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Ground-state phase diagram of the one-dimensional Hubbard model
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We investigate the ground-state phase diagram of the one-dimensional half-filled Hubbard model with an
alternating potential—a model for the charge-transfer organic materials and the ferroelectric perovskites. We
numerically determine the global phase diagram of this model using the level-crossing and the phenomeno-
logical renormalization-group methods based on the exact diagonalization calculations. Our results support the
mechanism of the double phase transitions between Mott and band insulators pointed out by Fabrizio, Gogolin,
and NersesyafPhys. Rev. Lett.83, 2014(1999]: We confirm the existence of the spontaneously dimerized
phase as an intermediate state. Further we provide numerical evidence to check the criticalities on the phase
boundaries. Especially, we perform the finite-size-scaling analysis of the excitation gap to show the two-
dimensional Ising transition in the charge part. On the other hand, we confirm that the dimerized phase survives
in the strong-coupling limit, which is one of the resultants of competition between the ionicity and correlation
effects.
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I. INTRODUCTION netic and charge-transfer gaps as functiona gt fixed) by
using the quantum Monte Carl®@MC) simulation® Resta

. The .elect.romc and/or magnetic properties of the. IoW'a d Sorella, using the exact-diagonalization calculations of
dimensional interacting electrons have attracted great mtereﬁ&Fite size systems, reported, for instance, the divergence of

in research of materials, such as the quasi one-dimension e average dynamical charde.By applying the

L}D&_Torganlc compr?unds anq theftwo-d|m|¢ns(;olr_ﬁla[;£) d_renormalization-groupRG) method to the bosonized Hamil-
'gh-T, cuprates, where a variety of generalized Hubbar tonian, Tsuchiizu and Suzumura estimated a boundary line

type models have been mtro_duc’eEo_r the 1D case, a con- poyeen the Mott insulatofMl) and a band insulatoBl)

cept of the Tomonaga-Luttinger liquidTLL) has been phases in the weak-coupling regich©n the other hand

widely accepted and intensively used not only for the de'Fabrizio, Gogolin, and NersesydRGN) predicted an exis-’

scriptions on the low-energy and long-distance behaviors 0{ fthe “ ¢ v dimeri insulat&@D oh
the critical system$;* but also for the prediction of its in- ence of the “spontaneously dimerized insulai@DJ) phase

tabiliies to. for inst . ¢ densit between them%!! After their proposal, various numerical
stapiiities 1o, for ‘instance, various types of densi Y-WaV€;alculation methods have been so far applied to confirm it:
phases observed in the models.

The 1D Hubbard model with an alternating potentigso Wilkens and Martin performed the QMC simulations to

S ) evaluate, e.g., the bond order parameter, and reported the
called the ionic Hubbard modeis one of the mpdels for the transition between the Bl and SDI phases and stated an ab-
m-electron charge-transfer organic materials, such

. . i, 43ence of MI phase foA >0.12 By the combined use of the
TTF-ChIoramI??aBnd(or th? ferroelectric tra_nsm_on metal ox- method of toBoIogicaI transitior){wmps in charge and spin
ides as BaTi@"" It is defined hy the Hamiltonian Berry phase$'3-®and the method of crossing excitation

= T, + + N+ —Nin. levels, Torioet al. provided a global ground-state phase dia-

i t% (€105 * HE) Ej:unj'm” ;A( ', gram, which is in accord with the FGN scenatfoAnd an
1) existence of the SDI phase for dll>0 regions was first
exhibited there. The density matrix renormalization group
wherec; s annihilates ars-spin electror(s=1 or |) on thejth ~ (DMRG) calculation$’~2° have been performed by several
site and the number operatofs=c; ;s and nj=n; ;+n; . groups. For instance, Zhareg al. provided the data on the
While t and U terms stand for the electron transfer amongstructure factors of relevant order parameters in the weak-
sites and the Coulomb repulsion on the same site, respeend intermediate-coupling region, which supports an exis-
tively, the A term represents an energy difference betweerience of intermediate SDI phase between the Bl and M
the donor and acceptor molecul@s between the cation and phases? On one hand, Kampét al. estimated the excitation
oxygen atomg and it introduces ionicity effects into the cor- gaps up to 512-site system and found the boundary of the Bl
related electron systentwe sett=1 in the following discus- phase while the existence of the second boundary was not
sion). resolvec®® Therefore, some controversy as well as points of
The understandings on the model have been accumulategjreement exists in these recent investigations.

in the literature, where the theoretical investigations includ- In this paper using the standard numerical techniques, we
ing numerical calculations have been performed mainly ashall provide both the global structure of the ground-state
the half filling: Nagaosa and Takimoto calculated the magphase diagram and the evidences to show the criticalities of
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the massless spin and charge parts. For this purpose, it is TABLE I. The order parameters. The bosonized forms and the
worthy of noting that the FGN scenario consists of two typedocking points of phase variablé$/8¢,),(V84,)) are given in the
of instabilities commonly observed in the TLL, i.e., the tran-second and third columnsp, is a function ofU and A, and *
sition with the SW2)-symmetric Gaussian criticality in the denotes a phase not to be locked.
spin part, and that with the 2D-Ising criticality in the charge
part (see Sec. )l Furthermore, these types of phase transi- Order parameters Bosonized forms Locking points
tions have been numerically treated by the level-crossing i = 5
(LC) method, and the phenomenological renormalization- Ocow=(~D'nj 2 SmVEd’P COS\“‘E‘ZS" (m.0)
group (PRG method?! The LC method has been applied to Orcow=(=1'n; 2 cosv24, C9S\f_2¢“ (£o,0)
the frustrated XXZ chaiR22® and also used in the research  Obow=(-1IS 2.C0S\2¢, SiNV2¢, 0, %)
of highersS spin chaing? spin ladderg® and 1D correlated
electron system&2’ The advantage of using the LC method
is not restricted to its accuracy in estimating the continuous
phase transition points, including the Berezinskii-Kosterlitz-
Thouless type one; it also provides a means to check their
criticalities (see Sec. 1).?% Both of t_hese are importan_t in +J dx 29, 5 COS\'@d)w (v=p,0), )
order to settle the controversy mentioned above, and, in fact, (27ma)
the precise estimation of the spin-gap transition point of the
S=3 J;-J, chain was first given by the LC methd8iwhile

Hz = J

v, 1
H,= J deT[KV(axay)%K—V(&X%)Z

numerical investigations including the DMRG work were
performed. On the other hand, the PRG method is also a
reliable numerical approach to determine second-order pha . , .
transition point, especially for the 2D-Ising transition Whereﬁj:%r?%(;:::%ri”['s Eh)e gueal(ﬂ?}d ﬁ)id?%(sa_tls;‘ygng tr}1<e Z%rgmu-
the LC method is not available. Analysis based on the PR onl,(x), dyb, () m|=1X=Y) 3, 1. K, Uy

method for the 2D-Ising transition is successful in the spinare the Gaussian coupling and the velocity of elementary

systemg? Furthermore, one of the authors treated the pp-excitations. Coupling constangs(<0) andg, stand for the

Ising transition in theszi J;-J, model under a staggered 4kF-LI{{rr1I5Iapp scattet_r 'n? anr(Tidthe backward-scattel_rlng bbare
magnetic field, where the critical phenomena in the vicinityameI udes, respectively, artt, exprésses a coupling be-

of the phase boundary line were arg@édherefore, based tween the spin and charge degrees of freedom. In Table I, we

on these recent developments, we shall perform the numerp.ommarize the prder parameters for the relevipidgnsity-
cal calculations. wave phases, i.e., the charge-density-w&@®W), bond

The organization of this paper is as follows. In Sec. I, wecharge-density-wave (BCDW), a1nd _spin-density-wave
shall briefly refer to the effective theory based on the(SDW), phases, where t?e ;electronsspm and the k}rond charge
bosonized Hamiltonian and order parameters of expectef® 9IVe€N assj:ESVS’CJVS[E"]S,S'CLS’ and m;=2(CjCjs1s
density-wave phases, and mention the FGN scenario. In Se¢H-C), respectively (o are the Pauli matricgs Their
I, we explain procedures of the numerical calculation toPosonized expressions are given in the second column. In the
determine transition lines, where connections between th#hird column, we give the locking points of phase fields. As
methods and instabilities of the TLL systems will be ex-discussed in Ref. 10, there are two locking pointghpfi.e.,
plained. After that, we shall give a ground-state phase diat\V8¢,)= ¢ in the BCDW state. The phasg,, a function
gram in whole parameter region. Furthermore, to confirm thef U andA, continuously varies from 0 tar.
criticalities and to serve a reliability of our calculations, we Let us see the system with increasifgfor fixed U. At
check the consistency of excitation levels in finite-size sysA=0, the ground state is in the MI phase with the most
tems. A finite-size scaling analysis of the charge excitatiordivergent SDW fluctuatiorithe third row of Table ). Ac-
gaps is also performed in the vicinity of the phase boundargording to the arguments the MI phase may survive for
line. Section 1V is devoted to discussions and summary ot)>2A. For 2A>U, H, becomes relevant, and leads to the
the present investigation. A short comment on the BerryBl phase with the long-range CDW order without degen-
phase methdtd3-18will also be given there. We will provide eracy (the first row. For this issue, FGN argued that under
the comparison with that method, which is helpful to exhibitthe uniform charge distribution a renormalization effect of
a reliability of our approach as well as the results. 'H, to g, brings about the spin-gap transition in the spin part
at a certain value ol (U), which is described by the sine-
Gordon(SG) theory. This is qualitatively in accord with the
perturbation calculation in the strong-coupling regtoand

The bosonization method provides an efficient way to dedeads to the SDI phase with the long-range BCDW oftiee
scribe low-energy properties of the 1D quantum systéins: second row Further with the increase f, a transition in
Linearizing the cos-band at two Fermi pointke= +7n/2a  the charge part occurs on a separatkiXU) between two
[an electron densitp:=N/L=1 and a number of siteglec-  different types of charge-gap states. This line corresponds to
trons L (N)], and according to standard procedure, the efthe massless RG flow connecting the Gaussiha central
fective Hamiltonia#'%'tis given asH —H="H,+H,+H, chargec=1) and the 2D-Isindc=3) fixed points¥ and its
with description is given by the double-frequency sine-Gordon

-2A = =
dx—— sinv2¢, cos\V2¢,. (3

T

Il. GROUND STATES AND PHASE TRANSITIONS
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(DSG) theory3! Our main task is thus to estimate,(U) for [ 051F ac10
U>0 and to check the criticalities based on their prediction. u=06 L 7
0.75¢ g
e 0.5F )
ll. NUMERICAL METHODS AND CALCULATION | 0.1 T e ™
RESULTS - L .
Low-lying excitations observed in the finite-size systems [ Xav
. i .- 0.5 DR A T
are expected to serve for the determinations of transition P =
points. Here, we take a look at the following operators with RN [\
lower scaling dimensions: [ to2 (*G?) el &
= = 0 1 2
0,1=V2cosV2¢,, (4) A
O,2= \,'E sin \e’Ed),,, (5) FIG. 1. TheA dependence of;; atu=0.6 for the 16-site system
= [u=U/(U+4)]. The spin-gap transition poimt (U,L) is estimated
0,3=exp+iv26,). (6) from the level crossing between the singdleitcles and triplet(tri-

. - . . | i itations. Th = +3 /4, and
According to the f|n|te—S|ze-scaI|n_g argument based on th%neg i?s;tplsnhsv)\(/(;l zlf_zsepenzesfcueagis pﬁ:@f& Wﬁ‘gf)e a |:23t_
conformal field theory, corresponding energy levels for thes%quares-fitting line to the data bf=123116 is givén.

operatorsAE,; (taking the ground-state enerdy as zerg
are expressed by the use of their scaling dimensipnpéRef.

32) let) level corresponding to the operato, ; [0, (O, 3)] is
denoted by circlegtriangles with a fitting curve. Their be-
27, haviors reflect the TLL properties: For instance, the ampli-
AE,; = L Xy ) tude of the level splitting decreases with the increasé of

due to its renormalization effect, and eventually the level
Then these excitations can be extracted under the antiper&mssing occurs ak,(U,L). More precisely, in order to con-
odic boundary condition with respect to the ground state du@m the universality, we plot the averaged scaling dimension
to the selection rule of the quantum numb&$’ In the nu- X, I.., the left-hand side of Eq) in Fig. 1 (squares We
meriqal calculations.using the I__anczos algorith_m we carp|so exhibit theL-dependence of,, at A=1.0 as an example
identify AE,; according to the discrete symmetries of the (see the insgt The result shows that the condition imposed
wave functions, _e-g-, translatidi; s— ¢j.2), charge conju-  on x . is accurately satisfied fak<A,(U,L); in particular,
.gatlon.[cjys—>(—1)ch+1]5], spin reverséc; s— ¢; ), and SPace  the extrapolated value of,, is almost%. Consequently, the
inversion(c; s— ¢ o). Here note that, except for the spin- |eye| crossing at which Ed9) is satisfied can be regarded as
reversal operation, definitions of these transformations argp indication of the spin-gap transition in the spin part of the
different from those of the uniform systems, such as the eXyamiltonian(1). On the other hand, the spin part is dimer-
tended Hubbard modéf. ized forA>A (U, L).

First, we treat the spin-gap fransition in the spin part Next, we discuss the 2D-Ising transition in the charge
following Refs. 22, 26, and 27. In the SDW phase, due toyart. Recently, we have treated the crossover behavior into
the marginal coupling in the S@)-symmetric spin part,  the 2D-Ising criticality in the study of the frustrated quantum
the singlet(x,,,) and triplet(x, =X, excitations split as  gpin chair?® so we shall here employ the same approach to
Xy,1> X5 2= X3 Satisfying a universal relation determineA ,(U). Since there are two critical fixed points
connected by the RG flow, a relationship between lower-

Xg1+ 3X 1 o . . ! o
=l _—e? oo (8) energy excitations on these fixed points is quite important.

4 2 For this, the so-called ultraviolet-infrardtlV-IR) operator

Then, the degeneracy condition correspondence provides significant informatiéh® Along
the RG flow, the operators on the Gaussian fixed piiv)

Xg 1= Xg2= X3 9 are transmuted to those on the 2D-Ising fixed pgiR) as

stands for the vanishing of the coupling, and provides a good Op1— i, O,p— 1+, (10)

estimation of the spin-gap transition point. Note that Tatio

al. used the crossing of these excitation levels for the detewhere u is the disorder fieldZ, odd), and e is the energy
mination of the MI-SDI transitiot® while the consistency density operatoiZ, even with scaling dimensionyﬂzé
check of the levels to confirm the universality of transition isandx.=1, respectively. Furthermore, since a deviation from
still absent. Figure 1 shows an example of thdependences the transition pointA - A (U), which is the coupling constant
of x,; for the 16-site system at=0.6[here we introduce the of the O, , term in the DSG Hamiltoniai) plays a role of
reduced Coulomb interaction parameterU/(U+4)]. For  the thermal scaling variable, anomalous behaviors in the vi-
this plot, we estimated the spin-wave velocity from a  cinity of A (U) are to be related to the divergent correlation
triplet excitation with the wave number 7L as length of the form éx[A-A (U)]™ with the exponent
v,=lim__,AE(S=1k=4=x/L)/(27/L) and normalized the 1/v=2-x.=1. On one hand, the excitatiqn corresponding
excitation gapsAE,; according to Eq(7). The singlet(trip-  to O, provides a lower-energy level, so we shall focus our
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u=0.12 u=0.60 / u=0.72 I u=0.72

- L=10
12
14
16

U
T

0 . . FIG. 3. TheA dependence of the charge-excitation-gap ratio
0.05 oL 222 24 4 44 48 R=AE,;(U,A,L)/AE,5(U,A,L) for L=10-16 atu=0.72. The ar-
row shows the transition pointA,(U). The inset plots the

FIG. 2. Thel and A dependences of the scaled gafE, ;. L-dependence dR at A,(U) with a least-squares-fitting line.

From left to right,u=0.12, 0.60, and 0.72, respectively. The corre-

spondence between marks and system sizes is given in the figurd,(U) belongs to the 2D-Ising universality class.

Crossing points give the-dependent transition points,(U,L+1). Furthermore, we shall investigate the critical behatfor.
According to the finite-size-scaling argument, we analyze the

attention on it. In order to determine the transition point, wecharge-excitation gap by using the following one-parameter

shall numerically solve the following PRG equation for a scaling form:

given value ofU with respect toA:?128

(L+2)AE,;(U,A,L+2)=LAE,(UAL).  (11)

Since this is satisfied by the gakE,;(U,A,L)=1/L, the

obtained value can be regarded aslthdependent transition
point, sayA (U,L+1). We plotL andA dependences of the
scaled gafLAE,;(U,A,L) in Fig. 2, and find that the size
dependence of the crossing point is small for large values 0;

U, butitis visible in the weak coupling case. scattering of the scaled data is visible especially near the
While the results in the thermodynamic limit will be ering ot . pecially
transition point, the data of different system sizes are col-

given in the last part of this section, we shall check first thelapsed on the single curve, and its asymptotic behaviors

criticality on and in the vicinity of the phase boundary using ;
- : agree with the expected ones. Therefore, we can check that,
the extrapolated data,(U). For this aim, an evaluation of in the transition of the charge part, the deviatiber A (U)

the central charge through the size dependence of the ! : .

ground-state ene%gy provi(gjes a straightfor?/vard Vastow- Ela):js a _rotleHof the tf:ertrrr:a: _sc;:mg tvarlable O? the 2|_D-|5|t?]g
G O : " LT ixed point. Here, note that in the strong-coupling region the

ever, as exhibited in the following, the critical line in the ?nergi)/ scale of the crossover behaviorgmaypbe ?argg anough

charge part is close to the spin-gap transition line, so th . :
influences from the spin part with the small dimer gap pro"ilto be detected even in the small-size systems. However, the

hibit a reliable estimation of from the data of the finite-size

systems. Alternatively, we shall evaluate a ratio of the

charge-excitation gapsE, ;(U,A,L) andAE, ,(U,A,L) on 3t v=1 (2D-Ising) P

the phase boundary to check the UV-IR operator correspon- I . 1=14 VA

dence. According to Eq$7) and(10), it is expressed by the o 16 7

scaling dimensions of operatoesand u as 2r - A
u=0.72

AE, 1(U,A,L) =L "W(L[A - A (U)]Y). (13

SinceAE, ;= 1/¢ in the thermodynamic limitL/&— ), the
scaling function is expected to asymptotically behave as
W(x) =x for largex. On the other hand, the gayE, ;= 1/L

on the critical point(L/é—0) so that W(x)=const for
—0.3% Figure 4 plots Eq(13) using the exponent of the
D-Ising modelv=1. Although due to the smallness bfa

4

_AE(UAMLL) X, 1 (12)

AE, (U, A (U)L)  x. 8 T e = \ 1=0.80 |
for large L. Figure 3 plots theA dependence oR for TR
L=10-16 (u=0.72. The transition point in the thermody- 0 : : ' : :
namic limit is denoted by the arrow near theaxis. While
the ratio exhibits a subtld dependence around the point, we
interpolate these data, and estimatelttgependence dR at FIG. 4. The finite-size-scaling plots of the charge-excitation gap
A,(U), which is given with a least-squares-fitting line in the AE,; for systems ofL=14-18 atu=0.72 and 0.80. We use the

inset. The plot shows that the extrapolated value is fairly2p-ising critical exponent=1. A dotted line(the slope 1is given
close toé. Therefore we conclude that the boundary lineas a guide to the eye.

In[LAE, ]
=

ln[L(A—AP)V]

155105-4



GROUND-STATE PHASE DIAGRAM OF THE ONE-. PHYSICAL REVIEW B 71, 155105(2005

(a) (b) ok - i
1k \ﬁ
I A +
| e %,
0.5 o k)
,000—4: 8 ’ $
F o= ° <1
| 0 1/L2 0.01 . 7" 9
8,(10) o
o (0.5 S (1) o 12-14, 14
BI (CDW) ° ok IS ]
1 1 1 1 1 1 1 1 1 1 1
' MI (SDW) 0 03 !
FIG. 6. The deviations of boundaries from th&=2U line
- .« \SDI (BCDW ) ’
M,gf/«" \(—) A, (U,L)-U/2. We useu=U/(U+4) as thex axis. The correspon-
or - dence between marks and system sizes is given in the figure. Marks
1 . L with solid (dotted curves exhibit the deviations in the sgicharge

art.
U p

FIG. 5. The ground-state phase diagram of the 1D Hubbardbservation. On the other hand, in order to clarify the behav-
model with the alternating potential. The open cirdleguareswith iors in the larged region, we plot a magnification of the
a fitting curve show the spin-ga2D-Ising transition line in the  phase diagram around thé2U line in Fig. 6. This shows
spin(charge part. The stable regions of the MI, SDI, and Bl phasesthat in the limit ofU — o the boundaries do not merge to the
are given in the 2D parameter spate,d) [u=U/(U+4) and jine: More precisely, folU=96 we obtainA,~U/2=-0.65
5=A/(A+2)]. Insets(a) and (b) show the extrapolations of the andA,-U/2=-0.97, respectively. In Ref. 16, adding to the
L-dependent transition points in the spin and the charge parts, res-pin part(2A,-U=-1.91 forU, V> 1), they also reported
spectively. For comparison, we also plot the DMRG calculationzA —U=-1.33. which is close to our estimation. Conse-
feS“'FS given in R.ef' 19. by using the filled squarek, in their qugntly, we co’nfirm that the intermediate SDI phase may
notation and the filled circlesUc). survive in the larged limit, which is one of the nontrivial
finite-size-scaling nature may become obscure in the weaRehaviors and is contrasted to the naive argument.
and intermediate couplings. Here we shall perform a comparison W|th the previous

Lastly, we present the ground-state phase diagram. In o?MRG results. As mentioned in Sec. |, while the DMRG
der to determine it, the extrapolations®f(U, L) to the ther- calculations perf_ormed by several groups seem not to reach
modynamic limit are carried out. For the spin part, it should@" agreement with respect to an existence of the SDI phase,
be noted that Toriet al. evaluated the spin-gap transition 't My be informative to provide a comparison with our re-
line from the level crossing E9),16 so here we perform the sul_t. Zhanget al. determined two-types of phase transition
same calculations in order to complete the ground-statBCINtS Ua and Ug, based on the structure factor of the
phase diagram. We employ the formula;(U,L)=A (U) BC_DW ord_er parametef® we p_Iot thelr results in Fl_g. 5 by _
+al-2+bL™4, whereA (U), a andb are determined accord- USINg the fllled_ squares_and filled circles, res_pectwely. This
ing to the least-squares-fitting condition. Then, we extrapo—s’howS that their esimations b, agree well W'th. our data
lated the data of =12—18 as shown in Fig.(8), where from A,U), a!though those o, _c_onS|derabI_y dewatt_a from
bottom to top the data with fitting curves are given in the2o(Y)- Since the phase transition At(U) is the spin-gap

increasing order ob). Consequently, the spin-gap transition tran_sition, the logarithmic correqtions to the pOV\_/er-IaW be-
line A,(U) (open circles with a fitting curveis given in haviors as well as the exponentially small magnitude of the

Fig. 5, where the reduced alternating potential paramete?fpin gap generally make it difﬁc“'? to d_etermine the transi-

5=A/(A+2) is used as thg axis. On the other hand, for the tion point. On one hand, as explained in the above, the LC

extrapolation of A (U,L), we assume the following method used here overcomes these difficulties in the deter-
p L 1

formula®® A (U,L)=A,(U)+aL™3, and extrapolate the data mination of the transition points,(U).

of L=10-18 as shown in Fig.(B). Consequently, Fig. 5

shows that the critical line in the charge p&pen squares IV. DISCUSSION AND SUMMARY

with a fitting curve does not coincide with the spin-gap

transition line, i.e.A,(U)<A,(U), and that the 2D param- For the understanding of the phase diagram in the lakge-
eter spacd(u, 8)|0=<u,5<1} is separated into the MI, BI, limit, let us see _the perturbative treatment of Hamiltor(ian
and SDI phases with SDW, CDW, and BCDW, respectively.under the condition ol —2A>1. A,(U) may be related to
Since the Hubbard gap provides a principal energy scale aritie spin-gap transition point in the=3 J;-J, model102°

a shape of the boundary is roughly determined so that th&herefore, using its numerical vafifeand perturbative ex-
magnitude of the band gap becomes comparable to the scaRessions onJ; and J,® we can approximately estimate
the U dependence of the boundaries is expected to be weak,(U) as a solution of the equatiod,/J;=X/(1-4X)

in the smallu region81° which is in agreement with our =0.2411, whereX=(1+4x?-x*/U?%1-x%)2 and x=2A/U.
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Then, we find a solution[A](U)] to give a value
Al (U)-U/2=-1.427 in the limit. While, due to the lack of
effects from the higher-order processes in the kinetic energy
term, the approximate value deviates from the numerical es-
timation, this exhibits the following, i.e., the perturbative ex-
pansion becomes singular on thda=2U line so that the
phase boundary deviates from the line. This singularity also
exists in the perturbative calculations of the SDW and CDW
state energietEgpy and Eqcpy). And then the direct transi-
tion line between these phases cannot be determined from
the equatiorEgpyw=Ecpw, Which is highly contrasted to the
case of the extended Hubbard modEHM) including the
nearest-neighbor Coulomb InteractIEannj+1.37 Since the FIG. 7. Behavior of the ground-state expectation value of the
spin-charge coupling term with the dimerized spin part 9€N4ist operatorz, (v=p, o) near the A=U line. The correspondence
erates one of the relevant forceg(U) should be affected by o yeen marks and system sizes are given in the figure.
that of the spin part. Besides the present model, it is known
that EHM possesses the coupling textos\8¢, cos\8¢, L. This crossing point is expected to be a good estimator for
in its bosonized_forn‘?, and that the BCDW state with the the 2D-Ising transition point in the charge p&rf; because
locking points(\8¢,,)=0 is stabilized around theVZU this is quite close to the PRG result even for snhalHow-
line in the weak- and intermediate-coupling regfériThe  ever, a theoretical explanation of this possibility is still open.
corrections tag, from higher-energy states stabilize¥itbut To summarize, we have investigated the ground-state
the coupling term forces the boundaries to merge into thgphase diagram of the one-dimensional half-filled Hubbard
single first-order phase transition line between the SDW andnodel with the alternating potential, especially in order to
CDW states in the strong-coupling region because it raisesgerify the scenario given by Fabrizio, Gogolin, and Ners-
the BCDW state energy. However, in the present BCDWesyan, we have numerically treated the phase transitions ob-
state, the locking poind, in Table | may take a value so as served in the spin and charge parts: We calculated the spin-
not to bring about a large energy cost due to the couplingyap transition pointd , in the spin part by the level-crossing
term Eq.(3). Therefore, the existence of the SDI phase is noimethod(see also the argument for the spin-gap transition in
prohibited even in the strong-coupling limit in contrast to theRef. 1§ and the two-dimensional Ising transition pointg
EHM case. Of course, these arguments are qualitative arid the charge part by the phenomenological renormalization-
intuitive ones, so an effective theory in this limit is required group method. We confirmed that, adding to the Mott and
for the precise description on the limiting behaviors. band insulators, the “spontaneously dimerized insulator” ac-
Finally, we comment on the Berry phase metfd&® companied by the long-range-ordereds2bond charge-
The Berry phases for the charge and the spin pgytare  density wave is stabilized as the intermediate phase for all
related to the ground-state expectation values of the twist) >0. Then we checked the $2J-symmetric Gaussia(2D-
operators ag,=Im log z, where Ising) criticality of the spin(charge part by treating the low-

z,=(U.U)), z,=(U,Ub, 14
,=(UU)) (WU (14) el ios .
and Us:exp{(27-ri/L)E};ljnj,s].13 Sincez, is real at the half o ’
filling with zero-magnetic field,y, (=0 or ) indicates the

sign ofz,. On one handz, can be related to the bosonic field 74r [ o

asz, ,* ¥(c0s/8¢,,), so that it includes the information of Lo ]jlig’
the locking points given in Table P In Fig. 7 we show ol v v v L
behaviors ofz, near the 2=U line for U=16 and find that o 0.001 0.002
with the increase oA both of these increase and change their yr?

sign. As shown in the lower panel of Fig. 8, the condition

z,=0 gives a close value to the result of the LC method, so it

may provide a proper estimation of the spin-gap transition 7 \M\«,\ﬁ D

point A,.1>6On the other hand, the zero pointzfexhibits Sk

a deviation from the PRG resuléee the upper panel of Fig. 6.8 LC_
8). Since ¢, continuously varies with, z, can take a finite T e B
value on the 2D-Ising transition point in the thermodynamic 0 0.01 0.02
limit, which is highly contrasted ta, on the spin-gap tran- L2

sition point. In fact, the size-dependent zero points are seem-

ingly extrapolated to a value different from our PRG estima-  F|G. 8. Comparisons of the system-size dependences of the
tion, so that the conditionz,=0 does not specify the transition points obtained by the LC and PRG methods vs by the
transition point. On the other hand, we also find in Fig. 7 thatonditionz,=0. The fitting curves show the extrapolations of data
there is a poinfA =7.3 at whichz, is almost independent of to the thermodynamic limit.
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lying excitation levels in the finite-size systems, and, simul-system specified by the discrete symmetries of the lattice
taneously, we performed the finite-size-scaling analysis oHamiltonian with the twisted boundary condition, whereas
the charge-excitation gap to clarify the critical phenomenahey have measured the BCDW order parameter, a com-
aroundA .. The comparison with the relating work was per- posite excitation of the spin and charge degrees of fregdom
formed to check the reliability of our numerical results andwith the larger energy scale.

to exhibit the efficiency of our approach.

After submission of this paper, we became aware of the
work investigating the ground-state phase diagram and the
universality of the transition in the charge part by the use of One of the author§H.O. is grateful to Y. Okabe for
finite-size-scaling analysis of the DMRG calculation dta. helpful discussions. M.N. thanks J. Voit for the collaboration
They have found two transition points and succeeded to obin the early stage of the present work. M.N. is partly sup-
tain »=1 in agreement with our conclusion, while the esti- ported by the Ministry of Education, Culture, Sports, Science
mated exponent for the susceptibility of the BCDW orderand Technology of Japan through Grants-in-Aid No.
parameter shows a deviation from the theoretical valued4740241. Main computations were performed using the fa-
m=1/4, e.qg., n1=0.45 at the point on the BI-SDI phase cilities of Tokyo Metropolitan University, Yukawa Institute
boundaryA=10 andU_;=21.385(in their notation. In this  for Theoretical Physics, and the Supercomputer Center, In-
paper we have treated the elementary excitations in the TLktitute for Solid State Physics, University of Tokyo.
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