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Quantum Monte Carl¢QMC) simulations involving fermions have a notorious sign problem. Some well-
known exceptions to the auxiliary field QMC algorithm rely on the factorizibility of the fermion determinant.
Recently, a fermionic QMC algorithf'C. Wu, J. Hu, and S. Zhang, Phys. Rev. L&, 186402(2003] has
been found in which the fermion determinant may not necessarily be factorizable, but can instead be expressed
as a product of complex conjugate pairs of eigenvalues, thus eliminating the sign problem for a much wider
class of models. In this paper, we present the general conditions for the applicability of this algorithm and point
out that it is deeply related to the time-reversal symmetry of the fermion matrix. We apply this method to
various models of strongly correlated systems at all doping levels and lattice geometries, and show that many
phases can be simulated without the sign problem.
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[. INTRODUCTION tive U Hubbard model in a bipartite lattice at the half fillidg.
In both cases, the fermion determinant after the HS decom-

Understanding the physics of strongly correlated manyposition can be factorized into two real parts with the same
body systems is a main focus of condensed matter physicsign. It is therefore positive definite. Unfortunately, general
today. However, most models with strong interactions cannofermion determinants may not be factorizable for more com-
be solved exactly except in one dimension. Presently, therplicated models and the majority of models do have the sign
are no systematic, nonperturbative, analytic methods whicRroblem. In recent years, several other algorithms have been
work in higher dimensions. Largely because of this reasonproposed which partially solve the minus sign probfer.
numerical simulations such as exact diagonalizatigb), Recently, it has been shown that the minus sign problem
density-matrix renormalization groufDMRG), and quan- ¢an be eliminated without relying on the factorizibility of the
tum Monte CarloddQMC) are extensively performed to study fermion determinant; therefore, a broader class of models

strongly correlated systems. However, each of the numericgia" be simulated by the QMC algorittfThe fermion de-

methods has its own limitations. The ED can only be per_terminant can always be expressed as a product of its eigen-

formed on a very small sample size and the DMRG methoa/alues; under certain conditions, the eigenvalues of the fer-
gion determinant always appear in complex conjugate pairs,

'Sl\lﬂacr:gseilzqﬁ:ttig?t?s tLOeoonneI-démsetg?n(;rt]iil ;zztggslétl)rllecﬁqgha; hus making the fermion determinant positive definite. In this
Q y sy aper, we shall show that the property of conjugate eigen-

with sufficient numerical accuracy for higher—dimensior_\alvalue pairs follows from the time-reversal symmetry of the
problems. However, QMC also has the notorious fermionyg_qgecoupled Hamiltonian and can be viewed as a generali-
sign problem which makes low-temperature properties inaCzajon of the Kramer’s theorem in quantum mechanics. We
cessible. _ _ shall call this method th&@-invariant decompositiortime-

In lattice systems, a particular version of QMC uses theeyersal invariant decompositiprhis method does not lead
auxiliary-field method of Blankenbecler, Scalapino, andto any improvement for the single-band Hubbard model, but
Sugar; with fruitful results. Because one cannot directly significantly extends the applicability of the QMC to multi-
sample the fermionic Grassmann fields, the standard procesand, multilayer, or higher-spin models. This algorithm is
is to perform a Hubbard-Stratonovi¢HS) transformation to  particularly useful for Hubbard models with higher spins,
decouple the four fermion interaction terms and then to intewhich can be accurately realized in systems of cold atoms.
grate out the fermionsThe resulting fermion functional de- Recently, Assaadt al® applied the QMC to generalized
terminant works as the statistical weight for sampling theHubbard models with more bands. Imposing the factorizibil-
auxiliary fields. However, generally speaking, the fermionity condition of the fermion determinant, they found that
determinant may not be positive and can even be complex ithey could extend the parameter regime for QMC free of the
some cases. The sign or the phase of the fermion determsign problem only by scarifying the spin-rotational invari-
nants can lead to dramatic cancellations which makes statigsnce. However, applying our method ®Bfinvariant decom-
tical errors scale exponentially as the inverse of the tempergsosition without requiring factorizibility, we shall show that
ture and size of the system. This notorious sign problem isnulti-band or higher spin Hubbard models can be simulated
the major obstacle in applying QMC to fermionic systems. Afor an extended parameter regime without scarifying the spin
successful solution to the sign problem would obviously leadotational invariance. This QMC algorithm based on
to great advances in quantum many-body physics. T-invariant decomposition has been recently applied to con-

There are a few exceptions where the sign problem iglusively demonstrate the staggered current-carrying ground
absent, such as the negativeHubbard model and the posi- state in a bilayer modéP
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The rest of this paper is outlined as follows. In Sec. Il, the lu| (# ) 5
sign problem for the spig-Hubbard model is reviewed. In =f Dnexp) == d7 [n(i,n) - 1]* rdeql + B},
Sec. lll, we prove the fundamental theorem Tfnvariant 0 !
decomposition and show the absence of the sign problem. Wheren(i, 7) is a real HS Bose density field. The imaginary-
Sec. IV, we employ the algorithm to the spinHubbard  time-independent kinetic energy teiiy and the imaginary-
model and the generalized arbitrary spiﬂ% fermionic  time-dependent decoupled interaction tdpir) can be ex-
Hubbard model. In Sec. V, we apply it to a bilayer modelpressed as
introduced by Scalapino, Zhang, and Hafkeyhich can be

mapped into the spi§-Hubbard model. In Sec. VI, we dis- He = 2 CiTahil?,(rcr'CJ'U” Hi= E CiTahin,ao-’CiU"
cuss the algorithm in the model Hamiltonians with bond in- ! :
teractions and various exotic phases. Our final conclusions K (4)
are presented in Sec. VII. N oor = {18 jax+ O jx + 6 juy + 01 j—g) = 18} 0o
Il. THE SIGN PROBLEM IN THE SPIN - 1 HUBBARD o = UN(1,7) 88,
MODEL

HerehX , and hi'j -+ are defined for both spin components

ij,00

In this section, we review the sign problem in the séin- on each site. After integrating out the fermions, we obtain

Hubbard model and interpret its absence in the negafive 8
case as due to its time-reversal properties of the HS decom- |+B=1+ Texp{—f dihg + h|(7'):|}, (5)
position. The Hubbard model on the lattice is commonly 0
defined as . | L
Note that the matrix kernelﬁim, andh; ., entering in Eq.
1 (5), as well as thé+B matrix itself, are N X 2N matrices, if
H=-t> (¢l ¢, +H.c) -2 n(i) +UX (”T(i) - —) the lattice system under simulation hisL, X L, sites. In
ij.o [ [ 2 the subsequent discussions, we shall simply use the second
1 quantized operatotd, andH, interchangeably with the first-
x(nl(i)—§>, (1) guantized matrix kerneldy and h; to save some writing,

whenever their meanings are obvious from the context.

. o ] ] In practice,l +B needs to discretized as
with t the hoPp|ng integralu the chemical potentialg

=11, n,(i)=c] ¢, andn(i)=n;(i) +n(i). At half filling and
on a bipartite lattice, the particle-hole symmetry ensures that X - @ AHkgrATHi(ry)
wn=0. _ _ _ _ _

To perform the QMC simulation, we first need to de- WhereAr=p/l is the discretized time slice. _
couple the four-fermion interaction terms using the HS trans-  Similarly, at U>0, Eqg. (1) can be decomposed in the
formations by the Gaussian integral, spin-density channel as

B
1 — 1 Z:fD ex —ZUJd i,7) rdefl +B}, (7
ex;{EAz): \’wadxexp<— Exz—xA>, > p{ 0 Tz S T)} 48, 0
2 with the same expression fd@ as in Eq.(5), but with H,

1 — 1 replaced by
exp(— —Az) = \r’27rj dx exp(— o ixA).
2 2 Hi(n)=- 203 (el (DoZcp(MISdin.  (8)

| + B=1+ e AtkgAHi(mg-AHkgrAmHi(7-9) . ..

Various HS decoupling schemes are discussed in Ref. 12. For

U<O, it is convenient to decouple E@1) in the density It is well known that the spiri; Hubbard model is free of
channel and then integrate out the fermions. The resulting'€ Sign problem either I‘;U<0 or for U>0 at half filling
partition function is given by and in a bipartite latticé!? The usual proof is based on the
factorization of the fermion determinant as
Z:f Dc'De exp{— fﬁdr(c‘”ic + H)} detl + B} = del +B}de{l +By}. (9)
0 or In the negativeU case, the HS decomposition in E@)

enables such a factorization, aBdis identical toB, for any
ul (# HS field configurations. Therefore detB} is the square of
:f DnDc'Dc exy — _f dr>, [n(i,7) - 1]2 a real number and thus positive definite. Generally speaking,
2 Jo i in the positiveU case, the HS decomposition in Eg) still
enables factorization, but detB,} is different from deft

B
X ex _f ddHg +H/(D] ¢, (3) +B,}, and thus the sign problem appears. However, at half
0 filling and on a bipartite lattice, it is possible to change the

155115-2



SUFFICIENT CONDITION FOR ABSENCE OF THE PHYSICAL REVIEW B 71, 155115(2005

sign of U while keeping the kinetic-energy part invariant by THT Y =Hy, THT?'=H, T?°=-1, (13

a partial particle-hole transformation only on spin down par- _ ) )
ticles then the eigenvalues of thietB matrix always appear in

' complex conjugate pairs, i.e., X is an eigenvalue, theni*
C1—Cipy G — (- )'ciTl, (10 is also an eigenvalue. K; is real, it is twofold degenerate. In

. . . this case, the fermion determinant is positive definite
then the above algorithm is also applicable. Nevertheless, ' P ’

this transformation cannot be applied to lattices which are defl +B) = H |)\i|2> 0. (14
not bipartite or away from the half fillingu # 0), thus the [

S'ggepggstlfma;e;nn?'sgstrg] i%etr\:\(/a()ril)én d model exolicitly break- Proof. From the condition of the theorem stated in Eq.
. Y, . P plicitly élB), it obviously follows thatT(I+B)T™1=(1+B). For sim-
ing the spin rotational symmetry was also shown to be fre

of the sian problend. The Hamiltonian is defined b plicity, we first consider the case wheteB is an nXxn,
gnp ' y dimensional, diagonalizable matrix, i.e., there exists a nons-

H=—t3 (clg,+ H.c) =~ X n,() ~|U|Z [my(i) —ngf)  Ingular matrixP satisfying

o Lo PX(1 + B)P = diagA1, Ny, ... Apt. (15)
N = ()72
(i) ~ gD (11) The n columns ofP can be viewed as a set of linearly inde-
whereng(i):cf,(i)cg(i) are the particle densities for each spin pendent state vectors,
componento=1,2,3,4. Thenteraction part can be decou- P={[¥), [Ty, ... [T} (16)
pled as e
s Suppose thatt¥;) is an eigenvec;or_with eigenvalue, i.e.,
fDSex _ |U|f drS (0,7 (1+B)|¥;)=\;|¥;). Using the antiunitary property of, we
o 3 see that
B (I +B)T¥) =T +B)T W) =NT|¥). (17
xXex _f d7{H0+HI(T)] ’ . . . . *
0 Therefore,T|¥;) is also an eigenvector, with eigenvalng

Since T?=-1, T|¥;) and|¥;) are orthogonal to each other.
This shows thak; and)\i* are two different eigenvalues, thus
the eigenvalues df+B appear in complex conjugate pairs as
stated in the theorem. If+B is Hermitian, our theorem re-
This HS decomposition enables the factorization of the ferduces to Kramer’s theorem on the time-reversal symmetry in
mion determinant as quantum mechanics, stating that the eigenvaluds+& are
_ real and twofold degenerate.

defl + B} = def| + B}y, defl + B}y, (12 In the general casé+B may not be diagonalizable; in-
where defl +B},, and defl +B};, for spin components 1,2 stead it can always be transformed into the Jordan normal
and 3,4, respectively, are identical and real. Therefore, thérm as diagonal blocks,

H(nD=2> (CiT,lci,l - CiT,ZCi,Z + CiT,SCi,S - CiT,4Ci,4)S(ia7')-
i

fermion determinant is positive in this case as well. How- -1 — A

; : , o . P(I + B)P =diadJy,Js, ... ,Ji}, 18
ever, a disadvantage of this model is the explicit breaking of ( ) A1 J, o (18)
the spin-rotational symmetry. whereP is ann X n nonsingular matrix as before, adds an

I; X1, bidiagonal matrix as

Ill. FUNDAMENTAL THEOREM OF T-INVARIANT N1

DECOMPOSITION

We now show that the condition of factorizibility of the J= _ (19)

fermion determinant is unnecessarily restrictive, and a more N1
general condition can be precisely stated. The fermion deter- :

minant is a product of all the eigenvalues. SineeB in- A

volves a time-ordered product, it may not be Hermitian, andrpe geterminant of+B is still the product of all the eigen-
the eigenvalues may be complex in general. Because the ez e

semble of HS field configurations is arbitrary, one would ’

naively not expect any special relations among the eigenval- K }

ues. Surprisingly, the time-reversal symmetry provides an det( +B):H()\i)'- (20
important relationship among the eigenvalues. To formulate =1

the fundamental theorem, we considéx and H, in the | As in Eq. (16), P can be viewed as linearly independent

+B matrix of Eq. (6) to be the HS-decomposed single- column state vectors as

particle Hamiltonian matrix derived from a general Hamil- _

tonian, not necessarily th}:t% Hubbard model. P={PyP2 ... . P, 29
Theorem If there exists an antiunitary operatdr such  where eachP; is annXI; matrix containingl; column state

that vectors,
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i-1 Im A,
A det>0
Pi={ W), o [P )} M= 21, (22) ) X >
=1 : :
. . e X X X Re A
For each Jordan block, it satisfies I . : >
(1+B)P =P, (23 X '
(a) X
thus among thd; state vectors inP;, |V, is the only
eigenvector with eigenvalulg,. It is straightforward to show Im A
that A y det<0
(1+B)(TP) = (TP)J,, (24) ) o
- - ek
where(TP) is defined as z " -
; : X
X :
(TP) :{T|lI/m+l>, ,T|‘I/m+|i>}, (25 (b) X
and T|W,,,) is the only eigenvector with eigenvalue in FIG. 1. Distribution of eigenvalues in the complex plara.

(TP). Again since|[W,.,) and T|¥,,) are orthogonal to Eigenvalues of a fermion matrix satisfying the conditions of our
each other(TP,) contains different state vectors from what theorem are always paireth) Complex eigenvalues of a generic
P, does. As a result], and\]i* are different Jordan blocks. As real matrix are paired, but real eigenvalues are not twofold degen-
before, the Jordan blocks appear in complex conjugate pairsrate in general, leading to negative determinants.
and so do the eigenvalues. This completes the proof for the
general case df+B. 0 -1

Since the antiunitary operatof used in our theorem R:—iay:<1 0 ) (26)
shares similar properties with the time-reversal transforma-
tion in quantum mechanics, we call our methbdhvariant  For the entire system, the time-reversal operator is defined as
decomposition. However, it is important to emphasize thathe direct producT=[II; ® R(i)JC. The four independent fer-

any antiunitary operator with the stated mathematical propmion bilinears in the particle-hole channel can be classified
erties could work here. In some examples we shall disduss, as the particle numbern(i)=¢{a¢i'a and spin ()

does not have the .epr|C|t physical meaning of the time-_ U (012).. 5t 5 which are even and odd under thdrans-
reversal transformation. formmati apTip tivel

It is also important to point out that tHE?=-1 condition ormation, respectively,
is essential for our theorem. In the case in which the fermion )T =nl), T)T'=-i). 27
matrix is real, one can define a trivial antiunitary operator
T=C, whereC denotes the complex conjugation. In this case,Now we can understand the absence of the sign problem in
if the eigenvalue\; is complex, i.e.\; #)\T, then )\f must  the negativel case as follows. The density channel decom-
also be an eigenvalue. However, whepis real, it is in  position is T invariant, namely, T[Hy+H,(7)]T*=Hy
general not twofold degenerate, sirfde andT|¥) may not  +H,(7). The conditions of our theorem are satisfied and the
be orthogonal for the case dP=1. In this case, an odd fermion determinant is thus positive. For>0, the Hamil-
number of negative eigenvalues would lead to a negativéonian can be decoupled in the density channel at the cost of
determinant. The distribution of eigenvalues in the complexnvolving the imaginary number or decoupled in the spin
plane for a fermion matrix satisfying the condition of our channel with only real numbers. In either case, wikilgis
theorem and the eigenvalues of a generic real-fermion matristill even undeiT, H, is odd. The conditions of our theorem
is illustrated in Fig. 1. When the conditions of our theoremdo not apply, and the sign problem appears in general.
are violated, either the complex conjugate eigenvalue pairs For a general interacting fermion model, we can always
collide on the real axis and move off from each other alongexpressT=RC, whereRR =-1 andR’ is the complex con-
the real axis, or the twofold degenerate eigenvalues move oftigate ofR. In many caseR is purely real, and it reduces to
directly from each other along the real axis. R?=-1. The general condition for our theorem then reads

A restricted version of our theorem was originally dis- 1 *
cussed in the context of nuclear physicelowever, these R(Hi + H)R™ = (Hic+ H), (28)
authors overlooked the case thatB may not be diagonal- with the unitary matrixR satisfyingRR =—1 for any con-
izable, thus their proof was not complete. In addition, ®ur figurations of the HS field. Again we emphasis that the pre-
transformation is not restricted to the physical time-reversatise form forR in Eq. (26) is not necessary.
transformation as in Ref. 4, thus the theorem applies to a While our method does not lead to any improvement of
much wider class of models. the sign problem for the=5 Hubbard model, we shall show

We now illustrate this general theorem for the case of thenow that it significantly improves the QMC algorithm for
s=3 Hubbard model. For the spihsystem on each site, the multiband, multilayer, and higher-spin models, since the con-
time-reversal transformatioh is defined ad(i)=R(i)C, sat-  ditions for our theorem are far less restrictive than the con-
isfying T2())=-1, where dition for the factorizibility of the fermion determinant. Let
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us illustrate the general idea here by looking at the examplgenerated by the transformatimﬂ,,e(—)‘cﬁg. Because of
of a two-band spinﬁ- model or a spinz-’ model. In this case, the Pauli’s exclusion principle, only on-site interactions in
we have the fermion operatorg 5 within one unit cell, the total spin singletS;=0) and the quintetS;=2) channels
whereB=1,2,3,4Therefore, there are 16 fermion bilinears, are allowedP{,P}, are the singlet and quintet pairing opera-
of the form M':ljzlfaM'aniﬂ, where I=1,...,16. The 16 tors defined by
M'aﬂ matrices can in general be expressed in a complete basis

. . 1
in terms of the product o$:§ matricessS, PLH[PI)]= TE{CiT,:%/zCiT,—wI CiT,lIZCiT,—1/2}*
J
I ’
. Pl ()=CaClip Phi)=clacl i 31
S, i=1.23 2.20) = Cj 3/Ci 172 2.10) = Ci 3/Ci _1/2 (31)
(29 P;—l(i) = CiT,lIZCiT,—3/2= P;,—z(i) = CiT,—lIZCiT,—SIZ'

£sS, a=1,..,5 £=&, £=0, ) _
Thes=3 Hubbard model has an exé8Q5) or equivalently,
L - L _ L _ Sp(4) symmetry, without any fine tuning of the parameters.
, L=1,..,7, =& =0,

G595 ?”k i i This follows from the fact that singlet and quintet channel
where theg’s are fully symmetric, traceless tensors. If oneinteractions can also be interpreted as $i&5) group’s sin-
insists on the factorizibility of the fermion determinant, oneglet and five-vector representations. Wheh=U,, the
could Only .perform the HS deC(?mpOSition in the densitymode| has a |arger Symmetry, name|y '@B(4) Symmetry_

&SS matrix contains an even power of spin matrices, it S gied in the transition metal oxides with double orbital
also even under time reversal. HS decomposition in th'%egeneracﬂﬁ

channel does not lead to factorization of the fermion deter- T4 jjjustrate theT-invariant decomposition for this model,
minant, but according to our general theorem, it does lead tQ;e first define the four-component spinor,

paired eigenvalues, and therefore, a positive fermion deter-

minant. As we see from this nontrivial example, our method Y(i) = (Capali),Casli), Co1/ali), Cozpali)) (32

of T-invariant decomposition is indeed more general ano|n this representation, we define five<4 Dirac I'* (1<a
more powerful compared with the traditional method of fac-<5) matrices to const,ruct thB[{4) or SQ5) algebra as
torization. We shall show the enlarged parameter space for 9

the QMC algorithm explicitly in the Sec. IV. F1:< 0 il ) 234 (5’ 0 ) F5:( 0 -1 )

-il O 0 -¢ -1 0
IV. APPLICATION IN SPIN gAND n—% HUBBARD . . . .
MODEL wherel and o are the 2< 2 unit and Pauli matrices. The ten

SQ5) generators are defined a8°=-i/2[I'3,I'?](1<a,b

In this section, we apply the method ®finvariant de- <5). Since theSQ(5) group is equivalent to th8(4) group,
composition to thSzg model as an explicit example, and there exists a symplectic matri, with the propertied!
discuss the sign problem accordingly. After that, we general- - el o
ize it to arbitrary fermionic Hubbard models witk=n-3. Ri=-1, R=R"=R=-R
These models are not of only academic interest. In fact, the (33
rapid progress in ultracold atomic systems provides an op- RMR'=T? RI®R*=-T
portunity to study higher-spin fermions. The simplest case
are the spirs atoms, such as tH@e, **Cs, *Ba, and"*'Ba _
atoms. Another important research direction is the trapped R_F1F3_< 0 —IUz) (34)
atoms in an optical lattice, formed by the standing-wave la- B B '
ser beams, where the Hubbard model is a good approxima-

$n our explicit representation,

_i0'2 0

tion for these neutral atoms. Using theR matrix, theszg Hubbard interaction can be
written in an explicitlySQ5) symmetric fashion as
=3 o N
A. The s=3 Hubbard model H= _tz [T () gj) + Hoe] = (u+ MO)E () (i)
The spini Hubbard model is defined %s ' !
u U o
H==t > {cl o+ H.Ch = (1 + o) ClCio + 22 7 )+ 22 xR 0)x0), (35
(i) i ! "
. ) ) ) T - — T - T - - - ..
+UpD PIi)Py()+U, > PL ()P, where 7'(i)=¢'(i)(R/2)'(i) is the singlet pairing operator,
o< Tl 2 g 2 Tam and x*'(i)=¢'(i)(I'*R/2)y(i) are the polar forms of the

(30) quintet pairing operators in E§31).
In order to implement the method dfinvariant decom-
with uo=(Ug+5U,)/4. u is fixed to be zero at half filling on  position, we first need to express the interaction terms in the
a bipartite lattice, to ensure the particle-h@beh) symmetry  particle-hole channel, rather than the particle-particle chan-
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nel. In the particle-hole channel, there are 16 bilinear fermisecond and the fourth rows of E®9). Thus, then(i) opera-
onic operators, which can be classified into the scalar, vectotor describes a particle-hole pair with total spin zero, the five

and antisymmetric tenso(generatorsof the SQ5) group as

n(i) = YL (i),

1
ny(i) = Elpg(i)rzﬁwﬁ(i), l<as<5 (36)

Lap(i) = —%¢L(i)r3@¢ﬁ(i), l<a<bs<s5,

where n(i) is the particle number operator amg(i) and
L(i) represent the spin degrees of freedom. TheS€xb)
generators are often conveniently denoted as

0 Remy Rem, Rewm, Q

0 -S S Immy
Lag(i) = 0 -S Imm, (37
0 Imm
0

Although similar symbols are used in ti85) algebra in

the high T, cuprates{ the operators here have different

physical meanings.

These 16 fermion bilinears are related through the Fierz

identity,

> Lgb(i) + >

l=<a<bs<5 l=<as5b

n4(i) + g[n(i) -2]?=5. (39

Defining the time-reversal operator asRC, and using the
properties of thek matrix given in Eq.(33), it can be shown
thatn(i),n,(i) are even whild_4(i) is odd undefT,

TnTi=n, TlyT 1=- (39)

On the other hand, we can relate the abdvenatrices
with the usual spirBU(2) operatorsJ;, which form a sub-
group of theSQ5) group,

TnT1=n, L ab-

:\;“’5(_ L34i iL24) + (lei |L25) + |(|—13i iL35)7

J,= =Lyt 25 (40)

It is easy to check that th§ operators form thesz% repre-

sentation of theSU(2) algebra. While the above equation

expresses the spin operators in terms ofltheatrices of the

n,(i) operators describe five particle-hole pair states with to-
tal spin two, and the teh,, operators include the degenerate
three spin-1 and seven spin-3 particle-hole pair states. From
this point of view, the physical meaning of E¢89) and(29)
becomes transparent; operators with even total spins are even
underT, while operators with odd total spins are odd under
T.

Using the identities,

5 3 1
(P*R)ag(RT) y5= 5 Sy dps~ Z,Fiyr Bo~ Zrib s
L @2)
= byab
Rusfso= 3 OurP0 el ™ g Lol

and the Firez identityEq. (38)], we can now express tre
=2 Hubbard model in the following form:

HK - _tE (‘/’Igwj,0+ HC) - E Mltbi-ra'l//iﬂ"

(43)
=" i,1§as5 {%[n(i) - 2]2 ¥ %ng(i)} ’
where
0c =~ (BUg +5U,)/8,
(44)

g,= (UZ_ UO)/Z

B. Absence of the sign problem

After a series of transformations, we arrived at a form of
the szg Hubbard which is suitable for th&-invariant de-
composition method. The interactions in E¢3) are fully
expressed in theT-invariant fermion operators in the
particle-hole channel. Wheg, g,=0, i.e.,

_3/5LJ02 U22 Uo, (45)
the partition function can be expressed using ThHavariant
decomposition as

B
Z:fDdfTDdfexp{—f thﬁZ(i”fH)%}
0 (?T

SQ5) algebra, the reverse can also be accomplished. The

five I'* matrices can actually be expressed in terms of the

quadratic forms of the spin matrices,

=SS +59), (41)

Wheregﬁ is a rank-two, symmetric, traceless, tensor given in
Eqg. (29 and discussed more explicitly in Ref. 15. The ten
antisymmetric tensof2® matrices contain both the three lin-

ear(rank 1) § and seven cubic, symmetric, tracelésmk 3

g (* ,
:f DnJDnaex —Ef dr>; [n(i,n) - 2J?
o i

g B
-2 dr>, n¥i,7) pdefl +B}.

2 0 ia (46)

Again | +B=1+7e /6] js obtained from the integra-

combinations 0f§SS, operators, and they correspond to thetion of the fermion fieldsn andn, are real HS Bose fields.
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e . _
U 0= 2 Cic1m — (5)'Cliyian  Cieam — (=)'clign,  (49)

3U=-5
b="% while keeping thec;3,, Ci1/7 Operators unchanged. The

kinetic-energy part is invariant under the above transforma-
tion, while the interaction part is changed intH;,
:ZUEiL%(i). It can be decomposed using the imaginary
\ number as

\ U B
Z:JDQexp{—ZUf dTQZ(i)}del{HB},
0

where B=TeJ6dHkHi(7) with Hi(7)
SiUS g (DT %(DQ(i, 7). Because T(iL,;9 T 1=ilys the
def(l +B) is positive definite. However, we did not succeed in

- o . generalizing this at negative valuesgfor g, away from the
FIG. 2. Within the method off-invariant decomposition, the SWA4) line at half filling.

shaded area marks the parameter region without the sign problem in . .. _ . .
P g gnp In practice, it is more efficient to sample with discrete HS

the s=2 Hubbard model at any doping level and lattice geometry. . . . . -
The fezrmion determinant canyonlypbg factorized along SghM) yt.ransforlmatlon usm_g two Ismg-llke fields, s_for each qqar—
line with Uy=U,<0, where the traditional algorithms can be ap- tic fermion t.erm asin Ref._:!.6 instead _Of using the gontlnuous
plied without the sign problem. The sign problem along the IineHS boson _f'.eld' For any bilinear ferm'_on'c Ope.r"’.@(")' the
with Up=U,>0 only disappears at the half filling and on a bipartite d€composition below has the numerical precision at the or-

U= Uy

lattice. der of O(A7)* as
The time-dependent interactidty(7) after the HS transfor- EOA0(1. 72 = > A gsm 8900, 4 O(AY),
mation is ls=£1
HI(7) = = 8o h oD o( DN, ) g0l = 3 Aeon B0 1+ oA ),
i

l,s=%1

whereg>0 and y=1+(\/6/3)l, 7=2(3-v6l). The above
—gyz l//iT(r(T)Fia—’lvbi,(r’(T)na(i!T)' (47) proof for the positive definite of dét+B) applies equally
ia ' well in this scheme.

. : We only used the time-reversal properties of ®@5)
We see thatH mixes the four spin components to- . .
i(7) mix ur spl poner -falgebra in the above proof; the exa®80(5) symmetry is

and only ifg,=0, which is theSU(4) line with Uy=U,<0 useful for transforming the model expressed in the particle-

We define the time-reversal transformatidrfor the entire particle_ channel to the_particlg—hole ch_annel, bUt.it IS not
lattice asT=[II,®R(i)]C. From Eq.(39) we see that both essential. A general anisotropic s@riatnce model is de-

terms areT-invariant, fined by

H== 2 {tdl o+ tath T2 g+ H.CH
T(HK+H|)T_]‘: HK+H|1 (48) (ij,a> | ] a%i ﬁ IB

and all other conditions of our theorem are met. Therefore, + E {hang(i) = wn(i)} + E {‘ %C[”(') -2F
the minus sign is absent as long as &) is satisfied. This ha ha<b
is a much broader parameter rarigaown in Fig. 2, com- 9a 2.\, Yab 2 .
pared to the conventional factorizibility conditiody,=U, _Ena(l)"'?l-ab(') , (50)
<0. Our algorithm therefore enables us to study $ve
Hubbard model away from th®U(4) line. Our proof is valid  wheret, is the spin-dependent hopping amplitutig,is the
for any filling level and lattice topology. In this parameter analogy of the Zeeman field coupling to thgi) field, and
range, it is shown in Ref. 8 that a number of interestingg, andg,, are coupling constants in corresponding channels.
competing orders such as the staggered ordei®o$inglet  Wheng,,g.,92, are arbitrary positive-interaction parameters,
superconductivity, and the charge-density wave can existe can perform the same decomposition process as before.
there. By using the fact thaf(iL ,,) T"*=iL 4, We again reach the

At half filling and on a bipartite lattice wherg=0, the positive definite fermion determinant. This conclusion also
sign problem also disappears along t8&(4) line at U  holds for any valid representation &f matrices, with the
=Uy=U,>0. Similar to the spin%— case, after performing a redefinedn(i), na(i), Lap(i) and time-reversal operations ac-
partial particle-hole transformation, cordingly.
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C. General higher-spin Hubbard models In the following, we shall illustrate this general procedure
We can generalize the results in the séimase to any mo(rje Iex;;llcnly for a special case of the higher-spin Hubbard
fermionic system with spis=n—3. The spins=n-1 Hub- M0 Where
bard model can be written as U,=Uy= - =Uy,=U". (57)
H=-t> {CiT(er(r+ H.c} = (u+ uo) > G Ciy The generic higher-spin Hubbard model only has the spin
(ij)o io SU(2) symmetry fors# % However, under the above condi-
. . tion, the higher-spin Hubbard has tl&#p2n) symmetry.
+
* i% UJPJJZ(')PJJz(')’ (51) When an additional condition, namely,=U’, is imposed,

_ . the model has a large§U(2n) symmetry. In the Appendix,
where J=0,2,..., -2 are the total spin of the particle- an introduction to theSH2n) algebra is given. As shown

particle pairs,J,=0,+1, ..., ). The pairing operatorﬁ’]ljz there, the singlet-pairing operator is also the singlet of the
are defined through the Clebsch-Gordan coefficient for twasg2n) group, while all other 82-n-1 pairing operators
indistinguishable particles as with J=2,4,...,2-2 together form a representation for the
+ o _ f et SH2n) group. Thus we conclude that Eq(51) is
P ()= EB (3,34s,s;aB)c(i)ci). (52)  sp2n)-symmetric if and only if the coupling constants sat-

isfy Eq.(51). Forn=1 and 2, theSg2n) symmetry is generic
The total spin of the particle-particle pair takes only evenand does not need any fine tuning. ActuaBy(2) is isomor-
integer values so that the Pauli principle is satisfied on everphic to SU(2), while Sg4) is isomorphic toSQ5). This is
site. At half fllllng and on a blpartlte IatuC@l,:O ensures the consistent with our earlier f|nd|ng that tfm:% Hubbard
particle-hole symmetry, anfly=1/(2n)Z;(23+1)U,. model has theSQ5) or the Sp4) symmetry without any

The general strategy to implement the method ofconditions on the parametets.

T-invariant decomposition is to first transform the interaction 1o show theSp2n) symmetry explicitly, we can rewrite
terms originally expressed in the particle-particle channel tqne Hamiltonian in Eq(51) as
the particle-hole channel. In this case, we have the fermion

operatorsy; 5 within one unit cell, whergs=1, ... (2s+1). H==t 2 {4 ya+ Hed = n 2 o
Therefore, there arés+1)? fermion bilinears of the form o i
M'=y! M! s 5 wherel=1, ... (2s+1)2 The(2s+1)? M!

,a aﬁ 1,81 1 1 aﬁ T . _ 2 T a . 2
matrices can in general be expressed in a complete basis in +C02 (.o = 1) +022 (.0 Yapth p)”
terms of the product of spia matricesS, (59

1, o on*l 2n2—n—1U, o YoV
. 07 g2 ° 4n? ©?2T on
S,i=1,2,3,

The expression foy? (1<=a<2n?-n-1) is given in the Ap-
(53 pendix, where it is also shown that they are even under the
5’71135’ a=1,...,5, time-reversal transformation. By the same reasoning before,
we perform the HS decoupling in the above two channels.
Then the sign problem is absent when baethand c, are
negative, i.e.,

§=_1,i2,...i351$2'”33’ L=1...(4s+D),

where the¢'s are fully symmetric, traceless tensors, satisfy-

n+1

<=-——U,. 59
n2-n-1"° (59)

'ng Because theY? (1<=a=<2n°-n-1) are even under time-
EiLliZ iy = iy iy (54) reversal transformation while the spin operato&i
_ o =X,Y,2) are odd,Y? can be expanded in the basis of Es),
or any other permutation of indices, and including all terms with even powers of spin matrix.
L —
&0, = 0. (55 V. BILAYER s=1 MODELS

Spherical harmonics can be used to explicitly construct these The spin% Hubbard model has a close relationship with a
tensorst’ This decomposition is obviously complete, since bilayer model introduced by Scalapino, Zhang, and Hanke

2_ (SZH).X! This model was constructed and extensively inves-

(25+17=1+3+5+- +(4s+1). (56) tigated because of the exact particle-particle cha®@®b)

According to the method of-invariant decomposition, any symmetry between the antiferromagnetism and superconduc-
negative interaction terms in the even-spin channel like 1tivity when the coupling constants satisfy a simple
§‘,’j‘$§ or anypositive interaction terms in the odd-spin relation!®-21 The original SZH model was introduced on a
channel likeS, gh@ﬁi,... can besimulated by our algo- two-leg ladder(Fig. 3), and it is straightforward to generalize
rithm without the sign problem. it to a bilayer system as
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employ the method oT-invariant decomposition, we adopt
the view from theSQ(5) symmetry in the particle-hole chan-
nel in this section.

There are four single fermion states per unit cell in both
the s-— Hubbard model and thsac bilayer model. A map-

FIG. 3. The SZH model defined on a two-leg ladder segment ohyjng between them can be established through

the double-layer splé system.

+d! d.

lov],0

H=- t||2 {CiTO'CJa'
(i

- i S (i) + (i} + U Hm,m - ﬂ [m,cm - %]

o2

+H.c}l-t, > {c b ,+H.c}
i

+ [nm(i) =5 >

+V2 (i) = D(ng(i) - D +IX S-S, (60)

wherec' andd" are creation operators in the upper and lower

layers, respectively, andt; are the hopping amplitudes in
the layer and across the rung, respectivelyis the on-site
interaction, andv andJ are the charge and Heisenberg ex-
change interactions across the rung, respectively. The SZ
model is known to have an exa8t5) symmetry when

J=4U+V), u=0, (61)

which  unifies the antiferromagnetism with the
superconductivityl Remarkably, there exists another exact
SA5) symmetry in the particle-hole channel when

J=4U-V), t =0, (62)

and the symmetry is valid for all filling factors. We denote
the former particle-particl&Q5) symmetry asSQ5),,, and
the later particle-holép-h) SQ5) symmetry asSQ(5),, The
two SQ5) symmetric lines are shown in Fig. 4. In order to

8
MCyegi
6
g~
Z4l_
SO £,~2.,,
8y~
2~
SOB) ,p I/V=4U/V+1 8~0
1 |
o7 0 1 2 3
Y

FIG. 4. TwoSQJ5) lines are shown in the SZH model as well as
in the QMC region without the sign problem for any fillitlgashed
area: g,1>0, g,»,>0, andg.>0. There is another region witif
<0 (not shown.

=(Ci 3/2,Ci 1/2: Ci ~1/2:Ci —372) > (Ci 1,Ci. 1, 0 1,0 )T, We denOte
the time-reversal operator defined in E§4) for the s—
system adl;, and the usual definition for thse: system as
T,. T, actually is the combined operation &% and the in-
terchange between the upper and lower layers,

el? .

I 0
The 16 p-h channel fermionic bilinear forms are mapped
onto

(63

n(i) = ¢/ ¢, + d diy,

n,(i) = —i(d! ¢, - H.c)/2,
ns(i) = (d! ¢, + H.c)/2,
H

-

o o
_) Ciﬁ_diJra<E> di,B’
af af

ot
Ny 341) = Cia< >

(64)

-

g—) diﬁ+ H.c.,
ap

Re (i) = c?a< )

Q=[n(i) —ny()]/2,

wheren, s are the singlet rung-current and rung-bond order
parameters, respectively, and fmand Rerw are their triplet

counterpartsn, 3 4 are the rung-Néel order paramet&rjs
the total rung spin, an@ is the charge-density wave order
parametern,n, _s are even under th€,; transformation, and
the others are odd. In contrast,ns, Im 77, andQ are even
under the usual definition, anth and the others are odd.

The general SZH model can be mapped into an aniso-
tropic SA5) model in the following form:

= _t\\% lrljlawja-'-tLE l;bmz alBl//IB Mz N
1]

+3 {— FinG) - 21~ 2 [nG) + )] - 22

2
X[n3(i) + ng(i) + ni(i)]}, (65

with
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other in two dimensions. To the best of our knowledge, this
is the first time a current-carrying ground state has been con-
v A clusively demonstrated in a two-dimensioriaD) system.

The mapping between the SZH model and sh§ model

(a) is not unique. More generally the SZH model can be written
as

O b O __tHZ lﬂm(ﬂja"'tj_z ¢|a aﬁlﬂlﬁ Mzn"
(_/ O b (ij

o0 (\(” (68)
+3 {— () - 212 - 2D + )] - %2

FIG. 5. (a) Sketch of a staggered interlayer current phase from
Ref. 10. For clarity, we do not show the bottom layer curréby.

2 2+ 2+
Top view of the bilayer curren{c) Sketch of theD-density wave- X[ng(i) + ng(i) + mii)]

current pattern for comparison. >
+ S1Q2(0) + “Z{8(i) - Si)] + “2[Re (i) - Re()
4 —§J—U—3V —§J—U+V
9=  An=, ' +1m (i) - Im 7#()] {
(66) . . _
J Only three out of the six coupling constants are independent,
49,2 = 2t U-V. as shown here in the correspondence tolh¥,J param-
eters,

The particle-hole channe3Q(5),, symmetry is restored at
d,1=0,, andt, =0, i.e., when the conditions of E¢62) are
satisfied. At this point, the SZH model expressed in ©&)
takes exactly the same form as mveg Hubbard model ex-

ressed in Eq43). The equivalence between the two models
iF; therefore r?Kg;or)ously egtablished. J=40,1+ 82 G2+ Qo)

For the general SZH model, the interactions can be exif the gy;,0:,,0:; are set to zero, it returns to E65). For
pressed purely in terms of the fermion bilinears which areany given values fou,V,J, if we can find a set of values of
invariant under thé; transformation from Eq(65), by vir-  g.,0,1,9,2,011,0:,03=0, then we can perform the HS
tue of Eq.(39). We perform theT;-invariant decomposition  transformation, keeping the invariance under Theopera-

= 49c + 39,2 + Gi1 — 302,

==49:+ 9,1~ Gu ~ 303s (69)

of the interactions in the region @f,9,;,0,,=0, i.e., tion, and arrive at the absence of the sign problem regardless
of the doping and lattice topology. This general decoupling
§J +V=U=- EJ +V scheme extends the valid parameter region in (B@). On

the other hand, we can also consider performing the HS de-
(67) coupling with the invariance under the usual definition of the
3 time-reversal operatioifi,. After settingg,;,0:3=0, we have
=Y +3V the condition that g.=0,9,,<0,0,=<0,0,=0. This
decoupling-scheme-baséd also enlarges the region of Eq.
as shown in Fig. 4, and then the sign problem is absent. 1§67). For example, the usual bilayer negatille Hubbard
this region with positivey,; , andg., we expect the compet- model with U <0,V=J=0 is out of that region. Neverthe-
ing orders of the five-vector channel and the superconductiiess, we can still show the absence of the sign problem by
ity, i.e., the antiferromagnetism, the staggered current, andetting g.=—g,/4=-U/2>0 and all other parameters to
the rung-singlet superconductivity, which can be investigatedero.
systematically with high numerical accuracy, at and away In contrast, the conventional algorithm based on the fac-
from the half filling. torization of the fermion determinant works only at either
The above algorithm has been applied to demonstrate th@,;=0,,=0, g.<0 or the usual negative U Hubbard model
existence of the two-dimensional staggered-current phadd <0,V=J=0. This parameter set is included in the above
conclusively at half filling with t;=1,t, =0.1,U=0,v  HS decomposition schemes, respecting eitheflghar theT,
=0.5,J=210 The current pattern is illustrated in Fig. 5 with time-reversal symmetry. We therefore see the significant im-
staggered interlayer currentSIC) between the bilayers and provement provided by the method of thenvariant decom-
the alternating source to drain currents within the bilayersposition.
Viewed from the top, this current pattern has-aave sym-
metry. While theD-density wavé? currents are divergence-
free within the layer, the SIC current is curl-free within the  So far, the models we considered only have on-site inter-
layer. These two patterns can be considered as dual to eaaltions. In this section, we will generalize them to include

VI. MODELS WITH BOND INTERACTIONS
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interactions defined on the bond. Such models can have
many exotic phases.

We first consider the following general single-layer séin-
Hamiltonian with bond interactions:

. g
H:_tE (Ci‘rgcja'-'-H'C')_lu'E n(|)+2{_sdeMijMij
(jho i (i

+ gscurNijNij " %’Mij . |\7|ij - gtcur,\*lij . l:lij ,
2 2 2

M;=clc,+He., N;=i{cle,—H.cl,

whereM;; andN;; are the singlet bond and current operators
on the bondij), M;; and N;; are their triplet counterparts,
andgspg 9scun Gt @aNAGyr are the coupling constants in the {c) (d)
corresponding channels. The siieand j forming the bond _ _ _
(ij) are not necessarily nearest neighbors, but can be at an FIG. 6. Four possible density-wave phases can be simulated
arbitrary distance apart. Under the time-reversal transformaYithout a sign problem(a) singlet spin-Peierlsp-density-wave,
tionT. M- andN. are even whiled- andN. are odd (b) Triplet d,2_,» density-wave,(c) singlet d,, density-wave,(d)
» Vlij, ij ij ij :

. . | triplet diagonal-current.
These four interactions are not independent, and can be

reorganized into

H(7) = = 2 gepMij(D(c] ¢ o+ H.C)

Hint= 20 {- Jc(cﬁcﬁc”c” +H.c) +V[n(i) - 1][n(j) - 1] (i) 9
G0 ) ) + |2 gscurNij(T)i(CiT,on,(r_ H.c) - IE gtbdMij(T)
+J:8(0) - S())} () (i)

(71 x{cfa(g) Bcjﬁ+ H.c}

Je = 2(Isba* Gscur) + 3(Gibd * Greur)» SN o
c s scur t tcur + <IEJ> gtcurNij(T)l CiT,a E aﬁcj'ﬁ_ H.c.|. (73
- 9sbd~ Gscur _
2

3
\ Z(gtbd - gtcur) )

Therefore,H, and 1+B are even under the time-reversal
transformation and the sign problem is absent.

34= 2004~ eorr) + (Ghod ~ Grour) The valid parameter region for the above algorithm is
s sbd  Yscur * 19tbd - Steur- very general as long as alyg, Oscur Otbds Geur=0- AS a re-

The J; term is the pair hoppingy is the charge interaction sult, v ?‘F‘dJ can be_ either positive or negative whilghas to
between sites and j, and Jg is the Heisenberg exchange. _be positive. Many Interesting competing orQers are SL_Jpported
When all 0fgep g Gecur Gings Grour AT€ POSitive, we perform the in this parameter region. For example, various density-wave

HS decomposition in each channel, respectively, as states exifst on a square lattice near half fiIEﬁg,s shov_vn in
posiion | pectively. Fig. 6. With gepg, 9icur=>0, the above algorithm provides a
R _ B good opportunity to study the singlet bond and the triplet
Z:J DMDMDNDN ex —J dTZ GV (7) current order parameters formed My; and Nj;, while it is
o D not good for studying the singlet current and the triplet bond

order parameters formed Hy; and I\7Iij, becausa,q, 9scur
>0. After settinggipq=0sc,=0 for the bondij) connecting
the nearest sites, thgy,q term favors thep-density wave
xdefl + B}, (72)  (spin-Peierls phase, and they, term favors the triplet
p channeld,>_y.-density wave. The latter order is recently pro-
wherel +B=1+7e /odHkHi() H (7) after the HS decoupling posed as the origin of the pseudogap in the hiGh
is given by cuprateg* For the bond interaction between the next nearest

+ gscurNﬁ(T) + gtbdl\zﬁ(T) + gtcurﬁﬁ(T)z
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Ok ab_ 1T S I
Mij =¢i7¢j+H-C-' N~ =1 ¢i7¢j_H-C- :

whereM;; andN;; are the singlet bond and current operators
on the bondij),M3,N3,M2°,N:" are their five-vector and ten-
tensor  channel counterparts, respectively, and
gsbdvgubdvgtbdvgs_curvgucurvgtcur are the coupllng c_onstants n
the corresponding channels. Again the sitesdj forming
the bond(ij) can be at an arbitrary distance apart. The bond
interactions can be decoupled by introducing the HS field in
(a) O—phase (b) p-phase each channel respectively. Following the same reasoning as
) ) o a ) in the case of the spié,— the bond-interactions keep the fer-
J Fhled |,7' The Fsrml rs]”r:;ace ,'“Stib'“tyb'“f the; channel, t\aNlthk' mion determinant positive definite, provided all of these cou-
Inatshe |rr1]es m:;: mgnit etr e:mlpstxr;?cerfe orgi Sty’::imﬁtry re? 'P ling constants are nonnegative. Similarly, with
€ a phase, Ine anisolropic ~ermi surtace distortion appears 1o <bd» Gubds Orcur = 0, the algorithm can be applied to study the
two spin components. In thg phase, the spin-orbital coupling is = ;
. . . singlet, quintet bond orders and the tenfold current order,
generated dynamically and two Fermi surfaces are characterized t\% : . .
helicity. _hlle with Oscur Gocurs Gtod > 0, it is not useful for study ap-
plied to the singlet, quintet current orders and the tenfold

. : . bond order.
bond, i.e., the diagonal bond, tlgg,, term leads to the sin-

gletd,, order, and the,, term leads to the triplet diagonal-
current order. The triplet diagonal-current phase was studied Vil. CONCLUSION

?n the two-leg ladder system using the boson?zation method The sign problem of the fermionic QMC algorithm is one
in Ref. 25 and also under the name of the trigledensity ot the most important problems in theoretical physics. Its
wave in Ref. 26. _ , _ solution would practically give a universal computational

When the Fermi surface nesting effect is not importantyethod to solve models with strong correlations. The rigor-

either at large doping or in the nonbipartite lattice, 8i&  ous theorem established in this work shows that the minus
term can lead to th&7 channel of the Landau—PomeranchukSign problem can be eliminated for a much wider class of

instability on the Fermi surface, which was studied recentlyyoqels than before, in which the fermion matrix is invariant
in the continuum model in Ref. 27. After the symmetry ynqger an antiunitary symmetry similar to the time-reversal
breaking, two possible phases are named @d 8 phases  gymmetry in quantum mechanics. The method dfivariant
in analogy to theA andB phases in the triplgd-wave chan-  gecomposition does not only provide a deep connection be-
nel superfluid phase |?‘I2—|9e, as shown in Fig. 7. The phase  yyeen the sign problem and the time-reversal symmetry, it
was studied by Hirscli?’under the name of spin-split phase 4154 |eads to practical algorithms which can be applied to
on the lattice system with an opposite anisotropic Fermi sury sy interesting models with strong correlations. Using this
face distortion for two-spin components. In contrast, theigorithm, a class of models with strong correlations can be
Fermi surface distortion is isotropic and a spin-orbit COUp“ngsimulated, and some exotic ground states have been firmly
is dynamically generated in thg phase. The two single- gsiaplished.
particle bands are characterized by the helicities. It would be \\e conclude this paper with an optimistic outlook. Even
interesting fco study these ex_otic phases in our version of thfhough our method can only be applied presently to models
QMC algorithm free of the sign problems. with definite constraints among the interaction parameters,
Bond interactions can also be added into the spiib-  \ve believe that the deep symmetry connections revealed in

bard model of Eq(35) as this paper could guide us in future works and might eventu-
ally lead to the complete elimination of the sign problem.
Note added in proofRecently, we learned that a similar
_ _ Osbd Oscur _ Gvbdy rapga version of the theorem off-invariant decomposition had
Hbo”d_% { 2 Mij Mij + 2 NijNij + za: 2 MijMi been discussed in the context of lattice gauge th&drdow-

izable. Our proof is valid regardless of whetheB is diag-

Ousur Otbd abp sab Otcur al
+ ——N:N.: + —M=: e . .
NN 2 M3 M N onalizable or not, thus is more complete.

ever, they did not consider the case thaB is not diagonal-
ij Nij i'bN?’b
2 acb 2 2 U

(74)
M;; = l/fiT'/fj +H.c, N;= i{‘lﬁT¢j -H.c}, ACKNOWLEDGMENTS
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1 where Mi(jl),Mi(.Z),M§3> are then X n-dimensional generaliza-
APPENDIX: Sp(2n) ALGEBRA IN THE SPIN s=n-3 tion of theSU(2) Pauli matricesr, , ,, respectively. Counting

FERMION SYSTEM the numbers oSU(2n) generators, there arén—1)/2 real,
. 1, . . . Ny
We give a brief introduction to th&g2n) algebra here. SymmetricMy’s, n(n—l)/32, imaginary, antisymmetrid/; Vo
The -dimensional Hilbert space on each site can be ar@ndn—1 real, diagonaMj’s. Then theSp(2n) generatorX
ranged as a direct product betweenradimensional and a Can be expressed as
two-dimensional space. The complete basis of the eigenstates Mi<j2> ® 1, Mi(jl) ® G, MJ@ ®a 1,95 (Ad)
of S, are labeled in the sequence dh=|n-3), 12)=|-n
+§>,... J=[(=)"2), and [D=[-n+3), [2)=|n
=3),...,J[m=[(=)"/2). The SH2n) spinor is defined as

BecauseMi(.l)’s and Ml(s)‘s are real andMi(jz)’s are purely

imaginary, theSg2n) generators are odd under the time re-

versal: T'X"T=-X". The second class bilineans! Y2y,

= (Cro1/2 Corvs /2 Corysajos Crofzy ++ ) - (A1) have 2°-n-1 elementsY®(a=1,...,1*-n-1) are given
b
Group elements o§pg2n) include any 2 X 2n unitary ma- Y @ @ @
trix U satisfyingUTRU=R or, equivalentlyR 'UR=U" (Ref. Mi" ® o;, M7 @l M7 @l (A5)
30) with the R matrix, which are even under the time reversaitYaT=Y2,
R=1,® (—ioy). (A2) These 47 bilinear operators are not independent of each

other, but are related by the Fierz identity. The total Hilbert
The R matrix is a straightforward generalization of the space for one site has the dimension éf, 2vhich can be
R=-io, in the spin—% case, which also satisfieR'=R™*  decomposed into subspaces with different particle numbers
=R'=-R. Clearly, theSg2n) group is a subgroup of the r(0<r=2n). Each of them form the totally antisymmetric

SU(2n) group defined in therzdimensional space. representation of thEU(2n) group 1. The Casimir value of
In the particle-hole channel, there are?4independent the SU(2n) group in such representations i$2n+1)(2n
bilinear operators as zﬁlt//ﬁ (a=1,...,,8=1,...,0). -r)/(2n). Thus we arrive at the Fierz identity for the spin-

Among them, the particle-density operator lﬁll/la is a sin- n—% system as

glet under both th&U(2n) and theSp2n) group. The time-

reversal transformatiolm=CRis defined as usual, and it sat- ' (,/,ITaxg o ,3)2 +> (l//ITaYi s B)2+
isfies T?>=-1. The other #>-1 bilinear operators form the b a
generators(adjoint representatignfor the SU(2n) group. o2 4n

They can be decomposed into two classes according to their = ) (AB)
transformation properties under the operation. The first 2

class containg(2n+1) elements which forms the generators  The on-site pairing operators can be easily formed by us-
of the SH2n) group as denoted by X} z(b=1~2n?+N).  ing the R matrix. Due to the Pauli's exclusion principle, the

2n+1 . Y
o (Vadha= 1)

XP can be expressed in terms of a direct product between thgta] spin for as-wave pair can only b®,2,...,2-2. The
SU(n) andSU(2) generators. We define ti8J(n) generators  singlet-pair operator is also tf&1(2n) singlet operator. It can
as be written asy; R, 5, which was studied extensively in a
1 Sp2n) generalization of the Heisenberg antiferromagiet.
[Mi(jl)]m: 5(5” S+ 6oy (I<i<j=n), The other 2°-n-1 pairing operators with a total spin of

2,4,...,2-2 together form a representation $f(2n) as
_ L) (RY®) ,g5(i). When all the interaction parameters are
_ "1 P [, thes@(2n—1) pairing operators together form an an-
M@= —(8,8, - 8,8 (L<i<j<n), A3 equal, P gop g
(M3 e 2 (90103 = 8icdy) | =m, (A3) tisymmetric representation &U(2n) of 1 (r=2).
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