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Quantum Monte CarlosQMCd simulations involving fermions have a notorious sign problem. Some well-
known exceptions to the auxiliary field QMC algorithm rely on the factorizibility of the fermion determinant.
Recently, a fermionic QMC algorithmfC. Wu, J. Hu, and S. Zhang, Phys. Rev. Lett.91, 186402s2003dg has
been found in which the fermion determinant may not necessarily be factorizable, but can instead be expressed
as a product of complex conjugate pairs of eigenvalues, thus eliminating the sign problem for a much wider
class of models. In this paper, we present the general conditions for the applicability of this algorithm and point
out that it is deeply related to the time-reversal symmetry of the fermion matrix. We apply this method to
various models of strongly correlated systems at all doping levels and lattice geometries, and show that many
phases can be simulated without the sign problem.
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I. INTRODUCTION

Understanding the physics of strongly correlated many-
body systems is a main focus of condensed matter physics
today. However, most models with strong interactions cannot
be solved exactly except in one dimension. Presently, there
are no systematic, nonperturbative, analytic methods which
work in higher dimensions. Largely because of this reason,
numerical simulations such as exact diagonalizationsEDd,
density-matrix renormalization groupsDMRGd, and quan-
tum Monte CarlosQMCd are extensively performed to study
strongly correlated systems. However, each of the numerical
methods has its own limitations. The ED can only be per-
formed on a very small sample size and the DMRG method
is largely restricted to one-dimensional systems. In contrast,
QMC simulation is the only systematic and scalable method
with sufficient numerical accuracy for higher-dimensional
problems. However, QMC also has the notorious fermion
sign problem which makes low-temperature properties inac-
cessible.

In lattice systems, a particular version of QMC uses the
auxiliary-field method of Blankenbecler, Scalapino, and
Sugar,1 with fruitful results. Because one cannot directly
sample the fermionic Grassmann fields, the standard process
is to perform a Hubbard-StratonovichsHSd transformation to
decouple the four fermion interaction terms and then to inte-
grate out the fermions.1 The resulting fermion functional de-
terminant works as the statistical weight for sampling the
auxiliary fields. However, generally speaking, the fermion
determinant may not be positive and can even be complex in
some cases. The sign or the phase of the fermion determi-
nants can lead to dramatic cancellations which makes statis-
tical errors scale exponentially as the inverse of the tempera-
ture and size of the system. This notorious sign problem is
the major obstacle in applying QMC to fermionic systems. A
successful solution to the sign problem would obviously lead
to great advances in quantum many-body physics.

There are a few exceptions where the sign problem is
absent, such as the negativeU Hubbard model and the posi-

tive U Hubbard model in a bipartite lattice at the half filling.2

In both cases, the fermion determinant after the HS decom-
position can be factorized into two real parts with the same
sign. It is therefore positive definite. Unfortunately, general
fermion determinants may not be factorizable for more com-
plicated models and the majority of models do have the sign
problem. In recent years, several other algorithms have been
proposed which partially solve the minus sign problem.3–7

Recently, it has been shown that the minus sign problem
can be eliminated without relying on the factorizibility of the
fermion determinant; therefore, a broader class of models
can be simulated by the QMC algorithm.8 The fermion de-
terminant can always be expressed as a product of its eigen-
values; under certain conditions, the eigenvalues of the fer-
mion determinant always appear in complex conjugate pairs,
thus making the fermion determinant positive definite. In this
paper, we shall show that the property of conjugate eigen-
value pairs follows from the time-reversal symmetry of the
HS-decoupled Hamiltonian and can be viewed as a generali-
zation of the Kramer’s theorem in quantum mechanics. We
shall call this method theT-invariant decompositionstime-
reversal invariant decompositiond. This method does not lead
to any improvement for the single-band Hubbard model, but
significantly extends the applicability of the QMC to multi-
band, multilayer, or higher-spin models. This algorithm is
particularly useful for Hubbard models with higher spins,
which can be accurately realized in systems of cold atoms.
Recently, Assaadet al.9 applied the QMC to generalized
Hubbard models with more bands. Imposing the factorizibil-
ity condition of the fermion determinant, they found that
they could extend the parameter regime for QMC free of the
sign problem only by scarifying the spin-rotational invari-
ance. However, applying our method ofT-invariant decom-
position without requiring factorizibility, we shall show that
multi-band or higher spin Hubbard models can be simulated
for an extended parameter regime without scarifying the spin
rotational invariance. This QMC algorithm based on
T-invariant decomposition has been recently applied to con-
clusively demonstrate the staggered current-carrying ground
state in a bilayer model.10
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The rest of this paper is outlined as follows. In Sec. II, the
sign problem for the spin-1

2 Hubbard model is reviewed. In
Sec. III, we prove the fundamental theorem ofT-invariant
decomposition and show the absence of the sign problem. In
Sec. IV, we employ the algorithm to the spin-3

2 Hubbard
model and the generalized arbitrary spin-n− 1

2 fermionic
Hubbard model. In Sec. V, we apply it to a bilayer model
introduced by Scalapino, Zhang, and Hanke,11 which can be
mapped into the spin-3

2 Hubbard model. In Sec. VI, we dis-
cuss the algorithm in the model Hamiltonians with bond in-
teractions and various exotic phases. Our final conclusions
are presented in Sec. VII.

II. THE SIGN PROBLEM IN THE SPIN - 1
2 HUBBARD

MODEL

In this section, we review the sign problem in the spin-1
2

Hubbard model and interpret its absence in the negativeU
case as due to its time-reversal properties of the HS decom-
position. The Hubbard model on the lattice is commonly
defined as

H = − to
i j ,s

scis
† cjs + H.c.d − mo

i

nsid + Uo
i
Sn↑sid −

1

2
D

3Sn↓sid −
1

2
D , s1d

with t the hopping integral,m the chemical potential,s
= ↑ ,↓, nssid=cis

† cis, andnsid=n↑sid+n↓sid. At half filling and
on a bipartite lattice, the particle-hole symmetry ensures that
m=0.

To perform the QMC simulation, we first need to de-
couple the four-fermion interaction terms using the HS trans-
formations by the Gaussian integral,

expS1

2
A2D = Î2pE dxexpS−

1

2
x2 − xAD ,

s2d

expS−
1

2
A2D = Î2pE dxexpS−

1

2
x2 − ixAD .

Various HS decoupling schemes are discussed in Ref. 12. For
U,0, it is convenient to decouple Eq.s1d in the density
channel and then integrate out the fermions. The resulting
partition function is given by

Z =E Dc†Dc expH−E
0

b

dtScs
† ]

]t
cs + HDJ ,

=E DnDc†Dc expH−
uUu
2
E

0

b

dto
i

fnsi,td − 1g2J
3expH−E

0

b

dtfHK + HIstdgJ , s3d

=E Dn expH−
uUu
2
E

0

b

dto
i

fnsi,td − 1g2JdethI + Bj,

wherensi ,td is a real HS Bose density field. The imaginary-
time-independent kinetic energy termHK and the imaginary-
time-dependent decoupled interaction termHIstd can be ex-
pressed as

HK = o
i j

cis
† hij ,ss8

K cjs8, HI = o
i

cis
† hij ,ss8

I cjs8,

s4d
hij ,ss8

K = h− tsdi,j+x̂ + di,j−x̂ + di,j+ŷ + di,j−ŷd − mdi jjdss8,

hij ,ss8
I = Unsi,tddi jdss8.

Herehij ,ss8
K andhij ,ss8

I are defined for both spin components
on each site. After integrating out the fermions, we obtain

I + B = I + T expH−E
0

b

dtfhK + hIstdgJ . s5d

Note that the matrix kernelshij ,ss8
K andhij ,ss8

I entering in Eq.
s5d, as well as theI +B matrix itself, are 2N32N matrices, if
the lattice system under simulation hasN=Lx3Ly sites. In
the subsequent discussions, we shall simply use the second
quantized operatorsHK andHI interchangeably with the first-
quantized matrix kernelshK and hI to save some writing,
whenever their meanings are obvious from the context.

In practice,I +B needs to discretized as

I + B = I + e−DtHKe−DtHistlde−DtHKe−DtHistl−1d
¯

3 ¯ e−DtHKe−DtHist1d,

whereDt=b / l is the discretized time slice.
Similarly, at U.0, Eq. s1d can be decomposed in the

spin-density channel as

Z =E DSz expH− 2UE
0

b

dto
i

Sz
2si,tdJdethI + Bj, s7d

with the same expression forB as in Eq.s5d, but with HI
replaced by

HIstd = − 2Uo
i

hcia
† stdsab

z cibstdjSzsi,td. s8d

It is well known that the spin-12 Hubbard model is free of
the sign problem either forU,0 or for U.0 at half filling
and in a bipartite lattice.2,12 The usual proof is based on the
factorization of the fermion determinant as

dethI + Bj = dethI + B↑jdethI + B↓j. s9d

In the negativeU case, the HS decomposition in Eq.s4d
enables such a factorization, andB↑ is identical toB↓ for any
HS field configurations. Therefore dethI +Bj is the square of
a real number and thus positive definite. Generally speaking,
in the positiveU case, the HS decomposition in Eq.s8d still
enables factorization, but dethI +B↑j is different from dethI
+B↓j, and thus the sign problem appears. However, at half
filling and on a bipartite lattice, it is possible to change the

C. WU AND S.-C. ZHANG PHYSICAL REVIEW B71, 155115s2005d

155115-2



sign of U while keeping the kinetic-energy part invariant by
a partial particle-hole transformation only on spin down par-
ticles,

ci↑ → ci↑, ci↓ → s− dici↓
† , s10d

then the above algorithm is also applicable. Nevertheless,
this transformation cannot be applied to lattices which are
not bipartite or away from the half fillingsmÞ0d, thus the
sign problem remains in general.

Recently, an anisotropic two-band model explicitly break-
ing the spin rotational symmetry was also shown to be free
of the sign problem.9 The Hamiltonian is defined by

H = − to
i j ,s

scis
† cjs + H.c.d − mo

i,s
nssid − uUuo

i

fn1sid − n2sid

+ n3sid − n4sidg2, s11d

wherenssid=cs
†sidcssid are the particle densities for each spin

components=1,2,3,4. Theinteraction part can be decou-
pled as

E DSexpH− uUuE
0

b

dto
i

S2si,tdJ
3expH−E

0

b

dtfH0 + HIstdgJ ,

HIstd = o
i

sci,1
† ci,1 − ci,2

† ci,2 + ci,3
† ci,3 − ci,4

† ci,4dSsi,td.

This HS decomposition enables the factorization of the fer-
mion determinant as

dethI + Bj = dethI + Bj12 dethI + Bj34, s12d

where dethI +Bj12 and dethI +Bj34 for spin components 1,2
and 3,4, respectively, are identical and real. Therefore, the
fermion determinant is positive in this case as well. How-
ever, a disadvantage of this model is the explicit breaking of
the spin-rotational symmetry.

III. FUNDAMENTAL THEOREM OF T-INVARIANT
DECOMPOSITION

We now show that the condition of factorizibility of the
fermion determinant is unnecessarily restrictive, and a more
general condition can be precisely stated. The fermion deter-
minant is a product of all the eigenvalues. SinceI +B in-
volves a time-ordered product, it may not be Hermitian, and
the eigenvalues may be complex in general. Because the en-
semble of HS field configurations is arbitrary, one would
naively not expect any special relations among the eigenval-
ues. Surprisingly, the time-reversal symmetry provides an
important relationship among the eigenvalues. To formulate
the fundamental theorem, we considerHK and HI in the I
+B matrix of Eq. s6d to be the HS-decomposed single-
particle Hamiltonian matrix derived from a general Hamil-
tonian, not necessarily thes= 1

2 Hubbard model.
Theorem: If there exists an antiunitary operatorT, such

that

THKT−1 = HK, THIT
−1 = HI, T2 = − 1, s13d

then the eigenvalues of theI +B matrix always appear in
complex conjugate pairs, i.e., ifli is an eigenvalue, thenli

*

is also an eigenvalue. Ifli is real, it is twofold degenerate. In
this case, the fermion determinant is positive definite,

detsI + Bd = p
i

uliu2 ù 0. s14d

Proof. From the condition of the theorem stated in Eq.
s13d, it obviously follows thatTsI +BdT−1=sI +Bd. For sim-
plicity, we first consider the case whereI +B is an n3n,
dimensional, diagonalizable matrix, i.e., there exists a nons-
ingular matrixP satisfying

P−1sI + BdP = diaghl1,l2, . . . ,lnj. s15d

The n columns ofP can be viewed as a set of linearly inde-
pendent state vectors,

P = huC1l,uC2l, . . . ,uCnlj. s16d

Suppose thatuCil is an eigenvector with eigenvalueli, i.e.,
sI +BduCil=liuCil. Using the antiunitary property ofT, we
see that

sI + BdTuCil = TsI + BdT−1TuCil = li
*TuCil. s17d

Therefore,TuCil is also an eigenvector, with eigenvalueli
* .

SinceT2=−1, TuCil and uCil are orthogonal to each other.
This shows thatli andli

* are two different eigenvalues, thus
the eigenvalues ofI +B appear in complex conjugate pairs as
stated in the theorem. IfI +B is Hermitian, our theorem re-
duces to Kramer’s theorem on the time-reversal symmetry in
quantum mechanics, stating that the eigenvalues ofI +B are
real and twofold degenerate.

In the general case,I +B may not be diagonalizable; in-
stead it can always be transformed into the Jordan normal
form as diagonal blocks,

P−1sI + BdP = diaghJ1,J2, . . . ,Jkj, s18d

whereP is ann3n nonsingular matrix as before, andJi is an
l i 3 l i bidiagonal matrix as

Ji =1
li 1

¯

¯ ¯

li 1

li

2 . s19d

The determinant ofI +B is still the product of all the eigen-
values,

detsI + Bd = p
i=1

k

slidl i . s20d

As in Eq. s16d, P can be viewed asn linearly independent
column state vectors as

P = hP1,P2, . . . . ,Pkj, s21d

where eachPi is ann3 l i matrix containingl i column state
vectors,
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Pi = huCm+1l, . . . ,uCm+l i
lj, m= o

j=1

i−1

l j . s22d

For each Jordan blockJi, it satisfies

sI + BdPi = PiJi , s23d

thus among thel i state vectors inPi, uCm+1l is the only
eigenvector with eigenvaluleli. It is straightforward to show
that

sI + BdsTPid = sTPidJi
* , s24d

wheresTPid is defined as

sTPid = hTuCm+1l, . . . ,TuCm+l i
lj, s25d

and TuCm+1l is the only eigenvector with eigenvalueli
* in

sTPid. Again since uCm+1l and TuCm+1l are orthogonal to
each other,sTPid contains different state vectors from what
Pi does. As a result,Ji andJi

* are different Jordan blocks. As
before, the Jordan blocks appear in complex conjugate pairs,
and so do the eigenvalues. This completes the proof for the
general case ofI +B.

Since the antiunitary operatorT used in our theorem
shares similar properties with the time-reversal transforma-
tion in quantum mechanics, we call our methodT-invariant
decomposition. However, it is important to emphasize that
any antiunitary operator with the stated mathematical prop-
erties could work here. In some examples we shall discuss,T
does not have the explicit physical meaning of the time-
reversal transformation.

It is also important to point out that theT2=−1 condition
is essential for our theorem. In the case in which the fermion
matrix is real, one can define a trivial antiunitary operator
T=C, whereC denotes the complex conjugation. In this case,
if the eigenvalueli is complex, i.e.,li Þli

* , then li
* must

also be an eigenvalue. However, whenli is real, it is in
general not twofold degenerate, sinceuCl andTuCl may not
be orthogonal for the case ofT2=1. In this case, an odd
number of negative eigenvalues would lead to a negative
determinant. The distribution of eigenvalues in the complex
plane for a fermion matrix satisfying the condition of our
theorem and the eigenvalues of a generic real-fermion matrix
is illustrated in Fig. 1. When the conditions of our theorem
are violated, either the complex conjugate eigenvalue pairs
collide on the real axis and move off from each other along
the real axis, or the twofold degenerate eigenvalues move off
directly from each other along the real axis.

A restricted version of our theorem was originally dis-
cussed in the context of nuclear physics.4 However, these
authors overlooked the case thatI +B may not be diagonal-
izable, thus their proof was not complete. In addition, ourT
transformation is not restricted to the physical time-reversal
transformation as in Ref. 4, thus the theorem applies to a
much wider class of models.

We now illustrate this general theorem for the case of the
s= 1

2 Hubbard model. For the spin-1
2 system on each site, the

time-reversal transformationT is defined asTsid=RsidC, sat-
isfying T2sid=−1, where

R= − isy = S0 − 1

1 0
D . s26d

For the entire system, the time-reversal operator is defined as
the direct productT=fPi ^ RsidgC. The four independent fer-
mion bilinears in the particle-hole channel can be classified

as the particle numbernsid=ci,a
† ci,a and spin SWsid

=ci,a
† ss /2dabci,b, which are even and odd under theT trans-

formation, respectively,

TnsidT−1 = nsid, TSWsidT−1 = − SWsid. s27d

Now we can understand the absence of the sign problem in
the negativeU case as follows. The density channel decom-
position is T invariant, namely, TfHK+HIstdgT−1=HK

+HIstd. The conditions of our theorem are satisfied and the
fermion determinant is thus positive. ForU.0, the Hamil-
tonian can be decoupled in the density channel at the cost of
involving the imaginary numberi or decoupled in the spin
channel with only real numbers. In either case, whileHK is
still even underT, HI is odd. The conditions of our theorem
do not apply, and the sign problem appears in general.

For a general interacting fermion model, we can always
expressT=RC, whereRR* =−1 andR* is the complex con-
jugate ofR. In many cases,R is purely real, and it reduces to
R2=−1. The general condition for our theorem then reads

RsHK + HIdR−1 = sHK + HId* , s28d

with the unitary matrixR satisfyingRR* =−1 for any con-
figurations of the HS field. Again we emphasis that the pre-
cise form forR in Eq. s26d is not necessary.

While our method does not lead to any improvement of
the sign problem for thes= 1

2 Hubbard model, we shall show
now that it significantly improves the QMC algorithm for
multiband, multilayer, and higher-spin models, since the con-
ditions for our theorem are far less restrictive than the con-
dition for the factorizibility of the fermion determinant. Let

FIG. 1. Distribution of eigenvalues in the complex plane.sad
Eigenvalues of a fermion matrix satisfying the conditions of our
theorem are always paired.sbd Complex eigenvalues of a generic
real matrix are paired, but real eigenvalues are not twofold degen-
erate in general, leading to negative determinants.
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us illustrate the general idea here by looking at the example
of a two-band spin-12 model or a spin-32 model. In this case,
we have the fermion operatorsci,b within one unit cell,
whereb=1,2,3,4.Therefore, there are 16 fermion bilinears,
of the form MI =ci,a

† Mab
I ci,b, where I =1, . . . ,16. The 16

Mab
I matrices can in general be expressed in a complete basis

in terms of the product ofs= 3
2 matricesSi,

I ,

Si, i = 1,2,3,
s29d

ji j
aSiSj, a = 1, . . ,5, ji j

a = j ji
a, jii

a = 0,

ji jk
L SiSjSk, L = 1, . . ,7, ji jk

L = j jik
L , jiik

L = 0,

where thej’s are fully symmetric, traceless tensors. If one
insists on the factorizibility of the fermion determinant, one
could only perform the HS decomposition in the density
channel using the identity matrixI. However, since the
ji j

aSiSj matrix contains an even power of spin matrices, it is
also even under time reversal. HS decomposition in this
channel does not lead to factorization of the fermion deter-
minant, but according to our general theorem, it does lead to
paired eigenvalues, and therefore, a positive fermion deter-
minant. As we see from this nontrivial example, our method
of T-invariant decomposition is indeed more general and
more powerful compared with the traditional method of fac-
torization. We shall show the enlarged parameter space for
the QMC algorithm explicitly in the Sec. IV.

IV. APPLICATION IN SPIN 3
2 AND n− 1

2 HUBBARD
MODEL

In this section, we apply the method ofT-invariant de-
composition to thes= 3

2 model as an explicit example, and
discuss the sign problem accordingly. After that, we general-
ize it to arbitrary fermionic Hubbard models withs=n− 1

2.
These models are not of only academic interest. In fact, the
rapid progress in ultracold atomic systems provides an op-
portunity to study higher-spin fermions. The simplest cases
are the spin-32 atoms, such as the9Be, 132Cs,135Ba, and137Ba
atoms. Another important research direction is the trapped
atoms in an optical lattice, formed by the standing-wave la-
ser beams, where the Hubbard model is a good approxima-
tion for these neutral atoms.

A. The s= 3
2 Hubbard model

The spin-32 Hubbard model is defined as8

H = − t o
ki j l,s

hcis
† cjs + H.c.j − sm + m0do

is

cis
† cis

+ U0o
i

P0
†sidP0sid + U2 o

i,m=±2,±1,0
P2m

† sidP2msid,

s30d

with m0=sU0+5U2d /4. m is fixed to be zero at half filling on
a bipartite lattice, to ensure the particle-holesp-hd symmetry

generated by the transformationci,s→ s−dici,s
† . Because of

the Pauli’s exclusion principle, only on-site interactions in
the total spin singletsST=0d and the quintetsST=2d channels
are allowed.P0

†,P2m
† are the singlet and quintet pairing opera-

tors defined by

P0
†sidfP20

† sidg =
1
Î2

hci,3/2
† ci,−3/2

† 7 ci,1/2
† ci,−1/2

† j,

P2,2
† sid = ci,3/2

† ci,1/2
† , P2,1

† sid = ci,3/2
† ci,−1/2

† , s31d

P2,−1
† sid = ci,1/2

† ci,−3/2
† , P2,−2

† sid = ci,−1/2
† ci,−3/2

† .

Thes= 3
2 Hubbard model has an exactSOs5d or equivalently,

Sps4d symmetry, without any fine tuning of the parameters.8

This follows from the fact that singlet and quintet channel
interactions can also be interpreted as theSOs5d group’s sin-
glet and five-vector representations. WhenU0=U2, the
model has a larger symmetry, namely theSUs4d symmetry.
The SUs4d symmetric Hubbard model has been extensively
studied in the transition metal oxides with double orbital
degeneracy.13

To illustrate theT-invariant decomposition for this model,
we first define the four-component spinor,

csid = „c3/2sid,c1/2sid,c−1/2sid,c−3/2sid…T. s32d

In this representation, we define five 434 Dirac Ga s1øa
ø5d matrices to construct theSps4d or SOs5d algebra as

G1 = S 0 iI

− iI 0
D, G2,3,4= SsW 0

0 − sW
D, G5 = S 0 − I

− I 0
D ,

whereI andsW are the 232 unit and Pauli matrices. The ten
SOs5d generators are defined asGab=−i /2fGa,Gbgs1øa,b
ø5d. Since theSOs5d group is equivalent to theSps4d group,
there exists a symplectic matrixR, with the properties,11

R2 = − 1, R† = R−1 = tR= − R

s33d
RGaR−1 = tGa, RGabR−1 = − tGab.

In our explicit representation,

R= G1G3 = S 0 − is2

− is2 0
D . s34d

Using theR matrix, thes= 3
2 Hubbard interaction can be

written in an explicitlySOs5d symmetric fashion as

H = − to
i j

fc†sidcs jd + H.c.g − sm + m0do
i

c†sidcsid

+
U0

2 o
i

h†sidhsid +
U2

2 o
i,a

x†,asidxasid, s35d

whereh†sid=c†sidsR/2dc†sid is the singlet pairing operator,
and xa,†sid=c†sidsGaR/2dc†sid are the polar forms of the
quintet pairing operators in Eq.s31d.

In order to implement the method ofT-invariant decom-
position, we first need to express the interaction terms in the
particle-hole channel, rather than the particle-particle chan-
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nel. In the particle-hole channel, there are 16 bilinear fermi-
onic operators, which can be classified into the scalar, vector,
and antisymmetric tensorssgeneratorsd of theSOs5d group as

nsid = ca
†sidcasid,

nasid =
1

2
ca

†sidGab
a cbsid, 1 ø a ø 5 s36d

Labsid = −
1

2
ca

†sidGab
abcbsid, 1 ø a , b ø 5,

where nsid is the particle number operator andnasid and
Labsid represent the spin degrees of freedom. The tenSOs5d
generators are often conveniently denoted as

Labsid =1
0 Repx Repy Repz Q

0 − Sz Sy Im px

0 − Sx Im py

0 Im pz

0
2 . s37d

Although similar symbols are used in theSOs5d algebra in
the high Tc cuprates,14 the operators here have different
physical meanings.

These 16 fermion bilinears are related through the Fierz
identity,

o
1øa,bø5

Lab
2 sid + o

1øaø5
na

2sid +
5

4
fnsid − 2g2 = 5. s38d

Defining the time-reversal operator asT=RC, and using the
properties of theR matrix given in Eq.s33d, it can be shown
that nsid,nasid are even whileLabsid is odd underT,

TnT−1 = n, TnaT
−1 = na, TLabT

−1 = − Lab. s39d

On the other hand, we can relate the aboveG-matrices
with the usual spin-SUs2d operatorsJi, which form a sub-
group of theSOs5d group,

J± = Jx ± iJy

=Î3s− L34 ± iL24d + sL12 ± iL25d 7 isL13 ± iL35d,

Jz = − L23 + 2L15. s40d

It is easy to check that theSi operators form thes= 3
2 repre-

sentation of theSUs2d algebra. While the above equation
expresses the spin operators in terms of theG matrices of the
SOs5d algebra, the reverse can also be accomplished. The
five Ga matrices can actually be expressed in terms of the
quadratic forms of the spin matrices,

Ga = ji j
asSiSj + SjSid, s41d

whereji j
a is a rank-two, symmetric, traceless, tensor given in

Eq. s29d and discussed more explicitly in Ref. 15. The ten
antisymmetric tensorGab matrices contain both the three lin-
earsrank 1d Si and seven cubic, symmetric, tracelesssrank 3d
combinations ofSiSjSk operators, and they correspond to the

second and the fourth rows of Eq.s29d. Thus, thensid opera-
tor describes a particle-hole pair with total spin zero, the five
nasid operators describe five particle-hole pair states with to-
tal spin two, and the tenLab operators include the degenerate
three spin-1 and seven spin-3 particle-hole pair states. From
this point of view, the physical meaning of Eqs.s39d ands29d
becomes transparent; operators with even total spins are even
underT, while operators with odd total spins are odd under
T.

Using the identities,

sGaRdabsRGadgd =
5

4
dagdbd −

3

4
Gag

a Gbd
a −

1

4
Gag

abGbd
ab,

s42d

RabRgd =
1

4
dagdbd +

1

4
Gag

a Gbd
a −

1

4
Gag

abGbd
ab,

and the Firez identityfEq. s38dg, we can now express thes
= 3

2 Hubbard model in the following form:

HK = − to
i

sci,s
† c j ,s + H.c.d − o

i

mcis
† cis,

s43d

HI = − o
i,1øaø5

Hgc

2
fnsid − 2g2 +

gn

2
na

2sidJ ,

where

gc = − s3U0 + 5U2d/8,
s44d

gn = sU2 − U0d/2.

B. Absence of the sign problem

After a series of transformations, we arrived at a form of
the s= 3

2 Hubbard which is suitable for theT-invariant de-
composition method. The interactions in Eq.s43d are fully
expressed in theT-invariant fermion operators in the
particle-hole channel. Whengc, gnù0, i.e.,

− 3/5U0 ù U2 ù U0, s45d

the partition function can be expressed using theT-invariant
decomposition as

Z =E Dc†Dc expH−E
0

b

dtcs
†S ]

]t
+ HDcsJ

=E DnE Dna expH−
gc

2
E

0

b

dto
i

fnsi,td − 2g2

−
gn

2
E

0

b

dto
i,a

na
2si,tdJdethI + Bj. s46d

Again I +B= I +Te−e0
bdtfHK+Histdg is obtained from the integra-

tion of the fermion fields,n andna are real HS Bose fields.
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The time-dependent interactionHIstd after the HS transfor-
mation is

HIstd = − gco
i

ci,sstdci,sstdnsi,td

− gno
i,a

ci,s
† stdGs,s8

a ci,s8stdnasi,td. s47d

We see thatHIstd mixes the four spin components to-
gether, therefore the fermion determinant is factorizable if
and only if gn=0, which is theSUs4d line with U0=U2,0.
We define the time-reversal transformationT for the entire
lattice asT=fpi ^ RsidgC. From Eq.s39d we see that both
terms areT-invariant,

TsHK + HIdT−1 = HK + HI , s48d

and all other conditions of our theorem are met. Therefore,
the minus sign is absent as long as Eq.s45d is satisfied. This
is a much broader parameter rangesshown in Fig. 2d, com-
pared to the conventional factorizibility conditionU0=U2

,0. Our algorithm therefore enables us to study thes= 3
2

Hubbard model away from theSUs4d line. Our proof is valid
for any filling level and lattice topology. In this parameter
range, it is shown in Ref. 8 that a number of interesting
competing orders such as the staggered order ofna, singlet
superconductivity, and the charge-density wave can exist
there.

At half filling and on a bipartite lattice wherem=0, the
sign problem also disappears along theSUs4d line at U
=U0=U2.0. Similar to the spin-12 case, after performing a
partial particle-hole transformation,

cis−1/2d → s− dicis−1/2d
† , cis−3/2d → s− dicis−3/2d

† , s49d

while keeping thecis3/2d, cis1/2d operators unchanged. The
kinetic-energy part is invariant under the above transforma-
tion, while the interaction part is changed intoHint
=2UoiL15

2 sid. It can be decomposed using the imaginary
number as

Z =E DQ expH− 2UE
0

b

dtQ2sidJdethI + Bj,

where B=Te−e0
bdtHK+Histd with Histd

= iUoici
†stdG15cistdQsi ,td. Because TsiL15dT−1= iL15, the

detsI +Bd is positive definite. However, we did not succeed in
generalizing this at negative values ofgc or gn away from the
SUs4d line at half filling.

In practice, it is more efficient to sample with discrete HS
transformation using two Ising-like fieldsh, s for each quar-
tic fermion term as in Ref. 16 instead of using the continuous
HS boson field. For any bilinear fermionic operatorOsid, the
decomposition below has the numerical precision at the or-
der of OsDtd4 as

egDtÔsi,td2 = o
l,s=±1

gl

4
eshl

ÎDtgÔsi,td + OsDt4d,

e−gDtÔsi,td2 = o
l,s=±1

gl

4
eishl

ÎDtgÔsi,td + OsDt4d,

whereg.0 andgl =1+sÎ6/3dl, hl =Î2s3−Î6ld. The above
proof for the positive definite of detsI +Bd applies equally
well in this scheme.

We only used the time-reversal properties of theSOs5d
algebra in the above proof; the exactSOs5d symmetry is
useful for transforming the model expressed in the particle-
particle channel to the particle-hole channel, but it is not
essential. A general anisotropic spin-3

2 lattice model is de-
fined by

H = − o
ki j ,al

htcia
† c ja + tacia

† Gab
a c jb + H.c.j

+ o
i,a

hhanasid − mnsidj + o
i,a,b

H−
gc

2
fnsid − 2g2

−
ga

2
na

2sid +
gab

2
Lab

2 sidJ , s50d

whereta is the spin-dependent hopping amplitude,ha is the
analogy of the Zeeman field coupling to thenasid field, and
ga andgab are coupling constants in corresponding channels.
Whengc,ga,gab are arbitrary positive-interaction parameters,
we can perform the same decomposition process as before.
By using the fact thatTsiLabdT−1= iLab, we again reach the
positive definite fermion determinant. This conclusion also
holds for any valid representation ofG matrices, with the
redefinednsid, nasid, Labsid and time-reversal operations ac-
cordingly.

FIG. 2. Within the method ofT-invariant decomposition, the
shaded area marks the parameter region without the sign problem in
the s= 3

2 Hubbard model at any doping level and lattice geometry.
The fermion determinant can only be factorized along theSUs4d
line with U0=U2,0, where the traditional algorithms can be ap-
plied without the sign problem. The sign problem along the line
with U0=U2.0 only disappears at the half filling and on a bipartite
lattice.
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C. General higher-spin Hubbard models

We can generalize the results in the spin-3
2 case to any

fermionic system with spins=n− 1
2. The spins=n− 1

2 Hub-
bard model can be written as

H = − t o
ki j l,s

hcis
† cjs + H.c.j − sm + m0do

is

cis
† cis

+ o
i,J,Jz

UJPJJz

† sidPJJz
sid, s51d

where J=0,2, . . . ,2n−2 are the total spin of the particle-
particle pairs,Jz=0, ±1, . . . , ±J. The pairing operatorsPJ,Jz

†

are defined through the Clebsch-Gordan coefficient for two
indistinguishable particles as

PJ,Jz

† sid = o
ab

kJ,Jzus,s;ablca
†sidcb

†sid. s52d

The total spin of the particle-particle pair takes only even
integer values so that the Pauli principle is satisfied on every
site. At half filling and on a bipartite lattice,m=0 ensures the
particle-hole symmetry, andm0=1/s2ndoJs2J+1dUJ.

The general strategy to implement the method of
T-invariant decomposition is to first transform the interaction
terms originally expressed in the particle-particle channel to
the particle-hole channel. In this case, we have the fermion
operatorsci,b within one unit cell, whereb=1, . . . ,s2s+1d.
Therefore, there ares2s+1d2 fermion bilinears of the form
MI =ci,a

† Mab
I ci,b, whereI =1, . . . ,s2s+1d2. Thes2s+1d2 Mab

I

matrices can in general be expressed in a complete basis in
terms of the product of spins matricesSi,

1,

Si, i = 1,2,3,
s53d

ji j
aSiSj, a = 1, . . . ,5,

. . .

ji1,i2,. . .iJ
L Si1

Si2
¯ SiJ

, L = 1, . . . ,s4s+ 1d,

where thej’s are fully symmetric, traceless tensors, satisfy-
ing

ji1,i2,. . .iJ
L = ji2,i1,. . .iJ

L , s54d

or any other permutation of indices, and

ji1,i1,. . .iJ
L = 0. s55d

Spherical harmonics can be used to explicitly construct these
tensors.17 This decomposition is obviously complete, since

s2s+ 1d2 = 1 + 3 + 5 +¯ + s4s+ 1d. s56d

According to the method ofT-invariant decomposition, any
negative interaction terms in the even-spin channel like 1,
ji j

aSiSj , . . . or anypositive interaction terms in the odd-spin
channel likeSi, ji jk

L SiSjSk, . . . can besimulated by our algo-
rithm without the sign problem.

In the following, we shall illustrate this general procedure
more explicitly for a special case of the higher-spin Hubbard
model where

U2 = U4 = ¯ = U2n−2 ; U8. s57d

The generic higher-spin Hubbard model only has the spin
SUs2d symmetry forsÞ 3

2. However, under the above condi-
tion, the higher-spin Hubbard has theSps2nd symmetry.
When an additional condition, namely,U0=U8, is imposed,
the model has a larger,SUs2nd symmetry. In the Appendix,
an introduction to theSps2nd algebra is given. As shown
there, the singlet-pairing operator is also the singlet of the
Sps2nd group, while all other 2n2−n−1 pairing operators
with J=2,4, . . . ,2n−2 together form a representation for the
Sps2nd group. Thus we conclude that Eq.s51d is
Sps2nd-symmetric if and only if the coupling constants sat-
isfy Eq. s51d. Forn=1 and 2, theSps2nd symmetry is generic
and does not need any fine tuning. Actually,Sps2d is isomor-
phic to SUs2d, while Sps4d is isomorphic toSOs5d. This is
consistent with our earlier finding that thes= 3

2 Hubbard
model has theSOs5d or the Sps4d symmetry without any
conditions on the parameters.8

To show theSps2nd symmetry explicitly, we can rewrite
the Hamiltonian in Eq.s51d as

H = − t o
ki j l,s

hci,a
† c j ,a + H.c.j − mo

i

ci,a
† ci,a

+ c0o
i

sci,a
† ci,a − nd2 + c2o

i

sci,a
† Yab

a ci,bd2,

s58d

c0 =
n + 1

4n2 U0 +
2n2 − n − 1

4n2 U8, c2 =
U0 − U8

2n
.

The expression forYa s1øaø2n2−n−1d is given in the Ap-
pendix, where it is also shown that they are even under the
time-reversal transformation. By the same reasoning before,
we perform the HS decoupling in the above two channels.
Then the sign problem is absent when bothc1 and c2 are
negative, i.e.,

U0 ø U8 ø −
n + 1

2n2 − n − 1
U0. s59d

Because theYa s1øaø2n2−n−1d are even under time-
reversal transformation while the spin operatorsSisi
=x,y,zd are odd,Ya can be expanded in the basis of Eq.s53d,
including all terms with even powers of spin matrix.

V. BILAYER s= 1
2 MODELS

The spin-32 Hubbard model has a close relationship with a
bilayer model introduced by Scalapino, Zhang, and Hanke
sSZHd.11 This model was constructed and extensively inves-
tigated because of the exact particle-particle channelSOs5d
symmetry between the antiferromagnetism and superconduc-
tivity when the coupling constants satisfy a simple
relation.18–21 The original SZH model was introduced on a
two-leg laddersFig. 3d, and it is straightforward to generalize
it to a bilayer system as
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H = − tio
ki j l

hcis
† cjs + dis

† dj ,s + H.c.j − t'o
i

hci,s
† di,s + H.c.j

− mo
i

hncsid + ndsidj + Uo
i
HFn↑,csid −

1

2
GFn↓,csid −

1

2
G

+ Fn↑,dsid −
1

2
GFn↓,dsid −

1

2
GJ

+ Vo
i

„ncsid − 1…„ndsid − 1… + Jo
i

SW i,c ·SW i,d, s60d

wherec† andd† are creation operators in the upper and lower
layers, respectively,ti and t' are the hopping amplitudes in
the layer and across the rung, respectively,U is the on-site
interaction, andV and J are the charge and Heisenberg ex-
change interactions across the rung, respectively. The SZH
model is known to have an exactSOs5d symmetry when

J = 4sU + Vd, m = 0, s61d

which unifies the antiferromagnetism with the
superconductivity.11 Remarkably, there exists another exact
SOs5d symmetry in the particle-hole channel when

J = 4sU − Vd, t' = 0, s62d

and the symmetry is valid for all filling factors. We denote
the former particle-particleSOs5d symmetry asSOs5dpp and
the later particle-holesp-hd SOs5d symmetry asSOs5dph. The
two SOs5d symmetric lines are shown in Fig. 4. In order to

employ the method ofT-invariant decomposition, we adopt
the view from theSOs5d symmetry in the particle-hole chan-
nel in this section.

There are four single fermion states per unit cell in both
the s= 3

2 Hubbard model and thes= 1
2 bilayer model. A map-

ping between them can be established throughci
=sci,3/2,ci,1/2,ci,−1/2,ci,−3/2dT↔ sci,↑ ,ci,↓ ,di,↑ ,di,↓dT. We denote
the time-reversal operator defined in Eq.s34d for the s= 3

2
system asT1, and the usual definition for thes= 1

2 system as
T2. T1 actually is the combined operation ofT2 and the in-
terchange between the upper and lower layers,

T1 = S0 I

I 0
DT2. s63d

The 16 p-h channel fermionic bilinear forms are mapped
onto

nsid = cis
† cis + dis

† dis,

n1sid = − isdis
† cis − H.c.d/2,

n5sid = sdis
† cis + H.c.d/2,

n2,3,4sid = cia
† SsW

2
D

ab

cib − dia
† SsW

2
D

ab

dib,

s64d

RepW sid = cia
† SsW

2
D

ab

dib + H.c.,

Im pW sid = − iFcia
† SsW

2
D

ab

dib − H.c.G ,

SW i = cia
† SsW

2
D

ab

cib − dia
† SsW

2
D

ab

dib,

Q = fncsid − ndsidg/2,

wheren1,5 are the singlet rung-current and rung-bond order
parameters, respectively, and ImpW and RepW are their triplet

counterparts;n2,3,4 are the rung-Néel order parameter,SW is
the total rung spin, andQ is the charge-density wave order
parameter.n,n1,5 are even under theT1 transformation, and
the others are odd. In contrast,n, n5, Im pW , andQ are even
under the usual definition, andT2 and the others are odd.

The general SZH model can be mapped into an aniso-
tropic SOs5d model in the following form:

H = − tio
ki j l

cia
† c ja + t'o

i

cia
† Gab

5 cib − mo
i

ni

+ o
i
H−

gc

2
fnsid − 2g2 −

gn1

2
fn1

2sid + n5
2sidg −

gn2

2

3fn2
2sid + n3

2sid + n4
2sidgJ , s65d

with

FIG. 3. The SZH model defined on a two-leg ladder segment of
the double-layer spin-1

2 system.

FIG. 4. TwoSOs5d lines are shown in the SZH model as well as
in the QMC region without the sign problem for any fillingshashed
aread: gn1.0, gn2.0, andgc.0. There is another region withV
,0 snot shownd.
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4gc =
3

4
J − U − 3V, 4gn1 =

3

4
J − U + V,

s66d

4gn2 =
J

4
+ U − V.

The particle-hole channelSOs5dph symmetry is restored at
gn1=gn2 and t'=0, i.e., when the conditions of Eq.s62d are
satisfied. At this point, the SZH model expressed in Eq.s65d
takes exactly the same form as thes= 3

2 Hubbard model ex-
pressed in Eq.s43d. The equivalence between the two models
is therefore rigorously established.

For the general SZH model, the interactions can be ex-
pressed purely in terms of the fermion bilinears which are
invariant under theT1 transformation from Eq.s65d, by vir-
tue of Eq.s39d. We perform theT1-invariant decomposition
of the interactions in the region ofgc,gn1,gn2ù0, i.e.,

3

4
J + V ù U ù −

1

4
J + V,

s67d
3

4
J ù U + 3V

as shown in Fig. 4, and then the sign problem is absent. In
this region with positivegn1,2 andgc, we expect the compet-
ing orders of the five-vector channel and the superconductiv-
ity, i.e., the antiferromagnetism, the staggered current, and
the rung-singlet superconductivity, which can be investigated
systematically with high numerical accuracy, at and away
from the half filling.

The above algorithm has been applied to demonstrate the
existence of the two-dimensional staggered-current phase
conclusively at half filling with ti=1,t'=0.1,U=0,V
=0.5,J=2.10 The current pattern is illustrated in Fig. 5 with
staggered interlayer currentssSICd between the bilayers and
the alternating source to drain currents within the bilayers.
Viewed from the top, this current pattern has as-wave sym-
metry. While theD-density wave22 currents are divergence-
free within the layer, the SIC current is curl-free within the
layer. These two patterns can be considered as dual to each

other in two dimensions. To the best of our knowledge, this
is the first time a current-carrying ground state has been con-
clusively demonstrated in a two-dimensionals2Dd system.

The mapping between the SZH model and thes= 3
2 model

is not unique. More generally the SZH model can be written
as

H = − tio
ki j l

cia
† c ja + t'o

i

cia
† Gab

5 cib − mo
i

ni ,

s68d

+ o
i
H−

gc

2
fnsid − 2g2 −

gn1

2
fn1

2sid + n5
2sidg −

gn2

2

3fn2
2sid + n3

2sid + n4
2sidg

+
gt1

2
Q2sid +

gt2

2
fSWsid ·SWsidg +

gt3

2
fRepW sid · RepW sid

+ Im pW sid · Im pW sidgJ .

Only three out of the six coupling constants are independent,
as shown here in the correspondence to theU ,V,J param-
eters,

U = − 4gc + 3gn2 + gt1 − 3gt2,

V = − 4gc + gn1 − gt1 − 3gt3, s69d

J = 4sgn1 + gn2 + gt2 + gt3d.

If the gt1,gt2,gt3 are set to zero, it returns to Eq.s65d. For
any given values forU ,V,J, if we can find a set of values of
gc,gn1,gn2,gt1,gt2,gt3ù0, then we can perform the HS
transformation, keeping the invariance under theT1 opera-
tion, and arrive at the absence of the sign problem regardless
of the doping and lattice topology. This general decoupling
scheme extends the valid parameter region in Eq.s67d. On
the other hand, we can also consider performing the HS de-
coupling with the invariance under the usual definition of the
time-reversal operationT2. After settinggn1,gt3=0, we have
the condition that gcù0,gn2ø0,gt1ø0,gt2ù0. This
decoupling-scheme-basedT1 also enlarges the region of Eq.
s67d. For example, the usual bilayer negativeU Hubbard
model with U,0,V=J=0 is out of that region. Neverthe-
less, we can still show the absence of the sign problem by
setting gc=−gt1/4=−U /2.0 and all other parameters to
zero.

In contrast, the conventional algorithm based on the fac-
torization of the fermion determinant works only at either
gn1=gn2=0, gc,0 or the usual negative U Hubbard model
U,0,V=J=0. This parameter set is included in the above
HS decomposition schemes, respecting either theT2 or theT1
time-reversal symmetry. We therefore see the significant im-
provement provided by the method of theT-invariant decom-
position.

VI. MODELS WITH BOND INTERACTIONS

So far, the models we considered only have on-site inter-
actions. In this section, we will generalize them to include

FIG. 5. sad Sketch of a staggered interlayer current phase from
Ref. 10. For clarity, we do not show the bottom layer current.sbd
Top view of the bilayer current.scd Sketch of theD-density wave-
current pattern for comparison.
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interactions defined on the bond. Such models can have
many exotic phases.

We first consider the following general single-layer spin-1
2

Hamiltonian with bond interactions:

H = − t o
ki j l,s

scis
† cjs + H.c.d − mo

i

nsid + o
ki j l
H−

gsbd

2
MijMij

+
gscur

2
NijNij +

gtbd

2
MW i j · MW i j −

gtcur

2
NW i j ·NW i jJ ,

s70d

MW i j = cia
† SsW

2
D

ab

cjb + H.c., NW i j = iHcia
† SsW

2
D

ab

cjb − H.c.J ,

Mij = cis
† cjs + H.c., Nij = ihcis

† cjs − H.c.j,

whereMij andNij are the singlet bond and current operators

on the bondki j l, MW i j and NW i j are their triplet counterparts,
andgsbd, gscur, gtbd, andgtcur are the coupling constants in the
corresponding channels. The sitesi and j forming the bond
ki j l are not necessarily nearest neighbors, but can be at an
arbitrary distance apart. Under the time-reversal transforma-

tion T, Mij , andNW i j are even whileMW i j andNij are odd.
These four interactions are not independent, and can be

reorganized into

Hint = o
ki j l

h− Jcsci↑
† ci↓cj↓cj↑

† + H.c.d + Vfnsid − 1gfns jd − 1g

+ JsSWsid ·SWs jdj,

s71d

Jc = 2sgsbd+ gscurd + 3sgtbd + gtcurd,

V =
gsbd− gscur

2
−

3

4
sgtbd − gtcurd,

Js = 2sgsbd− gscurd + sgtbd − gtcurd.

The Jc term is the pair hopping,V is the charge interaction
between sitesi and j , and Js is the Heisenberg exchange.
When all ofgsbd,gscur,gtbd,gtcur are positive, we perform the
HS decomposition in each channel, respectively, as

Z =E DMDMW DNDNW expH−E
0

b

dto
ki j l

gsbdMij
2std

+ gscurNij
2std + gtbdMW i j

2std + gtcurNW i j
2std2J

3dethI + Bj, s72d

whereI +B= I +Te−e0
bdtHK+HIstd. HIstd after the HS decoupling

is given by

HIstd = − o
ki j l

gsbdMijstdsci,s
† cj ,s + H.c.d

+ io
ki j l

gscurNijstdisci,s
† cj ,s − H.c.d − io

ki j l
gtbdMW i jstd

3Fcia
† SsW

2
D

ab

cjb + H.c.G
+ o

ki j l
gtcurNW i jstdiFci,a

† SsW

2
D

ab

cj ,b − H.c.G . s73d

Therefore,HI and I +B are even under the time-reversal
transformation and the sign problem is absent.

The valid parameter region for the above algorithm is
very general as long as allgsbd,gscur,gtbd,gtcurù0. As a re-
sult,V andJ can be either positive or negative whileJc has to
be positive. Many interesting competing orders are supported
in this parameter region. For example, various density-wave
states exist on a square lattice near half filling,23 as shown in
Fig. 6. With gsbd,gtcur.0, the above algorithm provides a
good opportunity to study the singlet bond and the triplet

current order parameters formed byMij and NW i j , while it is
not good for studying the singlet current and the triplet bond

order parameters formed byNij and MW i j , becausegtbd,gscur
.0. After settinggtbd=gscur=0 for the bondki j l connecting
the nearest sites, thegsbd term favors thep-density wave
sspin-Peierlsd phase, and thegtcur term favors the triplet
channeldx2−y2-density wave. The latter order is recently pro-
posed as the origin of the pseudogap in the highTc
cuprates.24 For the bond interaction between the next nearest

FIG. 6. Four possible density-wave phases can be simulated
without a sign problem.sad singlet spin-Peierlssp-density-waved,
sbd Triplet dx2−y2 density-wave,scd singlet dxy density-wave,sdd
triplet diagonal-current.
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bond, i.e., the diagonal bond, thegsbd term leads to the sin-
glet dxy order, and thegtcur term leads to the triplet diagonal-
current order. The triplet diagonal-current phase was studied
in the two-leg ladder system using the bosonization method
in Ref. 25 and also under the name of the tripletF-density
wave in Ref. 26.

When the Fermi surface nesting effect is not important
either at large doping or in the nonbipartite lattice, thegtcur
term can lead to theF1

a channel of the Landau-Pomeranchuk
instability on the Fermi surface, which was studied recently
in the continuum model in Ref. 27. After the symmetry
breaking, two possible phases are named asa andb phases
in analogy to theA andB phases in the tripletp-wave chan-
nel superfluid phase in3He, as shown in Fig. 7. Thea phase
was studied by Hirsch28,29under the name of spin-split phase
on the lattice system with an opposite anisotropic Fermi sur-
face distortion for two-spin components. In contrast, the
Fermi surface distortion is isotropic and a spin-orbit coupling
is dynamically generated in theb phase. The two single-
particle bands are characterized by the helicities. It would be
interesting to study these exotic phases in our version of the
QMC algorithm free of the sign problems.

Bond interactions can also be added into the spin-3
2 Hub-

bard model of Eq.s35d as

Hbond= o
ki j l
H−

gsbd

2
MijMij +

gscur

2
NijNij + o

a

−
gvbd

2
Mij

aMij
a

+
gvsur

2
NijNij + o

a,b

gtbd

2
Mij

abMij
ab −

gtcur

2
Nij

abNij
abJ ,

s74d
Mij = ci

†c j + H.c., Nij = ihci
†c j − H.c.j,

Mij
a = ci

†Ga

2
c j + H.c., Nij

a = iHci
†Ga

2
c j − H.c.J ,

s75d

Mij
ab = ci

†Gab

2
c j + H.c., Nij

ab = iHci
†Gab

2
c j − H.c.J ,

whereMij andNij are the singlet bond and current operators
on the bondki j l,Mij

a,Nij
a,Mij

ab,Nij
ab are their five-vector and ten-

tensor channel counterparts, respectively, and
gsbd,gvbd,gtbd,gscur,gvcur,gtcur are the coupling constants in
the corresponding channels. Again the sitesi and j forming
the bondki j l can be at an arbitrary distance apart. The bond
interactions can be decoupled by introducing the HS field in
each channel respectively. Following the same reasoning as
in the case of the spin-1

2, the bond-interactions keep the fer-
mion determinant positive definite, provided all of these cou-
pling constants are nonnegative. Similarly, with
gsbd,gvbd,gtcur.0, the algorithm can be applied to study the
singlet, quintet bond orders and the tenfold current order,
while with gscur,gvcur,gtbd.0, it is not useful for study ap-
plied to the singlet, quintet current orders and the tenfold
bond order.

VII. CONCLUSION

The sign problem of the fermionic QMC algorithm is one
of the most important problems in theoretical physics. Its
solution would practically give a universal computational
method to solve models with strong correlations. The rigor-
ous theorem established in this work shows that the minus
sign problem can be eliminated for a much wider class of
models than before, in which the fermion matrix is invariant
under an antiunitary symmetry similar to the time-reversal
symmetry in quantum mechanics. The method ofT-invariant
decomposition does not only provide a deep connection be-
tween the sign problem and the time-reversal symmetry, it
also leads to practical algorithms which can be applied to
many interesting models with strong correlations. Using this
algorithm, a class of models with strong correlations can be
simulated, and some exotic ground states have been firmly
established.

We conclude this paper with an optimistic outlook. Even
though our method can only be applied presently to models
with definite constraints among the interaction parameters,
we believe that the deep symmetry connections revealed in
this paper could guide us in future works and might eventu-
ally lead to the complete elimination of the sign problem.

Note added in proof.Recently, we learned that a similar
version of the theorem ofT-invariant decomposition had
been discussed in the context of lattice gauge theory.32 How-
ever, they did not consider the case thatI +B is not diagonal-
izable. Our proof is valid regardless of whetherI +B is diag-
onalizable or not, thus is more complete.
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APPENDIX: Sp„2n… ALGEBRA IN THE SPIN s=n− 1
2

FERMION SYSTEM

We give a brief introduction to theSps2nd algebra here.
The 2n-dimensional Hilbert space on each site can be ar-
ranged as a direct product between ann-dimensional and a
two-dimensional space. The complete basis of the eigenstates
of Sz are labeled in the sequence ofu1l= un− 1

2l, u2l= u−n

+ 3
2l , . . . ,unl= us−dn−1/2l, and u1̄l= u−n+ 1

2l, u2̄l= un
− 3

2l , . . . ,un̄l= us−dn/2l. TheSps2nd spinor is defined as

c = scn−1/2,c−n+1/2,c−n+3/2,cn−3/2, . . . dT. sA1d

Group elements ofSps2nd include any 2n32n unitary ma-
trix U satisfyingUTRU=R or, equivalently,R−1UR=U* sRef.
30d with the R matrix,

R= In ^ s− is2d. sA2d

The R matrix is a straightforward generalization of the
R=−is2 in the spin-12 case, which also satisfiesRT=R−1

=R†=−R. Clearly, theSps2nd group is a subgroup of the
SUs2nd group defined in the 2n-dimensional space.

In the particle-hole channel, there are 4n2 independent
bilinear operators as ca

†cb sa=1, . . . ,2n,b=1, . . . ,2nd.
Among them, the particle-density operatorn=ca

†ca is a sin-
glet under both theSUs2nd and theSps2nd group. The time-
reversal transformationT=CR is defined as usual, and it sat-
isfies T2=−1. The other 4n2−1 bilinear operators form the
generatorssadjoint representationd for the SUs2nd group.
They can be decomposed into two classes according to their
transformation properties under theT operation. The first
class containsns2n+1d elements which forms the generators
of the Sps2nd group as denoted byca

†Xab
b cbsb=1,2n2+nd.

Xb can be expressed in terms of a direct product between the
SUsnd andSUs2d generators. We define theSUsnd generators
as

fMij
s1dglk =

1

2
sdild jk + dikd jld s1 ø i , j ø nd,

fMij
s2dglk =

− i

2
sdild jk − dikd jld s1 ø i , j ø nd, sA3d

Mj
s3d =

diags1, . . . ,1,−s j − 1d,0, . . . ,0d
Î2js j − 1d

s2 ø j ø nd,

where Mij
s1d,Mij

s2d,Mj
s3d are then3n-dimensional generaliza-

tion of theSUs2d Pauli matricessx,y,z, respectively. Counting
the numbers ofSUs2nd generators, there arensn−1d /2 real,
symmetricMij

1’s, nsn−1d /2 imaginary, antisymmetricMij
2’s,

andn−1 real, diagonalMij
3’s. Then theSps2nd generatorsXb

can be expressed as

Mij
s2d

^ I2, Mij
s1d

^ sW , Mj
s3d

^ sW , In ^ sW , sA4d

BecauseMij
s1d’s and Ml

s3d’s are real andMij
s2d’s are purely

imaginary, theSps2nd generators are odd under the time re-
versal: T−1XbT=−Xb. The second class bilinearsca

†Yab
a cb

have 2n2−n−1 elements.Yasa=1, . . . ,2n2−n−1d are given
by

Mij
s2d

^ si, Mj
s1d

^ I2, Mj
s3d

^ I2, sA5d

which are even under the time reversal:T−1YaT=Ya.
These 4n2 bilinear operators are not independent of each

other, but are related by the Fierz identity. The total Hilbert
space for one site has the dimension of 22n, which can be
decomposed into subspaces with different particle numbers
rs0ø r ø2nd. Each of them form the totally antisymmetric
representation of theSUs2nd group 1r. The Casimir value of
the SUs2nd group in such representations isrs2n+1ds2n
−rd / s2nd. Thus we arrive at the Fierz identity for the spin-
n− 1

2 system as

o
b

scia
† Xab

b cibd2 + o
a

scia
† Yab

a cibd2 +
2n + 1

2n
sca

†ca − nd2

=
2n2 + n

2
. sA6d

The on-site pairing operators can be easily formed by us-
ing theR matrix. Due to the Pauli’s exclusion principle, the
total spin for as-wave pair can only be0,2, . . . ,2n−2. The
singlet-pair operator is also theSps2nd singlet operator. It can
be written asca

†Rabcb
†, which was studied extensively in a

Sps2nd generalization of the Heisenberg antiferromagnet.31

The other 2n2−n−1 pairing operators with a total spin of
2,4, . . . ,2n−2 together form a representation ofSps2nd as
ca

†sidsRYadabcb
†sid. When all the interaction parameters are

equal, thesens2n−1d pairing operators together form an an-
tisymmetric representation ofSUs2nd of 1r sr =2d.
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