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We extend the formulation of time-dependent current-density-functional theory for the linear response prop-
erties of dielectric and semi-metallic solidsfKootstraet al., J. Chem. Phys.112, 6517s2000dg to treat metals
as well. To achieve this, the Kohn-Sham response functions have to include both interband and intraband
transitions with an accurate treatment of the Fermi surface in the Brillouin-zone integrations. The intraband
contributions in particular have to be evaluated using a wave-vector-dependent description. To test the method
we calculate the optical properties of the two noble metals Cu and Ag. The dielectric and energy loss functions
are compared with experiments and with the classical Drude theory. In general we find a good agreement with
the experiments for the calculated results obtained within the adiabatic local density approximation. In order to
describe the Drude-like absorption below the interband onset and the sharp plasma feature in silver exchange-
correlation, effects beyond the adiabatic local density approximation are needed, which may be included in a
natural way in the present current-density-functional approach.
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I. INTRODUCTION

In time-dependent density-functional theorysTDDFTd,
developed by Runge and Gross1 starting from the original
ground-state Hohenberg-Kohn formulation,2,3 the exact dy-
namical response of a many-particle system to an external
perturbing time-dependent scalar potential can be obtained
using an effective one-particle description.1,4–6 Many-
particle effects enter in the time-dependent version of the
so-called Kohn-Sham scheme3 through the exchange-
correlation contribution to the self-consistent and time-
dependent effective scalar potential. Ghosh and Dhara7,8 ex-
tended the Runge-Gross theorem1 to many-particle systems
in a general time-dependent electromagnetic field. In their
description the electron current-density enters, replacing the
electron density of ordinary TDDFT as the fundamental dy-
namical variable, with the vector potential instead of the sca-
lar potential as its natural conjugate variable.9 This time-
dependent current-density functional approach
sTDCDFTd5,10,11 is particularly well-suited for the treatment
of extended systems.12,13 When such a system is perturbed
by an external electric field, there will be a macroscopic
response caused by charge accumulating at the outer surface
that leads to a macroscopic screening field inside the bulk.
The continuity relation implies that the density change at the
surface of the system is accompanied by a current flowing
through the interior with a nonzero average value for the
current-density. When treating the response of a crystalline
system by using periodic boundary conditions within
TDDFT, the effect of this phenomenon called macroscopic
polarization cannot be described using the periodic bulk den-
sity alone,14 and one has to introduce additional dynamical
variables to account for the surface charge, c.q. the macro-
scopic polarization15 or, equivalently, the macroscopic in-
duced field.16 In the TDCDFT approach the information on
the surface charge is already contained in a natural way in
the periodic current-density. For the longitudinal response of
isotropic systems, some of the difficulties can be circum-
vented by relating the long-wavelength limit of the density-

density response to the longitudinal current-current
response.17–20 The scurrent-ddensity functional approach
yields reasonable results for the dielectric constants and op-
tical dielectric functions of various isotropic semiconductors
and insulators when it is used within the adiabatic local den-
sity approximation sALDA d for the exchange-correlation
field,12,13,21–26but more advanced schemes involving long-
range kernels,27–32 or equivalently ssemid-local current
functionals,11,33,34are needed to account for excitonic effects
in these systems. For anisotropic system and when calculat-
ing transverse response atq.0 we have to use the TDCDFT
approach, which can be applied to treat the optical properties
of metals as well. Here, however, one should not only con-
sider the interband contribution, involving transitions from
spartiallyd occupied tospartiallyd unoccupied bands as in
nonmetals, but also the intraband contribution due to transi-
tions within the same band, more specifically, from just be-
low the Fermi level to just above this level. The latter pro-
cesses are responsible for the collective plasmon response
typical for simple metallic systems.17 For the noble metals
like Ag and Cu the interplay between inter- and intraband
processes involvingd-electrons leads to a strong redshift of
the Drude-like plasmon resonance.35–39

In this paper we give a general description of the response
of a metallic system to an external electromagnetic field
within the current-density functional scheme.12,13To achieve
this we consider a generalq- andv-dependent perturbation,

dĥsr ,td = dĥqsr ,vdeisq·r−vtd, s1d

where we choosedĥ−qsr ,−vd=dĥq
†sr ,vd to ensure a real per-

turbation withdĥqsr ,vd lattice periodic. We derive the linear
response of the system for vanishingq but finite v. This is
the regime describing optical properties. To evaluate the re-
sponse in this limit three steps are essential. First we show
that the inter- and intraband processes behave differently for
smallq. Then we show that we can still use the microscopic
Coulomb gauge12 to separate microscopic and macroscopic
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contributions to the effective scalar and vector potentials.
Finally, we consider the self-consistent-field equations and
show that inter- and intraband contributions to the response
decouple in the optical limit when we make use of the adia-
batic local density approximation. Here we outline the deri-
vation, which can be found in full detail in the next section.
We start by expressing the induced density and current-
density using theq-dependent Kohn-Sham response func-
tions. These take the following general form,

xabqsr ,r 8,vd

=
1

Nk
o
k

o
i,a

3
sf ik − fak+qd

1 + di,a

fcik
* sr dâcak+qsr dgfcak+q

* sr 8db̂ciksr 8dg
eik − eak+q + v + ih

+ c.c.s− q,− vd,

whereâ and b̂ refer to the operatorsr̂=1 or ĵ =−is¹−¹†d /2,
and the summation is over thespartiallyd occupied bands,i,
andspartiallyd unoccupied bands,a. Only ground state orbit-
als cnk, orbital energiesenk, and occupation numbersfnk
enter in this expression, which takes into account the conser-
vation of the crystal momentum. The Bloch functions are
normalized on the Wigner-Seitz cellVWS, and the number of
k points in the summation isNk=VBvK /VWS, in whichVBvK is
the volume of the Born–von Kármán cell. The intrabandsin-
terbandd contribution to the response functions is given by
the terms witha= i saÞ id in the summation overi anda. In
the intraband case the factor 1/s1+di,ad corrects for the
double counting. Analysis of theq dependence at finitev
indicates that the intraband contributions vanish in the limit
q→0 except forxjjq sr ,r 8 ,vd. By considering the reverse
order of limits, i.e., by evaluating the limitv→0 before
taking q→0, we retrieve the conductivity sum rule which
allows us to relate the diamagnetic and paramagnetic com-
ponents of the current-density. Identifying the various contri-
butions to the response functions makes it possible to sepa-
rate the inter- and intraband contributions to the induced
density and current-density,

drsr ,vd = drintersr ,vd + drintrasr ,vd,

dj sr ,vd = dj intersr ,vd + dj intrasr ,vd. s2d

The equations for the interband contribution to the density
and current-density become identical to the original descrip-
tion of Kootstra et al.12,13 in the limit of q to zero. The
description of the intraband contribution follows along the
same lines as for the interband case. In the description of
Kootstraet al. it is proven to be essential to choose the gauge
such that the macroscopic component of the induced electric
field that is due to the induced density and current-density is
completely described using the vector potential. The scalar
potential is thus purely microscopic. One can then obtain the
response to a fixed macroscopic field instead of to an exter-
nal field and thus treat the macroscopic optical response
exactly.12 This still holds in ourq-dependent description,
where it turns out that the density and current-density have

the sameq dependence as the perturbing field. We can then
define the macroscopic induced density as

drmacsr ,vd = eiq·r 1

V
E

V

e−iq·rdrsr ,vd dr , s3d

where V is the unit cell, and similarly we can define the
macroscopic current-density. A careful analysis of theq de-
pendence at smallq, but finitev, reveals that we can include
in the microscopic scalar potential the contribution due to the
intraband part of the microscopic induced density,

drmic
intrasr ,vd = drintrasr ,vd − drmac

intrasr ,vd,

wheredrmac
intrasr ,vd is the macroscopic part of the intraband

induced density. The other contributions that lead to a mac-
roscopic field have to be included in the vector potential.
Intraband contributions to both the microscopic scalar poten-
tial and macroscopic vector potential are now identified. The
former vanishes in the limit ofq to zero, and the latter is to
be included in the definition of the fixed macroscopic field.
Like in the description of Kootstraet al. we can neglect the
very small microscopic magnetic contribution to the self-
consistent field, which is due to the transverse current. To-
gether with the classical potentials, we also have to consider
the exchange-correlation contribution to the self-consistent
field. We find that in the optical limit only the exchange-
correlation contribution of the interband part of the induced
density needs to be included in the microscopic scalar poten-
tial to arrive at the same adiabatic local density approxima-
tion sALDA d used in the ordinary TDDFT approach. At the
same time no exchange-correlation contributions to the mac-
roscopic vector potential remain. In this work we neglect
possible additional contributions from the induced current.33

The microscopic effective scalar potential is thus completely
determined by the microscopic interband induced density.
Therefore we can obtain the response in the optical limit by
first solving the equations for the interband part of the den-
sity and by subsequently obtaining the intraband part. We
show that, whereas the interband density needs a self-
consistent solution, in the second stage the intraband density
and the current-density do not need to be calculated self-
consistently. It follows that the intraband current can be ob-
tained completely independent from the interband density
and current-density andvice versa. Note, however, that for
finite q and for exchange-correlation approximations that go
beyond the ALDA the sets of equations are essentially
coupled.

The remainder of the paper is organized as follows. The
main aspects of the implementation are given in a separate
section. This implementation is based on the description of
Kootstra et al.12 for the q-independent nonmetallic case.
Here we focus on the specific case of metals and refer the
reader to Ref. 12 for the general framework used. Finally, we
report our results for the dielectric and energy loss functions
for the crystals of Cu and Ag and compare them with the best
available experimental data.35–39
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II. THEORY

We treat the dynamic linear response of a metallic crystal
to a perturbation described by both scalar and vector poten-
tials within the time-dependent current-density-functional
theory sTDCDFTd.5,7,8,10,11 In the effective one-electron
scheme of Kohn-Sham,3 non-interacting particles moving in
a time-dependent effective electromagnetic field are de-
scribed by Bloch functions that are solutions of the following
equation,

i
]

]t
cnksr ,td = F1

2
Sp̂ +

1

c
daef fsr ,tdD2

+ vef f,0sr d

+ dvef fsr ,tdGcnksr ,td. s4d

Herevef f,0sr d is the effective scalar potential giving the ini-
tial density which we choose to be the ground state density. It
is, therefore, uniquely determined by the Hohenberg-Kohn
theorem.2 The time-dependent potentialsdvef fsr ,td and
daef fsr ,td produce the exact time-dependent density and
current-density for the chosen initial state,

rsr ,td = o
n,k

fnkcnk
* sr ,tdcnksr ,td, s5d

where fnk are the occupation numbers, and

j sr ,td = o
n,k

fnkcnk
* sr ,tdĵcnksr ,td +

1

c
rsr ,tddaef fsr ,td. s6d

In Eq. s6d the first term is the paramagnetic component of the
current-density, in which the paramagnetic current operatorĵ
is defined as −is¹−¹†d /2 where the dagger indicates that
terms to the left have to be differentiated. The second term is
the diamagnetic component. Since the initial state is the
ground state, the occupation numbersfnk are given by the
Fermi-Dirac distribution functionfnk = fsenkd=2 for enk øeF

and 0 otherwise, withenk the ground state orbital energies
and eF the Fermi level. The time-dependent potentials are
uniquely determined up to an arbitrary gauge due to the
Ghosh-Dhara theorem.7,8 Both the density and the current-
density are gauge invariant. The first-order perturbation of
the ground state is governed by the perturbation Hamiltonian

dĥef f containing all terms linear in the field,

dĥef fsr ,td =
1

2c
fp̂ · daef fsr ,td + daef fsr ,td · p̂g + dvef fsr ,td.

s7d

We choose the gauge to be the microscopic Coulomb gauge
of Kootstraet al.12 in which the effective scalar and vector
potentials are given by

dvef fsr ,td = dvH,micsr ,td + dvxcsr ,td, s8d

daef fsr ,td = − cEt

Emacsr ,t8ddt8 + daxcsr ,td, s9d

wheredvH,micsr ,td anddvxcsr ,td are the microscopic compo-
nent of the Hartree and exchange-correlation potentials, re-

spectively, andEmacsr ,t8d is the fixed macroscopic electric
field, comprising both the external and the induced macro-
scopic components. The latter accounts for the long-range
contribution of the Hartree potential, as well as for the prop-
erly retarded macroscopic contribution of the induced trans-
verse current-density. We can neglect the microscopic part of
the induced vector potential consistent with the Breit ap-
proximation used in the ground state calculation.12,13,40,41As
described in the previous section we consider the macro-
scopic exchange-correlation contributions to be included in
daef f via daxc. We work in the frequency domain for simplic-
ity,

daef fsr ,td =E e−ivtdaef fsr ,vd dv, s10d

and consider a general perturbation characterized by wave
vectorq and frequencyv,

daef fsr ,vd = eiq·rdaq,ef fsr ,vd, s11d

in which daq,ef fsr ,vd is lattice periodic,

daq,ef fsr + R,vd = daq,ef fsr ,vd, s12d

for any Bravais lattice vectorR. Since the field given by Eqs.
s10d and s11d is real we have

daq,ef fsr ,vd = da−q,ef f
* sr ,− vd. s13d

Similar expressions are assumed for the scalar potential
dvef fsr ,td. In the remainder we will only consider plane-
wave vector potentials, i.e.,daq,ef fsr ,vd=daq,ef fsvd, unless
stated otherwise.

A. Induced density

Using the Bloch theorem, we show in the Appendix that
in the linear regime the induced density can be written as

drsr ,vd = eiq·rdrqsr ,vd, s14d

wheredrqsr ,vd is lattice periodic,drqsr +R ,vd=drqsr ,vd,
given by

drqsr ,vd =
1

Nk
o
k,k8

dk8,k+qo
i,a

sf ik − fak8d

1 + dia

3
cik

* sr de−iq·rcak8sr dkcak8udĥsq,vducikl

eik − eak8 + v + ih

+
1

Nk
o
k,k8

dk8,k−qo
i,a

sfak8 − f ikd

1 + dia

3
cak8

* sr de−iq·rciksr dkcikudĥsq,vducak8l

eak8 − eik + v + ih
,

s15d

in which we introduced the short-hand notation
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dĥsq,vd =
− i

2c
seiq·r ¹ − ¹†eiq·rd · daq,ef fsvd + eiq·rdvq,ef fsr ,vd.

s16d

For future reference we define the additional short-hand no-
tations, ĵ q=−ise−iq·r =−=†e−iq·rd /2, and r̂q=e−iq·r . The
lattice-periodicity ofdrqsr ,vd allows us to define the mac-
roscopic induced density as

drmacsr ,vd = eiq·r 1

V
E

V

drqsr ,vd dr , s17d

where the average is taken over the unit cell. In Eq.s15d the
second term is the complex conjugate of the first one at −q
and −v, so the induced densitydrsr ,td is real-valued, since
drqsr ,vd=dr−q

* sr ,−vd. Using time-reversal symmetryssee
the Appendixd we can write Eq.s15d as

drqsr ,vd =
1

Nk
o
k,k8

o
i,a

wikak8,+svdhdk8,k+qscik
* r̂qcak8d

3kcak8udĥesq,vducikl + dk8,k−qscak8
*

r̂qcikd

3kcikudĥesq,vducak8lj +
1

Nk
o
k,k8

o
i,a

wikak8,−svd

3hdk8,k+qscik
* r̂qcak8dkcak8udĥosq,vducikl

− dk8,k−qscak8
*

r̂qcikdkcikudĥosq,vducak8lj.

s18d

Here ther dependence of the Bloch orbitals has been implied
and we have defined the “even” and “odd” components of
the interaction Hamiltonian according to

dĥesq,vd =
1

2
fdĥsq,vd + dĥ*s− q,− vdg = r̂−qdvq,ef fsr ,vd,

s19d

dĥosq,vd =
1

2
fdĥsq,vd − dĥ*s− q,− vdg =

1

c
ĵ −q · daq,ef fsvd,

s20d

where dĥ*s−q ,−vd is the complex conjugatesnot the Her-

mitian adjointd of dĥsq ,vd at negativeq andv. The energy
denominators and the occupation numbers in Eq.s15d are
contained in the frequency-dependent weights,

wikak8,±svd =
f ik − fak8

2s1 + diad

3H 1

eik − eak8 + v + ih
±

1

eik − eak8 − v − ihJ .

s21d

Simple algebra shows thatwikak8,+svd and wikak8,−svd are
related,

wikak8,−svd = −
eik − eak8

v
hwikak8,+svd − wikak8,+s0dj,

s22d

wikak8,+svd = −
eik − eak8

v
wikak8,−svd. s23d

B. Induced current-density

For the induced current-density we can derive expressions
along the same lines used for the induced density. The para-
magnetic component of the induced current-density can be
obtained as

dj psr ,vd = eiq·rdj pqsr ,vd, s24d

wheredj pqsr ,vd is lattice periodic as well, and follows from

dj pqsr ,vd =
1

Nk
o
k,k8

dk8,k+qo
i,a

sf ik − fak8d

1 + dia

3
cik

* ĵ qcak8kcak8udĥsq,vducikl

eik − eak8 + v + ih

+
1

Nk
o
k,k8

dk8,k−qo
i,a

3
sfak8 − f ikd

1 + dia

cak8
* ĵ qcikkcikudĥsq,vducak8l

eak8 − eik + v + ih
.

s25d

Here the second term is the complex conjugate of the first
term, but at the negativeq and negative frequency. In the
linear regime the diamagnetic contribution is given by

dj dsr ,vd = eiq·rdj dqsr ,vd, s26d

where

dj dqsr ,vd =
1

c
r0sr ddaq,ef fsvd, s27d

with r0sr d real and lattice periodic. As a result one finds also
for the induced current-density the relationdj qsr ,vd
=dj pqsr ,vd+dj dqsr ,vd=dj −q

* sr ,−vd and thus a real-valued
current-densitydj sr ,td. Using again the time-reversal sym-
metry the induced paramagnetic current-density can be writ-
ten in a way very similar to Eq.s18d,

dj pqsr ,vd =
1

Nk
o
k,k8

o
i,a

wikak8,+svdhdk8,k+qscik
* ĵ qcak8d

3kcak8udĥosq,vducikl + sdk8,k−qscak8
* ĵ qcikd

3kcikudĥosq,vducak8ldj +
1

Nk
o
k,k8

o
i,a

wikak8,−svd

3hsdk8,k+qscik
* ĵ qcak8dkcak8udĥesq,vducikld
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− sdk8,k−qscak8
* ĵ qcikdkcikudĥesq,vducak8ldj,

s28d

where the weights are given by Eq.s21d. Note that here the
“even” and “odd” components of the perturbation, defined in
Eqs. s19d and s20d, have changed positions with respect to
Eq. s18d.

For the implementation it turns out to be convenient to
relate the diamagnetic component of the induced current-
density to the paramagnetic one, and treat both contributions
on an equal footing. Before doing this we want to refer to the
case of a homogeneous electron gas perturbed by a mono-
chromatic fielddasr ,vd.17 Indeed the induced total current-
density is then given by

dj sr ,vd =
1

c
E xjj sr ,r 8,vddasr 8,vd dr 8 +

1

c
r0sr ddasr ,vd,

s29d

where the exact current-current response function
xj jsr ,r 8 ,vd only depends on the distanceur −r 8u. Its Fourier
transform can be expressed in the following way,

xjj ,mnsq,vd = xLsq,vd
qmqn

q2 + xTsq,vdSdmn −
qmqn

q2 D ,

s30d

with the longitudinalxLsq,vd and the transverse component
xTsq,vd satisfying17

lim
q→0

xTsq,v = 0d = − r0, s31d

xLsq,v = 0d = − r0. s32d

For the value ofxTsq,v=0d at finiteq the corrections to this
limit are of orderq2. In real space we can therefore write

xjj sr ,r 8,0d = − r0dsr − r 8d + DxTsr ,r 8,0d, s33d

whereDxTsr ,r 8 ,0d is purely transverse, and hence respon-
sible for the weak diamagnetism first calculated by Landau.
Here we deal with two limits, limq→0 and limv→0. The
value of xTsq,vd depends on the order in which one takes
the limits, since it is nonanalytic in the points0,0d in the q
-v plane. In order to relate the diamagnetic and the paramag-
netic contributions to the current-current response function,
one has to consider first the limitv→0 at finiteq, and only
then takeq→0, as reported in Fig. 1. Here the termhxjj sq

→0,v=0d−xjj sq ,v=0dj represents the termDxTsr ,r 8 ,0d of
Eq. s33d in its Fourier representation. In the absence of mag-
netic fields the vector potential is regular inq=0 for anyv,
hence the termDxTsq,0d, which is proportional toq2, does
not contribute to the induced current-density for vanishingq.
A relation similar to Eq.s33d holds for crystalline systems,

xjjq sr ,r 8,0d = − r0dsr − r 8d + Dxqsr ,r 8,0d, s34d

where againDxqsr ,r 8 ,0d is transverse and of the order of
q2.17,42Therefore, we can introduce the following relation for
the diamagnetic current-density,

dj dqsr ,vd = − dj pq
0 sr ,vd + Dj dqsr ,vd, s35d

where dj pq
0 sr ,vd is the paramagnetic current-density ob-

tained from the static response, at finiteq, to the dynamic
perturbation,

dj pq
0 sr ,vd =

1

Nk
o
k,k8

o
i,a

wikak8,+s0d

3sdk8,k+qscik
* ĵ qcak8dkcak8udĥosq,vducikl

+ dk8,k−qscak8
* ĵ qcikdkcikudĥosq,vducak8ld,

s36d

and Dj dqsr ,vd is by construction equal todj dqsr ,vd
+dj pq

0 sr ,vd, and gives rise to contributions analogous to the
Landau diamagnetism. Since we do not treat magnetic fields
in this derivation, only the first term on the right-hand side of
Eq. s35d is considered andDj dqsr ,vd is neglected in the se-
quel. Combining Eq.s36d with Eq. s28d for the paramagnetic
current-density, the induced physical current is then obtained
from

dj qsr ,vd =
1

Nk
o
k,k8

o
i,a

wikak8,−svdsdk8,k+qscik
* ĵ qcak8dkcak8udĥesq,vducikl − dk8,k−qscak8

* ĵ qcikdkcikudĥesq,vducak8ld

+
1

Nk
o
k,k8

o
i,a

fwikak8,+svd − wikak8,+s0dgsdk8,k+qscik
* ĵ qcak8dkcak8udĥosq,vducikl

+ dk8,k−qscak8
* ĵ qcikdkcikudĥosq,vducak8ld. s37d

FIG. 1. The order of the limits needed to relate diamagnetic and
paramagnetic contributions to the current-current response function.
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C. Response functions

1. Interband contribution

We will first consider the interband contributions to the
induced density and current-density which are obtained from
the terms withaÞ i in Eqs.s18d ands37d. They can then be
written in the following concise form,

S drq
inter

idj q
inter/v

D
= S xrrq

inter − ixrjq
inter/v

ixjrq
inter/v sxjjq

inter − xjjq
inter,0d/v2D ·S dvq,ef f

ivdaq,ef f/c
D ,

s38d

by inserting the equations for the “even” and for the “odd”
perturbation, Eqs.s19d and s20d. Here the matrix-vector
product also includes an integration over a real space coor-
dinate, where the various response kernels take simple forms
by using the relationss22d and s23d for wikak8,+svd and
wikak8,−svd. For the interband contribution to the density-
density response function,xrrq

inter, we find

xrrq
intersr ,r 8,vd =

1

Nk
o
k,k8

o
ia

wikak8,+svdhdk8k+qfcik
* sr dr̂qcak8sr dg

3fcak8
* sr 8dr̂−q8 ciksr 8dg

+ dk8k−qfcak8
* sr dr̂qciksr dg

3fcik
* sr 8dr̂−q8 cak8sr 8dgj. s39d

For the contributions to the density-current and current-
density response functions,xrjq

inter andxjrq
inter, the equations be-

come

−
i

v
xrjq

intersr ,r 8,vd =
1

Nk
o
k,k8

o
ia

wikak8,+svd

3Sdk8k+qfcik
* sr dr̂qcak8sr dg

3
icak8

* sr 8dĵ −q8 ciksr 8d

eik − eak8

+ dk8k−qfcak8
* sr dr̂qciksr dg

3
icik

* sr 8dĵ −q8 cak8sr 8d

eak8 − eik
D , s40d

i

v
xjrq

intersr ,r 8,vd =
1

Nk
o
k,k8

o
ia

wikak8,+svd

3Sdk8k+q

icik
* sr dĵ qcak8sr d

eak8 − eik

3fcak8
* sr 8dr̂−q8 ciksr 8dg + dk8k−q

3
icak8

* sr dĵ qciksr d

eik − eak8
fcik

* sr 8dr̂−q8 cak8sr 8dgD ,

s41d

and finally for the interband contribution to the combination
of the current-current response function and its static value,
respectivelyxjjq

inter andxjjq
inter,0, the result is

1

v2fxjjq
intersr ,r 8,vd − xjjq

intersr ,r 8,v = 0dg =
1

Nk
o
k,k8

o
ia

wikak8,+svd

3 Sdk8k+q

icik
* sr dĵ qcak8sr d

eak8 − eik
^

icak8
* sr 8dĵ −q8 ciksr 8d

eik − eak8

+ dk8k−q

icak8
* sr dĵ qciksr d

eik − eak8
^

icik
* sr 8dĵ −q8 cak8sr 8d

eak8 − eik
D . s42d

The v dependence in the above expressions for the various
interband contributions is governed by the common factor
wikak8,+svd, which is a well-behaved function ofv andq for
v smaller than thesindirectd energy gap between the differ-
ent occupied and unoccupied bands. The various interband
contributions to the response functions have then the follow-
ing v dependence:

xrrq
inter ~ 1,

xrjq
inter,xjrq

inter ~ v,

sxjjq
inter − xjjq

0,interd ~ v2.

In the limit of vanishingq the set of equationss39d–s42d
reduces to the one used in the case of nonmetallic crystalline
systems12,13 for which we need to consider only fully occu-
pied bandsi and fully unoccupied bandsa. However, in me-
tallic crystals, we have to consider also the contribution from
partially occupied and/or unoccupied bands, for which
k-space integrations are restricted to just a part of the Bril-
louin zone cut off by the Fermi surface.

2. Intraband contribution

Let us consider now the intraband contributions to Eqs.
s18d and s37d that are given by the terms witha= i in the
summation over the energy bands. By changing variables
from hk8 ,kj=hk −q ,kj to hk ,k +qj in the second and fourth
terms in Eq.s18d we obtain

drq
intrasr ,vd =

1

Nk
o
i,k

2wik ik+q,+svdfcik
* sr dr̂qcik+qsr dg

3kcik+qudĥesq,vducikl +
1

Nk
o
i,k

2wik ik+q,−svd

3fcik
* sr dr̂qcak+qsr dgkcik+qudĥosq,vducikl,

s43d

where we have used thatwik ik+q,±svd= ±wik+qik,±svd. Oper-
ating in a similar way in Eq.s37d for the induced current-
density we arrive at
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dj q
intrasr ,vd =

1

Nk
o
i,k

2wik ik+q,−svdfcik
* sr dĵ qcik+qsr dg

3kcik+qudĥesq,vducikl

+
1

Nk
o
i,k

2fwikak+q,+svd − wik ik+q,+s0dg

3fcik
* sr dĵ qcik+qsr dgkcik+qudĥosq,vducikl.

s44d

These expressions can be written in the following concise
form,

ivSv/qdrq
intra

dj q
intra D = Sv2/q2xrrq

intra v/qxrjq
intra

v/qxjrq
intra xjjq

intra − xjjq
intra,0D

·S iqdvq,ef f

ivdaq,ef f/c
D , s45d

where the various response kernels are given in the following
set of equations. For the intraband contribution to the
density-density response kernel,xrrq

intra, we get,

v2

q2 xrrq
intrasr ,r 8,vd =

2

Nk
o
ik

v2

q2 wik ik+q,+svdfcik
* sr dr̂qcik+qsr dg

3fcik+q
* sr 8dr̂−q8 ciksr 8dg. s46d

Similarly for the contributions to the density-current and
current-density kernels,xrjq

intra andxjrq
intra, the expressions are

v

q
xrjq

intrasr ,r 8,vd =
2

Nk
o
ik

v2

q

wik ik+q,+svd
eik+q − eik

fcik
* sr dr̂qcik+qsr dg

3fcik+q
* sr 8dĵ −q8 ciksr 8dg, s47d

v

q
xjrq

intrasr ,r 8,vd =
2

Nk
o
ik

v2

q

wik ik+q,+svd
eik+q − eik

fcik
* sr dĵ qcik+qsr dg

3fcik+q
* sr 8dr̂−q8 ciksr 8dg. s48d

Finally, for the intraband contribution to the combination of
the current-current response function and its static value, re-
spectivelyxjjq

intra andxjjq
intra,0, we have

xjjq
intrasr ,r 8,vd − xjjq

intrasr ,r 8,v = 0d

=
2

Nk
o
ik

v2 wik ik+q,+svd
seik+q − eikd2 3 fcik

* sr dĵ qcik+qsr dg

^ fcik+q
* sr 8dĵ −q8 ciksr 8dg. s49d

In this paper we will only consider the optical limit, i.e., the
limit of vanishingq sbut finitevd, for which we can evaluate
the weightswik ik+q,+svd using the two relations

eik − eik+q . − qs=keik · q̂d, s50d

f ik − f ik+q = fseikd − fseik+qd . − q
df

de
s=keik · q̂d. s51d

We can then write for the common factor 2v2/q2wik ik+q,+svd,

2
v2

q2 wik ik+q,+svd .
df

de

v2s¹keik · q̂d2

q2s¹keik · q̂d2 − sv + ihd2 . s52d

The nonanalytic behavior of the intraband response functions
at the origin of theq-v plane is now made explicit. In the
limit of q to zero at finitev this factor becomes independent
of v and equal todf /des=keik ·q̂d2, whereas in the reverse
order of limits the factor is zero. It immediately becomes
clear that the intraband response functions show the follow-
ing v andq dependence at smallq but finite v,

xrrq
intra ~ q2/v2,

xrjq
intra,xjrq

intra ~ q/v,

xjjq
intra − xjjq

0,intra ~ 1.

D. The SCF equations

In the previous section we derived expressions for the
induced density and current-density as result of a given set of
vector and scalar potentials. To complete the self-consistent-
field scheme of Kohn and Sham3 we have to express the
induced potentials in terms of the induced density and
current-density. In order to do this it is important to separate
microscopic and macroscopic components of these densities
and to show how they lead to the microscopic and macro-
scopic contributions to the induced potentials. We will do
this first for the Hartree term and then for the exchange-
correlation contributions. We start by identifying the micro-
scopic and macroscopic components of the density. Since
both the inter- and intraband contributions todrqsr ,vd are
lattice periodic, we can write the total induced density as a
Fourier series expansion,

drsr ,vd = eiq·rdrqsr ,vd = eiq·ro
G

drq+GsvdeiG·r . s53d

Here the term withG=0 is equal to the macroscopic density
defined in Eq.s17d. The remaining terms withGÞ0 together
constitute the macroscopic density. One usually assumes18,19

that a similar expansion exists for the Hartree potential
which can then be written as

dvHsr ,vd = 4peiq·rSdrq+0svd
q2 + o

GÞ0

drq+Gsvd
uq + Gu2

eiG·rD .

s54d

One can then define the microscopic scalar potentialdvH,mic
as

dvH,micsr ,vd = 4peiq·r o
GÞ0

drq+Gsvd
uq + Gu2

eiG·r , s55d

whereas the termeiq·rdvq+084peiq·rdrq+0/q2 represents a
macroscopic field. In the TDCDFT approach this term will
be gauge-transformed to a macroscopic vector potential,
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iv

c
daH,macsr ,vd = ¹ seiq·rdvq+0svdd = 4piq̂Sdrq+0svd

q
Deiq·r .

s56d

As Kootstraet al. have shown, this field is sample-shape
dependent. In their approach this contribution is, by con-
struction, already contained in the total macroscopic vector
potential, which describes the macroscopic electric field, and
which is kept fixedfEqs.s8d ands9dg.12 Note that we do not
evaluate the microscopic scalar potential using the Fourier
series expansion, as this series converges extremely slowly
for real densities. Instead we make use of the screening tech-
nique described by Kootstraet al.12 In the effective one-
electron scheme of Kohn and Sham the effective potentials
hdvef f,daef fj also contain exchange-correlation contributions.
For the total exchange-correlation scalar potential we write

dvxcsr ,vd =E fxcsr ,r 8,vddrsr 8,vddr 8, s57d

in which we will use the adiabatic local density approxima-
tion sALDA d for the exchange-correlation kernel
fxcsr ,r 8 ,vd,

fxcsr ,r 8,vd = fxc
ALDAsr ,r 8d = dsr − r 8dUdvxc

LDAsrd
dr

U
r=r0sr d

.

s58d

In our scheme all other exchange-correlation effects are to be
included in the exchange-correlation vector potential. As the
induced density is a functional of the induced current-density
through the continuity equation, we can formally write this
vector potential as a pure functional of the induce current-
density,

daxcsr ,vd =E fxcsr ,r 8,vd · dj sr 8,vd dr 8. s59d

As in Ref. 12, we split also these contributions into micro-
scopic and macroscopic components. To achieve this we
choose to retain only terms linear in the microscopic induced
density in the microscopic exchange-correlation scalar po-
tential, and to gauge-transform all terms linear in the macro-
scopic induced density and those linear in the induced
current-density to the exchange-correlation vector potential.
This is possible because we consider only the linear re-
sponse. In this way we keep contact with the ordinary
TDDFT formulation. This vector potential will contain in
general both microscopic and macroscopic components. In
the gauge described above the effective potentials take the
following form,

dvef f,mic = dvH,mic + dvxc
ALDAfdrmicg, s60d

daeff = damac+ daxcfdj g −
ic

v
¹ dvxc

ALDAfdrmacg. s61d

Using Eq.s57d the last term in Eq.s61d can be written as,

−
ic

v
¹ dvxc

ALDAfdrmacgsr ,vd = −
ic

v
Fsiq + ¹ d

dvxc
LDA

dr
sr0sr ddG

3drq+0svdeiq·r . s62d

In the ALDA approximation used in this paper we will ne-
glect the exchange-correlation contributiondaxcfdj g in the
effective vector potential, and retain only the macroscopic
part of the other terms. Then Eq.s61d becomes,

daef f,macsr ,vd = damacsr ,vd

+ cq̂
q

v
S 1

V
E

V

dvxc
LDA

dr
sr0sr dddrDdrq+0e

iq·r ,

s63d

where in calculating the cell average the contribution of the
gradient in Eq.s62d vanishes due to the lattice-periodicity of
the ground-state densityr0sr d.

The separation of the induced potentials in microscopic
and macroscopic terms as discussed above is based on the
separation of the induced density into microscopic and mac-
roscopic components. We will now describe how inter- and
intraband processes contribute to the microscopic and mac-
roscopic parts of the induced density. To achieve this we
refer to Eq.s15d and analyze first the factorcik

* sr dr̂qcak+qsr d.
Using the expression for the Bloch functions and the defini-
tion of the r̂q operator, it becomes evident that this factor is
lattice periodic and can be written as a Fourier series expan-
sion,

cik
* sr dr̂qcak+qsr d = uik

* sr de−ik·re−iq·ruak+qsr deisk+qd·r

=
1

V
o
G

CiaGsqdeiG·r . s64d

We can now use the following relation obtained using the
k ·p method,43

uak+qsr d = s1 + iaak ·qduaksr d + o
nÞa

kcnkup̂ucakl ·q

eak − enk
·unksr d

+ Osq2d, s65d

where, in the nondegenerate case,aak can be chosen to be a
continuous and periodic function ofk. For the coefficient
CiaG=0sqd, which determines the value of the macroscopic
densitydrq+0svd, in Eq. s53d we then get

CiaG=0sqd =E uik
* sr duak+qsr d dr = s1 + iaak ·qddia

+
kcikup̂ucakl ·q

eak − eik
· s1 − diad + Osq2d, s66d

where we made use of the orthogonality of the Bloch func-
tions. The coefficientsCiaGÞ0sqd that determine the micro-
scopic density are in general of order 1. We consider first the
q dependence of the interband contribution to the macro-
scopic induced density, by inspecting Eq.s38d for drq

inter and
Eqs. s39d and s40d for the interband contribution to the re-
sponse functions. In these last two expressions the weights
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wikak+q,+ have a leading term of order 1 in the expansion in
orders ofq, as i Þa. From the expressionss64d and s66d it
follows that for i Þa the uniform component of the factor
cik

* r̂qcak+q=CiaG=0sqd is of order q. Hence the interband
contribution to the macroscopic induced density is one order
in q higher than the off-diagonal matrix elements of the per-
turbations r̂−qdvq,ef f and iv /cĵ −q ·daq,ef f. The microscopic
part is, on the other hand, of the same order as these matrix
elements. For the intraband case we refer to Eqs.s45d–s47d.
Here the uniform component ofcik

* r̂qcak+q is of order 1, as
here i =a in Eq. s66d, and also the common factor
v2/q2wik ik+q,+svd, as defined in Eq.s52d, is of this order.
Together with Eq.s45d we can now conclude that both the
microscopic and macroscopic components of the intraband
induced density are two orders inq higher than the diagonal
matrix elements of the perturbationr̂−qdvq,ef f, and one order
in q higher than those of the perturbationiv /cĵ −q ·daq,ef f.

The relations derived above constitute a set of self-
consistent-field equations for the induced density that are
depicted schematically in Fig. 2. The self-consistent loops
involving the macroscopic effective vector potential do not
need to be completed as we keep this macroscopic potential
fixed to calculate the optical response. Assuming that both
the effective microscopic scalar potential and the effective
macroscopic vector potential are of order 1, we can see that
the contribution of the interband processes to the micro-
scopic density is of order 1 and that to the macroscopic den-
sity is of orderq. In a similar way we can conclude that the
contributions of the intraband processes to the microscopic
and macroscopic densities are both of orderq. From Eqs.
s55d ands57d within the ALDA it immediately becomes clear
that a microscopic density of order 1 leads to an effective
microscopic scalar potential of order 1, consistent with the

initial assumption. On the other hand, a macroscopic density
of orderq will lead according to Eq.s56d to a macroscopic
contribution to the effective vector potential of order 1, again
consistent with the initial assumption. Within the ALDA the
contribution of a macroscopic density of orderq will lead to
an exchange-correlation vector potential of orderq with a
uniform component of orderq2 fEq. s62dg. The latter two
contributions hence vanish in the optical limit. Using the
scaling introduced in Eq.s45d all the variables acquire the
same order inq as depicted in Fig. 3.

Now it also becomes clear that in the optical limit the
self-consistent loops for the microscopic and macroscopic
induced density become decoupled. Since the contribution to

FIG. 2. Schematic representation of the self-consistent fieldsSCFd calculation of microscopic and macroscopic parts of the induced
density. The leading order in powers ofq is indicated near the variables by the “~” sign. The arrows indicate the contributions to each
variable, where the “3” sign indicates the order inq gained through some multiplicative factor. The inter- and intraband contributions to the
induced density both contribute to the microscopic and macroscopic components of this density. In the microscopic Coulomb gauge only the
microscopic density gives rise to the microscopic effective scalar potential via the microscopic Hartree term and the ALDA xc-term. The
macroscopic density as well as the current-density contribute in various ways to the effective vector potential. The dashed line indicates that
the self-consistent loop is not completed as we keep the macroscopic effective vector potential fixed. For more details and discussions see
the text.

FIG. 3. Schematic representation of the main changes in the
calculation of the intraband induced density after the scaling to
drintra /q and drmac/q. The symbols used are similar as in Fig. 2.
Note that not all the relations are indicated but only those involving
the rescaled variables.
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the scaled intraband induced densitydrq
intra /q that is due to

the microscopic effective scalar potential is of orderq, it
vanishes in the optical limit. Accounting for the scaling, the
intraband contribution to the microscopic density is of order
q and vanishes forq going to zero. The interband contribu-
tion to the scaled macroscopic densitydrq,mac/q is, however,
of order 1. Therefore we can conclude that the SCF for the
microscopic density can be solved independently from the
SCF for the macroscopic density, but that the reverse is not
true. It is now clear how we can solve the optical response of
metallic systems within the ALDA. First, for a given macro-
scopic vector potential, we need to solve the equations for
the microscopic induced density and microscopic effective
scalar potential self-consistently. With both the perturbing
potentials now known, we can calculate the macroscopic in-
duced density and the induced current-density.

E. The macroscopic dielectric function

The macroscopic dielectric functionesq ,vd is a tensor
that can be expressed as

esq,vd = 1 + 4pxesq,vd, s67d

where the the macroscopic susceptibilityxesq ,vd can be ob-
tained in terms of the total induced macroscopic current via

xesq,vd · ê= US − i

vV
E dj qsr ,vd drDU

siv/cddamac,q=ê
. s68d

In Fig. 4 we report schematically the post-SCF calculation
for the induced current-density. In the optical limit, i.e., for
q=0, the expression for the dielectric function takes a simple
form. In the limit of q→0 the microscopic scalar potential
does not contribute to the intraband current-density. Thus, in
this limit and within the ALDA, the inter- and intraband
contributions to the induced current-density can be calcu-
lated independently. From Eq.s38d we can obtain the inter-
band contribution to the electric susceptibility by repeating
the SCF calculation for the uniform macroscopic field in the
three Cartesian directionsê,

xe
intersq = 0,vd · ê= US − i

vV
E dj q=0

intersr ,vd drDU
siv/cddamac,q=0=ê

.

s69d

From Eqs.s45d and s63d the macroscopic part of the intra-
band contribution to the induced current can be written as

sintrasq = 0,vd · ê= US 1

V
E dj q=0

intrasr ,vd drDU
siv/cddamac,q=0=ê

,

s70d

where the intraband contribution to the macroscopic conduc-
tivity tensor,sintrasq ,vd, at q=0 is given by

sintrasq = 0,vd =
− i

vV
E E fxjjq =0

intra sr ,r 8,vd

− xjjq =0
intra,0sr ,r 8,v = 0dg drdr 8. s71d

We can then consider the following expression for the mac-
roscopic dielectric function atq=0,

esvd = f1 + 4pxe
intersvdg −

4pi

v
sintrasvd, s72d

where the contribution in brackets is defined as the interband
part of the dielectric function.

F. The energy loss function

In transmission electron energy loss spectroscopy one
studies the inelastic scattering of a beam of high energy elec-
trons by a target. The scattering rates obtained in these ex-
periments are expressed in terms of the differential cross-
section, which is obtained within the first Born
approximation as44

d2ssk,k8,vd
dVdv

=
2

pq4

k8

k
Ssq,vd. s73d

Herek andk8 are the wave vectors of the incident and scat-
tered electron, andq and v are the transferred momentum
and energy, respectively, withq=k −k8 andv=k2/2−k82/2.
The dynamical structure factorSsq ,vd is related to the
imaginary part of the true density-density response function
via the fluctuation-dissipation theorem,

Ssq,vd = − 2IE E e−iq·sr−r8dxsr ,r 8,vd drdr 8. s74d

Here the true density-density response function relates the
induced density to an external perturbing scalar field,

drsr ,vd =E xsr ,r 8,vddvextsr 8,vd dr 8. s75d

If we choose the external perturbing field asdvextsr ,vd
=eiq·r , then the dynamical structure factor can be expressed
asSsq ,vd=I s̃sq ,vd, where

FIG. 4. Schematic representation of post-SCF calculations of
inter- and intraband contributions to the induced current-density.
Here the dashed line indicates the additional SCF loop that needs to
be considered when taking into account a current-dependent
exchange-correlation functional.
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s̃sq,vd = u − 2E e−iq·rdrsr ,vd dr udvextsr ,vd=eiq·r

= u − 2E drqsr ,vd dr udvext,q=1. s76d

Here we used Eq.s14d for the induced density and the exter-
nal potential. In our scheme we have to work in the micro-
scopic Coulomb gauge and therefore we want to gauge trans-
form the external macroscopic scalar potential to an external
vector potential: we can haveivdaextsr ,vd /c= q̂eiq·r if we
choose the external scalar potential asdvextsr ,vd
=s−i /qdeiq·r . Then the same dynamical structure factor can
be obtained using

s̃sq,vd = u − 2iqE drqsr ,vd dr usiv/cddaext,q=q̂. s77d

Unlike in the case of the macroscopic dielectric function,
here we need to consider the response to a given external
field. Assuming Eq.s56d to hold, i.e., neglecting the sample-
shape dependence of the induced field, the total macroscopic
field can be related to the given external field according to

iv

c
damac,qsr ,vd = q̂S1 +

4pi

qV
E drqsr ,vd drD

= q̂S1 −
2p

q2V
s̃sq,vdD . s78d

In a completely similar way as for the calculation of the
macroscopic dielectric function, we can now solve the SCF
equations for a fixed macroscopic field and calculate the in-
duced macroscopic density as linear response to this field,

i

2q2V
s̃sq,vd =

1

V
E drqsr ,vd

q
dr

=
iv

c
E Fqsr ,vd · damac,qsr ,vd dr . s79d

By solving the SCF equations we obtain the lattice periodic
response functionFqsr ,vd. In the previous section we
showed that for a finite macroscopic field the central term in
the equation above is finite for vanishingq, and therefore
also the terms on the left- and right-hand sides will be finite.
By inserting Eq.s78d in Eq. s79d we can now account for the
relation between the macroscopic and external fields to arrive
at

i

2q2V
s̃sq,vd =E Fqsr ,vd · q̂S1 + 4pi

i

2q2V
s̃sq,vdD dr ,

s80d

from which we immediately obtain

i

2q2V
s̃sq,vd =

E Fqsr ,vd · q̂ dr

1 − 4pi E Fqsr ,vd · q̂ dr

. s81d

Using now the definitions of the dynamical structure factor
Ssq ,vd and the response functionFqsr ,vd, we can write

Ssq,vd

= − 2q2VR*5
1

V
E drqsr ,vd

q
dr

1 − 4pi
1

V
E drqsr ,vd

q
dr 6*

siv/cddamac,q=q̂

.

s82d

We can now consider the special caseq=0 and show that it
is related to the current-current response function, and hence
the macroscopic dielectric function. Using Eqs.s64d ands66d
in Eqs.s39d ands40d one can easily show that the following
relations hold,

lim
q→0

1

q
E xrrq

intersr ,r 8,vd dr =
q̂

v
·E xjrq=0

inter sr ,r 8,vd dr ,

lim
q→0

1

q
E xrjq

intersr ,r 8,vd dr =
q̂

v
·E fxjjq =0

inter sr ,r 8,vd

− xjjq →0
inter sr ,r 8,v = 0dg dr .

s83d

Therefore using Eq.s38d we can write

lim
q→0

1

V
E drq

intersr ,vd
q

dr =
q̂

v
·

1

V
E dj q=0

intersr ,vd dr .

s84d

A similar relation holds for the intraband contribution. Using
again Eqs.s64d ands66d, but now in Eqs.s46d ands47d, and
using in addition the following relation43

eik+q − eik = q ·E cik
* sr dĵ qcik+qsr d dr + Osq2d, s85d

one finds

lim
q→0

v2

q2 E xrrq
intrasr ,r 8,vd dr = lim

q→0

v

q
q̂ ·E xjrq=0

intra sr ,r 8,vd dr ,

lim
q→0

v

q
E xrjq

intrasr ,r 8,vd dr = q̂ ·E fxjjq =0
intra sr ,r 8,vd

− xjjq →0
intra sr ,r 8,v = 0dg dr .

s86d

Therefore, using Eq.s45d we can write
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lim
q→0

1

V
E drq

intrasr ,vd
q

dr =
q̂

v
·

1

V
E dj q=0

intrasr ,vd dr .

s87d

From Eqs.s84d and s87d the long-wavelength limit of Eq.
s82d can be written as

lim
q→0

1

2q2V
Ssq,vd

= R*1 − iq̂ ·
− i

vV
E dj q=0sr ,vd dr

1 + 4pq̂ ·
− i

vV
E dj q=0sr ,vd dr2*

siv/cddamac,q=q̂

.

s88d

Using the results of the previous section, Eqs.s69d–s72d, we
arrive at the final result

lim
q→0

2p

q2V
Ssq,vd = IS − 1

q̂ · esvd · q̂
D . s89d

The dynamical structure factor for allq andv as given in Eq.
s82d includes all the local field effects and can be used for
both isotropic and anisotropic systems. In particular, in the
limit of vanishingq the dynamical structure factor is directly
related to the macroscopic dielectric function according to
the relation given above.

III. IMPLEMENTATION

In this section we describe the main new aspects of the
implementation for the dielectric function calculation in me-
tallic systems. For the interband part we closely follow the
implementation for nonmetallic crystalline systems described
in Ref. 12. The main difference here is in the numerical
evaluation of thek-space integrals. The response integrals of
the set of equationss39d–s42d involve integrations over the
sirreducible wedge of thed Brillouin zone, in which the de-
nominator can become singular. These singularities have
been treated, as described in Ref. 12, using a Lehmann-Taut
tetrahedron scheme.45 With partially occupied bands the nu-
merical evaluation of integrals over tetrahedra in which the
first Brillouin zone is partitioned is restricted to a part cut off
by the Fermi surface. Both the energy and the integrand at
the new corners of the truncated simplices are obtained by
linear interpolation within each tetrahedron. The intraband
contribution to the dielectric function is completely defined
by Eq. s71d. Inserting Eqs.s49d and s52d and replacing the
summation over thek-points by an integral over the Bril-
louin zone 1/Nkok →V/8p3edk, we arrive at

sintrasvd = lim
q→0

S − i

8p3v
o

i
E dk

df

de

v2

q2s=keik · q̂d2 − sv + ihd2

3kcik
* uĵ qucik+ql ^ kcik+q

* uĵ −q8 uciklD . s90d

The integration will be reduced to an integral over the sheets

Si of the Fermi surface originating by the bandsi, as the first
derivative of the Fermi-Dirac distributionfsed=2UseF−ed
peaks at e=eF, df /de=−2dseF−ed. For the frequency-
dependent factor we can use the Cauchy theorem and write

v2

s=keik ·qd2 − sv + ihd2 = P sv/qd2

s=keik · q̂d2 − sv/qd2

+ ipsv/qd2fds=keik · q̂ − v/qd

+ ds=keik · q̂ + v/qdg. s91d

In optical experimentsv /q is of the order of the velocity of
light, v /q,c, which is much higher than the velocity in the
direction of q̂ of valence electrons at the Fermi surface,
¹keik ·q̂. Thus, the imaginary part in Eq.s91d is zero and the
real part reduces to −1 in the limit ofq→0. In other experi-
ments, wherev /q is of the same order as the Fermi velocity,
the imaginary part can become important. In this case the
integrations in thek-space are reduced to integrations over
closed loops resulting from the intersection of the Fermi sur-
face with a surface of constant velocitys=v /qd parallel toq.
Using the principal value of Eq.s91d in the optical limit, Eq.
s90d becomes

sintrasvd =
− i

4p3v
o

i
E

Si

d2k

u¹keiku
kcik

* uĵ ucikl ^ kcik
* uĵ ucikl.

s92d

The integrations over the Fermi surface are evaluated nu-
merically following the linear tetrahedron method proposed
by Wiesenekker and Baerends.46

IV. RESULTS AND DISCUSSION

To test our method we calculated the optical dielectric
functionsesvd in the spectral range 0–10 eV and the energy
loss functions −TfeL

−1svdg in the spectral range 0–40 eV for
the isotropic crystals of copper and silver within the adia-
batic local density approximation. Both metals have the fcc
lattice type for which we used the experimental lattice con-
stants, 3.61 Å for Cu and 4.09 Å for Ag. All calculations
were performed using a modified version of the ADF-BAND
program.12,13,47–49We made use of a hybrid valence basis set
consisting of Slater-type orbitalssSTOsd in combination with
the numerical solutions of a free-atom Herman-Skillman
program.50 Cores were kept frozen up to 3p and 4p for Cu
and Ag, respectively. The spatial resolution of this basis is
equivalent to a STO triple-zeta basis set augmented with two
polarization functions. The Herman-Skillman program also
provides us with the free-atom effective potential. The crys-
tal potential was evaluated using an auxiliary basis set of
STO functions to fit the deformation density in the ground-
state calculation and the induced density in the response cal-
culation. For the evaluation of thek-space integrals we used
a quadratic numerical integration scheme with 175
symmetry-unique sample points in the irreducible wedge of
the Brillouin zone, which was constructed by adopting a
Lehmann-Taut tetrahedron scheme.45,46 We found that the
convergency and accuracy are very similar to the previous
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formulation for nonmetals and we checked that our results
were converged with respect tok-space sampling and basis
set size. All results shown here were obtained using the
Vosko-Wilk-Nusair parametrization51 of the LDA exchange-
correlation potential, which was also used to derive the
ALDA exchange-correlation kernel. In Figs. 5 and 6 the cal-
culated real and imaginary parts of the dielectric functions of
Cu and Ag are compared with two sets of experimental data
well known in literature,35,36 and with more recent
measurements.37 The latter data have been obtained using
ultrahigh vacuum spectroscopic ellipsometry, thus we con-
sider them the best data available. Our results are in good
overall agreement with the experiments. In particular, the
onset of the interband transitions at,1.9 eVsexperimentally
around 2.0 eVd for Cu as well as the overall shape ofe2 are
very well reproduced by our calculations. For Ag the onset at
,3.7 eV sexperimentally around 4.0 eVd is slightly shifted
to lower frequency, but again the main features ofe2 are well
described by our method, in line with the general observation
in semiconductors where the absorption gap is underesti-
mated in the LDA. A feature clearly missing in our calcu-
lated spectra is the low-frequency tail in the imaginary part
of the dielectric function. In perfect crystals this contribution

comes from the scattering that free-conduction electrons
have with phonons and with other electrons.52,53 These phe-
nomena are not described by the ALDA, where a frequency-
independent xc-kernelfxcsr ,r 8d is used. In general, electron
correlation effectssbeyond ALDAd will lead to a frequency-
dependent kernelfxcsr ,r 9 ,vd which will, in general, be long
range.11 The electron-phonon interaction requires the use of a
multicomponent-density functional approach.54 The phonon-
mediated electron correlation effects are then described by an
extra contribution to thefxcsr ,r 8 ,vd kernel. In particular the
long-range frequency-dependentfxcsr ,r 8 ,vd can take the
form of a local functional of the current-density, which can
be included in our scheme.11,55 At the moment the use of
such a frequency-dependent kernel is the subject of our on-
going research. The separation of the inter- and intraband
contributions to the dielectric function gives a deeper insight
in the linear response of the two metals, in particular in the
role of bound and conduction electrons and in the identifica-
tion of the plasma resonances. Plasmon excitations can be
identified by the characteristic maxima in the energy loss
function sEELSd occurring at energies where bothe1 ande2
are small. In the measured dielectric functions of Refs. 35
and 36 the Drude theory is used to estimate the free-electron

FIG. 5. Real supper graphd and imaginary
slower graphd parts of the dielectric function of
Cu. The bold solid line shows our calculation, the
others show the experimental data from Refs.
35–37.

FIG. 6. Real supper graphd and imaginary
slower graphd parts of the dielectric function of
Ag. The bold solid line shows our calculation, the
others show the experimental data from Refs.
35–37.
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contributionsintraband contributiond. Within this model both
the real and imaginary parts of the dielectric function in the
free-electron region depend on the relaxation timet and the
plasma frequencyvp,

e1
Dsvd = 1 −

vp
2t2

1 + v2t2 , s93d

e2
Dsvd =

vp
2t

vs1 + v2t2d
. s94d

Here vp
2=4pN/m* with N the density of conduction elec-

trons andm* their effective optical mass. In order to compare
with our theory within the ALDA approach we have to con-
sider the expressionss93d ands94d in the limit of t to infin-
ity. In this case, indeed, they become

e1
Dsvd = 1 −

vp
2

v2 , s95d

e2
Dsvd = 0. s96d

In our treatment the intraband contribution toe2 is zero,
whereas Eqs.s72d and s92d show that for isotropic systems
the intraband contribution toe1 can be written as

−
4pi

v
sintrasvd = −

1

3p2v2Tro
i
E

Si

d2k

u=keiku
s=keikd ^ s=keikd

= −
1

3p2v2o
i
E

Si

d2k=keik · n̂, s97d

where the gradient=keik = u=keiku ·n̂ is a vector normal to the
Fermi surface. The integrals over the Fermi surface can be
written as an integral over the occupied part of the Brillouin
zone, thus we arrive at

−
4pi

v
sintrasvd = −

1

6p2v2o
i
E

BZ

dk f ik=k
2eik . s98d

Since the isotropic average effective massm* of the conduc-
tion electrons can be defined via N/m*

=s8p3d−1oieBZdk f iks=k
2eik /3d, whereN is the density of the

conduction electronsN=s8p3d−1oieBZdk f ik, we can write
Eq. s99d as

−
4pi

v
sintrasvd = −

1

v2

4pN

m* = − Svp

v
D2

, s99d

with indeedvp
2=4pN/m* . In order to compare our results

with those obtained using the Drude model, we plotted
4pxinter and 1−4pisintra /v separately in Fig. 7, together
with the decomposition of the experimental data proposed in
Refs. 35 and 36. We cannot compare with the data of Ref.
37, however, because the few values of the dielectric func-
tions recorded at frequencies lower than the onset of the
interband transitions makes it difficult to obtain the param-
eterst andvp by fitting the experimental data. In Fig. 8 we
report the energy loss spectra for both metals in the range
0–40 eV. Here calculated and experimental data35,56 are
compared. For both metals the calculated Drude-like part of
the dielectric function crosses zero at frequencies around 8.9
and 8.8 eV, in good agreement with the free-electron plasma
frequencies 9.3 eV for Cu and 9.2 eV for Ag found in Ref.
35. In copper this is the only resonance observed and it has
to be interpreted as a free-electron like resonance.35,38 How-
ever, in silvere1 crosses zero three times, at frequencies 3.5,
4.8, and 7.8 eV close to the experimental values. Sharp en-
ergy loss peaks are experimentally observed near the first
and third frequencies.35,37,39 The peak near the third fre-
quency is a free-electron-like resonance as it is close to the
Drude plasma frequency. Althoughe1 becomes zero twice
near the onset of the interband transitions, only one peak
appears in the EELS spectrum at a frequency near 3.8 eV
wheree2 is still small. Whereas the third resonance is well
reproduced in the calculated spectrum, the first one is less
intense than the one observed experimentally. Similar results

FIG. 7. The 4pxinter and 1−4pisintra /v con-
tributions to the real part of the dielectric function
of Cu sleftd and Ag srightd. Included are the de-
compositions of the experimental data using the
Drude model as reported in Refs. 35 and 36.
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have been found by Cazalillaet al.39 In order for the first
peak to gain intensity it is necessary to have a small but
nonvanishing imaginary part of the dielectric function at the
frequency where the real part crosses the zero axes. As be-
comes clear from Fig. 7, in silver this crossing occurs where
the inter- and intraband contributions compensate, which is
always below the peak appearing in the interband contribu-
tion to the real part of the dielectric function corresponding
to the absorption onset. In copper the situation is different as
here this compensation will occur in a region around 4.8 eV
where the absorption is already strong. Unlike Cazalillaet
al.39 we expect that the use of more advanced approxima-
tions to the xc-functional in the ground state, although
changing the band structure, will not affect the peak intensity
in the case of silver. Instead inclusion of relaxation effects
through the xc-kernelfxcsr ,r 8 ,vd is expected to strongly in-
fluence this peak. This is in keeping with the observation that
the absorption is sensitive to the introduction of nonintrinsic
sources of scattering.57,58

V. CONCLUSIONS

We have successfully extended the existing time-
dependent current-density-functional approach originally de-
veloped for the calculation of the dielectric response of non-
metallic crystalline systems12,13 to treat metallic systems. We
describe the linear response of a metallic system to a general
q- andv-dependent external electromagnetic field and arrive
at closed expressions for theq=0 limit at finite v. We show
how the macroscopic dielectric function and the energy loss
function can be derived as a function ofq and v in our
scheme. Three steps are essential in this procedure. First we
show how the inter- and intraband contributions to the in-
duced density and current-density can be separated. Then the
microscopic Coulomb gauge is used. In this gauge the effec-
tive scalar potential is completely microscopic and all mac-
roscopic contributions due to the inter- and intraband parts of
the induced density and current-density are gauge trans-
formed to the effective vector potential. Finally, we consider

the limit of vanishingq. Since the macroscopic inter- and
intraband parts of the induced density as well as the micro-
scopic intraband part vanish in the optical limit, they cannot
lead to exchange-correlation contributions unless there is a
long-range part in the exchange-correlation functional. Using
the local exchange-correlation functional, there is only a con-
tribution to the exchange-correlation scalar potential due to
the microscopic interband part of the induced density. From
the last step we conclude that, within the ALDA and atq
=0, the self-consistent-field equations describing the inter-
and intraband contributions to the response decouple. In gen-
eral, however, forq.0 and when going beyond the ALDA,
inter- and intraband processes are interconnected. We have
applied our approach to calculate the dielectric function and
the energy loss function for Cu and Ag. Comparison of the
ALDA results with experimental data shows a good overall
agreement. Even though the onset for the interband transi-
tions is shifted to lower frequency for both metals by about
10%, the main features of the spectra are well reproduced
above the onset. Within the ALDA no relaxation processes
are included which results in the absence of the Drude-like
absorption tail below the interband onset. For both metals we
obtain a macroscopic dielectric function, withueu<0, near
the experimentally observed Drude-like free electron plasma
frequencies. In silver, in addition, a vanishing dielectric func-
tion is observed at 3.5 eV, just below the interband absorp-
tion edge, and close to the experimental plasma resonance.
This is not a free-electron resonance but the results of the
combined response due to inter- and intraband processes. In
our calculated loss spectrum the intensity of this plasmon
peak is strongly underestimated, which cannot be attributed
to the local density approximation for the xc-potential of the
ground state but is the result of the absence of relaxation
processes in our ALDA description.

APPENDIX: SYMMETRY OF THE RESPONSE
FUNCTIONS

We consider a crystalline system perturbed by a potential

dĥsr ,vd with a periodicity that is consistent with the Born–

FIG. 8. The energy loss function of Cusupper
graphd and Agslower graphd. The bold solid line
shows our calculation, the others show the ex-
perimental data from Refs. 35 and 36.

TIME-DEPENDENT CURRENT-DENSITY-FUNCTIONAL… PHYSICAL REVIEW B 71, 155108s2005d

155108-15



von Kármán boundary condition. Using linear response
theory and the following transformation for the perturbation,

dĥsr 8+R ,vd=eiq·Rdĥsr ,vd, the first-order change in the
density is given by

drsr ,vd = eiq·rdrqsr ,vd, sA1d

in which the lattice periodicdrqsr +R ,vd=drqsr ,vd is given
by

drqsr ,vd =
1

Nk
o
k,k8

o
n,n8

dk8,k+qsfnk − fn8k8d

3
cnk

* sr de−iq·rcn8k8sr dkcn8k8udĥsq,vducnkl

enk − en8k8 + v + ih
.

sA2d

In the following we will use the perturbation given in Eq.
s16d and consider the time-reversal symmetry. Since only
combinations ofspartiallyd occupied,i, andspartiallyd unoc-
cupied,a, orbitals contribute, we can write

drqsr ,vd =
1

Nk
o
k,k8

dk8,k+qo
i,a

sf ik − fak8d

1 + dia

3
cik

* sr de−iq·rcak8sr dkcak8udĥsq,vducikl

eik − eak8 + v + ih

+
1

Nk
o
k,k8

dk8,k−qo
i,a

sfak8 − f ikd

1 + dia

3
cak8

* sr de−iq·rciksr dkcikudĥsq,vducak8l

eak8 − eik + v + ih
.

sA3d

In the second line we interchanged the role ofk andk8 and
used thatdk,k8+q=dk8,k−q. Furthermore, we introduced the
factor 1/s1+diad to correct for the double counting of the
diagonal terms withi =a. Introducing the time-reversed part-
ners ofcik and cak8, namelycik

* =ci−k and cak8
* =ca−k8, for

which eik =ei−k, eak8=ea−k8, and f ik = fseikd= fsei−kd= f i−k,
etc.,43 we can write

drqsr ,vd =
1

Nk
o
k,k8

dk8,k+qo
i,a

sf ik − fak8d

2s1 + diad

cik
* sr de−iq·rcak8sr dkcak8udĥsq,vducikl

eik − eak8 + v + ih

+
1

Nk
o
k,k8

dk8,k+qo
i,a

sf i−k − fa−k8d

2s1 + diad

ci−ksr de−iq·rca−k8
* sr dkca−k8

* udĥsq,vduci−k
* l

ei−k − ea−k8 + v + ih

+
1

Nk
o
k,k8

dk8,k−qo
i,a

sf ik − fak8d

2s1 + diad

cak8
* sr de−iq·rciksr dkcikudĥsq,vducak8l

eik − eak8 − v − ih

+
1

Nk
o
k,k8

dk8,k−qo
i,a

sf i−k − fa−k8d

2s1 + diad

ca−k8sr de−iq·rci−k
* sr dkci−k

* udĥsq,vduca−k8
* l

ei−k − ea−k8 − v − ih
. sA4d

After a change of variables from −k and −k8 to k andk8 in
the second and fourth terms we can gather the factors
scik

* e−iq·rcak8d from the first and fourth terms and the factor
scak8

* e−iq·rcikd from the second and third. Now, using the
relations

kcik
* udĥsq,vducak8

* l = kcikudĥ*sq,vducak8l
*

= kcak8usdĥ*sq,vdd†ucikl

= kcak8udĥ*s− q,− vducikl, sA5d

in which dĥsq ,vd=dĥ†s−q ,−vd, and reorganizing the terms
a little, we arrive at Eq.s18d. In a fully analogous way, but
now taking into account the following relations,

cik
* ĵcak8 = − cak8ĵcik

* = scak8
* ĵcikd* = − scikĵcak8

* d* ,

sA6d

we arrive at the response functions for the paramagnetic part
of the induced current-density, Eq.s28d.
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