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Time-dependent current-density-functional theory for the metallic response of solids
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We extend the formulation of time-dependent current-density-functional theory for the linear response prop-
erties of dielectric and semi-metallic solifikootstraet al, J. Chem. Phys112 6517(2000] to treat metals
as well. To achieve this, the Kohn-Sham response functions have to include both interband and intraband
transitions with an accurate treatment of the Fermi surface in the Brillouin-zone integrations. The intraband
contributions in particular have to be evaluated using a wave-vector-dependent description. To test the method
we calculate the optical properties of the two noble metals Cu and Ag. The dielectric and energy loss functions
are compared with experiments and with the classical Drude theory. In general we find a good agreement with
the experiments for the calculated results obtained within the adiabatic local density approximation. In order to
describe the Drude-like absorption below the interband onset and the sharp plasma feature in silver exchange-
correlation, effects beyond the adiabatic local density approximation are needed, which may be included in a
natural way in the present current-density-functional approach.
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I. INTRODUCTION density response to the longitudinal current-current

In time-dependent density-functional theof§DDFT), ~ fesponsé’® The (currentidensity functional approach
developed by Runge and Grésstarting from the original ylelds_reaso.nable rgsults for the d|.electr|(_: constants and op-
ground-state Hohenberg-Kohn formulatibhthe exact dy- tical dielectric functions of various isotropic semiconductors
namical response of a many-particle system to an extern@nd insulators when it is used within the adiabatic local den-
perturbing time-dependent scalar potential can be obtainesity approximation(ALDA) for the exchange-correlation
using an effective one-particle descriptibfr® Many- field,}21321-26phut more advanced schemes involving long-
particle effects enter in the time-dependent version of théange kernel$/=32 or equivalently (semj-local current
so-called Kohn-Sham schefethrough the exchange- functionalst'3334are needed to account for excitonic effects
correlation contribution to the self-consistent and time-in these systems. For anisotropic system and when calculat-
dependent effective scalar potential. Ghosh and Diagg-  ing transverse responsedat-0 we have to use the TDCDFT
tended the Runge-Gross theofetn many-particle systems approach, which can be applied to treat the optical properties
in a general time-dependent electromagnetic field. In theipf metals as well. Here, however, one should not only con-
description the electron current-density enters, replacing theider the interband contribution, involving transitions from
electron density of ordinary TDDFT as the fundamental dy-(partially) occupied to(partially) unoccupied bands as in
namical variable, with the vector potential instead of the scanonmetals, but also the intraband contribution due to transi-
lar potential as its natural conjugate variabl&his time-  tions within the same band, more specifically, from just be-
dependent current-density functional approachlow the Fermi level to just above this level. The latter pro-
(TDCDFT)*>1011js particularly well-suited for the treatment cesses are responsible for the collective plasmon response
of extended systeni&13 When such a system is perturbed typical for simple metallic systenid.For the noble metals
by an external electric field, there will be a macroscopiclike Ag and Cu the interplay between inter- and intraband
response caused by charge accumulating at the outer surfageocesses involving-electrons leads to a strong redshift of
that leads to a macroscopic screening field inside the bulkhe Drude-like plasmon resonante
The continuity relation implies that the density change at the In this paper we give a general description of the response
surface of the system is accompanied by a current flowin@f a metallic system to an external electromagnetic field
through the interior with a nonzero average value for thewithin the current-density functional scherf¥€-*To achieve
current-density. When treating the response of a crystallinghis we consider a genergt and w-dependent perturbation,
system by using periodic boundary conditions within . . ,

TDDFT, the effect of this phenomenon called macroscopic Sh(r,t) = dhy(r, w)e @Y, (1)
polarization cannot be described using the periodic bulk den- A ~p
sity alone and one has to introduce additional dynamicalVnere we chooseéh_q(r,—w)=dhy(r, ) to ensure a real per-
variables to account for the surface charge, c.q. the macrdurbation withsh,(r , ») lattice periodic. We derive the linear
scopic polarizatiot® or, equivalently, the macroscopic in- response of the system for vanishigdut finite w. This is
duced field® In the TDCDFT approach the information on the regime describing optical properties. To evaluate the re-
the surface charge is already contained in a natural way isponse in this limit three steps are essential. First we show
the periodic current-density. For the longitudinal response ofhat the inter- and intraband processes behave differently for
isotropic systems, some of the difficulties can be circum-smallg. Then we show that we can still use the microscopic
vented by relating the long-wavelength limit of the density-Coulomb gaug¥ to separate microscopic and macroscopic
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contributions to the effective scalar and vector potentialsthe samey dependence as the perturbing field. We can then
Finally, we consider the self-consistent-field equations andlefine the macroscopic induced density as

show that inter- and intraband contributions to the response

decouple in the optical limit when we make use of the adia- 1

batic local density approximation. Here we outline the deri- Spmadr, w) = eiq-r—f e 5p(r,w) dr, (3)
vation, which can be found in full detail in the next section. Vv

We start by expressing the induced density and current-

density using theg-dependent Kohn-Sham response func-ywhere v is the unit cell, and similarly we can define the
tions. These take the following general form, macroscopic current-density. A careful analysis of ghee-

' pendence at smat], but finite w, reveals that we can include
Xabq(rlr ,(,U) . . .
in the microscopic scalar potential the contribution due to the
- iz s intraband part of the microscopic induced density,
Nk ia
N R N e , 5ingrar, :5intrar, _5intrar, ,

(= ) L) 80 (D) P (10) = 99750 0) ™ Bnactl )

1+5i,a eik_eak+q+w+i77 intra

where Sphac(r , ) is the macroscopic part of the intraband
+c.c(-0,-w), induced density. The other contributions that lead to a mac-
roscopic field have to be included in the vector potential.
Intraband contributions to both the microscopic scalar poten-
- . .~ tial and macroscopic vector potential are now identified. The
and (partially) unoccupied bands,. Only ground state orbit-  ¢5mer vanishes in the limit of to zero, and the latter is to
als 1//n_k, or_bltal energiesey, and occ_upatlon number, be included in the definition of the fixed macroscopic field.
enter in this expression, which takes into account the conse[-ixe in the description of Kootstrat al. we can neglect the

vation of the crystal momentum. The Bloch functions areyery small microscopic magnetic contribution to the self-
normalized on the Wigner-Seitz callys and the number of - ¢qnsistent field, which is due to the transverse current. To-
k points in the summation = Ve, k/Vws in Which Ve, IS gether with the classical potentials, we also have to consider
the volume of the Born—von Karman cell. The intrabaimd  ,o exchange-correlation contribution to the self-consistent
terband contribution to the response functions is given byfiaiq \We find that in the optical limit only the exchange-
the terms witha=i (a+ i) in the summation overanda. In ¢ relation contribution of the interband part of the induced
the intraband case the factor (146, corrects for the  gensity needs to be included in the microscopic scalar poten-
double counting. Analysis of thq dependence at finite  tja| to arrive at the same adiabatic local density approxima-
indicates that the intraband contributions vanish in the limittion (ALDA) used in the ordinary TDDFT approach. At the
q—0 except foryjq (r,r',w). By considering the reverse same time no exchange-correlation contributions to the mac-
order of limits, i.e., by evaluating the limi&—0 before  roscopic vector potential remain. In this work we neglect
taking q— 0, we retrieve the conductivity sum rule which possible additional contributions from the induced curfént.
allows us to relate the diamagnetic and paramagnetic COMFhe microscopic effective scalar potential is thus completely
ponents of the current-density. Identifying the various contri-determined by the microscopic interband induced density.
butions to the response functions makes it possible to sepagherefore we can obtain the response in the optical limit by
rate the inter- and intraband contributions to the inducedirst solving the equations for the interband part of the den-

wherea andb refer to the operator=1 orj=-i(V-V")/2,
and the summation is over thpartially) occupied bandd,

density and current-density, sity and by subsequently obtaining the intraband part. We
So(r, ) = Sp™(r o) + Sp™A(r | ), show that, whereas the interband density needs a self-
plr,w) = 3p"H(r, ) + oY ) consistent solution, in the second stage the intraband density
8(r @)= &M (T, ) + 531, o) ) and the current-density do not need to be calculated self-

consistently. It follows that the intraband current can be ob-
The equations for the interband contribution to the densitytained completely independent from the interband density
and current-density become identical to the original descripand current-density andice versa Note, however, that for
tion of Kootstraet all?13in the limit of q to zero. The finite g and for exchange-correlation approximations that go
description of the intraband contribution follows along thebeyond the ALDA the sets of equations are essentially
same lines as for the interband case. In the description afoupled.
Kootstraet al.it is proven to be essential to choose the gauge The remainder of the paper is organized as follows. The
such that the macroscopic component of the induced electrimain aspects of the implementation are given in a separate
field that is due to the induced density and current-density isection. This implementation is based on the description of
completely described using the vector potential. The scalakootstra et al!? for the g-independent nonmetallic case.
potential is thus purely microscopic. One can then obtain thélere we focus on the specific case of metals and refer the
response to a fixed macroscopic field instead of to an extereader to Ref. 12 for the general framework used. Finally, we
nal field and thus treat the macroscopic optical responseeport our results for the dielectric and energy loss functions
exactly!? This still holds in ourg-dependent description, for the crystals of Cu and Ag and compare them with the best
where it turns out that the density and current-density havavailable experimental dat&-3°
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Il. THEORY spectively, andg,.{r,t’") is the fixed macroscopic electric
al‘ield, comprising both the external and the induced macro-

We treat the dynamic linear response of a metallic cryst . ts. The latt s for the |
to a perturbation described by both scalar and vector poter‘?’—mp'C components. 1he fatter accounts ior the long-range

tials within the time-dependent current-density-functionalContribUtion of the Hartree poter!tial,_ as well as for the prop-
theory (TDCDFT).57810.11 |n the effective one-electron erly retarded macroscopic contribution of the induced trans-

scheme of Kohn-Shafnon-interacting particles moving in verse current-density. We can neglect the microscopic part of

: : e the induced vector potential consistent with the Breit ap-
a time-dependent effective electromagnetic field are de- ~ ' ~™° .
P g proximation used in the ground state calculatiéh?494'As

scribed by Bloch functions that are solutions of the foIIowingdescribed in the previous section we consider the macro-

equation, , scopic exchange-correlation contributions to be included in
. d 1/, 1 dagss Via da,.. We work in the frequency domain for simplic-
|E¢nk(rat) = [E(p + E5aeff(r,t)) + Vettolr) ity, " XC

+ &)eff(rvt)}’ﬂnk(rvt)- (4) Sagi(r,t) = f e Sag(r, ) do, (10)

Hereveso(r) is the effective scalar potential giving the ini- and consider a general perturbation characterized by wave
tial density which we choose to be the ground state density. kt/ectorq and frequency»

is, therefore, uniquely determined by the Hohenberg-Kohn

theorem? The time-dependent_ potentialBves(r ,t) e_md Sagir, w) = €97 Sager(r,), (11)
dagi(r,t) produce the exact time-dependent density and_ _ _ . o
current-density for the chosen initial state, in which dag ¢+ , w) is lattice periodic,
p(r !t) = E fnklﬂ;k(r lt) ¢nk(r 5t)l (5) 5aq,eff(r + R! 0)) = 5aq,eff(r ’ a))l (12)
n,k

for any Bravais lattice vectdr. Since the field given by Egs.

wheref,, are the occupation numbers, and (10) and (11) is real we have

* ~ 1
J (1) = 2 Foyeth (1, 0] g (r,0) + Ep(r ) dag(r,t). (6) 88 (1, @) = 8a g 1T, — ). (13
n,k

In Eq. (6) the first term is the paramagnetic component oftheS|m|lar expressions are assumed for the scalar potential

current-density, in which the paramagnetic current opelfator der(r, v In the remainder we will only consider plane-
) o ) . wave vector potentials, i.e r,w)=o , unless
is defined as KV-V')/2 where the dagger indicates that P Pqeill )= g i @)

) . .Stated otherwise.
terms to the left have to be differentiated. The second term is
the diamagnetic component. Since the initial state is the

ground state, the occupation numbégg are given by the A. Induced density

Fermi-Dirac distribution functiorf, =f(eyu)=2 for ey < er Using the Bloch theorem, we show in the Appendix that

and O otherwise, withe,, the ground state orbital energies in the linear regime the induced density can be written as
and e the Fermi level. The time-dependent potentials are

uniquely determined up to an arbitrary gauge due to the 5p(r,w)=eiq'r5pq(l’,w), (14
Ghosh-Dhara theore® Both the density and the current-

density are gauge invariant. The first-order perturbation ofvhere dpy(r, ) is lattice periodic,dpq(r +R, w)=dpq(r, w),
the ground state is governed by the perturbation Hamiltoniagiven by

She¢s containing all terms linear in the field,

1 (fik = faxr)
- 1 . R Opy(r,w) = N_E 5k’,k+q2 ﬁ
Seg(r,t) = Ez[p - Baggi(r 1) + Jag(r 1) - P] + Sverd(r,t). Kic k' ia ia
(7) AL 7N LCRDIY
We choose the gauge to be the microscopic Coulomb gauge €ik ~ €a + @+
of Kootstraet al’? in which the effective scalar and vector fo,—f
. ; 1 (far = fiw)
potentials are given by +—> 5k,yk_qz i
Ky Kk’ ia la
B0erf(1 1) = 0n i1, 1) + So(F 1), ® e )
t QAL RO
5aeff(r:t):_cf Emadr,t)dt’ + da,(r,1), 9 €k ~ €kt Oty '
(15)

where vy mi(r ,t) and dv,(r ,t) are the microscopic compo-
nent of the Hartree and exchange-correlation potentials, rén which we introduced the short-hand notation
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0(0,0) = (€97 V = Ve - oy 1) + €97 g (1 0.

(16)
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€k ~ €ak’

Wik’ —(@) = = {Wikakr +(®) = Wik +(0)},

(22)

For future reference we define the additional short-hand no-

tations, j,=-i(e797V-V'e91)/2, and p,=e’". The
lattice-periodicity of 5p,(r, w) allows us to define the mac-
roscopic induced density as

Opmadt ) = 897 J 3pq(r ) dr, (17)
\4 \Y

where the average is taken over the unit cell. In @§) the

second term is the complex conjugate of the first onecat -

and -w, so the induced densit§p(r ,t) is real-valued, since

5pq(r,w)=5p*_q(r ,—w). Using time-reversal symmetrisee

the Appendix we can write Eq(15) as

L

N E 2Wikak’,+(w){5k’,k+q(¢:kﬁq¢ak’)

kk,k' ia

X (ger| e, ) 111 + St g (W Pathind)

5Pq(rnw) =

. 1
X (| She(Q, @) |y )} + N > Wik’ (@)

kk,k’ ia
><{5k’,k+q(l/li*ki)ql//ak’)<(//ak’|aao(qvwﬂ i)

- @',k—q(¢;krﬁq¢ik)<¢ik| SNo(, )| hager)} -
(18)

Here ther dependence of the Bloch orbitals has been implied
COMPONents Ofgre the second term is the complex conjugate of the first

and we have defined the “even” and “odd”
the interaction Hamiltonian according to

- 1 . )
5he(@, @) = S[sh(d, @) + 5h (= 0, = )] = p-qbugen ),

(19

- 1 - oy 1.
5ho(q’w) = E[éh(qiw) -oh (_ q,- w)] = EJ -q° 5aq,eff(w)y
(20)

where 5|A1*(—q,—a)) is the complex conjugatéot the Her-

mitian adjoin} of 5ﬁ(q,w) at negativeq and w. The energy
denominators and the occupation numbers in @&) are
contained in the frequency-dependent weights,

=

(21)

fi = faxr
2(1+685,)

X
€k~

Simple algebra shows that . (@) and Wi, (w) are
related,

Wigak’ +(@) =

1 1
+

€ F O+ €~ €q —

€k T €ak’

Wik +(@) = = Wik’ (o). (23

B. Induced current-density

For the induced current-density we can derive expressions
along the same lines used for the induced density. The para-
magnetic component of the induced current-density can be
obtained as

é]p(rvw) :eiq'réj pq(rvw)v (24)
whered] q(r , w) is lattice periodic as well, and follows from

(fix = faxr)
D SopeqD

kk,k’ ia 1+5ia

5 Ui qtbak(Paier | (0L, @) [ i)

Eik_Eakr+a)+i7]

1
+ = 5k’,k—q2
I,a

Nkk,k’

1

équ(raw): N

| aie = fi) Ui i i SN(Q, )| o)
1+3, '

€k~ Ek T W Ty

(25

term, but at the negativg and negative frequency. In the
linear regime the diamagnetic contribution is given by

éjd(r!w) :eiQ'l’éjdq(r,w), (26)
where

1) = <pol) g, @7
with py(r) real and lattice periodic. As a result one finds also
for the induced current-density the relatiofjy(r, o)

=& pg(r, @)+ Fq(r, )= _(r,~w) and thus a real-valued
current-densitydj (r ,t). Using again the time-reversal sym-
metry the induced paramagnetic current-density can be writ-
ten in a way very similar to Eq.18),

1

N 2 2Wikak’,+(w){5k’,k+q(¢rkiq¢ak’)

kk,k/ ia

B palr ) =

X (rer | 0o(0, ) Y1)+ St g (Ve qhin)

Xl 0, D+ 0SS Wi ()

kk,k/ ia

X{ 5k’,k+q(¢:kiq¢ak’)<¢ak’|5ﬁe(qu w)' ‘pik»
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A

- 5k’,k-q('f/;kqu'/’ik)<'//ik|&ae(qaw)wfak’))}, o
(28)

where the weights are given by E@1). Note that here the fim @ =0
“even” and “odd” components of the perturbation, defined in
Egs. (19) and (20), have changed positions with respect to

Xy(g.0)

-—

Eq. (18). x}.].(q—»O,w=0) lim g —~0 xjj(q,w=0)
For the implementation it turns out to be convenient to > —e >
relate the diamagnetic component of the induced current- N 4

; - L. {xs@—>00=0)-x,q0=0)}
density to the paramagnetic one, and treat both contributions

on an equal footing. Before doing this we want to refer to the  FIG. 1. The order of the limits needed to relate diamagnetic and

case of a homogeneous electron gas perturbed by a mongaramagnetic contributions to the current-current response function.
chromatic fieldsa(r , ).}’ Indeed the induced total current-

density is then given by —0,0=0)-x; (q,w=0)} represents the tertiy(r ,r’,0) of
1 1 Eq. (33) in its Fourier representation. In the absence of mag-
Jr,w)=— | x;(r,r',wdalr’,w) dr’ + —po(r)sa(r, o), netic fields the vector potential is regulards0 for any w,
c) ™ c

hence the termi y7(q,0), which is proportional tay?, does
(29 not contribute to the induced current-density for vanistgng

where the exact current-current response functioﬁo‘relaﬂon similar to Eq{(33) holds for crystalline systems,

xjj(r.r', ) only depends on the distanfre-r'|. Its Fourier Xijg (F,17,0) == pod(r =r") + Axg(r,r',0), (34)

transform can be expressed in the following way, . i
where agaim x,(r,r’,0) is transverse and of the order of

g?.1*2Therefore, we can introduce the following relation for

d.9, d.9,
. - v I 14
Xl @) = X0, 0) o +XT(q'w)<5" TP ) the diamagnetic current-density,

(30) B aq(r, @) = = 8 pg(r, @) + Aj (1, 0), (35
with the longitudinaly, (4, ) and the transverse component where &%, (r, ) is the paramagnetic current-density ob-
x1(q, w) satisfying’ tained from the static response, at fingeto the dynamic

lim x7(g,w=0) = - pg, (31) perturbation,
g—0

5qu(r,w) = E > Wikakr +(0)
XL(qvw:O):_pO- (32) kk K’ ia

For the value ofyr(q, w=0) at finiteq the corrections to this X (S serg (Wit bk tacr| Mo, @) [
limit are of orderg?. In real space we can therefore write . . N
+ 8¢t kg (W) q i) Wikl Sho(Q, ) [ haic 1))

ij(rvrlao):_poé\(r_r’)+AXT(r1r,7O)1 (33)
(36)

where Ay1(r,r’,0) is purely transverse, and hence respon-

sible for the weak diamagnetism first calculated by Landauand Ajyq(r,w) is by construction equal tod]g(r,w)
Here we deal with two limits, ling—0 and limw—0. The +ﬂpq(r w), and gives rise to contributions analogous to the
value of y7(q,w) depends on the order in which one takesLandau diamagnetism. Since we do not treat magnetic fields
the limits, since it is nonanalytic in the poif®,0) in theq in this derivation, only the first term on the right-hand side of
-w plane. In order to relate the diamagnetic and the paramadzq. (35) is considered andj(r, ) is neglected in the se-
netic contributions to the current-current response functionguel. Combining Eq(36) with Eq. (28) for the paramagnetic
one has to consider first the limit— 0 at finiteq, and only  current-density, the induced physical current is then obtained
then takeq— 0, as reported in Fig. 1. Here the tefgj(q@  from

E Ewlkak’ (w)(5k’ k+q(l/f|k1q¢ak’)<¢ak’|me(q w)|¢.k> 5k’ k= q(wakrlqwlk)<¢|k|5he(q w |¢ak’>)

kk’ ia

‘S]Q(r!w) Nk

+ N E > [ Wik +(w) = Wikak',+(0)](5k',k+q(¢:qulﬁak/)<¢ak'|5ﬁo(q,w)|¢ik>

kk,k’ ia
+ 5k/,k—q(l/f;k/fql/fik)<l/fik|5ﬁo(qyw)|l//ak/>)- (37)
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C. Response functions iw;k/(r)jq¢ik( ) . ,
1. Interband contribution X———— [ (r)plqtbac (r)] ],
€ik ~ €ak’
We will first consider the interband contributions to the (41)

induced density and current-density which are obtained from
the terms witha+#i in Egs.(18) and(37). They can then be and finally for the interband contribution to the combination
written in the following concise form, of the current-current response function and its static value,

respectlverXJ'J“(;er and thgero, the result is
( 5 inter )
1

Iéjmter/a) 2[ijer(l’ r',w) - X]”ter(r row= O)] = N_E 2 Wikak’,+(w)

inter |nter/w 61) kk'k’ a

- ppq Xoiq e q.eff " o o ox ( ;)’-‘l ) (r/)
Xjpa 1 (x'”“*’ o M) \iwdagerlc x <5k,k+q'¢ik(r)]qw“"(r) R L
(398 €ak’ ~ €ik €ik ~ €ak’
by inserting the equations for the “even” and for the “odd” e (D] (1) (1] g (1)

perturbation, Eqs(19) and (20). Here the matrix-vector * %k € — Excr ® P - (42

product also includes an integration over a real space coor-

dinate, where the various response kernels take simple fornfhe w dependence in the above expressions for the various

by using the relationg22) and (23) for wi, +(w) and interband contributions is governed by the common factor

Wigax’ -(@). For the interband contribution to the density- Wikak +(@), Which is a well-behaved function ef andq for

density response functioqg‘ggr, we find o smaller than thdindirect) energy gap between the differ-
ent occupied and unoccupied bands. The various interband

i , 1 © o oa contributions to the response functions have then the follow-
Xgl:gr(rar 1(1)) = E E Wikak’,+(w){5k’k+q[‘r//ik(r)Pq¢ak’(r)] |ng w dependence:

kk’k, c |nter
X[ (1 )Pk )] xmerec 1,
+ el W (DPUi(1)] Xola Xipg @,
X[‘/’:k(r ’)[A)qu//ak/(f')]}. (39) (X]l]nqter_ Xj(j)énter o o2,

For the contributions to the density-current and currentdn the limit of vanishingq the set of equation$39)—(42)

density response function,gi,;}}f’ andX;r;‘;’, the equations be- reduces to the one used in the case of nonmetallic crystalline
come system&>13 for which we need to consider only fully occu-
pied bands and fully unoccupied bands However, in me-
inter. ., ~_ 1 tallic crystals, we have to consider also the contribution from
qu (rrw=2 E Wikak?,+() partially occupied and/or unoccupied bands, for which
Kk 1 k-space integrations are restricted to just a part of the Bril-
louin zone cut off by the Fermi surface.
X\ Srirql ik (1) pga: ()] 2. Intraband contribution

e, , Let us consider now the intraband contributions to Egs.
X“/lak’(r )i Zqthik(r”) (18) and (37) that are given by the terms with=i in the
summation over the energy bands. By changing variables

€ — Eqpr
A . 2k . from {k’ ,k}={k—-q,k} to {k,k+q} in the second and fourth
+ O rk—gl Yo (N Pq i (1)] terms in Eq.(18) we obtain
y ilpik(rl)jiq’ﬂak'(r/)), (40) 5p'”"a (r,w)= 2 2Wikik+g+(®) [¢|k(r)pq¢,k+q(r)]
€ak’ ~ €k

. 1
XYl el ) 1) + -2 Wi (@)
k ik

inter

XJpq (I’,I",a)) - 2 EW|kak’ +((1))

N e X[k (1) Pqaicrg(1) N tikcrql Mol )| 1),
><< 5 D) (43)
'k+q Eak — €k where we have used th&fyi.q +(®) = £Wiigik (). Oper-
x e, , ating in a similar way in Eq(37) for the induced current-
X [ac (r)pZgt(r )1+ e density we arrive at
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y 1 . w? df 0?(Viey - §)?
intra row=— QWi (D (r . r 2% W Sl k €ik (52
A ) = 4 2 A (i i athcsa(©)] ) = e et 22
><<z/;ik+q|5ﬁe(q,w)|</fik> The nonanalytic behavior of the intraband response functions
1 at the origin of theg-w plane is now made explicit. In the
+ =2 2[ Wik ak+q,+( @) = Wikik+q,+(0)] limit of g to zero at finitew this factor becomes independent
N i ' ' of w and equal tadf/de(Vyey -§)% whereas in the reverse
PN ~ order of limits the factor is zero. It immediately becomes
x[lﬂik(r)lq‘ﬁik+q(r)]<¢ik+q|5ho(q,w)|l//ik>- clear that the intraband response functions show the follow-
(44 ing w andq dependence at small but finite w,
These expressions can be written in the following concise Y2 o 02/ 2,
form, Pea
i (w/q5pi?"a) _ (wz/qzxi,?ééa i ) X2, X2 < oo,
v int - int int intra,0
age )\ ol - -
. intra __ Jintra
( i0dveff ) 45 Xjo ~Xja <1
iwdagerlC/’
where the various response kernels are given in the following D. The SCF equations

set of equations. For the intraband contribution to the |, e previous section we derived expressions for the
density-density response kerngf!"®, we get,

pq induced density and current-density as result of a given set of
w2 e 2 w? . vector and scalar potentials. To complete the self-consistent-
5 Xppq (1T ,w):N—E —5 Wikik+q, +(@)[ ik (1) pqhik+q(1)] field scheme of Kohn and Shdmve have to express the
q kik @ induced potentials in terms of the induced density and
><[¢Tk+q(f')ﬁiq¢ik(r N]. (46) cu_rrent-de_nsity. In order to d_o this it is important to separate
o S _ microscopic and macroscopic components of these densities
Similarly for the contributions to the density-current and gnd to show how they lead to the microscopic and macro-

H int intl H . . . . . .
current-density kernelsg;j,® and x;5q”, the expressions are  scopic contributions to the induced potentials. We will do

o 2 P Wiisq +(@) - » this first for the Hartree term and then for the exchange-
—Xg}ga(r,r’,w) =—> — e (1) Pgikag(1)] correlation contributions. We start by identifying the micro-
q kik O €ikig ™ €ik scopic and macroscopic components of the density. Since
* RS , both the inter- and intraband contributions dp,(r ,w) are
X[ it gt ], (47) Py, )

lattice periodic, we can write the total induced density as a
Fourier series expansion,

o , 2 @ Wigigrg+(®) - 5 =
XA @) = - 2 I (1] ()] | | |
q kik 9 €ikiq~ €k op(r,w) = €97 5py(r,0) = gary 5pq+G(w)e'G'r. (53
* NN ’ G
X[ Wikaq(r)pLqth(r )] (48)
Finally, for the intraband contribution to the combination of H€re the term witfG =0 is equal to the macroscopic density

the current-current response function and its static value, reqef'n?d in Eq(17). The remaining terms witls 0 together
intra constitute the macroscopic density. One usually asstinies

i intra,0
SpeCtIYelijjq andX":q e have that a similar expansion exists for the Hartree potential
Xjg 2 (r,r’ ) = xjig 2(r,r', 0= 0) which can then be written as
= EE wzw X [N q¥ikeq(1)] Sou(r ) = Azl SPgro(®@) D 5pq+G(‘”)eiG.r
Nk (€ikeq ~ €ik) VR, @) = A 2 70 lg+GJ? '
® [w;(k+q(r ,)jAqu/fik(r ,)] (49) (54)

In this paper we will only consider the optical limit, i.e., the one can then define the microscopic scalar pote@tigly;c
limit of vanishingq (but finite w), for which we can evaluate g ’

the weightswiyjy.q +(w) using the two relations

~ : Y .
€ik ~ €iktq = ~ A(Vieik - Q) (50 S micr, @) = 4" Me‘m, (55)
Gz0 l9+G|

df . ) )
fik = fikeq = fleik) = Fleikeg) = —qd—E(kaik'Q)- (51)  whereas the termn®9"dvq.o=4me%" 5py.0/ G represents a

macroscopic field. In the TDCDFT approach this term will
We can then write for the common factob@qzwikmq&(w), be gauge-transformed to a macroscopic vector potential,
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| | () oy of 1o )0
%)5aH,mac(riw) =V (elq-r50q+o(w)) = 47T|Q(ﬂ¥)elq.r- - E \Y 5UQCLDA[5Pmac](r W) = - E (ig+ V) l;; (po(r))
(56) ><5pq+0(w)eiq'r. (62

As Kootstraet al. have shown, this field is sample-shape In the ALDA approximation used in this paper we will ne-
dependent. In their approach this contribution is, by conglect the exchange-correlation contributiéa,dj] in the
struction, already contained in the total macroscopic vectoeffective vector potential, and retain only the macroscopic
potential, which describes the macroscopic electric field, angart of the other terms. Then E(1) becomes,

which is kept fixed Egs.(8) and(9)].1? Note that we do not

evaluate the microscopic scalar potential using the Fourier 9@ettmadl,®) = damadr,®)

series expansion, as this series converges extremely slowly qf1 dptPA _

for real densities. Instead we make use of the screening tech- + cé]—(—J = (po(r))dr) Opg+o€T,
nique described by Kootstrat all? In the effective one- w\VJy dp

electron scheme of Kohn and Sham the effective potentials (63

{dvest, Saetit @lso contain exchange-correlation contributions.

For the total exchange-correlation scalar potential we write Where in calculating the cell average the contribution of the

gradient in Eq(62) vanishes due to the lattice-periodicity of
the ground-state densipp(r).
Sy, o) =J fudr, 1", 0)p(r’, w)dr’, (57) The separation of the induced potentials in microscopic
and macroscopic terms as discussed above is based on the
in which we will use the adiabatic local density approxima-Separation of the induced density into microscopic and mac-
tion (ALDA) for the exchange-correlation kernel roscopic components. We will now describe how inter- and
for .1, 0), intraband processes contribute to the microscopic and mac-
roscopic parts of the induced density. To achieve this we
, ALDA ) , du)L(EA(p) refer to Eq.(15) and analyze first the factmi*k(r)ﬁqg/;akm(r).
fudr,r’, @) =f,cr,r’) =& -r') T do : Using the expression for the Bloch functions and the defini-
P Tomegn) tion of the p, operator, it becomes evident that this factor is
(58 lattice periodic and can be written as a Fourier series expan-

] sion,
In our scheme all other exchange-correlation effects are to be

included in the exchange-correlation vector potential. As the i (1) Pq¥aksq(r) = Uy (D€ K€ Uy (1) FDT
induced density is a functional of the induced current-density 1

through the c_ontinuity equation,.we can forn_1a||y write this = —E CiaG(q)e‘G". (64)
vector potential as a pure functional of the induce current- Ve

density, We can now use the following relation obtained using the

k -p method?

da,(r,w) = | fr,r',m)- "w) dr’. 59 "
% (r ) f (rr ) ﬂ(r ) ' ( ) 2(‘/’nk|p|$ak>'q

uak+q(r) = (1 +iaay - q)ug(r) + “Upe(r)
As in Ref. 12, we split also these contributions into micro- n#a
scopic and macroscopic components. To achieve this we +0(x), (65)
choose to retain only terms linear in the microscopic induced

density in the microscopic exchange-correlation scalar powhere, in the nondegenerate caag, can be chosen to be a
tential, and to gauge-transform all terms linear in the macrocontinuous and periodic function d&f. For the coefficient
scopic induced density and those linear in the inducediag=0(d), which determines the value of the macroscopic
current-density to the exchange-correlation vector potentialdensity dpq.o(®), in Eg. (53) we then get

This is possible because we consider only the linear re-

sponse. In this way we keep contact with the ordinar : = N = i .

TFI)DDFT formulation.yThis vectlzr potential will contain in g Ciac=o(@) fulk(r)uak+q(r) dr=(1 +lag0)d

general both microscopic and macroscopic components. In
the gauge described above the effective potentials take the

€ak ~ €nk

. WiwlPlthac) -9 (1-8)+0O(cP), (66)

following form, €ak ~ €ik
_ ALD where we made use of the orthogonality of the Bloch func-
Setmic™ OWrmic* Syc” [ Opmicl, (60 tions. The coefficient€;,5.0(q) that determine the micro-

scopic density are in general of order 1. We consider first the
_ - c ALD g dependence of the interband contribution to the macro-
OBeft = Gqmac+ Gy 4] © V 0 LOpmad - (61) scopic induced density, by inspecting E88) for &p;**" and
Egs. (39 and (40) for the interband contribution to the re-

Using Eq.(57) the last term in Eq(61) can be written as,  sponse functions. In these last two expressions the weights
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=3

]

avH,mic zl
. x] =l
P pmter —_— > 0 i \ o

eff mic
R S

]

éa,[dj] \
g <l &HJMC ol / /6j
‘ ALDA o i
8o > op. daj i 21 Poa, ¢ da.[d]
xq 6aALDA / E
xemac "y g2 1 xl \
T i 6aext
o v
xq (Xy)
“" 6aejf,ma£
1 (x)

FIG. 2. Schematic representation of the self-consistent fi®@P calculation of microscopic and macroscopic parts of the induced
density. The leading order in powers gfis indicated near the variables by the™sign. The arrows indicate the contributions to each
variable, where theX” sign indicates the order ig gained through some multiplicative factor. The inter- and intraband contributions to the
induced density both contribute to the microscopic and macroscopic components of this density. In the microscopic Coulomb gauge only the
microscopic density gives rise to the microscopic effective scalar potential via the microscopic Hartree term and the ALDA xc-term. The
macroscopic density as well as the current-density contribute in various ways to the effective vector potential. The dashed line indicates that
the self-consistent loop is not completed as we keep the macroscopic effective vector potential fixed. For more details and discussions see
the text.

Wikak+q,+ Nave a leading term of order 1 in the expansion ininitial assumption. On the other hand, a macroscopic density
orders ofg, asi #a. From the expression®4) and (66) it of orderq will lead according to Eq(56) to a macroscopic
follows that fori #a the uniform component of the factor contribution to the effective vector potential of order 1, again
l//:kf)ql//ak*-qzciaG:O(q) is of order g. Hence the interband consistent with the initial assumption. Within the ALDA the
contribution to the macroscopic induced density is one orde¢ontribution of a macroscopic density of ordewill lead to

in q higher than the off-diagonal matrix elements of the per-an exchange-correlation vector potential of ordewith a
turbations p_qdvg et and iw/cj_q-daqerr. The microscopic uniform component of ordeg? [Eq. (62)]. The latter two
part is, on the other hand, of the same order as these matrf@ntributions hence vanish in the optical limit. Using the
elements. For the intraband case we refer to E45—(47). scaling introduced in Eq45) all the variables acquire the

Here the uniform component af,pqax.q is Of order 1, as Same order i as depicted in Fig. 3. o
here i=a in Eg. (66), and also the common factor ~ Now it also becomes clear that in the optical limit the

2] PWii1q + (@), as defined in Eq(52), is of this order. Self-consistent loops for the microscopic and macroscopic
Together V\(/]i’th Eq(45) we can now conclude that both the induced density become decoupled. Since the contribution to
microscopic and macroscopic components of the intraband
induced density are two orders égnhigher than the diagonal
matrix elements of the perturbatign,dv, ¢, and one order

xq (xpo" 19)

in q higher than those of the perturbatibn/cf_q-éaq,eff. " 1 «1
The relations derived above constitute a set of self- sp™"r —> 8p,.. ———————— Ve mic
consistent-field equations for the induced density that are xg

*xq

depicted schematically in Fig. 2. The self-consistent loops

involving the macroscopic effective vector potential do not
need to be completed as we keep this macroscopic potential
fixed to calculate the optical response. Assuming that both
the effective microscopic scalar potential and the effective
macroscopic vector potential are of order 1, we can see that
the contribution of the interband processes to the micro-
scopic density is of order 1 and that to the macroscopic den-
sity is of orderg. In a similar way we can conclude that the

\ «l x 1/q
(%H,mab"‘1
P inira 6pmzu‘ x1 \\\
p % > § 6aeﬁ5mac
q ! q
xq 73

ALDA™%q
T &xc,mac

x1 (xp"1q)

contributions of the intraband processes to the microscopic FIG. 3. Schematic representation of the main changes in the

and macroscopic densities are both of ordef~From Egs.

calculation of the intraband induced density after the scaling to

(55) and(57) within the ALDA it immediately becomes clear §p""/q and Spmadg. The symbols used are similar as in Fig. 2.
that a microscopic density of order 1 leads to an effectiveNote that not all the relations are indicated but only those involving
microscopic scalar potential of order 1, consistent with thehe rescaled variables.
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xL(xX37) i _ —i _
O smic ———2> 3" (G =0,0) &= <—'f AN w) df) |
oV (i0/0) 8aa0q=0"8
] (69)

xq (X5
From Egs.(45) and (63) the macroscopic part of the intra-

0j band contribution to the induced current can be written as

x1 (x5

[}
« [}

intr 1 {1 ?"?(q=0,w) - &= (lf o (r, ) df) :

aaeﬁmac —m)éj i v (i0/0) 82 a6q=0=8

A X ! (70)
i i
Y. where the intraband contribution to the macroscopic conduc-

. . . ivity tensor, 0™""3(q, w), atq=0 is given b
FIG. 4. Schematic representation of post-SCF calculations o% y @, ) q 9 y

inter- and intraband contributions to the induced current-density. . =i .

Here the dashed line indicates the additional SCF loop that needs to d"(q=0,w) = — f f [thgrfo(r,r " )

be considered when taking into account a current-dependent wV

exchange-correlation functional. - X]@]_nqtrgbo(r I w=0)]drdr’. (71)

the scaled intraband induced dens@g{;ﬂfa/q that is due to We can then consider the following expression for the mac-
the microscopic effective scalar potential is of ordgrit ~ roscopic dielectric function a4=0,

vanishes in the optical limit. Accounting for the scaling, the i

intraband pontribution to the microscop[c density is of prder e(w)=[1+ 447)(2‘“3'((»)] - A'_maintra(w)’ (72

g and vanishes fog going to zero. The interband contribu- 0]

tion to the scaled macroscopic densdy, mad/ d is, however, o ) ] )

of order 1. Therefore we can conclude that the SCF for th&vhere the contribution in brackets is defined as the interband
microscopic density can be solved independently from thdart of the dielectric function.

SCF for the macroscopic density, but that the reverse is not

true. It is now clear how we can solve the optical response of F. The energy loss function

potentials now known, we can calculate the macroscopic inperiments are expressed in terms of the differential cross-

duced density and the induced current-density. Zzgtrlggi,m a\,’[\i@:‘c% s obtained within  the first Born

E. The macroscopic dielectric function dza(k ) 2 K

The macroscopic dielectric functioe(q,w) is a tensor dOdw —W—qA?S(q,w). (73)

that can be expressed as
Herek andk’ are the wave vectors of the incident and scat-
€(d,w) =1 +4mxe(q, w), (67)  tered electron, and and o are the transferred momentum

where the the macroscopic susceptibifiiyq, ») can be ob-  &nd energy, respectively, witp=k ~k’ and w=k?/2-k'2/2.

tained in terms of the total induced macroscopic current vial '€ dynamical structure factoB(q,w) is related to the
. (68)

imaginary part of the true density-density response function
R =i
Xe(d,0) - €= (_Vf Jq(r,w) dr)
w (i0/C) S 504=8

via the fluctuation-dissipation theorem,
In Fig. 4 we report schematically the post-SCF calculation
for the induced current-density. In the optical limit, i.e., for
g=0, the expression for the dielectric function takes a simpldélere the true density-density response function relates the
form. In the limit of g— 0 the microscopic scalar potential induced density to an external perturbing scalar field,
does not contribute to the intraband current-density. Thus, in
this limit and within the ALDA, the inter- and intraband _ , , ,
contributions to the induced current-density can be calcu- 5p(r,w)—jx(r,r ©0) BT, @) dr". (75)
lated independently. From E¢38) we can obtain the inter-
band contribution to the electric susceptibility by repeatinglf we choose the external perturbing field @Be,(r,)
the SCF calculation for the uniform macroscopic field in the=€'9", then the dynamical structure factor can be expressed
three Cartesian directiores as9(q,w)=73(q, w), where

S(q,w):—ZJfJe“q'("r'))((r,r’,w)drdr’. (74)
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f Fo(r,w)-qdr
> qzvé(q,w) = : (81)
= —2] Spq(r, ) dr|&)extq:1. (76) 1 - A4 f Fo(r,o)-qdr

3(q,w)= - 2] e 97 5p(r , w) dr|5vex‘(ryw):eiq-r ;

Using now the definitions of the dynamical structure factor

Here we used Ed14) for the induced density and the exter- S(q, ) and the response functidfy(r , ), we can write

nal potential. In our scheme we have to work in the micro-
scopic Coulomb gauge and therefore we want to gauge transy q, w)
form the external macroscopic scalar potential to an external
vector potential: we can havieodae(r,w)/c=g§ea" if we }f Ipy(r, w) ar
choose the external scalar potential a8ve,(r,w) \% q

AT . = - 20°VR
=(-i/q)€'9". Then the same dynamical structure factor can 1 [ Spy(r, o)
be obtained using 1- 47ri—f P Gy
v q (/) 80 =0

(82)

3(q,w) = - 2iqf Opqy(r, w) dr|(iw/0)5aexm=6|- (77) _ _ _
We can now consider the special cage0 and show that it

is related to the current-current response function, and hence
Unlike in the case of the macroscopic dielectric function,the macroscopic dielectric function. Using E¢4) and(66)
here we need to consider the response to a given external Egs.(39) and(40) one can easily show that the following
field. Assuming Eq(56) to hold, i.e., neglecting the sample- relations hold,
shape dependence of the induced field, the total macroscopic .
field can be related to the given external field according to im 1 f X'[[‘;gr(r,r’,w) dr = q -fx}?,flo(r,r’.w) dr
q—0( ®

iw . Ai
?5amacq(r,w):q(1+wf Opq(r, ) dr) 1 . g A

Iim—fx',;}tsr(r,r’,w) dr = -f[xj!}gezro(r,r’,w)

A(l 2T )) .
= -—=-5(q,w) |. .
v N (w0 =0)] dr.
(83)
In a completely similar way as for the calculation of the
macroscopic dielectric function, we can now solve the SCFTherefore using Eq.38) we can write
equations for a fixed macroscopic field and calculate the in- nter A
duced macroscopic density as linear response to this field, lim 1 5Pg (r,w) dr = q _} "”ter(r ) dr
gq—0 V q w V (SJq—O @ '
i 1 [ Spy(r,
5=t f (1) o (84)
2q \ q

A similar relation holds for the intraband contribution. Using
_lw again Eqs(64) and(66), but now in Eqs(46) and(47), and
T f Fq(r,) - amagq(r, @) dr.  (79) using in addition the following relatid?

By solving the SCF equations we obtain the lattice periodic €ikrq— €k =0 f i (D] qikq(r) dr + O(?),  (85)
response functionFy(r,w). In the previous section we
showed that for a finite macroscopic field the central term in

the equation above is finite for vanishimg and therefore one finds
also the terms on the left- and right-hand sides will be finite. 2 ’ ® .
By inserting Eq(78) in Eq. (79) we can now account for the  lim — X;j‘;aa(r,r’,w) dr =lim —q -Jx}';gio(r,r’,w) dr,
relation between the macroscopic and external fields to arrives—0 g—0 ¢
at
. w intra ’ — A intra '
i i Imz)afxqu (r,r',m) dr—q-f[)(jjqzo(r,r ,®)
§(q,w)=fF (r,o) -61<1+47ri §(q,w)> dr, -
2 q 2 .
2aV 2q°V = Xjg o(r, 1,0 =0)]dr.
(80) (86)

from which we immediately obtain Therefore, using Eq45) we can write
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1 5pi“”a(r,w) g 1 y S of the Fermi surface originating by the baridas the first
lim = | ————dr= Y S o (r ) dr. derivative of the Fermi-Dirac distributiofi(e)=20(ex—¢€)

—oV
a0 g peaks ate=er, df/de=—28(er—€). For the frequency-
(87) dependent factor we can use the Cauchy theorem and write
From Egs.(84) and (87) the long-wavelength limit of Eq. W2 (0lq)?
(82) can be written as > — = — 5
(Vkeik q) —((D+|77) (Vkeik q) —(w/q)
1 . X
lim zq—ZVS(q,w) +im(w/q)8(Vey - 0 - wlq)
q~>0 N
_ + (Ve -G+ olg)]. (9
-iq- w_\/f 3 g=o(I', @) dr In optical experimentso/q is of the order of the velocity of
=R _ . light, /g~ c, which is much higher than the velocity in the
P ; direction of g of valence electrons at the Fermi surface
1+47q - — —o(r,w)d N ; ; . ; '
™ wvf Aq=oll ) dr s Vieik-Q. Thus, the imaginary part in EQQ1) is zero and the

real part reduces to —1 in the limit gf— 0. In other experi-

(88) ments, wherew/q is of the same order as the Fermi velocity,
Using the results of the previous section, EG®—(72), we  the imaginary part can become important. In this case the
arrive at the final result integrations in thek-space are reduced to integrations over
closed loops resulting from the intersection of the Fermi sur-
lim Z—WS(q,w) - j< -1 ) (89) face with a surface of constant velocityw/q) parallel toq.
a0 GV q-e(w) -G Using the principal value of Eq91) in the optical limit, Eq.

. . . 90 b
The dynamical structure factor for @jlandw as given in Eq. (30) becomes

(82) includes all the local field effects and can be used for ntra —i dk .
both isotropic and anisotropic systems. In particular, in the ¢ (w) = 4773(»2J Ve |<'//ik
limit of vanishingq the dynamical structure factor is directly s TSk

related to the macroscopic dielectric function according to (92)
the relation given above.

i)

il © (Wi

The integrations over the Fermi surface are evaluated nu-
merically following the linear tetrahedron method proposed
1. IMPLEMENTATION by Wiesenekker and Baerentfs.

In this section we describe the main new aspects of the

implementation for the dielectric function calculation in me- IV. RESULTS AND DISCUSSION
tallic systems. For the interband part we closely follow the
implementation for nonmetallic crystalline systems describe . .
in Ref. 12. The main difference here is in the numerical unctlons§(w) n thel Spe‘?"a' range 0—10 eV and the energy
evaluation of the&-space integrals. The response integrals of °SS functions 7€ ()] in the spectral range 0-40 eV for

the set of equationt39)—(42) involve integrations over the the. isotropic crystals of copper and silver within the adia-
(irreducible wedge of theBrillouin zone, in which the de- batic local density approximation. Both metals have the fcc

nominator can become singular. These singularities havittice type for which we used the experimental lattice con-

been treated, as described in Ref. 12, using a Lehmann-Tag{ants, 3.61 A for Cu and 4.09 A for Ag. All calculations

tetrahedron schenfé With partially occupied bands the nu- Were perlzolrﬂsd“usmg a modified version of the ADF-BAND
merical evaluation of integrals over tetrahedra in which theProgram:1%4"-4\e made use of a hybrid valence basis set
first Brillouin zone is partitioned is restricted to a part cut off CONSisting of Slater-type orbital§TOS in combination with

by the Fermi surface. Both the energy and the integrand di'e num5%>r|cal solutions of a free-atom Herman-Skillman
the new comers of the truncated simplices are obtained bjrogram:" Cores were kept frozen up t3and 4 for Cu
linear interpolation within each tetrahedron. The intrabanc®Nd Ag, respectively. The spatial resolution of this basis is
contribution to the dielectric function is completely defined €quivalent to a STO triple-zeta basis set augmented with two

by Eq. (71). Inserting Egs(49) and (52) and replacing the polarization fqnctions. The Herman-SkiIIman program also
summation over thé-points by an integral over the Bril- provides us with the free-atom _eﬁ‘ectlve pqt_entlal. T_he crys-
louin zone 1N,S, — V/8m3dK, we arrive at tal potent|§1l was e_valuated using an aux_llla_ry basis set of
STO functions to fit the deformation density in the ground-

=i D fdkg w? state calculation and the_ induced density in the response cal-

de (Ve - 8)2— (0 +i7)? culation. For the evaluation of tHespace integrals we used

a quadratic numerical integration scheme with 175

PN Y symmetry-unique sample points in the irreducible wedge of
><<lﬁik|Jq|l/fik+q>®<‘/’ik+q|1-q|‘/’ik>)' (90 the Brillouin zone, which was constructed by adopting a

Lehmann-Taut tetrahedron schefé® We found that the
The integration will be reduced to an integral over the sheetsonvergency and accuracy are very similar to the previous

To test our method we calculated the optical dielectric

o_intra(w) =lim (

3
q—0\ 87w
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formulation for nonmetals and we checked that our result€omes from the scattering that free-conduction electrons
were converged with respect ksspace sampling and basis have with phonons and with other electréAs3 These phe-

set size. All results shown here were obtained using th@omena are not described by the ALDA, where a frequency-
Vosko-Wilk-Nusair parametrizatiGh of the LDA exchange- independent xc-kernél(r,r’) is used. In general, electron
correlation potential, which was also used to derive thecorrelation effectgsbeyond ALDA) will lead to a frequency-
ALDA exchange-correlation kernel. In Figs. 5 and 6 the cal-dependent kerndl(r,r”, w) which will, in general, be long
culated real and imaginary parts of the dielectric functions ofange** The electron-phonon interaction requires the use of a
Cu and Ag are compared with two sets of experimental datanulticomponent-density functional approairhe phonon-
well known in literature®®3® and with more recent mediated electron correlation effects are then described by an
measurement¥. The latter data have been obtained usingextra contribution to thé,(r,r’,w) kernel. In particular the
ultrahigh vacuum spectroscopic ellipsometry, thus we conlong-range frequency-dependefif(r,r’,w) can take the
sider them the best data available. Our results are in goofbrm of a local functional of the current-density, which can
overall agreement with the experiments. In particular, thebe included in our schem&>® At the moment the use of
onset of the interband transitions-af..9 eV (experimentally  such a frequency-dependent kernel is the subject of our on-
around 2.0 eYfor Cu as well as the overall shape gfare  going research. The separation of the inter- and intraband
very well reproduced by our calculations. For Ag the onset atontributions to the dielectric function gives a deeper insight
~3.7 eV (experimentally around 4.0 e\Ms slightly shifted in the linear response of the two metals, in particular in the
to lower frequency, but again the main featureg.ofre well  role of bound and conduction electrons and in the identifica-
described by our method, in line with the general observatiotion of the plasma resonances. Plasmon excitations can be
in semiconductors where the absorption gap is underestidentified by the characteristic maxima in the energy loss
mated in the LDA. A feature clearly missing in our calcu- function (EELS) occurring at energies where both and €,
lated spectra is the low-frequency tail in the imaginary partare small. In the measured dielectric functions of Refs. 35
of the dielectric function. In perfect crystals this contribution and 36 the Drude theory is used to estimate the free-electron

F Ag
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FIG. 7. The 4™ and 1-4rio™""@/ e con-
tributions to the real part of the dielectric function
of Cu (left) and Ag (right). Included are the de-
compositions of the experimental data using the
Drude model as reported in Refs. 35 and 36.
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contribution(intraband contribution Within this model both 4mi o 1 5
the real and imaginary parts of the dielectric function in the -, C (w)=- mz dkfy Viex. (98
BZ

free-electron region depend on the relaxation tirrend the !

plasma frequencyb, Since the isotropic average effective massof the conduc-

tion electrons can be defined via N/m’

D) =1 - w2972 93) =(87%) 71, [0k (Vi€ /3), whereN is the density of the
A conduction electrondN=(87%) 13, [g,dkf,, we can write
Eqg. (99) as
2 Ami 1 4nN 2
Slw)=—2T (94) - T () = - = = (9'9) . (99
(1 + w?7) 0] - m 1)

0 . . _ _ with indeed w2=4#N/m". In order to compare our results
Here wp=47N/m’" with N the density of conduction elec- \ith those obtained using the Drude model, we plotted

trons andm’ their (_affc_active optical mass. In order to compare 4™ and 1-4ric™?/w separately in Fig. 7, together
with our theory within the ALDA approach we have to con- yith the decomposition of the experimental data proposed in
sider the expression93) and(94) in the limit of 7 to infin-  Refs 35 and 36. We cannot compare with the data of Ref.
ity. In this case, indeed, they become 37, however, because the few values of the dielectric func-
tions recorded at frequencies lower than the onset of the
D, \_ . O interband transitions makes it difficult to obtain the param-
er(w)=1--3, (99) etersT and w, by fitting the experimental data. In Fig. 8 we
report the energy loss spectra for both metals in the range
0-40 eV. Here calculated and experimental &t are
ezD(w) =0. (96) compared. For both metals the calculated Drude-like part of
the dielectric function crosses zero at frequencies around 8.9
In our treatment the intraband contribution & is zero, and 8.8 eV, in good agreement with the free-electron plasma
whereas Eqs(72) and (92) show that for isotropic systems frequencies 9.3 eV for Cu and 9.2 eV for Ag found in Ref.
the intraband contribution te, can be written as 35. In copper this is the only resonance observed and it has
to be interpreted as a free-electron like reson&hé&How-
Ami 1 ok ever, in silvere; crosses zero three times, at frequencies 3.5,
- —0"() = - —ZTrE f —(Vye) ® (Viey) 4.8, and 7.8 eV close to the experimental values. Sharp en-
@ 3w i 7S |Vicéidl ergy loss peaks are experimentally observed near the first

N

S

1 and third frequencie®*"3° The peak near the third fre-
=- TZE f d’k Ve -1, (97)  quency is a free-electron-like resonance as it is close to the
Smw™T g Drude plasma frequency. Although becomes zero twice

near the onset of the interband transitions, only one peak
where the gradier¥, e, =|Vye,| -1 is a vector normal to the appears in the EELS spectrum at a frequency near 3.8 eV

Fermi surface. The integrals over the Fermi surface can beheree, is still small. Whereas the third resonance is well
written as an integral over the occupied part of the Brillouinreproduced in the calculated spectrum, the first one is less
zone, thus we arrive at intense than the one observed experimentally. Similar results
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have been found by Cazalillat al3° In order for the first the limit of vanishingg. Since the macroscopic inter- and
peak to gain intensity it is necessary to have a small buintraband parts of the induced density as well as the micro-
nonvanishing imaginary part of the dielectric function at thescopic intraband part vanish in the optical limit, they cannot
frequency where the real part crosses the zero axes. As bkead to exchange-correlation contributions unless there is a
comes clear from Fig. 7, in silver this crossing occurs wherdong-range part in the exchange-correlation functional. Using
the inter- and intraband contributions compensate, which ishe local exchange-correlation functional, there is only a con-
always below the peak appearing in the interband contributribution to the exchange-correlation scalar potential due to
tion to the real part of the dielectric function correspondingthe microscopic interband part of the induced density. From
to the absorption onset. In copper the situation is different athe last step we conclude that, within the ALDA andcat
here this compensation will occur in a region around 4.8 e\=0, the self-consistent-field equations describing the inter-
where the absorption is already strong. Unlike Cazabila and intraband contributions to the response decouple. In gen-
al.®® we expect that the use of more advanced approximaeral, however, folg>0 and when going beyond the ALDA,
tions to the xc-functional in the ground state, althoughinter- and intraband processes are interconnected. We have
changing the band structure, will not affect the peak intensityapplied our approach to calculate the dielectric function and
in the case of silver. Instead inclusion of relaxation effectsthe energy loss function for Cu and Ag. Comparison of the
through the xc-kernel,(r,r’, ) is expected to strongly in- ALDA results with experimental data shows a good overall
fluence this peak. This is in keeping with the observation thaagreement. Even though the onset for the interband transi-
the absorption is sensitive to the introduction of nonintrinsictions is shifted to lower frequency for both metals by about
sources of scatteriny:>® 10%, the main features of the spectra are well reproduced
above the onset. Within the ALDA no relaxation processes
are included which results in the absence of the Drude-like
absorption tail below the interband onset. For both metals we

We have successfully extended the existing time-Obtain a macroscopic dielectric function, witd~0, near
dependent current-density-functional approach originally dethe experimentally observed Drude-like free electron plasma
veloped for the calculation of the dielectric response of non{requencies. In silver, in addition, a vanishing dielectric func-
metallic crystalline syster¥!3to treat metallic systems. We {ion is observed at 3.5 eV, just below the interband absorp-
describe the linear response of a metallic system to a genertiPn €dge, and close to the experimental plasma resonance.
g- and w-dependent external electromagnetic field and arrivel NiS is not a free-electron resonance but the results of the
at closed expressions for tigg=0 limit at finite w. We show  combined response due to inter- and intraband processes. In
how the macroscopic dielectric function and the energy los§Ur calculated loss spectrum the intensity of this plasmon
function can be derived as a function gfand w in our peak is strongly underestimated, which cannot be attributed

scheme. Three steps are essential in this procedure. First @ the local density approximation for the xc-potential of the
show how the inter- and intraband contributions to the in-9round state but is the result of the absence of relaxation

duced density and current-density can be separated. Then tRE?Cesses in our ALDA description.

microscopic CouI(_)mb gauge is used_. In this gauge the effec- APPENDIX: SYMMETRY OF THE RESPONSE

tive scalar potential is completely microscopic and all mac- FUNCTIONS

roscopic contributions due to the inter- and intraband parts of _ _ _
the induced density and current-density are gauge trans- \We consider a crystalline system perturbed by a potential
formed to the effective vector potential. Finally, we considersh(r ,w) with a periodicity that is consistent with the Born—

V. CONCLUSIONS
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von Karman boundary condition. Using linear response

theory and the following transformation for the perturbation,
Sh(r'+R,w)=€RsNh(r,w), the first-order change in the
density is given by

Sp(r,w) = eiq'rb‘pq(r,w), (A1)

in which the lattice periodidpy(r +R, w)=dpy(r , ») is given
by
1

N > O kaq(Frk = Frrkr)
K

k,k’ nn’

Opqy(r,w) =

y Ui (DE T Y (D i | SN, )| i)

enk_en’k’+w+i77

(A2)

In the following we will use the perturbation given in Eq.

PHYSICAL REVIEW B71, 155108(2005

(fik = fakr)

1
p(r@) = 2 B ka1 s

Nkk,k/ ia
y U (DETT Y (1) | SN(T, )| i)

€~ Ex Twtiy

(faxr = i)
> 5k’,k—qz Ak

ia 1+5|a

1
+_

Nkk,k'

y By (1€ Y (1) SN0, )| )

—€xtotin

€ak’
(A3)

In the second line we interchanged the rolekadndk’ and

used thaté x+q= 6 x-q- Furthermore, we introduced the
factor 1/(1+6,) to correct for the double counting of the
diagonal terms with=a. Introducing the time-reversed part-

(16) and consider the time-reversal symmetry. Since onlyners of s and i, namely ¢, = ¢ and i, = aicr, for

combinations of partially) occupied,i, and(partially) unoc-
cupied,a, orbitals contribute, we can write

>

which € =€, €y =¢€ar, and fi=f(e)=f(ei-)=fi,
etc.?® we can write

(Fik = Faier) Ui ()€ T g (1) g | SN(G, )| i)

1
5pq(l’,w) = _E 5k’,k+q

N o = 2(1+5,) €= €t

. Nik kzk 5““‘% (fiz_(kl —+f;;k),> em_k<r>e-iq:fk;__k,e<:_>k<,{ ok)|+ 5iﬁ7iq,w> 7

. Nik kEK 5““% (Zf(k1 —+f;;> ¢;k,<r)e“:i'k'fk;:k),<<_mﬂ(iﬁi(:w>|¢ak,>

. Nik kEk a«,k-ina (fiz_(kl -+f;;k),> wa_kmr>e-i:i-_';p;‘__k6<:_)k<'¢_:_z)(iﬁi(:,w)|w*_k»_ A

After a change of variables fromk-and k' to k andk’ in

*

(¢ €79 1) from the first and fourth terms and the factor
(l,b;k,e“q'rdfik) from the second and third. Now, using the
relations

(| N(a, )1y = (| N7 (0, )| hger)”
= (o[ (80" (0, ) i)

= (Y| SN (= A= @) i),

(A5)

in which 5I:I(q,w)=5ﬁT(—q,—w), and reorganizing the terms

the second and fourth terms we can gather the factorg little, we arrive at Eq(18). In a fully analogous way, but

now taking into account the following relations,

Ui Y = = Wil Ve = W )" = = (Wi e )"
(A6)

we arrive at the response functions for the paramagnetic part
of the induced current-density, E(28).
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