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We investigate the ground-state phase diagram of the one-dimensional half-filled Hubbard model with an
alternating potential—a model for the charge-transfer organic materials and the ferroelectric perovskites. We
numerically determine the global phase diagram of this model using the level-crossing and the phenomeno-
logical renormalization-group methods based on the exact diagonalization calculations. Our results support the
mechanism of the double phase transitions between Mott and band insulators pointed out by Fabrizio, Gogolin,
and NersesyanfPhys. Rev. Lett.83, 2014s1999dg: We confirm the existence of the spontaneously dimerized
phase as an intermediate state. Further we provide numerical evidence to check the criticalities on the phase
boundaries. Especially, we perform the finite-size-scaling analysis of the excitation gap to show the two-
dimensional Ising transition in the charge part. On the other hand, we confirm that the dimerized phase survives
in the strong-coupling limit, which is one of the resultants of competition between the ionicity and correlation
effects.
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I. INTRODUCTION

The electronic and/or magnetic properties of the low-
dimensional interacting electrons have attracted great interest
in research of materials, such as the quasi one-dimensional
s1Dd organic compounds and the two-dimensionals2Dd
high-Tc cuprates, where a variety of generalized Hubbard-
type models have been introduced.1 For the 1D case, a con-
cept of the Tomonaga-Luttinger liquidsTLL d has been
widely accepted and intensively used not only for the de-
scriptions on the low-energy and long-distance behaviors of
the critical systems,2–4 but also for the prediction of its in-
stabilities to, for instance, various types of density-wave
phases observed in the models.5

The 1D Hubbard model with an alternating potentialsalso
called the ionic Hubbard modeld is one of the models for the
p-electron charge-transfer organic materials, such as
TTF-Chloranil,6 and/or the ferroelectric transition metal ox-
ides as BaTiO3.

7,8 It is defined by the Hamiltonian

H = − to
j ,s

scj ,s
† cj+1,s + H.c.d + o

j

Unj ,↑nj ,↓ + o
j

Ds− 1d jnj ,

s1d

wherecj ,s annihilates ans-spin electronss=↑ or ↓d on thej th
site and the number operatornj ,s=cj ,s

† cj ,s and nj =nj ,↑+nj ,↓.
While t and U terms stand for the electron transfer among
sites and the Coulomb repulsion on the same site, respec-
tively, the D term represents an energy difference between
the donor and acceptor moleculessor between the cation and
oxygen atomsd, and it introduces ionicity effects into the cor-
related electron systemsswe sett=1 in the following discus-
siond.

The understandings on the model have been accumulated
in the literature, where the theoretical investigations includ-
ing numerical calculations have been performed mainly at
the half filling: Nagaosa and Takimoto calculated the mag-

netic and charge-transfer gaps as functions ofD sU fixedd by
using the quantum Monte CarlosQMCd simulation.6 Resta
and Sorella, using the exact-diagonalization calculations of
finite size systems, reported, for instance, the divergence of
the average dynamical charge.9 By applying the
renormalization-groupsRGd method to the bosonized Hamil-
tonian, Tsuchiizu and Suzumura estimated a boundary line
between the Mott insulatorsMI d and a band insulatorsBId
phases in the weak-coupling regions.8 On the other hand,
Fabrizio, Gogolin, and NersesyansFGNd predicted an exis-
tence of the “spontaneously dimerized insulator”sSDId phase
between them.10,11 After their proposal, various numerical
calculation methods have been so far applied to confirm it:
Wilkens and Martin performed the QMC simulations to
evaluate, e.g., the bond order parameter, and reported the
transition between the BI and SDI phases and stated an ab-
sence of MI phase forD.0.12 By the combined use of the
method of topological transitionssjumps in charge and spin
Berry phasesd9,13–15 and the method of crossing excitation
levels, Torioet al. provided a global ground-state phase dia-
gram, which is in accord with the FGN scenario.16 And an
existence of the SDI phase for allU.0 regions was first
exhibited there. The density matrix renormalization group
sDMRGd calculations17–20 have been performed by several
groups. For instance, Zhanget al. provided the data on the
structure factors of relevant order parameters in the weak-
and intermediate-coupling region, which supports an exis-
tence of intermediate SDI phase between the BI and MI
phases.19 On one hand, Kampfet al. estimated the excitation
gaps up to 512-site system and found the boundary of the BI
phase while the existence of the second boundary was not
resolved.20 Therefore, some controversy as well as points of
agreement exists in these recent investigations.

In this paper using the standard numerical techniques, we
shall provide both the global structure of the ground-state
phase diagram and the evidences to show the criticalities of
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the massless spin and charge parts. For this purpose, it is
worthy of noting that the FGN scenario consists of two types
of instabilities commonly observed in the TLL, i.e., the tran-
sition with the SUs2d-symmetric Gaussian criticality in the
spin part, and that with the 2D-Ising criticality in the charge
part ssee Sec. IId. Furthermore, these types of phase transi-
tions have been numerically treated by the level-crossing
sLCd method, and the phenomenological renormalization-
group sPRGd method.21 The LC method has been applied to
the frustrated XXZ chain,22,23 and also used in the research
of higher-S spin chains,24 spin ladders,25 and 1D correlated
electron systems.26,27The advantage of using the LC method
is not restricted to its accuracy in estimating the continuous
phase transition points, including the Berezinskii-Kosterlitz-
Thouless type one; it also provides a means to check their
criticalities ssee Sec. IIId.23 Both of these are important in
order to settle the controversy mentioned above, and, in fact,
the precise estimation of the spin-gap transition point of the
S= 1

2 J1-J2 chain was first given by the LC method,22 while
numerical investigations including the DMRG work were
performed. On the other hand, the PRG method is also a
reliable numerical approach to determine second-order phase
transition point, especially for the 2D-Ising transition where
the LC method is not available. Analysis based on the PRG
method for the 2D-Ising transition is successful in the spin
systems.24 Furthermore, one of the authors treated the 2D-
Ising transition in theS= 1

2 J1-J2 model under a staggered
magnetic field, where the critical phenomena in the vicinity
of the phase boundary line were argued.28 Therefore, based
on these recent developments, we shall perform the numeri-
cal calculations.

The organization of this paper is as follows. In Sec. II, we
shall briefly refer to the effective theory based on the
bosonized Hamiltonian and order parameters of expected
density-wave phases, and mention the FGN scenario. In Sec.
III, we explain procedures of the numerical calculation to
determine transition lines, where connections between the
methods and instabilities of the TLL systems will be ex-
plained. After that, we shall give a ground-state phase dia-
gram in whole parameter region. Furthermore, to confirm the
criticalities and to serve a reliability of our calculations, we
check the consistency of excitation levels in finite-size sys-
tems. A finite-size scaling analysis of the charge excitation
gaps is also performed in the vicinity of the phase boundary
line. Section IV is devoted to discussions and summary of
the present investigation. A short comment on the Berry
phase method9,13–16will also be given there. We will provide
the comparison with that method, which is helpful to exhibit
a reliability of our approach as well as the results.

II. GROUND STATES AND PHASE TRANSITIONS

The bosonization method provides an efficient way to de-
scribe low-energy properties of the 1D quantum systems:29

Linearizing the cos-band at two Fermi points ±kF= ±pn/2a
fan electron densitynªN/L=1 and a number of sitesselec-
tronsd L sNdg, and according to standard procedure, the ef-
fective Hamiltonian8,10,11 is given asH→H=Hr+Hs+H2
with

Hn =E dx
vn

2p
FKns]xund2 +

1

Kn

s]xfnd2G
+E dx

2gn

s2pad2 cosÎ8fn, sn = r,sd, s2d

H2 =E dx
− 2D

pa
sinÎ2fr cosÎ2fs. s3d

The operatorun is the dual field offn satisfying the commu-
tation relationffnsxd ,]yun8syd /pg= idsx−yddn,n8. Kn and vn

are the Gaussian coupling and the velocity of elementary
excitations. Coupling constantsgrs,0d andgs stand for the
4kF-Umklapp scattering and the backward-scattering bare
amplitudes, respectively, andH2 expresses a coupling be-
tween the spin and charge degrees of freedom. In Table I, we
summarize the order parameters for the relevant 2kF density-
wave phases, i.e., the charge-density-wavesCDWd, bond
charge-density-wave sBCDWd, and spin-density-wave
sSDWd phases, where the electron’s spin and the bond charge
are given asSj =os,s8cj ,s

† f 1
2sg

s,s8
cj ,s8 and n̄j =osscj ,s

† cj+1,s

+H.c.d, respectively ss are the Pauli matricesd. Their
bosonized expressions are given in the second column. In the
third column, we give the locking points of phase fields. As
discussed in Ref. 10, there are two locking points offr, i.e.,
kÎ8frl= ±f0 in the BCDW state. The phasef0, a function
of U andD, continuously varies from 0 top.

Let us see the system with increasingD for fixed U. At
D=0, the ground state is in the MI phase with the most
divergent SDW fluctuationsthe third row of Table Id. Ac-
cording to the arguments,6,8 the MI phase may survive for
U@2D. For 2D@U, H2 becomes relevant, and leads to the
BI phase with the long-range CDW order without degen-
eracysthe first rowd. For this issue, FGN argued that under
the uniform charge distribution a renormalization effect of
H2 to gs brings about the spin-gap transition in the spin part
at a certain value ofDssUd, which is described by the sine-
GordonsSGd theory. This is qualitatively in accord with the
perturbation calculation in the strong-coupling region,6 and
leads to the SDI phase with the long-range BCDW ordersthe
second rowd. Further with the increase ofD, a transition in
the charge part occurs on a separatrixDrsUd between two
different types of charge-gap states. This line corresponds to
the massless RG flow connecting the Gaussiansthe central
chargec=1d and the 2D-Isingsc= 1

2
d fixed points,30 and its

description is given by the double-frequency sine-Gordon

TABLE I. The order parameters. The bosonized forms and the
locking points of phase variablesskÎ8frl ,kÎ8fsld are given in the
second and third columns.f0 is a function ofU and D, and p

denotes a phase not to be locked.

Order parameters Bosonized forms Locking points

OCDW=s−1d jnj 2 sinÎ2fr cosÎ2fs sp ,0d
OBCDW=s−1d jn̄j 2 cosÎ2fr cosÎ2fs s±f0,0d
OSDW

i =s−1d jSj
z 2 cosÎ2fr sinÎ2fs s0, pd
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sDSGd theory.31 Our main task is thus to estimateDnsUd for
U.0 and to check the criticalities based on their prediction.

III. NUMERICAL METHODS AND CALCULATION
RESULTS

Low-lying excitations observed in the finite-size systems
are expected to serve for the determinations of transition
points. Here, we take a look at the following operators with
lower scaling dimensions:

On,1 = Î2 cosÎ2fn, s4d

On,2 = Î2 sinÎ2fn, s5d

On,3 = exps± iÎ2und. s6d

According to the finite-size-scaling argument based on the
conformal field theory, corresponding energy levels for these
operatorsDEn,i staking the ground-state energyE0 as zerod
are expressed by the use of their scaling dimensionsxn,i sRef.
32d

DEn,i .
2pvn

L
xn,i . s7d

Then these excitations can be extracted under the antiperi-
odic boundary condition with respect to the ground state due
to the selection rule of the quantum numbers.26,27 In the nu-
merical calculations using the Lanczos algorithm we can
identify DEn,i according to the discrete symmetries of the
wave functions, e.g., translationscj ,s→cj+2,sd, charge conju-
gationfcj ,s→ s−1d jcj+1,s

† g, spin reversescj ,s→cj ,−sd, and space
inversion scj ,s→cL−j ,sd. Here note that, except for the spin-
reversal operation, definitions of these transformations are
different from those of the uniform systems, such as the ex-
tended Hubbard model.27

First, we treat the spin-gap transition in the spin part
following Refs. 22, 26, and 27. In the SDW phase, due to
the marginal coupling in the SUs2d-symmetric spin part,
the singletsxs,1d and triplet sxs,2=xs,3d excitations split as
xs,1.xs,2=xs,3 satisfying a universal relation

xs,1 + 3xs,2

4
=

1

2
. s8d

Then, the degeneracy condition

xs,1 = xs,2 = xs,3 s9d

stands for the vanishing of the coupling, and provides a good
estimation of the spin-gap transition point. Note that Torioet
al. used the crossing of these excitation levels for the deter-
mination of the MI-SDI transition,16 while the consistency
check of the levels to confirm the universality of transition is
still absent. Figure 1 shows an example of theD dependences
of xs,i for the 16-site system atu=0.6 fhere we introduce the
reduced Coulomb interaction parameteru=U / sU+4dg. For
this plot, we estimated the spin-wave velocityvs from a
triplet excitation with the wave number 4p /L as
vs=limL→`DEsS=1,k=4p /Ld / s2p /Ld and normalized the
excitation gapsDEs,i according to Eq.s7d. The singletstrip-

letd level corresponding to the operatorOs,1 fOs,2sOs,3dg is
denoted by circlesstrianglesd with a fitting curve. Their be-
haviors reflect the TLL properties: For instance, the ampli-
tude of the level splitting decreases with the increase ofD
due to its renormalization effect, and eventually the level
crossing occurs atDssU ,Ld. More precisely, in order to con-
firm the universality, we plot the averaged scaling dimension
xav, i.e., the left-hand side of Eq.s8d in Fig. 1 ssquaresd. We
also exhibit theL-dependence ofxav at D=1.0 as an example
ssee the insetd. The result shows that the condition imposed
on xs,i is accurately satisfied forDøDssU ,Ld; in particular,
the extrapolated value ofxav is almost 1

2. Consequently, the
level crossing at which Eq.s9d is satisfied can be regarded as
an indication of the spin-gap transition in the spin part of the
Hamiltonians1d. On the other hand, the spin part is dimer-
ized for D.DssU ,Ld.

Next, we discuss the 2D-Ising transition in the charge
part. Recently, we have treated the crossover behavior into
the 2D-Ising criticality in the study of the frustrated quantum
spin chain,28 so we shall here employ the same approach to
determineDrsUd. Since there are two critical fixed points
connected by the RG flow, a relationship between lower-
energy excitations on these fixed points is quite important.
For this, the so-called ultraviolet-infraredsUV-IRd operator
correspondence provides significant informations:11,33Along
the RG flow, the operators on the Gaussian fixed pointsUVd
are transmuted to those on the 2D-Ising fixed pointsIRd as

Or,1 → m, Or,2 → I + e, s10d

wherem is the disorder fieldsZ2 oddd, and e is the energy
density operatorsZ2 evend with scaling dimensionsxm= 1

8
andxe=1, respectively. Furthermore, since a deviation from
the transition pointD−DrsUd, which is the coupling constant
of the Or,2 term in the DSG Hamiltonian,10 plays a role of
the thermal scaling variable, anomalous behaviors in the vi-
cinity of DrsUd are to be related to the divergent correlation
length of the form j~ fD−DrsUdg−n with the exponent
1/n=2−xe=1. On one hand, the excitationm corresponding
to Or,1 provides a lower-energy level, so we shall focus our

FIG. 1. TheD dependence ofxs,i at u=0.6 for the 16-site system
fu=U / sU+4dg. The spin-gap transition pointDssU ,Ld is estimated
from the level crossing between the singletscirclesd and tripletstri-
anglesd spin excitations. The squares plotxav=sxs,1+3xs,2d /4, and
the inset shows theL-dependence ofxav at D=1.0, where a least-
squares-fitting line to the data ofL=12–16 is given.
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attention on it. In order to determine the transition point, we
shall numerically solve the following PRG equation for a
given value ofU with respect toD:21,28

sL + 2dDEr,1sU,D,L + 2d = LDEr,1sU,D,Ld. s11d

Since this is satisfied by the gapDEr,1sU ,D ,Ld~1/L, the
obtained value can be regarded as theL-dependent transition
point, sayDrsU ,L+1d. We plotL andD dependences of the
scaled gapLDEr,1sU ,D ,Ld in Fig. 2, and find that the size
dependence of the crossing point is small for large values of
U, but it is visible in the weak coupling case.

While the results in the thermodynamic limit will be
given in the last part of this section, we shall check first the
criticality on and in the vicinity of the phase boundary using
the extrapolated dataDrsUd. For this aim, an evaluation of
the central chargec through the size dependence of the
ground-state energy provides a straightforward way.34 How-
ever, as exhibited in the following, the critical line in the
charge part is close to the spin-gap transition line, so that
influences from the spin part with the small dimer gap pro-
hibit a reliable estimation ofc from the data of the finite-size
systems. Alternatively, we shall evaluate a ratio of the
charge-excitation gapsDEr,1sU ,D ,Ld andDEr,2sU ,D ,Ld on
the phase boundary to check the UV-IR operator correspon-
dence. According to Eqs.s7d ands10d, it is expressed by the
scaling dimensions of operatorse andm as

R=
DEr,1sU,DrsUd,Ld
DEr,2sU,DrsUd,Ld

→ xm

xe

=
1

8
s12d

for large L. Figure 3 plots theD dependence ofR for
L=10–16 su=0.72d. The transition point in the thermody-
namic limit is denoted by the arrow near thex axis. While
the ratio exhibits a subtleD dependence around the point, we
interpolate these data, and estimate theL dependence ofR at
DrsUd, which is given with a least-squares-fitting line in the
inset. The plot shows that the extrapolated value is fairly
close to 1

8. Therefore we conclude that the boundary line

DrsUd belongs to the 2D-Ising universality class.
Furthermore, we shall investigate the critical behavior.28

According to the finite-size-scaling argument, we analyze the
charge-excitation gap by using the following one-parameter
scaling form:

DEr,1sU,D,Ld = L−1CsLfD − DrsUdgnd. s13d

SinceDEr,1~1/j in the thermodynamic limitsL /j→`d, the
scaling function is expected to asymptotically behave as
Csxd~x for largex. On the other hand, the gapDEr,1~1/L
on the critical point sL /j→0d so that Csxd.const for
x→0.35 Figure 4 plots Eq.s13d using the exponent of the
2D-Ising modeln=1. Although due to the smallness ofL a
scattering of the scaled data is visible especially near the
transition point, the data of different system sizes are col-
lapsed on the single curve, and its asymptotic behaviors
agree with the expected ones. Therefore, we can check that,
in the transition of the charge part, the deviationD−DrsUd
plays a role of the thermal scaling variable on the 2D-Ising
fixed point. Here, note that in the strong-coupling region the
energy scale of the crossover behavior may be large enough
to be detected even in the small-size systems. However, the

FIG. 2. TheL and D dependences of the scaled gapLDEr,1.
From left to right,u=0.12, 0.60, and 0.72, respectively. The corre-
spondence between marks and system sizes is given in the figure.
Crossing points give theL-dependent transition pointsDrsU ,L+1d.

FIG. 3. TheD dependence of the charge-excitation-gap ratio
R=DEr,1sU ,D ,Ld /DEr,2sU ,D ,Ld for L=10–16 atu=0.72. The ar-
row shows the transition pointDrsUd. The inset plots the
L-dependence ofR at DrsUd with a least-squares-fitting line.

FIG. 4. The finite-size-scaling plots of the charge-excitation gap
DEr,1 for systems ofL=14–18 atu=0.72 and 0.80. We use the
2D-Ising critical exponentn=1. A dotted linesthe slope 1d is given
as a guide to the eye.
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finite-size-scaling nature may become obscure in the weak
and intermediate couplings.

Lastly, we present the ground-state phase diagram. In or-
der to determine it, the extrapolations ofDnsU ,Ld to the ther-
modynamic limit are carried out. For the spin part, it should
be noted that Torioet al. evaluated the spin-gap transition
line from the level crossing Eq.s9d,16 so here we perform the
same calculations in order to complete the ground-state
phase diagram. We employ the formula:DssU ,Ld=DssUd
+aL−2+bL−4, whereDssUd, a andb are determined accord-
ing to the least-squares-fitting condition. Then, we extrapo-
lated the data ofL=12–18 as shown in Fig. 5sad, where from
bottom to top the data with fitting curves are given in the
increasing order ofU. Consequently, the spin-gap transition
line DssUd sopen circles with a fitting curved is given in
Fig. 5, where the reduced alternating potential parameter
d=D / sD+2d is used as they axis. On the other hand, for the
extrapolation of DrsU ,Ld, we assume the following
formula:36 DrsU ,Ld=DrsUd+aL−3, and extrapolate the data
of L=10–18 as shown in Fig. 5sbd. Consequently, Fig. 5
shows that the critical line in the charge partsopen squares
with a fitting curved does not coincide with the spin-gap
transition line, i.e.,DssUd,DrsUd, and that the 2D param-
eter spacehsu,dd u0øu,dø1j is separated into the MI, BI,
and SDI phases with SDW, CDW, and BCDW, respectively.
Since the Hubbard gap provides a principal energy scale and
a shape of the boundary is roughly determined so that the
magnitude of the band gap becomes comparable to the scale,
the U dependence of the boundaries is expected to be weak
in the small-U region,8,10 which is in agreement with our

observation. On the other hand, in order to clarify the behav-
iors in the large-U region, we plot a magnification of the
phase diagram around the 2D=U line in Fig. 6. This shows
that in the limit ofU→` the boundaries do not merge to the
line: More precisely, forU=96 we obtainDr−U /2.−0.65
andDs−U /2.−0.97, respectively. In Ref. 16, adding to the
spin parts2Ds−U.−1.91 for U, V@1d, they also reported
2Dr−U.−1.33, which is close to our estimation. Conse-
quently, we confirm that the intermediate SDI phase may
survive in the large-U limit, which is one of the nontrivial
behaviors and is contrasted to the naive argument.

Here we shall perform a comparison with the previous
DMRG results. As mentioned in Sec. I, while the DMRG
calculations performed by several groups seem not to reach
an agreement with respect to an existence of the SDI phase,
it may be informative to provide a comparison with our re-
sult. Zhanget al. determined two-types of phase transition
points Uc1 and Uc2 based on the structure factor of the
BCDW order parameter;19 we plot their results in Fig. 5 by
using the filled squares and filled circles, respectively. This
shows that their estimations ofUc1 agree well with our data
DrsUd, although those ofUc2 considerably deviate from
DssUd. Since the phase transition atDssUd is the spin-gap
transition, the logarithmic corrections to the power-law be-
haviors as well as the exponentially small magnitude of the
spin gap generally make it difficult to determine the transi-
tion point. On one hand, as explained in the above, the LC
method used here overcomes these difficulties in the deter-
mination of the transition pointsDssUd.

IV. DISCUSSION AND SUMMARY

For the understanding of the phase diagram in the large-U
limit, let us see the perturbative treatment of Hamiltonians1d
under the condition ofU−2D@1. DssUd may be related to
the spin-gap transition point in theS= 1

2 J1-J2 model.10,20

Therefore, using its numerical value22 and perturbative ex-
pressions onJ1 and J2,

6 we can approximately estimate
DssUd as a solution of the equationJ2/J1.X/ s1−4Xd
.0.2411, whereX=s1+4x2−x4d /U2s1−x2d2 and x=2D /U.

FIG. 5. The ground-state phase diagram of the 1D Hubbard
model with the alternating potential. The open circlesssquaresd with
a fitting curve show the spin-gaps2D-Isingd transition line in the
spin scharged part. The stable regions of the MI, SDI, and BI phases
are given in the 2D parameter spacesu,dd fu=U / sU+4d and
d=D / sD+2dg. Insets sad and sbd show the extrapolations of the
L-dependent transition points in the spin and the charge parts, re-
spectively. For comparison, we also plot the DMRG calculation
results given in Ref. 19 by using the filled squaressUc1 in their
notationd and the filled circlessUc2d.

FIG. 6. The deviations of boundaries from the 2D=U line,
DnsU ,Ld−U /2. We useu=U / sU+4d as thex axis. The correspon-
dence between marks and system sizes is given in the figure. Marks
with solid sdottedd curves exhibit the deviations in the spinscharged
part.
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Then, we find a solutionfDs8sUdg to give a value
Ds8sUd−U /2.−1.427 in the limit. While, due to the lack of
effects from the higher-order processes in the kinetic energy
term, the approximate value deviates from the numerical es-
timation, this exhibits the following, i.e., the perturbative ex-
pansion becomes singular on the 2D=U line so that the
phase boundary deviates from the line. This singularity also
exists in the perturbative calculations of the SDW and CDW
state energiessESDW andECDWd. And then the direct transi-
tion line between these phases cannot be determined from
the equationESDW=ECDW, which is highly contrasted to the
case of the extended Hubbard modelsEHMd including the
nearest-neighbor Coulomb interactiono jVnjnj+1.

37 Since the
spin-charge coupling term with the dimerized spin part gen-
erates one of the relevant forces,DrsUd should be affected by
that of the spin part. Besides the present model, it is known
that EHM possesses the coupling termV cosÎ8fr cosÎ8fs

in its bosonized form,5 and that the BCDW state with the
locking points kÎ8fr,sl=0 is stabilized around the 2V=U
line in the weak- and intermediate-coupling region.27 The
corrections togn from higher-energy states stabilize it,38 but
the coupling term forces the boundaries to merge into the
single first-order phase transition line between the SDW and
CDW states in the strong-coupling region because it raises
the BCDW state energy. However, in the present BCDW
state, the locking pointf0 in Table I may take a value so as
not to bring about a large energy cost due to the coupling
term Eq.s3d. Therefore, the existence of the SDI phase is not
prohibited even in the strong-coupling limit in contrast to the
EHM case. Of course, these arguments are qualitative and
intuitive ones, so an effective theory in this limit is required
for the precise description on the limiting behaviors.

Finally, we comment on the Berry phase method.9,13–16

The Berry phases for the charge and the spin partsgn are
related to the ground-state expectation values of the twist
operators asgn=Im log zn where

zr = kU↑U↓l, zs = kU↑U↓
−1l, s14d

and Us=expfs2pi /Ldo j=1
L jnj ,sg.13 Sincezn is real at the half

filling with zero-magnetic field,gn s=0 or pd indicates the
sign ofzn. On one hand,zn can be related to the bosonic field
aszr,s~ 7 kcosÎ8fr,sl, so that it includes the information of
the locking points given in Table I.15 In Fig. 7 we show
behaviors ofzn near the 2D=U line for U=16 and find that
with the increase ofD both of these increase and change their
sign. As shown in the lower panel of Fig. 8, the condition
zs=0 gives a close value to the result of the LC method, so it
may provide a proper estimation of the spin-gap transition
point Ds.15,16On the other hand, the zero point ofzr exhibits
a deviation from the PRG resultssee the upper panel of Fig.
8d. Sincef0 continuously varies withD, zr can take a finite
value on the 2D-Ising transition point in the thermodynamic
limit, which is highly contrasted tozs on the spin-gap tran-
sition point. In fact, the size-dependent zero points are seem-
ingly extrapolated to a value different from our PRG estima-
tion, so that the conditionzr=0 does not specify the
transition point. On the other hand, we also find in Fig. 7 that
there is a pointD.7.3 at whichzr is almost independent of

L. This crossing point is expected to be a good estimator for
the 2D-Ising transition point in the charge partDr because
this is quite close to the PRG result even for smallL. How-
ever, a theoretical explanation of this possibility is still open.

To summarize, we have investigated the ground-state
phase diagram of the one-dimensional half-filled Hubbard
model with the alternating potential, especially in order to
verify the scenario given by Fabrizio, Gogolin, and Ners-
esyan, we have numerically treated the phase transitions ob-
served in the spin and charge parts: We calculated the spin-
gap transition pointsDs in the spin part by the level-crossing
methodssee also the argument for the spin-gap transition in
Ref. 16d and the two-dimensional Ising transition pointsDr

in the charge part by the phenomenological renormalization-
group method. We confirmed that, adding to the Mott and
band insulators, the “spontaneously dimerized insulator” ac-
companied by the long-range-ordered 2kF bond charge-
density wave is stabilized as the intermediate phase for all
U.0. Then we checked the SUs2d-symmetric Gaussians2D-
Isingd criticality of the spinscharged part by treating the low-

FIG. 7. Behavior of the ground-state expectation value of the
twist operatorzn sn=r ,sd near the 2D=U line. The correspondence
between marks and system sizes are given in the figure.

FIG. 8. Comparisons of the system-size dependences of the
transition points obtained by the LC and PRG methods vs by the
conditionzn=0. The fitting curves show the extrapolations of data
to the thermodynamic limit.
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lying excitation levels in the finite-size systems, and, simul-
taneously, we performed the finite-size-scaling analysis of
the charge-excitation gap to clarify the critical phenomena
aroundDr. The comparison with the relating work was per-
formed to check the reliability of our numerical results and
to exhibit the efficiency of our approach.

After submission of this paper, we became aware of the
work investigating the ground-state phase diagram and the
universality of the transition in the charge part by the use of
finite-size-scaling analysis of the DMRG calculation data.39

They have found two transition points and succeeded to ob-
tain n=1 in agreement with our conclusion, while the esti-
mated exponent for the susceptibility of the BCDW order
parameter shows a deviation from the theoretical value
h1=1/4, e.g., h1.0.45 at the point on the BI-SDI phase
boundaryD=10 andUc1=21.385sin their notationd. In this
paper we have treated the elementary excitations in the TLL

system specified by the discrete symmetries of the lattice
Hamiltonian with the twisted boundary condition, whereas
they have measured the BCDW order parametersi.e., a com-
posite excitation of the spin and charge degrees of freedomd
with the larger energy scale.
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