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We propose that localized defects in magnetic semiconductors act as deep impurities and can be described by
the Anderson model. Within this model, hybridization ofd orbitals andp orbitals gives rise to a non-
Ruderman-Kittel-Kasuya-YosidasRKKY d indirect exchange mechanism, when the localizedd electrons are
exchanged through both conduction and valence bands. For semiconductors with indirect band gap the non-
RKKY part of exchange integral is antiferromagnetic, which suppresses ferromagnetism. In case of direct band
gap, this exchange mechanism can, under certain conditions, lead to enhancement of ferromagnetism. The
indirect exchange integral is much stronger than RKKY, and can be sufficiently long range. Thus, a potentially
new class of high-temperature magnetic semiconductors emerges, where doped carriers are not necessary to
mediate ferromagnetism. Curie temperatures in such magnetic semiconductors are determined mostly by the
interaction between localized impurities, not Zener mechanism. This effect could also be responsible for
unusually high Curie temperatures in some magnetic semiconductors with direct band gap.
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I. INTRODUCTION

The advantage of ferromagnetic semiconductorssFSsd as
a source of spin-polarized carriers is that they can be easily
integrated into semiconductor devices.1,2 When discovered,
ferromagnetism at room temperatures with full polarization
of itinerant carriers will be a major breakthrough in semicon-
ductor electronics. Most theoretical and experimental efforts
have been concentrated on group III-V, IV, and II-VI-based
diluted magnetic semiconductorssDMSsd. These semicon-
ductors are alloys in which some atoms are randomly re-
placed by magnetic atoms, such as Mn2+.

Ferromagnetism in diluted magnetic semiconductors
sDMSsd is thought to be well understood in terms of the
so-calledp-d exchange model, which was first considered
over 50 years ago.3–5 sSee also Refs. 6–8 for a review.d

At concentrations of impurities above the Mott limit, i.e.,
as soon as carriers become delocalized, a conventional model
of FS is fairly simple. According to, for example, Ref. 5, the
interaction between charge carriers in a semiconductor and
spin-S impurities can be written as

U = −E ssr do
i

SiJ
pdsr − Ridd3r , s1d

whereSi andRi are the spin and the position of anith atom
of magnetic impurity. Since the Ruderman-Kittel-Kasuya-
Yosida sRKKY d interaction between the localized spins,
which follows from thep-d model Eq.s1d, has a large range,
this model can usually be treated in the mean-field
approximation5

U = − Jq=0
pd so

i

Si , s2d

whereSi andRi are the spin and the position of anith atom
of magnetic impurity,Jq=0

pd =eJsr dd3r , and we have used the
fact that magnetic impurities are randomly distributed in the
sample. A simple analysis5 then shows that, in the presence
of one type of charge carriers, Curie temperatureTc is pro-
portional to concentration of magnetic impuritiesNi and the

square of the strength of the exchange interactionJpd:

Tc =
niSsS+ 1dsJq=0

pd d2x0

12m0
2 . s3d

Herem0 is the magnetic moment of charge carriers andx0 is
the Pauli term in the spin susceptibility in the absence of
impurities. At sufficiently large carrier densities, the spin po-
larization of the charge carriers atT=0 is given by

s=
niJq=0

pd Sx0

4m0
2 . s4d

In general, for any carrier density, the spin polarization is
given by Zeèman-split Fermi surface, with the difference in
chemical potentials for “up” and “down” spins given by

m↑ − m↓ = Jq=0
pd niS. s5d

The spin polarization at any filling is then very easily calcu-
lated from this equation. For example, when the carrier den-
sity

ne ø nc =
s2Jq=0

pd niSm*d3/2

6p2 , s6d

the carriers will be fully polarized atT=0. Whenne.nc,
they are no longer fully polarized. The polarization of carri-
ers is then determined by a parametric equationswith m as a
parameterd:

s=
1

2
sne↑ − ne↓d, s7d

where

ne↑,↓ =
s2m*m ± Jq=0

pd niSm*d3/2

6p2 s8d

andne=ne↓+ne↑.
Despite the simplicity of the basic concept of Zener fer-

romagnetism, calculations ofTc for real materials become
rather involved, and depend crucially on details of the band
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structure, thep-d exchange matrix, or direct antiferromag-
netic exchange between Mn2+ spins. Most theoretical and
experimental efforts on magnetic semiconductors have been
concentrated on finding a new DMS-based material that
would have a ferromagnetic transition above room tempera-
ture, and would be possible to incorporate in thin film form
with mainstream semiconductor device materials. There are
theoretical predictions forTc’s above room temperatures in
several classes of these materials.9,10 However, experiments
indicate that the growth of Curie temperature with concen-
tration of magnetic impurities saturates at 5–10 % Mn dop-
ing in most ferromagnetic semiconductors; it may even start
to decrease at higher concentrations of Mn. Since, according
to the mean fieldp-d model, the Curie temperature Eq.s3d
grows linearly or fastersif the carrier concentration changesd
with the growth of Mn concentration, it is important to un-
derstand what limits the growth ofTc, and how this can be
avoided.

Experimental effort in FS concentrated mostly on
In1−xMnxAs sTc.35 Kd,11 Ga1−xMnxAs sTc.110 Kd,12–15

and MnxGe1−x sTc.116 Kd.16 Recently, Curie temperatures
of Tc.150 K,17 and even as high asTc.159 K sRef. 18d in
films Ga1−xMnxAs were achieved by careful control of an-
nealing. Dramatically higher temperature was ascribed to dif-
fusion of Mn interstitials towards the surface.18 While room-
temperature ferromagnetism in FS remains a theoretical
possibility, it is evident that the growth ofTc with increased
Mn concentration slows, and even saturates. This property is
quite surprising, since it is not expected from a simple mean-
field treatment of thep-d model. It remains the focus of
theoretical interest, with many plausible scenarios proposed
in the literature. Originally, the saturation ofTc was ascribed
to increased disorder.13 Disorder effectively introduces an
exponential cutoff for the RKKY interaction and reduces its
range. Another possible reason is that the strength of direct
antiferromagnetic exchange grows as the average distance
between impurities becomes shorter, which, in turn, lowers
the Curie temperature. Room temperature ferromagnetism
has been observed in a number of compounds withlarge
concentration of Mn impuritiesssee Ref. 2 for a reviewd, or,
due to phase separation and formation of nanoclusters of
these compoundss such as Mn11Ge8 in Ref. 16d. However,
large carrier concentration in these compounds limits the de-
gree of spin polarization that is necessary for device appli-
cations.

A number of different models have been proposed in the
literature as plausible explanations for the observed com-
plexity in FS. Some theoretical studies19–21 claimed that the
reason Curie temperature cannot get higher above certain
concentration of Mn is that thep-d model cannot be treated
in the mean field approximation. It was suggested in these
studies that both thep-d interaction and disorder in high-Tc
Mn-based FS are too strong to be treated perturbatively, and
should be treated instead with dynamical mean field theory.
The analytical and numerical results which follow from this
approach show saturation of Curie temperature. Other theo-
retical studies22,23 have shown that fluctuation corrections to
mean field theory reduceTc, an effect especially dramatic at
higher concentrations of Mn. It has also been shown24 that
ferromagnetic phase in presence of disorder and quantum

fluctuations becomes unstable against noncollinear ferromag-
netic state. Recently, Zarand and Janko25 have pointed out
that due to large spin-orbit coupling in magnetic semicon-
ductors the interaction is highly anisotropic, and thus the
zero-temperature ground state remains intrinsically spin dis-
ordered. In another work Kaminski and Das Sarma26,27 have
claimed that ferromagnetic interaction and percolation of
bound magnetic polarons is crucial for understanding the
physics of magnetic semiconductors. All these explanations
are quite plausible, and may or may not be applicable to
Ga1−xMnxAs and other magnetic semiconductors. Unfortu-
natly, due to the complexity of the real materialssstrong
interactions and strong disorderd, all of these effects could be
playing a role in limiting theTc.

In this paper we follow a more traditional approach,
which works extremely well for other, lowerTc DMSs.6–8,28

We adopt the idea that the mean field treatment in absence of
strong disorder is justified because of the large radius of the
RKKY interaction,29 and that the reason for the discrepancy
between mean field treatment of thep-d model and experi-
ment lies in the presence of additional interactions in the
effective spin Hamiltonian of the problem. The main objec-
tive of this paper is to consider such additional interactions
theoretically, and look for conditions that make these inter-
actions work to increaseTc rather than decrease it.

To derive effective spin Hamiltonian, including additional
interactions, we start from a more general Anderson model
of deep magnetic impurities in FS. We show that, in case of
a deep Anderson impurity in a semiconductor, an additional
long-range indirect exchange interaction appears in the effec-
tive Hamiltonian, which, if antiferromagnetic, severely limits
Tc’s in these materials. On the other hand, under some con-
ditions, this interaction could be ferromagnetic. As a result,
ferromagnetic correlations would become enhanced, not re-
duced, as the concentration of magnetic impurities grows,
and high-temperature ferromagnetism could be possible even
without carriers.

The indirect exchange between two deep impurities,
whether ferromagnetic- or antiferromagnetic, is stronger than
the RKKY interaction, and thus could produce large Curie
temperatures. For example, it could provide a possible expla-
nation of high-temperature weak ferromagnetism30 in
LaxCa1−xB6 or recently discovered CaB2C2 sRef. 31d
sCaB2C2 hasTc=770 K andM =10−4mBd. Experiment31,32in-
dicates that these materials are direct band semiconductors
with a relatively small band gap, and that impurities play a
major role in establishing the new high-temperature ferro-
magnetic state. However, other reports33 claim that high-
temperature ferromagnetism in these materials is not a bulk
effect. Rather, it is related to clustering or new boron phases
with Fe or Ni magnetic impurities. These effects are also
known to appear in older FS, such as Eu chalcogenides or
chromium spinels.28 Understanding the mechanism of ferro-
magnetism in these materials could lead to a discovery of
more members of this class of FS, where ferromagnetism is
not necessarily carrier driven.

This paper is organized as follows. In Sec. II we discuss
the general procedure of the derivation of the effective low-
energy Hamiltonian for Anderson impurities. In Sec. III we
discover that, due to strong hybridization, an Anderson im-
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purity is no longer a local center; its localized wave function
acquires a finite range, which is directly related to the corre-
sponding “Bohr” radius of a charged impurity. Sections IV
and V are devoted to the derivation of the effective exchange
Hamiltonian for magnetic impurities. In Sec. VI we explore
the consequences of the large range of interaction for mag-
netism, such as a high Curie temperature in case of a direct
band gap if magnetic impurities are dense enough. In Sec.
VII we consider a minor modification of the effective Hamil-
tonian in case of higher spinssuch asS=5/2 for Mnd, and
the application of these ideas to Ga1−xMnxAs. In Sec. VIII
the influence of weak disorder and interactions on Curie tem-
perature is briefly discussed. Section IX provides a summary
and conclusions.

II. THE EFFECTIVE HAMILTONIAN

We start by considering a simple model of FS. In III-V
systems, such as Ga1−xMnxAs, it is well established that the
Mn ions substitute for Ga, and contribute itinerant holes to
the GaAs valence band. Experimentally, the hole density is
typically a small fractions15% or sod of the Mn concentra-
tion, perhaps due to strong localization of carriers on Mn and
other defects, so Ga1−xMnxAs can be considered partially
compensated. The Mn ion has a half-filledd shell, which acts
similar to a spin-5/2 local moment. The Anderson model,
which is more general than thep-d model, should completely
account for all the physics of FS. It is well known that, when
spins are well localized, the single-impurity Anderson
Hamiltonian is reduced to thep-d Hamiltonian by the
Schrieffer-Wolff transformation.34 For many impurities, this
may no longer be the case. Let us start by considering a
single-orbital Anderson Hamiltonian

H = H0 + HV, s9d

where

H0 = o
psi

eispdaips
† aips + o

n
Fe0o

s

dns
† dns + Udn↑

† dn↓
† dn↓dn↑G .

s10d

Here the first sumspd is taken over the reciprocal space,
the second sumsnd over real space impurity sites.U is the
on-site Coulomb repulsion term. Typically,U is very large
s,5 eVd, and can be taken to be infinite. Hereeispd are
the energy band spectra of conduction and valence bands
si =1,2d.

The hybridization term in the model HamiltonianHV ac-
counts for thep-d hybridization between impurity sites and
conduction and valence bands:

HV =
1

N1/2 o
pnsi

Vpihapsi
† dnse−ip·Rn + H.c.j. s11d

This model is a reasonable generalization of thep-d ex-
change Hamiltonian, usually considered in the literature. Be-
cause of large on-site Coulomb repulsion, thed levels are
half filled. While we consider the case of a singled orbital, a
generalization toS=5/2 Mn ion isstraightforwardssee Sec.
VII belowd.

The Anderson Hamiltonians9d describes a very compli-
cated problem. However, under theU=` constraint, it can be
reduced to the problem of Heisenberg spinssin case of a
singled orbital, spin 1/2d. The low-energy effective Hamil-
tonian is equivalent to Eq.s9d in the limit kBT!Di, whereDi
is the energy difference between the impurityd level and the
top of the valence band, or the energy difference between the
impurity d level and the bottom of conduction band. Since
typical gap values in semiconductors are of the order of
1 eV, this is usually a valid assumption.

Following Refs. 35 and 36, the effective spin Hamiltonian
can be derived by expanding theS matrix sor, at finite tem-
peratures, the partition functiond in V’s, and reexpressing
various time-ordered processes in terms of spin operators.
Then, these processes are collected back under exponent, to
obtain the effective Hamiltonian. This method allows one to
obtain consistently the interaction between spins and carriers
selectrons or holesd in conduction and valence bands, and
carrier-carrier interaction. In a way, the concept is similar to
perturbative renormalization group, since we arrive at a low-
energy effective Hamiltonian by integrating out higher-
energy states. Treating hybridization term in Eq.s9d as a
perturbation, we can rewrite the partition function as

Z = Trfexps− bH0dSsbdg, s12d

where

Ssbd = T expS−E
0

b

HVstddtD
= T expS− o

nsi
E

0

b

dtVihCnsi
† stddnsstd

+ dns
† stdCnsistdjD . s13d

The problem of finding the effective Hamiltonian is then
to reduce these expressions to the form

Z = Trsexpf− bHeffgd, s14d

using thekBT!Di condition, i.e., the fact that the local levels
are almost always occupied, and that transitions to conduc-
tion and valence bands are absent at low temperatures. Vari-
ous terms in the effective Hamiltonian can then be associated
with certain time-ordered virtual processes. For example, the
first nonzero contribution toHeff is from the second order
term in the expansion of Eq.s13d in Vi:

S2sbd

= o
nss8

V1
2E

0

b

dt1E
t1

b

dt2Cns1st2dCns81
† st1ddns

† st2ddns8st1d.

s15d

The order of operatorsdns
† st2ddns8st1d st2.t1d is fixed by

the assumption of strong Coulomb repulsion on thenth cen-
ter. Note that, in the second order, because all centers are
filled, only one band contributes to the effective Hamil-
tonian. The “filled” band does not contribute, because of the
Pauli principlesthis is not the case at a finiteUd. The pertur-
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bative time-ordered process corresponding to the term in Eq.
s15d is shown in Fig. 1.

We may rewriteCns1st2dCns81
† st1d in the interaction rep-

resentation as

Cns1st2dCns81
† st1d = hCns1st2dCns81

† st1dj+

− Cns81
† st1dCns1st2d. s16d

The first term in Eq.s16d is a c number. In the limit
D1@kBT it is possible to putt1.t2 in the second term in Eq.
s16d. Thus, for the second-order contribution in the effective
Hamiltonian we may written

Heff
s2d = − o

p

Vp1
2

e1p − e0
+

Vp01
2

D1
o

nss8

Cns81
†

Cns1S1

2
dss8 + Snss8sD ,

s17d

whereSn is the localized spin of thenth impurity andp1 is
the location of the bottom of the band 1 in momentum space.
The first term corresponds to the renormalization of the en-
ergy of the localized level, while the second term involving
spins of localized impurity and carriers is nothing but the
ordinaryHpd, the p-d model discussed in Sec. I.

The next order terms in the effective Hamiltonian are
fourth order inV’s. There are sums over two local centers,m
andn in S4sbd. Also, there are contributions toS4sbd, which
we will denoteS48sbd, that are already accounted for in the
effective Hamiltonians17d:

S48sbd =
1

2
E E dt1dt2ThHpdst1dHpdst2dj. s18d

These contributions need to be subtracted fromS4sbd, to get
the fourth-ordersin Vid contributions in the effective Hamil-
tonian. The most important contribution is the effective ex-
change interaction between localized spins:

Hex
s4d = − o

nÞm

JsRn − RmdSn ·Sm s19d

This exchange interaction is the result of two time-ordered
processes shown in Figs. 2 and 3. One is the superexchange
sFig. 2d, which is a result of the localized spins exchanged

through the empty conduction band. The other process is the
Bloembergen-Rowland term37 sFig. 3d, an exchange process
through both conduction and valence bands. The form of
these contributions will be discussed in greater detail in Secs.
IV and V below.

In addition, other interesting contributions arise as a result
of fourth-order processes, such asp-d scattering by spins on
two centers

Hpd2c
s4d =

Vp11
2

D1
2 o

nÞm,ss8

tsRn − RmdCms81
†

Cns1fSn ·Smds8s

+ isfSm ·Sngŝs8sdg, s20d

nontrivial local contribution

Hlocal
s4d = −

Vp11
4

D1
3 o

nsrr8

Cns1
† Cnr81

† F1

2
dr8r + sŝr8rSndGCnr1Cns1,

s21d

and corrections to the energy of the local level and ground
state energy, which are dropped. These nontrivial terms,
however, are higher order in carrier density, which is small in

FIG. 1. The second-order contribution to the effective Hamil-
tonian, shown as a time-ordered process.

FIG. 2. The fourth-order antiferromagnetic superexchange con-
tribution to the effective exchange interaction between two local-
ized impurities.

FIG. 3. The fourth-order Bloembergen-Rowland term in the ef-
fective exchange interaction.
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magnetic semiconductors. Thus, they don’t play any signifi-
cant role in magnetism, and, hence, will not be discussed in
any detail. We refer the reader to Refs. 35, 36, and 38, where
these terms were discussed in detail in connection with the
three-band model of cuprate superconductorsssee also Refs.
28 and 39d.

III. RENORMALIZATION OF LOCAL LEVEL DUE
TO HYBRIDIZATION

To clarify the new physics of an Anderson impurity, in
comparison withp-d magnetic impurity, let us first consider
a single-level problemsRn=0d, interacting only with the
conduction bandsi.e., we takeV2=0 for simplicityd. The
Hamiltonian is defined on the manifold of wave functions
hF0,C1p1

,C1p2
, . . .j, which correspond to the exact solution

for a center in crystalline lattice in the absence of hybridiza-
tion. These wave functions form a complete orthogonal basis
for the single-particle problem. We may now introduce the
hybridization as a perturbation into the Schrödinger equa-
tion. In the matrix representation, the single-level Hamil-
tonian takes a very simple form

H =5
e0 vp11 vp21 ¯

vp11 e1p1
0 ¯

vp21 0 e1p2
¯

A A A �

6 . s22d

Herev1;V1/N1/2. This Hamiltonian can be easily diagonal-
ized, by looking for a solution for the ground state wave
function as a linear combination of all single-particle states

C = x0F0 + o
p

hxp
s1dC1pj, s23d

where the coefficients obey the following set of equations:

se0 − edx0 + o
p

vp1xp = 0, s24d

vp1x0 + se1p − edxp = 0.

Solving Eq.s24d gives the new position of the localized
level

e = e0 −
1

N
o
p

Vp1
2

e1p − e
. s25d

Thus, in presence of hybridization the position of the impu-
rity level is shifted. If the depth of the levelD1!D1, where
D1 is the bandwidth of the conduction bandswhich is usually
a valid assumption for semiconductors, where the band gap
is much smaller than the corresponding bandwidths of con-
duction and valence bandsd, the sum in Eq.s25d can be per-
formed numerically. The correction to the energy level

e − e0 ,
V1

2

D1
s26d

turns out to be small for small enough hybridization param-
eterV1!ÎD1D1. It is responsible for a slight downward shift

of the energy level. Such corrections will thus be dropped in
our further discussion.

The wave function of the localized level, according to Eq.
s24d, acquires an admixture to its decay in the form

dF0srd , Vp11m1a
2a

r
e−rÎ2m1D1. s27d

Here a is the lattice constantswe assume a simple cubic
latticed, m1 is the effective mass of carriers in the empty band
sfor hole-doped materials, the valence band is the “empty”
band, since it is empty of holesd, D1 is the energy difference
between impurity levels and the bottom of the empty band,
p1 is the location of the bottom of the empty band in mo-
mentum space. Thus, a new length scale enters the problem

R0 = s2m1D1d−1 , aÎD1/D1, s28d

which, while small compared to the average distance be-
tween doped carriers, may considerably exceed interatomic
distancessthe large parameter is the square root of the ratio
of the bandwidth to the energy gap in a semiconductord, and
become comparable to the average distance between mag-
netic impurities. The overlap of the localized wave functions
gives rise to a new contribution to the exchange integral,
which will be derived below. The picture of finite-radius lo-
calized magnetic impurities with overlapping wave functions
is shown in Fig. 4.

Existence of a largescompared to lattice spacingd radius
for deep impurities was first noticed by Keldysh,40 who ana-
lyzed deep charged impurities in ordinary semiconductors. In
his case, however, this scale corresponded to ordinary Bohr
radius for a deep impuritysmodified by the fact that in that
case one had to consider Dirac Hamiltonian for thek-p
model of semiconductorsd. In our case, the large length scale
comes from the hybridization of the localized impurity level
with conduction and valence bands. We will also see below
in Sec. VI that effective length scale, at which direct inter-
action between impurities starts to matter, grows logarithmi-
cally with decreasing temperature in the framework of per-
colation theory or virial expansion. Thus, at low
temperatures, such as Curie temperature, the effective range
of interaction between two impurities becomes even larger.

FIG. 4. Localized centers acquire a finite radius in the Anderson
model. This radius can be as large as 2–3 lattice spaces in magnetic
semiconductors. An overlap of wave functions from two localized
level leads to the new physics, which is not captured by the tradi-
tional p-d model.
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IV. THE EXCHANGE HAMILTONIAN

The problem of magnetism in the Anderson model can be
reduced to the spin Hamiltonians19d, described by the pro-
cesses shown in Figs. 2 and 3. In case when the empty band
sthe “empty” band can also be the valence band, in case of
hole dopingd gets partially filled by carriersselectrons or
holesd, the time-ordered processes shown in Figs. 2 and 3
include all possible contributions—the familiar RKKY ex-
change interaction, the superexchange, and the
Bloembergen-Rowland interaction. In presence of carriers,
the superexchange gets modified by the RKKY exchange
term. We shall see below, that the Bloembergen-Rowland
interaction also gets modified in presence of dopants. This
modification is not accounted for by the RKKY interaction.
As we have discussed in the previous section, localized im-
purities in the Anderson model acquire a large radiusscom-
pared with the lattice constantad. Thus, exchange interaction
between localized spins is, in general, long range. This
would allow one to use mean-field to describe the ferromag-
netic ordering, if the concentration of localized spins is high
enough. On the other hand, if the concentration of magnetic
impurities is low, one can use percolation theory or virial
expansion.

Let us first consider exchange integrals given by the pro-
cesses shown in Figs. 2 and 3 for a semiconductor with con-
duction and valence bands separated by some general recip-
rocal space wave vectorQ, as shown in Fig. 5. WhenQ=0,
it is a direct band gap semiconductor. Surprisingly, all ex-
change processes can be written in a relatively compact way:

JsRd = o
i,j

JijsRd, s29d

where

Jij = 2
a6

s2pd6 E d3pd3q
uVpiu2uVp+q ju2f1 − nsepi − mdgeiq·R

sepi − ep+q jdsepi − e0d2 .

s30d

Here i , j are the band indices for conduction and valence
bands,m is the chemical potential, andnse−md is the Fermi-
Dirac distribution function. The empty band corresponds to
i =1, while the filled band has the band indexi =2. We can
see now, that forT!D0, whereD0 is the band gap, the con-
tributions J21 and J22 are absent.J11 is the superexchange,
which corresponds to the process shown in Fig. 2. In pres-
ence of carriers, this process, and the corresponding expres-
sion, also includes the RKKY contribution. When carriers

are present, the effective Hamiltonian can be written in terms
of impurity spins only, with carriers “integrated out.” In this
case, impurity spins interact with the exchange Hamiltonian
s29d and s30d, which includes RKKY. If, however, we wish
to retain carriers, and the carrier-impurityp-d exchange in-
teraction, as we described in Sec. II, then the RKKY part will
be the partS8sbd in the fourth orderfsee Eq.s18dg, which has
to be subtracted, and the indirect exchange interaction will
be described by Eq.s30d at zero doping, i.e., with the factor
f1−nsepi −mdg in Eq. s30d replaced by 1. These two descrip-
tions are only equivalent when the chemical potential for
doped carriersm!D1. Basically, when the doped carriers are
retained, we “integrate out” electrons and holes in the origi-
nal Anderson Hamiltonian up to the scalem. When we con-
sider the Hamiltonian for localized spins only, we integrate
out all carriers. It makes sense to define the RKKY interac-
tion for the Anderson model as the difference between the
doped and undoped cases in Eqs.s29d and s30d. When
m,D1, the Anderson modelcannot be reduced to thep-d
model, except near the Fermi surface. The Anderson model
expression for the RKKY interaction in real space will then
differ from the correspondingp-d model expression atshort
distances, which are important for ferromagnetism. We will
not consider this subtle point any further, since we will al-
ways assume the carrier density in FS to be small, i.e.,
m!D1. In this section and the next section we will deal with
an effective Hamiltonian for spins only, i.e., when all carriers
are integrated out. This procedure for the Anderson model is
always justifiedsalthough, as we commented above, a reduc-
tion to the p-d model is notd. J12 is the Bloembergen-
Rowland interaction, which also gets somewhat modified by
doped carriers. Note that the expression for the exchange
integral s30d, obtained from the Anderson model, differs
from the original expression of Bloembergen and Rowland;37

it includes the termsep1−e0d2 in the denominator, which
makes the exchange integral in the Anderson model long
range. The final result of Bloembergen and Rowland is erro-
neous, since the Brillouin zone in their calculations was re-
placed by a sphere, and the spatial dependence of Bloch
amplitudes was neglected.41 The short-distance behavior thus
has to be calculated from the band structure. Nevertheless,
the Bloembergen-Rowland interaction was shown to be im-
portant at large distances, where its behavior can be obtained
analytically.41 In this paper, we also consider long-range be-
havior of the Bloembergen-Rowland interaction. Thus, con-
cerns about the errors in the original Bloembergen-Rowland
calculation also do not apply. The hybridization parameters
Vpi account for the Bloch amplitudes. Finally, we note that
while the physics ofJ12 is similar to the Bloembergen-
Rowland interaction, it, unlike RKKY, does not appear as a
result of the second ordersin V’sd terms in the effective
Hamiltonian, but rather appears directly in the fourth order.
This difference accounts for different asymptotic behavior
obtained below forJ12 from that of the Bloembergen-
Rowland interaction.41

Both contributions to exchange integral can be evaluated
analytically whenD1!D, since the dominant contribution to
the integral over the momenta is coming from the bottom of
the conduction band and the top of the valence band. Due to
this condition, the exchange integral becomes long range

FIG. 5. Positions of conduction and valence bands.
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compared to lattice spacing. WhenD1,D, numerical ap-
proach is required. These contributions are shown schemati-
cally in Figs. 6 and 7.

We see that the superexchange is, in general, antiferro-
magnetic, while the Bloembergen-Rowland contribution fa-
vors a spin density wave with a wave vectorQ, separating
conduction and valence bands. Both exchange processes are,
in general, of the same order, and their relative strength is
determined by the corresponding hybridization parameters
V1 andV2. The superexchange integral in theq space, in the
absence of carriers, can be easily found analytically

J11sqd = −
2V1

4a3m1
3

pÎ2m1D1

1

q2 + 8m1D1
. s31d

SinceVpi vary slowly over the Brillouin zone, while the ex-
pression under the integral is highly peaked, their value can
be approximately taken at momenta for the bottom of the
conduction bandsand the top of the valence bandd. Thus, we
will drop the momentum index inVpi’s from all the expres-
sions obtained further in this section and Sec. V, meaning
that

Vi ; Vpi,i
, s32d

wherepi are the locations of the bottom of the conduction
band i or top of the valence bandi in momentum space. In
presence of carriers,J11sqd gets modifed by the RKKY in-
teraction

dJ11sqd ; JRKKYsqd =
V1

4a3m1pF

s2pd2D1
2

351 +SpF

q
−

q

4pF
Dln11 +

q

2pF

1 −
q

2pF

26 , s33d

wherepF=Î2m1m is the Fermi momentum for doped carri-
ers. The superexchange and RKKY contributions can be eas-
ily rewritten in real space:

J11sRd = JsesRd + JRKKYsRd, s34d

with

JsesRd = −
V1

4a6m1
3

2p2Î2m1D1R
exph− Î8m1D1Rj, s35d

and a standard expression for the RKKY interaction, taking
into account thatJpd;2V1

2/D1 fnote that in Eq.s19d we sum
over each pair of impurities twiceg:

JRKKYsRd = − JRKKYFs2pFRd, s36d

where

Fsxd =
cossxd

x3 −
sinx

x4 , s37d

and

JRKKY =
V1

4a6m1pF
4

p3D1
2 . s38d

We define the RKKY interaction in the Anderson model for-
mulation as the difference betweenJ11sRd in doped and un-
doped cases, given by Eq.s30d. As we emphasized above,
since it depends explicitly on impurity energy level, when
D1,m, this expression differs from the usual RKKY form.
Its asymptotic behavior at large distances, certainly, does not
change. In what follows we assume that the carrier concen-
tration is always lowm!Di, so thatJRKKYsRd is given by the
standard expression. Note that ifJpd and the level position
are known, the exchange integrals34d contains no free pa-
rameters:

J11sRd = − JRKKYSFs2pFRd +
psm1D1d3/2

2Î2pF
4R

e−2Î2m1D1RD .

s39d

Similar to superexchange, the Bloembergen-Rowland inter-
action can also be written in two parts. The first part is from
the empty and filled bands, while the second part takes doped
carriers into account:

J12sqd = JBRsqd + J128 sqd. s40d

The first contribution in Eq.s40d favors a spin density wave
with a wave vectorQ, separating conduction and valence
bands, and has a rather cumbersome form

FIG. 6. Superexchange contribution to exchange integral inq
space; modification by RKKY in presence of carriers is shown by a
dotted line.

FIG. 7. Bloembergen-Rowland contribution to exchange inte-
gral in q space; modification in presence of carriers is shown by a
dotted line.
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JBRsqd =
a3V1

2V2
2m1

2m2

pÎ2m1D1

3 5 m1D1 + m2D1 +
q2

2
+ m2D0 − Î2sm1 + m2dD1Î2m2D0 + q2 m2

m1 + m2

D1
2sm1 + m2d2 + D1sq2sm1 − m2d − 2m2sm1 + m2dD0d + Sq2

2
+ m2D0D26 . s41d

Here and below in this section the notation will be slightly
different; q is now thedifferencefrom Q sthe wave vector
separating the bottoms of the two bandsd, i.e., we change our
notation in the following way:q−Q→q. In general, the
Bloembergen-Rowland contributions41d is quite cumber-
some, which makes it impossible to find an explicit analyti-
cal expression in real space, except in some limiting cases.
However, the leading asymptotic behavior ofJBRsRd at large
distances can be derived. If the deep impurity level lies in-
side the gapD1,D0, we find an exponential decay of ex-
change correlations

JBRsRd .
a6V1

2V2
2m1m2

2Î2p2R

3SÎm1

D1
−Î m2

D0 − D1
DcossQ ·Rde−R/R1,

s42d

where the range of the integral is

R1 =
1

Î2m1D1 + Î2m2sD0 − D1d
. s43d

On the other hand, when the deep impurity level enters the
filled bandD1.D0, the Bloembergen-Rowland contribution
has an oscillating decaying asymptotic

JBRsRd =
a6V1

2V2
2m1m2

Î2p2R
SÎ m1

2D1
cos

R

Rc1

+Î m2

2sD1 − D0d
sin

R

Rc1
DcossQ ·Rde−R/Rc0,

s44d

where

Rc1 =
1

Î2m1sD1 − D0d
, Rc0 =

1
Î2m1D1

. s45d

The contribution from doped carriers toJ12 can be derived
as well:

J128 sqd . −
a3V1

2V2
2pF

3

3p2D1
2SD0 +

q2

2m2
D . s46d

In real space, this contribution becomes

J128 sRd . −
pF

3a6V1
2V2

2m2

6p3D1
2R

cossQ ·Rde−Î8m2D0R. s47d

We see that ifQ=0, i.e., when our FS has a direct band
gap, the Bloembergen-Rowland mechanism gives a large fer-
romagnetic short-range contribution to the exchange integral.
At high enough concentration of impurities, ferromagnetic
properties are then determimed by the value of exchange
integral atq=0. This value can be easily written downsit is
only valid for a direct band gap FSd:

Jsq = 0d

= J11sq = 0d + J12sq = 0d

=
2a3V1

2m1
2

pÎ2m1D1
S−

V1
2

8D1
+

V2
2m2

sÎ2sm1 + m2dD1 + Î2m2D0d2D .

s48d

In this section we have derived explicitly the interaction
between two magnetic impurities in a semiconductor with
one conduction and one valence band. Typically, the band
structure of semiconductors is more complex than thatsfor
example, GaAs has light and heavy hole bandsd. This situa-
tion is considered in the next section.

V. WHAT IF A SEMICONDUCTOR HAS MORE THAN
TWO BANDS?

When a semiconductor has many bands, the analysis is
just as straightforward as in case of two bands considered in
the previous section. The exchange integral between two im-
purities is still given by Eqs.s29d and s30d, where the sum
now goes over all pairs of band indices. The case wheni
= j is an “empty” band index corresponds to a superexchange
contribution sFig. 2d, considered in detail in the previous
section;Jij =0 wheni is a “filled” band index, because of the
Pauli principle;Jij is the Bloembergen-Rowland contribution
sFig. 3d, wheni is an “empty” band index; andj is a “filled”
band index. The contribution of a new type appears when
one has two or more “empty” bands in a semiconductor.
Then there will be a superexchange contribution of the type
shown in Fig. 2, where now the carriers are exchanged
through two different “empty” bands—the processs1d in Fig.
2 puts a carrier from one magnetic impurity into the first
“empty” band, while the processs2d puts a carrier from the
other magnetic impurity into the second “empty” band. Natu-
rally, there are two such contributionsJij and Jji , where
i Þ j indices correspond to two different “empty” bands. The
exchange Hamiltonian in any FS is a sum of all pairwise
contributions listed above.

Let us now consider the new two-band superexchange
contribution in detail. In the most general case, the bottom of
the second “empty” band is shifted from the bottom of the
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first “empty” band by a wave vectorQ. The bottoms of the
two bands also lie at two different positive energiesD1 and
D2 relative to impurity level, unless there is a symmetry-
related degeneracy, and the carriers in the first and second
bands have different effective massesm1 andm2.

Let us first consider the simplified case when the bands 1
and 2 are identicalsi.e., D1=D2 andm1=m2d, but separated
by a wave vectorQ. Then we do not have to do the calcu-
lation, sinceep2=ep−Q1, and it can be easily seen from Eq.
s30d, that

J12sqd = J11sq − Qd, s49d

and

J12sRd = J11sRdeiQ·R. s50d

Summing all contributions from two identical empty bands,
sinceJ11sRd=J22sRd, we get

J2bse= 2J11sRdf1 + cossQ ·Rdg. s51d

This also includes RKKY-type contribution for two identical
bands at finite doping, described by

J12RKKY + J21RKKY = 2JRKKYsRdcossQ ·Rd, s52d

and the ordinary RKKY interaction from both bands. It is
rather obvious from Eq.s52d, that at a finite density of car-
riers there are ordinary one-band RKKY contributions from
both bands. The two-band RKKY contribution oscilates
much more rapidly in space, as cossQRd, unlessQ=0. In the
latter case, the two-band RKKY contribution just enhances
the contributions from the two separate bands. In the case
whenQ=0, the 12 and 21 exchange integrals take the same
form as shown in Fig. 6. ForQÞ0, these contributions have
the same form inq space as forQ=0, centered at the wave
vectorq=Q.

Now that the form of new two-band contributions to the
exchange integral has become clear from the simplified case,
let us consider a more general case of two completely differ-
ent “empty” bands. The bottom of the second band is shifted
from the bottom of the first band by the wave vectorQ. Of
course, 12 and 21 contributions toJsqd will still be of the
form shown in Fig. 6, with the bottom atq=Q, but the
corresponding expressions become more combersome. Let
us assume thatD1,D2, i.e., the bottom of the first band lies
below the bottom of the second band, and the first band gets
filled by carriers first. We consider three separate casess1d
both bands are empty,s2d the first band gets filled by carriers,
but the second band is empty, ands3d both bands get partially
filled by carriers. WhenD1=D2, i.e., the two bands are
symmetry-related, we only have casess1d ands3d. As before,
we assume that the carrier concentration is very small, i.e.,
the Fermi energy for doped carriers is much smaller than any
other energy scale in the problem, except temperature.

(1) Both bands are empty. Let us now consider the ex-
change interaction arising from two empty bands. The inte-
gral in Eq.s30d can be easily calculated:

J12+21sqd = −
Î2V1

2V2
2m1m2a

3

sq − Qd2 + sÎ2m1D1 + Î2m2D2d2

3SÎm1

D1
+Îm2

D2
D . s53d

In the coordinate space, it takes the following form:

J12+21sRd = − V12 cossQ ·Rd
1

R
expS−

R

R12
D , s54d

where the range of this interaction is given by

R12 =
1

Î2m1D1 + Î2m2D2

s55d

and

V12 =
V1

2V2
2a6m1m2

2Î2p2 SÎm1

D1
+Îm2

D2
D . s56d

(2) One band gets filled. Let us assume in this section that
band one gets filled first, i.e.,D1,D2. We also assume that
the chemical potentialscounted from the bottom of band
oned, m1!D2−D1, i.e., the number of carriers is low. Of
course, the main part of the exchange integral is still given
by Eq. s54d. However, at finite doping there are corrections.
Obviously, since only band one gets carriers,dJ21=0. At
small filling, RKKY-like correction can be easily calculated:

dJ12sqd .
2V1

2V2
2a3PF1

3 m2

3p2D1
2s2m2fD2 − D1g + q2d

. s57d

Hereq denotes the difference fromQ, the wave vector sepa-
rating the bottoms of the two bands. In coordinate space it
can be written as

dJ12sRd .
V1

2V2
2a6pF1

3 m2

6p3D1
2R

e−R/Rg cosQ ·R, s58d

where

Rg =
1

Î2m2sD2 − D1d
. s59d

(3) Both bands get filled. WhenD1=D2=D by symmetry,
both bands get filled by carriers simultaneously. The result of
this is an RKKY-like correction to exchange integrals54d,
which is given by Eq.s52d for two identical bands. If the
bands have different masses, the interaction is RKKY-like
long range, but the general expression is quite messy. Here
we give the its value atq=Q, which is important for ferro-
magnetism, whenQ=0:

dJ12+21sq = Qd =
2V1

2V2
2a3Î2mm1m2

p2D2sÎm1 + Îm2d
. s60d

To summarize this section, the exchange interaction in any
magnetic semiconductor is composed of pairwise contribu-
tions: the superexchange contribution through one “empty”
band, the Bloembergen-Rowland contribution from one
“empty” and one filled band, and a pairwise contribution
from two different “empty” bands. The last contribution was
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considered in this section. It includes two-band long-range
RKKY-like interaction at finite doping, which is usually not
taken into account in thep-d Hamiltonian. Note that when
QÞ0, the two-band RKKY interaction will favor spin glass
order,not ferromagnetism, since it oscillates very rapidly in
real space.

VI. THE MEAN-FIELD APPROXIMATION, VIRIAL
EXPANSION, AND PERCOLATION

Now that we have obtained all terms in the exchange
interactions30d, we can proceed to calculate magnetic prop-
erties of ferromagnetic semiconductors. In general, the
RKKY exchange interaction is always long-range. The
shorter-range contributions may or may not be treated in
mean field, depending on the ratio of their range to the av-
erage inter-impurity distance. We assume here, for simplicity,
that one of indirect exchange processes considered in the
previous two sections dominates the short-range physics. In
case of FS with indirect band gap, the Bloembergen-
Rowland exchange contribution favors antiferromagnetism
with a lattice wave vectorQ. It oscillates very rapidly in real
space. Since impurities are distributed randomly, it would
favor a spin glass ordering. The contributions atQ=0, which
influence ferromagnetism, are the RKKY and the superex-
change. From Eq.s39d one can easily see that, when impurity
concentrationni @ sm1D1d3/2, the superexchange contribution
totally suppresses ferromagnetism brought about by the
RKKY exchange interaction. On the other hand, when
ni ! sm1D1d3/2, the superexchange at an average distance be-
tween impurities is suppressed, and the RKKY interaction
gives rise to ferromagnetism, as in the ordinarypd model.
Corrections due to superexchange can then be calculated us-
ing the virial expansion approach.42 We can rewrite the
dominant exchange contribution from Eq.s39d in the follow-
ing form:

JsRd = − JRKKYFs2pFRd − V0
R0

R
e−R/R0, s61d

whereV0=pJRKKY / s64pF
4R0

4d, R0=1/Î8m1D1, in case when
it is given by one empty band only. If contributions from
more than one “empty” band are important,V0 and JRKKY
are, in general, unrelated to each other. The reason for this is
that the largest short-range contribution typically comes from
the lightest bands, which would produce the longest-range
indirect exchangesif all hybridization parameters are of the
same orderd. On the other hand, the dominant RKKY contri-
bution is the one from the heaviest band, since the carriers in
that band have the largest Fermi wave vector; there will also
be additional RKKY contributions from many bands, which
were analyzed in the previous section. In what follows we
consider the simplest case, when only one heavy band is
relevant for RKKY.

In case of a FS with a direct band gap, the Bloembergen-
Rowland mechanism gives rise to ferromagnetism, and we
can either have a ferromagnetic or an antiferromagnetic
short-range exchange contribution, depending on the relative
strength of corresponding exchange processes. If the

Boembergen-Rowland term dominates the physics at short
distances, the impurity spin Hamiltonian becomes

JsRd = − JRKKYFs2pFRd + VBR
R1

R
e−R/R1. s62d

In general, the Bloembergen-Rowland terms40d also has an
antiferromagnetic contribution from doped carriers. It then
can be rewritten in the following form:

J12sRd = VBR
R1

R
e−R/R1 − Vdop

Rg

R0
e−R/Rg, s63d

where Rg=1/Î8m2D0 and VBR and Vdop are given by the
coefficients in front of exponents in Eqs.s42d ands47d. How-
ever, since

Vdop/VBR ,
pF

3

sm1D1d3/2 ! 1, s64d

while Rg is still quite small, the contribution of doped carri-
ers toTc through the Bloembergen-Rowland mechanism can
be neglected. Thus, if one exchange process dominates the
physics are short distances, the short-range exchange contri-
bution has the same form, and can only differ in sign. In
what follows, we consider the general form of exchange in-
tegrals61d, assuming that the exchange constantV0, its sign,
and its rangeR0 are those of the dominant indirect exchange
contribution. Note again that in our definition of exchange
integral we sum over impurities twice. We will also consider
the case when the short-range part in Eq.s61d is rapidly
oscillating,

JSR= − V0
R0

R
e−R/R0 cossQ ·Rd. s65d

As we have seen above, this happens when two bands sepa-
rated by wave vectorQ contribute the most to the short-
range exchange interaction.V0 has a negative sign for the
Bloembergen-Rowland contribution, and a positive sign for
the superexchange. When more than one process is important
for short-range physics, the problem can always be solved
numerically for a given set of parameters. Here we obtain an
analytical solution in several limiting cases.

(1) Dilute system with almost no carriers. In the absence
of carriers, the type of order andTc is determined by the
short-range part of interaction. If ferromagnetic
Bloembergen-Rowland interaction dominates at short dis-
tances, Curie temperature is approximately given by the fer-
romagnetic interaction taken at the average distance between
impurities:6

Tc . 2.3V0S
2R0ni

1/3e−0.87/R0ni
1/3

V0 . 0, s66d

which is valid whenni !1/R0
3. A comparison with Eq.s3d

shows that this gives the following condition on the number
of carriers:

pF = s3p3ned1/3 ! p0F, s67d
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p0F =
27.6V0p2SR0

sJq=0
pd d2sS+ 1dm*ni

2/3e−0.87/sR0ni
1/3d.

When the short-range interaction is antiferromagnetic, it fa-
vors spin glass order, and ferromagnetism is absent when
there are no or almost no carriers. The condition on the num-
ber of carriers for ferromagnetism to be absent is then given
by

pF ! p0SG=
27.6uV0up2R0

sJq=0
pd d2m*ni

2/3e−0.87/sR0ni
1/3d. s68d

Finally, for a rapidly oscillating short-range parts65d this
condition can be rewritten as

pF ! p0SG=
27.6uV0up2R0

sS+ 1dsJq=0
pd d2m*ni

2/3e−0.87/sR0ni
1/3d. s69d

For the Anderson Hamiltonian,Jq=0
pd =2V1

2a3/D1. Note that
if the ratione/ni is fixed,pF grows much slower withni than
p0. Thus, conditions in Eqs.s67d–s69d are likely to be satis-
fied at some finite concentration of magnetic impurities
nc!ni !1/R0

3. For example, for antiferromagnetic or oscil-
lating interactions, Eqs.s68d and s69d, will define the con-
centation of impurities above which carrier-driven ferromag-
netism disappears.

(2) Dilute system with carriers. When the carrier concen-
tration is large, i.e.,pF@p0 in Eqs. s67d–s69d, but the con-
centration of magnetic impurities is still small,ni !1/R0

3,
short-range interactions between magnetic impurities will re-
sult in a correction toTc, which can be calculated by virial
expansionssee, for example, Ref. 42d. Following Ref. 5,
since the range of RKKY interaction is large, we can repre-
sentp-d interaction between carriers and magnetic impuri-
ties by a mean field Zener Hamiltonian

ĤMF = − Jq=0
pd so

i

Si , s70d

wheres is the density of ordered spin of the carriers, which is
assumed to be constant in space. In addition, there is a rela-
tively short-range exchange interaction between impurity
spins, given by the processes described in Secs. IV and V:

Ĥexch= − o
i j

JsRi − R jdSi ·Sj . s71d

The short-range exchange integral does not include the car-
rier contribution, since it is already accounted for in the
mean field Hamiltonian. In the Zener models70d, Curie tem-
perature Eq.s3d can be found by minimizing the free energy
density of the system of carriers and spins5

F = Fe + Fi , s72d

with respect tos, and finding when the solution at smalls
first appears. Here

Fe =
s2mBsd2

2x0
, s73d

andFi is given by the usual Zeeman term

Fi = − niT ln
sinhfJq=0

pd ssS+ 1/2d/Tg
sinhfJq=0

pd s/s2Tdg
. s74d

To find the virial correction to Eq.s3d from Eq. s71d, we
need to include intoF the contribution from two magnetic
impurities, when they are close enough:

F2i =
1

2
ni

2E d3RfF2isRd − 2FisRdg, s75d

and calculate it from the Hamiltonian

Ĥ = ĤMF + Ĥexch. s76d

This can be done, since the Zeeman Hamiltonian for two
spins, interacting via direct exchange interaction, can easily
be solved. The integral over this solution, however, can only
be taken with logarithmic accuracy. The contribution from
two impurities is important when the distance between them
is

Rø R0 ln
uV0u/T

lnsuV0u/Td
. s77d

Finding F2i, and repeating the minimization overs, we ob-
tain, as expected, that a for ferromagnetic exchange interac-
tion sV0.0d Curie temperature is enhanced:

dTcfFg
Tc

.
4pS

3sS+ 1d
niR0

3 ln3 uV0u/Tc

lnsuV0u/Tcd
. s78d

For an antiferromagnetic exchange interactionsV0,0d, the
Curie temperature is reduced

dTcfAg
Tc

. −
4p

3
niR0

3 ln3 uV0u/Tc

lnsuV0u/Tcd
. s79d

A rapidly oscillating exchange interactions65d gives

dTcfOg
Tc

. −
4p

3sS+ 1d
niR0

3 ln3 uV0u/Tc

lnsuV0u/Tcd
, s80d

which is independent of the sign ofV0.
(3) “Dense” system. The most interesting situation is the

case of a “dense” system of magnetic impurities, when
ni @ sm1D1d3/2. Since the short-range part of the interaction
could have a range much larger than the lattice spacing, it
need not be really dense. This requirement can be rewritten
as ni @ sD1/Dd3/2. In a dense system, the wave functions of
the neighboring impurities overlap strongly, and the main
exchange contribution arises as a result of this overlap, not
the RKKY interaction through free carriers. Then ferromag-
netism arises even when no carriers are present, if the
Bloembergen-Rowland exchange process dominates the
physics at short distancessV0.0d:

Tc =
2SsS+ 1dni

3
Jq=0 =

8pSsS+ 1dni

3
V0R0

3. s81d

Note thatTc does not depend on the carrier concentration,
and should be much higher than that resulting from the
RKKY interaction.
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The Bloembergen-Rowland exchange integral may be
weaker than superexchange. In that case, ferromagnetism in
a “dense” system is suppressed, and spin glass order is fa-
vored. This is always the case for indirect band gap semicon-
ductors, where the short-range ferromagnetic exchange is ab-
sent. The Bloembergen-Rowland mechanism in case of
direct band gap necessarily leads to an increase of maximum
Tc as a function of concentration of magnetic impuritiesni.

VII. APPLICATION TO GAAS:MN

Application of the Anderson model to a real system, such
as Ga1−xMnxAs is somewhat more involved than the model
that we considered above, since Mn ion is in 3d5 configura-
tion with a spinS=5/2. This configuration has fived orbit-
als. For symmetry reasons, there may be more than just one
conduction or valence band, which is the case for GaMnAs.
Then, as we discussed above in Sec. V, one has to take into
account all pairwise contributions to the exchange integral,
s29d and s30d. In particular, there may be unusual contribu-
tions to RKKY, such as those considered in Sec. V. In gen-
eral, one has also to sum over all orbitals in the Anderson
Hamiltonian, not just spins, and take the Hund’s rule, spin
orbit, and crystal field splitting into account. Different orbit-
als may have differentVs with conduction and valence
bands. The result of this treatment, however, produces the
same exchange integralsJsRd; for example, in case when
spin-orbit and crystal field splitting is neglected, the result
will still be given by the exchange integral Eqs.s29d and
s30d, with uV1u2 is replaced byomuV1mu2, and similarly for
uV2u2, whereV1m is V1 for mth orbital. The relation between
corrections to energy levels and exchange integrals is differ-
ent in this more realistic case. However, the integrals in-
volved are the same, and, as we have seen above in Sec. III,
corrections to energy levels are rather small. Taking Hund’s
rule into account results in replacingS=1/2 operator in
equations of the previous section byS/ s2Sd, with S=5/2.
Thus, this leads to the same results as in the previous section,
with somewhat redefinedV’s. The relationship between the
energy shift andJpd will change, but the actual form ofJsRd
is determined by the energy spectrum only. Instead ofVam,
we may introduce

uVau2 ;
om

uVamu2

4S2 , s82d

and use the form of exchange integrals that we have obtained
in the previous sectionsswith S=5/2d. Equivalently, this
would mean that the expression forJsRd in terms ofJpd’s sor
JRKKYd for conduction and valence bands and level position
will stay the same as in the previous sections.

For ap-type semiconductor, such as Ga1−xMnxAs, we can
adopt an inverted picture, where the “empty” band is now the
valence bandsempty of holesd, while the filled band is the
conduction band. The Anderson Hamiltonian is then easily
rewritten in terms of holes. There are two types of holes in
GaAs—the heavy hole and the light hole. Since their masses
are very differents0.081me and 0.51med, the main RKKY
exchange contribution is produced by the heavy hole. On the

other hand, the superexchange contribution from the light
hole band has a much larger range, and thus could potentially
be more important than the superexchange contribution from
the heavy hole band, or the mixed superexchange contribu-
tion. However, as we have seen in previous sections, most
short range contributions for a direct band gap semiconduc-
tor take the form of the second term in Eq.s61d, although
there may be some variations. The problem is that the am-
plitude of superexchangeV0~V4/D3~m3, where D is the
band width. So, for light bands the effective range of the
interaction is large, but the payback is that the amplitude
turns out to be small. An easy estimate for the light hole band
in GaAs shows that forV’s of the order of 1 eV this band
plays no role in ferromagnetism. The hole mass in the split-
off band is 0.15me. This band could also play an important
role in the superexchange interaction, although, once again,
the amplitude for realistic parameters turns out to be ex-
tremely small. The electron mass ismge=0.063me for the
main G valley. The masses and gaps forL andX valleys are
much larger, so we do not expect them to play much role.
Thus, we arrive at a simplified picture, where only the heavy
hole band andG-valley electrons are relevant. The CFR Mn
d6/d5 level, which is important for our analysis, is in the
conduction band,D1=1.5 eV above the top of the valence
band. We can see from Eqs.s45d and s35d that, for this par-
ticular level position, the ferromagnetic Bloembergen-
Rowland interaction has the rangeR0;RBR." /Î2mhhD1,
while the range of the superexchange isRse.RBR/2.
The amplitude of the Bloembergen-Rowland term
VBR/Vse.V2

2mge/ s2V1
2mhhd, could become comparable or ex-

ceed the amplitude of heavy hole superexchange. Note that,
in case of strong short-range ferromagnetic interaction, it
would be energetically favorable for Mn impurities to form
ferromagnetic clusters. This, in turn, would reduce the Curie
temperature. Clustering of Mn impurities would make mag-
netic properties of this material crucially dependent on
sample preparation. On the other hand, antiferromagnetic
short-range interactions should be stronger at shorter dis-
tances, which would potentially lead to an exchange integral
sin the absence of carriersd, which changes its sign as a func-
tion of the distance between impurities. In general, for the
particular situation when the Mn level is almost at the bot-
tom of conduction band, the range of antiferromagnetic su-
perexchange is approximatelyR0/2, and we may represent
the total short-range exchange integral in the following form:

JsRd . V0
R0

R
f− a exps− 2R/R0d + exps− R/R0dg. s83d

Here V0=VBR.0, while a.mhhV1
2/ smgeV2

2d is the ratio of
superexchange and Bloembergen-Rowland amplitudessup to
a factor of 2d, which depends on the hybridization of impu-
rity d level with the valence bandsV2d, of impurity d level
with the heavy hole bandVhh and the corresponding effective
masses. Whena.1 swhich is likely the case here, since
mhh@mged, the exchange becomes antiferromagnetic at short
distances forR,R0 ln a. The virial correction toTc for such
exchange integralsassumingTc is determined mostly by the
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p-d interaction of magnetic impurities and heavy holesd is
then given by

dTc

Tc
.

4pS

3sS+ 1d
niR0

3Sln3 V0/Tc

lnsV0/Tcd
− f2 + s1/Sdgln3 aD ,

s84d

and could change sign as well, at some large doping level. If
carriers are not present, this exchange integral alone, for
a.1, would lead to a saturation or decrease ofTc at large
doping. On the other hand, whena,1, ferromagnetism gets
significantly enhanced at short distances.

In general, the interplay between various short range
contributions leads to a rather complicated physics at
short distances. While a detailed calculation requires precise
knowledge of all hybridization parameters from the quantum
chemistry, we can estimate the Mn concentration at which
the short distance physics becomes important by requiring
dTc/Tc,0.5 in Eq. s84d. We take the estimate of
Jpd,150 eV Å3 and Tc,110 K from Ref. 13,D1,1.5 eV,
and assume thata.1. ThenV0=Jpd

2 mhh
3 / s8p2d, and we get

xi , S a

2R0 lnsV0/Tcd
D3

, 8 % . s85d

Finally, it should be mentioned that there is another ferro-
magnetic contribution to shorter-range exchange, coming
from the Anderson model and Hunds rule ferromagnetic ex-
change for realistic systems. This ferromagnetic exchange
corresponds to the following process: a Mnd hole is taken
into the s-p hole band at another Mn site, followed by the
Hunds-rule ferromagnetic exchange on another Mn. Only
one hole band participates in this virtual process. This gives
the ferromagnetic contribution of the form28

JHFsRd = −
V1

2a3JHm1
2

4p2R2 e−2Î2m1D1R, s86d

which shows that the direct band gap is not necessary for
ferromagnetism at shorter distances, and for the physics dis-
cussed above. A different power ofR would introduce minor
corrections in the results discussed above, such as the change
the power of concentration in Eq.s66d from ni

1/3 to n2/3, and
R in Eq. s77d to

Rø R0 ln
uV0u/T

ln2suV0u/Td
. s87d

Finally, it should be mentioned that percolation can only be
treated analytically in some limiting cases. Detailed Monte
Carlo calculations, such as the simulations done in Ref. 43
are absolutely crucial for understanding the problem.

VIII. EFFECTS OF DISORDER AND INTERACTIONS

In this section we consider rather briefly effects of disor-
der and interactions. Since the superexchange and the
Bloembergen-Rowland exchange interaction are governed by
high-energy virtual processes, they are independent of disor-
der. The RKKY interaction, however, gets modified. This
modification was first considered by de Gennes,44 who ar-

gued that, since the RKKY interaction at large distances is
dominated by the 2pF Kohn anomaly wave vector, the vertex
corrections are not essential for the averages over disorder.
The long-distance power law in the RKKY interaction then
gets multiplied by an exponential factor exps−2R/ ld, where
l is the scattering length. These effects were indeed taken
into account by Ohnoet al.13 in their original paper. Abra-
hamset al.,45 however, have shown that this is not the whole
story, since disorder introduces instead adistributionof JsRd
at large distances. We note here that the long-distance behav-
ior of the RKKY interaction is not essential for ferromag-
netism. The Curie temperature is determined by RKKY ex-
change at short distances, orJRKKYsq=0d. Of course, the
vertex corrections are essential for the calculation of the
RKKY loop diagram atq=0. Summing all ladder diagrams
s0 order in 1/pFld, shown in Fig. 8, leads to a diffuson con-
tribution

Psq,vnd = −
nDq2

uvnu + Dq2 , s88d

which significantly modifies frequency dependence of
RKKY at q=0. HereD is the diffusion coefficient.

However, the staticsv=0d, not dynamic, part of the dia-
gram in Fig. 8 determinesTc, and it is not changed at all.
Thus, to the leading order in 1/pFl disorder does not modify
the Curie temperature. The interactions, if not too strong, can
also be included as the standard Fermi-liquid corrections to
x0 in Eq. s3d. Weak localization correctionssthe Cooperon
diagramsd, however, should modifyTc. They can also be in-
cluded in the same way as the standard weak localization
corrections to spin susceptibilityssee, for example, Ref. 46d,
and Eq.s3d should still be valid.

Finally, we note that strong exchange interactionJpd could
bind holes at Mn sites, forming a shallowsor deepd complex
magnetic impurity. This effect would reduce the hole concen-
tration and the number of free Mn spins, and thus lead to a
reduction Curie temperature. The interactions between these
complex magnetic impurities would be determined by the
overlap of the corresponding wave functions.

IX. CONCLUSIONS

We have investigated the model of magnetic semiconduc-
tors in which magnetic impurities are treated in the frame-
work of the Anderson model. We have shown that the effec-
tive Hamiltonian of this model is more rich than the usual
p-d model considered in the literature. Effectively, in the
Anderson model, wave functions of localized impurities de-
velop a “tail,” which could be long range. When the concen-
tration of magnetic impurities is large enough, the overlap of
wave functions on two different sites leads to a very strong

FIG. 8. Impurity corrections to Curie temperature.
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exchange interaction, which is important, and could domi-
nate the physics at Mn concentrations as low as 5%. There
are two contributions to this exchange interaction-
superexchange, in which localized electrons are exchanged
trough only one type of bandsseither conduction or valence
bandsd, and the Bloumbergen-Rowland term, when the ex-
change is through both conduction and valence bands. We
have found that, in case of direct band gap, the Bloemberger-
Rowland exchange is ferromagnetic. This could lead to a
dramatic enhancement of Curie temperatures in certain mag-
netic semiconductors with a direct band gap, such as GaM-
nAs. One other important consequence of the indirect ex-
change is that, if it is ferromagnetic and reasonably long
range, doped carriers are not necessary to mediate ferromag-
netism. This leads potentially to a new class of high-
temperature magnetic semiconductors, with high Curie tem-
peratures determined entirely by the interaction between
localized impurities,not Zener mechanism. This emphasizes
the effort to search for new materials, where ferromagnetism
is not carrier driven sfor example, driven by the
Bloembergen-Rowland mechanismd. Another important con-
sequence of the Anderson model is that, if there are more
than one type of carrierssfor example, light and heavy holes
in GaAsd, the long-range RKKY interaction becomes rather
complicated, since it involves a “mixed” contribution. We
have also found that, at large doping, the RKKY interaction
for the Anderson model and thep-d model is different at

short distances. The effective exchange interaction in the
U=` Anderson model for any FS is given by Eqs.s19d, s29d,
and s30d. A numerical solution of this effective Hamiltonian
for a given set of parameterssdetermined from quantum
chemistryd would give the answer forTcsnid in the most gen-
eral case.

We have briefly considered effects of disorder and inter-
actions. We have shown that when De Gennes44 approxima-
tion pFl @1 is applicable, disorder does not modify Curie
temperature. Localization effects, however, do modify Curie
temperature, although their effect could be reduced to re-
moval carriers. Finally, in this paper we have not considered
the effects of mixing of conduction and valence bandsssuch
askpd. These effects should also be included in the full de-
scription. We should mention that application of the Ander-
son model to GaAs:Mn was also considered in Ref. 47, al-
though the limits of the Anderson model and their
conclusions are different from ours.
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