors as a function
of the interaction energyJ. The relative angles of rotors are taken to
be sa1,a2,bd=sp /4 ,−p /6 ,p /3d, as an example.

FIG. 5. Eigenenergy distributions for clustered rotors. Twenty
clusters were randomly chosen with various sizes and various spa-
tial configurations.

H. SHIMA AND T. NAKAYAMA PHYSICAL REVIEW B 71, 155210s2005d

155210-4



340 ppm of CN− in KBr, they showed that the distribution
function Ps«d of the lowest excitation energy« for paired
elastic dipoles changes fromPs«d,const. for « /kB

,100 mK to Ps«d~«−1/2 for « /kB,10 mK.23 This yields a
power-law temperature dependence of the specific heats as
CsTd~T at 10 mK,T,1 K and CsTd~T1/2 at 1 mK,T
,10 mK. The point is that paired tunneling impurities en-
gender novel low-energy excitations with small energy split-
ting «. This is actually realized for interacting quantum ro-
tors in Ge:O as mentioned earlier, though the explicit form of
Ps«d remain unclear. The microscopic character of interact-
ing constituents in Ge:Osweakly hindered quantum rotorsd is
evidently distinct from that in alkali halidessn-oriented tun-
neling dipoled. Nevertheless, the difference is not influential
to the emergence of the low-energy excitations with small
energy splittings.

Hereafter, we discuss the energy dependence of the distri-
bution functionPs«d of the lowest energy excitations« for
strongly paired rotors in line with the theory of two-level
tunneling systems.24,25 The height of the tunneling barrierU
between two potential minima scales asU,J~R−3. Thereby
the WKB approximation26 allows us to evaluate the tunnel-
ing amplitudeDp expressing the coupling between two local-
ized wave functions as

Dp , g exps− aU1/2d , g exps− aR−3/2d. s10d

The distribution functionPs«d is given by the following
three-dimensional integral:

Ps«d , E dRdh« − DpsRdj. s11d

Substituting Eq.s10d into Eq. s11d, we have

Ps«d ~
1

«hlogsg/«dj3 . s12d

For strongly coupled rotors, the energy splitting« is much
smaller than the parameterg. When«!g, the functionPs«d
given in Eq. s12d rapidly increases with decreasing«. Its
asymptotic behavior is approximated by the power law of
Ps«d~«−a, where the exponenta is of the order of unity or
less.

The ensemble of the two-level tunneling systems that
obey the distribution functionPs«d contributes to the specific
heatCsTd by the following formula:24,25

CsTd =E d«Ps«dC0s«,Td, s13d

and

C0s«,Td ~
1

kBT2 sech2S «

2kBT
D . s14d

Hence, the asymptotic behavior ofPs«d~«−a results in the
power-law temperature dependence of the specific heats
CsTd~T1−a. This implies that the specific heats for Ge:O, as
in the case of KBr:CN, should exhibit power-law behavior at
sufficiently low temperatures.

It should be noted that the exponent of the predicted spe-
cific heat CsTd~T1−a for Ge:O does not need to coincide
with the exponent of the power-law specific heat for
KBr:CN. This is due to the difference of the microscopic
structure of tunneling constituents between in the two sys-
tems. For KBr:CN, it has been assumed23 that the local po-
tential minima that determines the possible orientation of
dipoles are invariant to the increase in the interaction energy
J. This assumption has led to the consequence that the lowest
excitation energies« are proportional toJ−1 andJ−2, within
the second- and third-order perturbation theory, respectively.
As a result, the«-dependence of the density of statesPs«d
can be solved analytically, which leads to a linear orT1/2

specific heats depending on the temperature range. In con-
trast, for interacting quantum rotors in Ge:O, the
energitically-preferable orientation of rotors complicatedly
depend on bothJ and the spatial configuration of interacting
rotors, namely, by the anglessa1,a2,bd. Hence, the lowest
excitation energies« cannot be expressed as a simple func-
tion of J and sa1,a2,bd, which prevent us from obtaining
analytically an explicit form ofPs«d and CsTd. In order to
clarify the T-dependence of the low-temperature specific
heatsCsTd in Ge:O, therefore, it is crucial to numerically
simulateCsTd directly.

IV. SPECIFIC HEATS

A. Method

Now let us consider the specific heat for a Ge:O sample
having an impurity concentrationr. This sample contains a
large number of quantum rotors; most rotors are isolated be-
cause of large separations, while a part of neighboring rotors
establish clusters having various sizesn. The specific heat
Ccls for an individual cluster is calculated straightforwardly
through its partition functionZcls= trse−bHd and internal en-
ergy Ucls=−s] /]bdlog Zcls,

Ccls =
dUcls

dT
. s15d

When calculating specific heats for a whole Ge:O sample, on
the other hand, we have to average the contributions of all
clusters involved in the system:

CsTd =
1

V
o
cls

Ccls. s16d

HereV represents the volume of the system to be considered.
Equations16d amounts to considering all clusters with differ-
ent sizes and with different spatial configurations. This
thereby gives the specific heat for a Ge:O sample, namely,
for a particular realization of the rotor’s spatial distribution.
Since this distribution strongly depends on the samples used,
we have to take sample averages in order to obtain the spe-
cific heat for a typical Ge:O sample.

To perform the above procedure, we have numerically
simulated more than 100 samples of Ge:O; in each sample,
106 rotors are inhomogeneously distributed in a cubic sys-
tem, then are factorized into manyn-sized clusters. The vol-
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ume of the system is defined by 106/r, and the lower cut-off
Rmin=3 Å is introduced in order to prevent twosor mored
oxygen impurities from getting closer than the bond length
of Ge-O-Ge.

B. Numerical results

Figure 6sad shows the numerical results of specific heat
CsTd for various concentrations of rotorsr: sid r
=1018 cm−3, sii d 331017 cm−3, and siii d 1017 cm−3. The di-
pole momentp of quantum rotors is set to be 1 Debye as
estimated before. We also plotted the Debye specific heat
CsTd=aT3 with a=5.83310−2 mJ g−1 K−4. The value ofa is
evaluated based on the experimental data observed at the
temperature range 2.8–100 K.27 In Fig. 6sad, broad peaks at
aroundT=1 K commonly appear for all rotor concentrations.
These peaks are caused by the fact that most rotors contained
in the samples are independent of each other. For isolated
rotors, the level-splitting between the ground state and the
first-excited ones is equal toEK=2.3 K as seen in Fig. 4.
Thus the ensemble of isolated rotors contributes to specific
heats as the Schottky peaks at aroundEK /2,1 K.

Of particular interest is the temperature dependence of
specific heatsCsTd below the Schottky peaks. At tempera-
turesT,0.1 K, the calculated results obey a power-law tem-
perature dependence of the form~T0.5. The exponent 0.5
seems to be independent of the impurity concentrationr,
whereas the magnitude ofCsTd shifts downward with de-
creasingr. Furthermore, the magnitudes ofCsTd for tem-
peraturesT,0.1 K are proportional tor2, while those for
T.0.1 K saround the Shottky peakd show a trivial linear
dependence onr. Interestingly, the samer2-dependence of
the power-law specific heats has been pointed out in
KBr:CN.23 The physical origin of these peculiar behaviors in
CsTd will be addressed soon below.

We have also clarified the dependence ofCsTd on the
definition of the value ofp for individual rotors. Figure 6sbd
shows the resultingCsTd for p=1 Debye ssolid lined,
0.75 Debyesdashed-dottedd, and 0.5 Debyesdashedd. De-
creasing the value ofp reduces the magnitude ofCsTd, and
results in a deviation ofCsTd from the power-law tempera-
ture dependence. Nevertheless, the considerably excess spe-

cific heat below 0.1 K remains observed for allps, which is
a manifestation of the dipole interaction of rotors consisting
of clusters. It should be emphasized that, for all numerical
conditions in Figs. 6sad and 6sbd, the results ofCsTd below
0.1 K well overcome the Debye specific heat. This demon-
strates that our theoretical results for specific heats, both the
Schottky peaks and the power-law behavior, can be observed
in experiments.

C. Two anomalies in the excess specific heats below 0.1 K

In Fig. 6sad, we have found two striking features in the
excess specific heats below 0.1 K. The one is the power-law
temperature dependence ofCsTd~T0.5, and the other is the
r2-dependence of the magnitude ofCsTd. To reveal the
physical origin of the two features, we have clarified the
contribution of the ensembles of clustered rotors of respec-
tive sizes.

1. Power-law specific heats

In Fig. 7, the result ofCsTd for r=1018 cm−3 and p

FIG. 6. sad Calculated results
of specific heatsCsTd for Ge:O.
The concentration of rotorsr is
varied as follows: sid r
=1018 cm−3, sii d 331017 cm−3,
siii d r=1017 cm−3, with the dipole
moment fixed atp=1 Debye. The
dashed-dotted line follows the De-
bye specific heat for pure Ge crys-
tals deduced from Ref. 27.sbd Re-
sults of specific heatsCsTd for r
=1018 cm−3 with varying the defi-
nition of p; sid p=1 Debye, sii d
0.75 Debye, andsiii d 0.5 Debye.

FIG. 7. The result ofCsTd for r=1018 cm−3 and p=1 Debye
sthick lined is replotted, together with four components stemming
from ensembles of pairedsn=2d and clusteredsn=3d rotors. The
meanings of the term “weak” and “strong” are given in text.
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=1 Debye is replotted by a thick line. In addition, we exhibit
four components consisting ofCsTd for a complete Ge:O
system; solid thin lines show the contribution of the en-
semble of coupled rotorssn=2d, and dashed lines show that
of clustered rotorssnù3d, as denoted in the figure. The two
components, indicated by the term “weak,” correspond to the
ensemble of clusters established by weakly-interacting ro-
tors; within those individual clusters, all rotor separations are
larger than the characteristic valueRc=10 Å fsee Fig. 8sadg.
Because of the large separations, the eigenenergies of those
clusters are nearly equal to the eigenenergies of isolated ro-
tors, thus giving rise to the Schottky behavior appearing in
Fig. 7. On the other hand, the other two components, indi-
cated by “strong,” represent the contribution of the ensemble
of clusters including strongly-interacting rotors; within those
clusters, two or more rotors are closer thanRc fsee Fig. 8sbdg.
As clearly seen from Fig. 7, the excess specific heats below
0.1 K originate from the ensemble of strongly coupled rotors
sn=2d with separationsR,Rc. Consequently, we conclude
that the power-law behavior ofCsTd~T0.5 for a Ge:O sample
originate from the very-low-energy excitations of strongly
coupled rotors.

Our conclusion mentioned above is justified by evaluating
the behavior of Ps«d that directly relates to the low-
temperature specific heats through Eq.s14d. Figure 9 shows
the distribution functionPs«d of the energy splitting« be-
tween the ground state and the first-excited ones for strongly

coupled rotors; the definition ofp is set to bep=1 Debye for
solid line, 0.75 Debye for dashed line, and 0.5 Debye for
dotted line. All numerical results are normalized as
ePs«dd«=1. The definitionsRmin=3 Å andRc=10 Å give a
lower limit for the energy splitting«min and an upper one
«max, respectively. Numerical results ofPs«d show a maxi-
mum at around 1.5–2.0 K followed by a rapid decrease with
decreasing«. Interestingly, for a lower« than 0.1 K, the
function Ps«d sexcept for dotted lined obey the power-law
form Ps«d~«−a within a range over one orderssee the inset
of Fig. 9d. This resulting power-law is consistent with the
theoretical consequence given in Sec. III D. In the case of
p=1 Debye, in particular, the exponenta takes 0.5; this re-
produces the power-law specific heatCsTd~T0.5 for suffi-
ciently low temperaturesT!«max/kB, which is clearly dem-
onstrated in Fig. 6sad.

We have numerically confirmed that the exponent 0.5 in
the power-law form ofPs«d~«−0.5 is invariant to the change
in the rotor concentrationr under the conditionp=1 Debye.
On the other hand, for smallerp, the exponenta of Ps«d
~«−a for « /kB!0.1 K gradually decreases, and finallyPs«d
becomes a constant as shown by the dotted linesfor p
=0.5 Debyed in the inset of Fig. 9. This results from the fact
that, whenp decreases, the lower bound«min increases be-
cause of the reduction of the interaction energyJ. Eventually
«min gets larger than the energy range where the function
Ps«d clearly exhibits a power-law behaviorPs«d~«−a with
positive a. As a result,Ps«d seems to be constant for the
condition of p=0.5 Debye. In addition, the energy range
where Ps«d is constant is rather narrow; this is the reason
why the specific heats for the condition ofp=0.5 Debye ex-
hibit a power-law temperature dependence only within a
rather narrow temperature range as shown in Fig. 6sbd.

2. r2-dependence of excess specific heats

Next we turn to ther2-dependence of the magnitude of
CsTd below 0.1 K. The r2-dependence of the low-
temperature specific heats has also been pointed out for
KBr:CN as a consequence of the virial expansion of the free
energy up to r2.23 In the following, we derive the
r2-dependence ofCsTd straightforwardly by considering the
number of strongly coupled rotorsNp in the system. The
quantity Np can be expressed by the relationNp=N3u.
Here,N is the total number of rotors in the system, which is
apparently proportional to the rotor concentrationr. The
quantity u represents the possibility that a given rotor finds
another rotor with a separationR,Rc. Therebyu reads

u =E
Rmin

Rc

PsRddR, s17d

wherePsRd is the distribution function for the separationR.
The explicit form of the functionPsRddR is obtained as

follows.28 PsRd represents the probability of finding no rotor
within a sphere of radiusR and one rotor in the spherical
shell of the thicknessdR, when one rotor is located at the
origin. In order to calculatePsRd, we divide the sphere of
radiusR into m shells of thicknessR/m. Since the rotors are

FIG. 8. Schematic illustrations of rotor clusters withn=3: sad A
cluster formed by weakly interacting rotors. All separationsRij ex-
ceed the characteristic lengthRc=10 Å. sbd A cluster established by
strongly interacting rotors. The separationR12 is smaller thanRc.

FIG. 9. Distribution functions of the energy splitting« between
the ground state and the first-excited one. The definition ofp is set
to bep=1 Debye for the solid line, 0.75 Debye for the dashed line,
and 0.5 Debye for the dotted line.
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randomly distributed, the probability of not finding a rotor in
a sphere of radiusR is expressed by the probabilities of none
of thesem shells containing rotors. Thus, we can express the
probability densityPsRd for largem

PsRddR= F1 −
4

3
prSR

m
D3G 3 P j=0

m−1F1 − 4prS jR

m
D2

·
R

m
G

3 4prR2dR. s18d

Taking the limitm→`, the probability of finding a nearest-
neighbor rotor betweenR andR+dR is given by

PsRddR= 4prR2 expS−
4

3
prR3DdR. s19d

The probability densityPsRd has its maximum atR0

=s2prd−1/3. Since Rc=10 Å is much smaller thanR0, the
function PsRd can be approximated byPsRd<4prR2. Sub-
stituting it into Eq.s17d, we obtain the relationu~r. As a
result, the number of strongly coupled rotorsNp is propor-
tional to r2. This naturally leads to the peculiar
r2-dependence of the magnitude ofCsTd below 0.1 K, as
demonstrated in Fig. 6sad.

Let us summarize the findings for low-temperature spe-
cific heats in Ge:O systems. Numerical simulations have sug-
gested the three anomalous behaviors in specific heats of
Ge:O systems:sid the Schottky peaks at around 1 K,sii d the
power-law temperature dependence below 0.1 K, andsiii d
the r2-dependence of the magnitude ofCsTd below 0.1 K.
The first can be attributed to the ensemble of isolated rotors
in the system, while the latter two stem from the presence of
strongly coupled rotors with small separationsR,Rc
=10 Å. Furthermore, the physical origin of the latter two
anomalies has been quantitatively understood through the
distribution function of the energy splittingPs«d as well as
that of separationPsRd. It is expected that our predictions
will shed light on experimental research regarding the low-
temperature properties of oxygen-doped semiconductors.

V. DIELECTRIC SUSCEPTIBILITY

We now focus on the dielectric response for Ge:O at low
temperatures. The quantum tunneling dipoles in alkali ha-
lides crystals are known to significantly contribute to the
dielectric susceptibility at low temperatures. In a series of
papers,29 Klein has theoretically investigated various dy-
namic and static quantities in terms of the virial expansion,
suggesting that the low-T dielectric susceptibilityxsTd con-
tains a −logT term. The experimental results ofxsTd for
KCl:Li have exhibited an interesting dependence on the im-
purity concentrationr and temperatureT. At r of a few ppm,
the susceptibilityxsTd monotonically increases with decreas-
ing T, and then approaches a constant value forT→0. On
the other hand, for the samples of 60 ppm or more,xsTd is
no longer a monotonic function ofT. The susceptibilityxsTd
displays a maximum at a temperature of approximately
300 mK, and the magnitude of the maximum is pronounced
by an increase in the impurity concentrationr. Further, an
additional increase inr of 1100 ppm surprisingly results in a

decreasing susceptibility, which is a manifestation of the
nonlinearity of the low-T susceptibilityxsTd on r. In Refs.
30 and 31, the occurrence of the maximum inxsTd as well as
the abovementioned nonlinearity ofxsTd on r is described
by the theory based on Mori’s reduction method.32,33

In this section, we examine the effect of the presence of
the interacting quantum rotors on the dielectric susceptibility
xsTd in Ge:O for an oxygen concentrationr
=1017–1018 cm−3. The maximum ofxsTd at 1 K, similar to
that observed in KCl:Li, is also observed for Ge:O. Interest-
ingly, the origin of the maximum inxsTd is directly attrib-
uted to the presence of the low-lying excitations of the inter-
acting quantum rotors, which is different from the
interpretation of the maximum ofxsTd for KCl:Li, given in
Refs. 30 and 31.

A. Method

The linear dielectric function for an individual cluster is
described by the time-dependent response function with re-
spect to an external field,

xmn
clsst − t8d =

i

"«
kfPmstd,Pnst8dglQst − t8d. s20d

Here, the angular brackets indicate that the thermal average
k¯l=Z−1 trs¯e−bHd is taken. The operatorPmstd represents
the m-component of the total dipole moment for the cluster,
and Qstd is the Heviside step function. Since experiments
provide quantities depending on frequency rather than on
time, we take the Fourier transform of Eq.s20d,

xmn
clssv,Td = −

2

«Z
o
j ,lÞ j

kEjuPmuEllkEluPnuEjl

3
Ej − El

sEj − Eld2 − s"vd2 expS−
Ej

kBT
D . s21d

Here, uEjl means the eigenstates of the clustered rotors be-
longing to the eigenenergyEj. We focus on the dielectric
response of Ge:Oi at frequenciesv lower than the kHz
range; in this case, the energy differenceuEj −Elu for arbitrary
eigenstates is larger than"v by many orders of magnitudes.
Thus in the sequel we take the zero-frequency limit of Eq.
s21d.

For calculating the susceptibilityxmn for a whole Ge:Oi
sample, we have summarized the contribution of all clusters,

xmnsTd = o
cls

xmn
clssTd, s22d

and performed the sample average as in the cases for calcu-
lating the specific heat. In addition, the isotropy of Ge:Oi
allows us to consider the quantityx;sxxx+xyy+xzzd /3.
Consequently, the objective is the following quantity:

xsTd = o
cls

xclssTd, s23d
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xclssTd = −
2

3«Z
o
j ,lÞ j

ukEjuPmuEllu2

Ej − El
expS−

Ej

kBT
D , s24d

with arbitral componentPm.

B. Contribution of isolated and paired rotors

For later use, we examine the dielectric properties of a
isolated quantum rotor and that of paired rotors. Figure 10
displays the low-lying energy levels ofsad an isolated rotor,
and sbd weakly coupled rotors. Vertical lines indicate the
allowed dipolar transitions; dashed lines refer to the allowed
transition involving the ground state, and solid lines to the
remainder. Dipolar transitions involving higher levels than
E/EK=4 are not shown here, since those higher levels are
only negligibly excited below a few degrees Kelvin.

For an isolated rotor, only two dipolar transitions contrib-
ute to the dielectric susceptibilityxsTd below a few Kelvin.
On the other hand, for single paired rotors, many eigenlevels
lower than 4EK contribute to the dielectric susceptibility as
shown in Fig. 10sbd; rings bundling four eigenlevels indicate
that the corresponding vertical line connects all of the four
eigenlevels bundled. As a consequence, 24 dipolar transitions
are exhibited in Fig. 10sbd. Particularly important is the oc-
currence of the allowed transition at aroundE,EK connect-
ing nearly-degenerate eigenlevels. The small energy differ-
encesuEj −Elu of two nearly-degenerate eigenstatesuEjl and
uEll magnify the absolute value of the fraction
ukEjuPmuEllu2/Ej −El appearing in Eq.s24d, then leading to an
anomalous maximum inxsTd at the temperatureT,EK /kB.16

We emphasize that such almost degenerate levels atE,EK
emerge only for weakly pairedsand clusteredd rotors.
Namely, the remarkable contribution of the dipolar transi-
tions associated with nearly-degenerate levels occurs only
for interacting rotors. This implies that the presence of paired
and clustered rotors affects the dielectric properties of Ge:O
at low temperatures.

We have confirmed that the maximum inxsTd appears
also for clustered rotors with sizesnù3. Note that, however,
the magnitude ofxsTd for clustered rotors is generally re-
duced with increasing the cluster size. This is because the
many-body interaction of rotors with random configurations
prevents them from orienting in the direction of an electric

field. Indeed, the magnitude ofxsTd for clustersn=5 become
less than that for paired rotors by two orders or more. Fur-
thermore, the possibility of the occurrence of clusters with
large sizessnù6d is extremely small. These facts allow us to
ignore the presence of clusters withnù6 for considering the
dielectric susceptibilityxsTd in Ge:O systems.

C. Dielectric responses for Ge:Oi

Figure 11sad shows the calculated results of the dc dielec-
tric susceptibilityxsTd for Ge:O samples;sid r=1018 cm−3,
sii d 331017 cm−3, andsiii d 1017 cm−3 with fixing the dipole
momentp=1 Debye. The solid lines show the total suscep-
tibility xsTd, while the dashed ones show the contribution of
the ensemble of isolated rotors; the latter can be analytically
obtained from Eq.s24d, since the eigenenergies and their
eigenfunctions for isolated rotors are analytically calculated.
The magnitude ofxsTd depends linearly on the concentration
of oxygenr and squarely on the dipole momentp, which is
simply understood from Eqs.s23d and s24d. We find that an
increase inr gradually enhances the maximum ofxsTd at
about 1 K, which comes from an increase in the number of
paired and clustered rotors in the Ge:O sample.34

To aid in illustration, Fig. 11sbd exhibits the differences
DxsTd between the solid lines and the dashed lines displayed
in Fig. 11sad. The maximum inDxsTd is located at about 1 K
independent of the oxygen concentration. Notably, when we
compare the data for casessid andsii d, we find that a change
in oxygen concentrationr by a factor of 3 enhances the
quantity Dx by almostan order. Namely, the magnitude of
Dx depends almost squarely on the oxygen concentrationr.
This r2-dependence ofDx can be explained using the same
scenario as that for the power-law specific heatsssee Sec.
IV Cd. Consequently, ther2-dependence of the quantity
DxsTd as well as the maximum inDxsTd at about 1 K di-
rectly reflect the presence of paired and clustered rotors in
Ge:O systems. We emphasize that the nontrivial

FIG. 10. Schematic illustration of allowed dipolar transitions:
sad the case for an isolated rotor, andsbd single paired rotors. Ver-
tical lines indicate the allowed dipolar transitions, a dashed line
refers to the allowed transition involving the ground state, and a
solid line refers to the remainder.

FIG. 11. sad The dc dielectric susceptibilityxsTd of the same
four conditions shown in Fig. 6. Solid lines show the total suscep-
tibility xsTd, and dashed lines show the contribution of the en-
semble of isolated rotors. Shallow maxima at aroundT=1.0 K ap-
pear in all conditions.sbd The differencesDxsTd between the solid
lines and the dashed lines exhibited insad.
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r2-dependence ofDx as well as its maxima can be measured
experimentally, since the contribution of isolated rotors, de-
picted by the dashed line in Fig. 11sad, has an analytic ex-
pression deduced from Eq.s24d.

It is worth noting that our results ofxsTd, shown in Fig.
11sad, are quite similar to the experimental data ofxsTd for
KCl:Li observed at temperatures between 10 mK and
10 K.30,31 The experiments were performed with Li concen-
trations ranging from 4 ppm to 1100 ppm, revealing the
maximum in xsTd between 100 mK and 500 mK. Further,
the peak becomes more pronounced with increasing Li con-
centrations, which is quite similar to the case of Ge:O as
shown in Fig. 11. However, despite the similarity, the physi-
cal origin of the maximum inxsTd predicted for Ge:O is
different from that observed for KCl:Li.30,31 In the latter
case, the peak inxsTd is identified with the relaxation peak
that indicates the collective motion of the tunneling
dipoles.32,33 On the other hand, the maximum inxsTd for
Ge:O systems is not related to the relaxation process. The
maximum originates from the dipolar transition of the nearly
degenerate levels for weakly coupled rotors. In other words,
for the interacting dipoles, the maximum inxsTd possibly
occurs without the relaxation process. The presence of the
allowed dipolar transition of the nearly degenerate levels is
of importance. Consequently, the maximum inxsTd for Ge:O
that we have observed is different from the relaxation peak
observed in KCl:Li. When the oxygen concentration is fur-
ther increased, the collective motion of the rotors would be-
come relevant. In this case, the relaxation effect might mani-
fest itself in the temperature dependence ofxsTd, which is
similar to that in KCl:Li. Further discussion are required to
clarify this point.

VI. DISCUSSIONS

In this section, we focus on the relevance of our findings
to other physical systems that also exhibit low-temperature
anomalies similar to those in Ge:O.

A. The dipole gap

It should be remarked the relevance of our model to the
dipolar gap theory.36,37 It is known that the long-range inter-
action of constituents in solids generally leads to a remark-
ably reduction of the density of low-energy excitations. This
reduction stems from the requirements of the ground state
stability relative to two-particle excitations and more com-
plex ones for the system of local interacting centers. In the
case of dipolar interaction, the density of statesPs«d for low
energies tends to be zero logarithmically as36 Ps«d
~1/ logsg /«d, whereg is an appropriate constant. This soft
gap, called the dipole gap, manifests itself in a singularity of
the specific heats asCsTd~T/ logsg /kBTd. Kirkpatrick and
Varma38 have suggested the resultCsTd~T3/2 in terms of the
Monte Carlo simulations. These conclusions disagree with
our result ofCsTd andPs«d for coupled dipolar rotors.

We believe that the above disagreement in the behavior of
CsTd is due to the following reasons. The first has to do with
rather dilute concentrations of rotors in Ge:O systems. The

occurrence of the dipolar gap requires a large number of
dipole moments interacting simultaneously. This is hardly
realized in Ge:O systems, since in crystalline Ge there exists
the upper limit of solubility of oxygen.7 Namely, a high con-
centration of rotors sufficient to realize the dipole gap cannot
be achieved as far as Ge:O systems are concerned.

The second reason is the difference of the nature between
classical dipole moments andquantumdipolar rotors. The
derivation of the dipole gap in Ref. 36 was based on the
classical motion of charged particles. Differing from that, we
have considered the quantum character of rotating Ge2O
units carrying dipole moments; in addition, the rotation of
the Ge2O units is restricted to within a two-dimensional
plane perpendicular to the GeuGe axis. Thus the argument
based on the coupled rotor model surely yields the density of
statesPsEd and theT-dependence ofCsTd distinct from those
in Ref. 36. Independent of the relevance for Ge:O, neverthe-
less, it is interesting whether or not the dipolar gap occurs in
the quantum dipolar rotors in sufficiently dense concentra-
tions. The scaling scheme for disordered spin systems39 may
help to address this issue.

B. Two-level tunneling states in amorphous solids

It is known that the power-law specific heats at low tem-
peratures have been observed in various kinds of amorphous
materials.40 In those systems, the power-law specific heats
have been explained by a phenomenological model based on
two-level tunneling statessTLSsd with an assumed constant
density of states.24,25The presence of TLSs in various amor-
phous solids has been confirmed by many experiments.18

There is, however, as yet no microscopic derivation for the
tunneling states or for the constant density of states. In addi-
tion, the theoretical resultCsTd~T differs somewhat from
the observed behaviorCsTd~T1+d with small deviationsd
depending on materials. Recently found evidences for
dipole-dipole interactions between TLSs draw attention to
the necessity of modifying or generalizing the simple TLS
picture.41–44

Of particular interest is that the power-law specific heat in
Ge:O can be interpreted in line with the scenario analogous
to that of the tunneling model. Emphasis should be made on,
nevertheless, the two crucial differences between the
coupled-rotor model and the standard TLS model as follows:
sid The coupled-rotor model gives the clear microscopic ori-
gin for double-well potentials randomly distributed in Ge:O
systems; this is apparently in contrast with the phenomeno-
logical TLS model applied to amorphous solids.sii d While
the TLS model in amorphous solids requires an artificial dis-
tribution function for two-level tunneling states, our model
naturally yields the power-law distribution function with no
artificial condition. Consequently, the clarity of the coupled-
rotor model enables us to argue the low-temperature proper-
ties of Ge:O quantitatively, giving the theoretical prediction
of the power-law specific heat in Ge:O. This is also the case
for alkali halide crystals containing tunneling dipoles.

VII. CONCLUSION

In conclusion, we have theoretically investigated the ef-
fect of the dipolar interaction of oxygen defects on various
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physical properties in crystalline germanium. Numerical
simulations have revealed that the dipolar interaction of
nearby oxygen impurities engenders nontrivial low-lying ex-
citations, causing anomalous behaviors for Ge:O systems
with an oxygen concentration 1017–18cm−3. The following
were the main findings for the low-temperature anomalies of
Ge:O:sid the Schottky peak in specific heatsCsTd at around
1 K, sii d the power-law temperature dependence below
0.1 K, siii d the r2-dependence of the magnitude ofCsTd be-
low 0.1 K, sivd the anomalous hump in the dielectric suscep-
tibility xsTd at around 1 K, andsvd ther2-dependence of the
magnitude of the deviationDxsTd from the susceptibility of
isolated rotors. All these behaviors originate from the pres-
ence of interacting quantum rotors in Ge:O systems, and can
be understood quantitatively by considering the contribution
of the ensemble of interacting rotors. We have accounted for
the occurrence of nontrivial low-lying excitations in interact-
ing rotors in line with the two-level tunneling theory. The

picture is based on quantum tunneling in a local double-well
potential, thus making clear the relevance of the present re-
sults to other systems involving tunneling constituents. We
hope that our findings shed light on experimental research
regarding the low-temperature properties of oxygen-doped
semiconductors as well as on disordered systems with inter-
acting dipole moments.
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