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The local spin order in the one-dimensional Kondo lattice model is studied for the conduction-electron band
filling n= 1

2 and 1
3 in a special parameter case. The local spin-dimerization ground state is confirmed for the

quarter-filling case. And the spin order is studied forn= 1
3. The spin and charge gaps are given for different

band-filling cases.
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In recent years, the Kondo lattice modelsKLM d has been
extensively studied.1 This model can be used to describe the
heavy fermion materials, in which there are two kinds of
electronic states corresponding to thed and f orbitals, re-
spectively. Thed electron can propagate by hoping to neigh-
boring sites, while thef electron is localized at every site and
forms a magnetic moment. In this model, the important phys-
ics arises from the interplay between the Kondo screening
and the effective interaction among localized spins. These
two effects may result in the nonmagnetic Kondo-singlet
phase and the antiferromagnetic long-range order phase. The
long-range order phase comes from the effective spin-spin
Ruderman-Kittel-Kasuya-YosidasRKKY d interaction medi-
ated by the conduction electrons.

The one-dimensionals1Dd KLM has a complicated phase
diagram,1 depending on the band fillingn of the conduction
electron’s density. At half fillingsn=1d, the ground state is a
spin-liquid insulator2 sor a Kondo-singlet stated for any
Kondo coupling. When the conduction electron density is
below half filling snø1d, things are quite different. For an
incommensurate band filling, there is a phase transition3

from a paramagnetic to a ferromagnetic state as the Kondo
interaction increases. However, for a commensurate band
filling, the results are very interesting. In a very recent work
on numerical calculation by the method of the density-matrix
renormalization group,4 a different phase is found in the 1D
KLM at quarter filling sn= 1

2
d; there is a spin-dimerization

phase for the localized spins. This phase may be a possible
mechanism to explain the dimerization transition observed in
the quasi-one-dimensional organic compoundsPerd2Msmntd2

sM=Pt,Pdd.5 In this phase, the local spint j dimerization
order parameterDs jds=kt j ·t j+1ld oscillates symmetrically
near zero. As the conduction-electron density deviates from
quarter fillingnÞ 1

2, Ds jd has no such kind of behavior, and
the local spin-dimerization does not exist. Therefore, one
question may be raised naturally: Is there another spin order
at a commensurate band filling besides spin dimerization?
This order may be improperly described by the dimerization
order parameterDs jd.

Based on the above considerations, we intend to study the
local spin configuration or spin order in the 1D KLM by the
bosonization technique. This paper is organized as follows.
First, we give the bosonization form of the 1D KLM. Then
under a spacial parameter condition, the bosonized KLM is
treated by a variational method on the basis of a trial ground

state in the form of a Gaussian wave functional.6 We calcu-
late the ground-state energy, by which we investigate the
static configuration of local spins forn= 1

2 andn= 1
3. For the

quarter filling sn= 1
2

d, it is confirmed that the spin-
dimerization order can exist in the 1D KLM. And forn= 1

3,
we show another order for the local spins. Finally, the spin
and charge gaps are calculated for various band-filling cases.

The 1D KLM can be written as

H = − to
j ,s

sCj ,s
† Cj+1,s + H.c.d + Jo

j

Sj · t j , s1d

wheret is the conduction-electron hopping strength, the op-
eratorCj ,s

† creates an electron at sitej with spin s, t j is a
localized spin-12 operator, Sj =oabsCj ,a

† sabCj ,bd /2 is the
spin-density operator of the conduction electron, andsab are
the Pauli matrices. We introduce the left- and right-moving
electron operatorCl,s

† sxd with l=R,L and linearize the spec-
trum around two Fermi points. In the continuum limit, the
Hamiltonians1d is given by

H = H0 + Hi + H',

H0 = − ivFo
s
E dxfCR,s

† ]xCR,s − CL,s
† ]xCL,sg,

s2d
Hi = Jio

j ,l
t j

zfCl↑
† sRjdCl↑sRjd − Cl↓

† sRjdCl↓sRjdg,

H' = J' o
j ,l,l8

ft j
+Cl↓

† sRjdCl8↑sRjd + H.c.g,

wherevF=2t sinskFad is the Fermi velocitysa is lattice con-
stantd, andkF=np /2a. The local spins are located at position
Rj = ja. H0 is the kinetic energy of the conduction electrons.
Hi+H' is the coupling between the conduction electrons and
the local spins. The anisotropic Kondo interaction is consid-
ered in this paper.Ji and J' are the longitudinal and trans-
verse parts of the Kondo interaction, respectively. In the fol-
lowing bosonization process, each of them can be divided
into forward- and back-scattering parts labeled by “f” and “
b.” So the Kondo interaction has been divided into four
parts:Ji

f, Ji
b, J'

f , andJ'
b .7

With the standard bosonization technique, we can
express the conduction electrons by boson field. Here
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only the outlines of the bosonization process are
given. Details can be found in Refs. 7 and 8. After introduc-
ing the boson fieldsfssxd with its conjugate momentum
Pssxd, we define FRsLd,ssxd=ffssxd7e−`

x Pssyddyg /2.
Then fermion operators can be expressed as
CRsLd,s=s1/Î2padexpf±iÎ4pFRsLd,ssxdg, whereupon the
Hamiltonian s2d may be bosonized. One can rewrite
the bosonized Hamiltonian by introducing the spin
and charge fields,fssxd=ff↑−f↓g /Î2, fcsxd=ff↑+f↓g /Î2.
After making a unitary transformation,9

U=expf−iÎ2po jt j
ze−`

ja Pssyddyg, we obtain a transformed
Hamiltonian,

H̃ =
vF

2
E dxhfPc

2 + s]xfcd2g + fPs
2 + s]xfsd2gj

+
a

a
o

j

t j
zs− 1d j sinfÎ2pfss jdgsinfÎ2pfcs jd + 2kFjag,

s3d

where a=2Ji
b/p. In s3d, we have setDJi

f =Ji
f −pvF=0 and

J'
f =J'

b =0. In the following, we will always work under this
parameter condition. In this way, the operatorht j

zj can com-

mutate withH̃. So ht j
zj are good quantum numbers. Thus we

can treat them as constant numberst j
z= ±1/2. It should be

noted that the configuration ofht j
zj should be properly se-

lected in order to minimize the ground-state energy.
Since the Hamiltonians3d cannot be solved exactly, one

can simulate it by the following exactly solvable reference
model.10

Href = Hs + Hc,

Hs =
vF

2
E dxhPs

2 + s]xfsd2 + ms
2fs

2j, s4d

Hc =
vF

2
E dxhPc

2 + s]xfcd2 + mc
2fc

2j,

wheremc andms are the charge and spin gaps, respectively.
They will be determined variationally. The fieldfcssd and its
canonicalPcssd can be expanded as

fcssdsxd = o
m

1

Î2«m,cssd
um,cssdsxdfam,cssd + am,cssd

† g,

s5d

Pcssdsxd = − io
m

Î«m,cssd

2
um,cssdsxdfam,cssd − am,cssd

† g.

With a bilinear form, the HamiltonianHref can be exactly
diagonalized as

Href = o
m,l=c,s

«m,lSam,l
† am,l +

1

2
D . s6d

The eigenfunctionhum,cssdsxdj and eigenvalueh«m,cssdj are ob-
tained by the following differential equation:

F−
d2

dx2 + mcssd
2 Gum,cssdsxd = «m,cssd

2 um,cssdsxd. s7d

The ground state ofHref in Eq. s6d satisfies the condition,

am,lucl =
1
Î2
E dxum,lsxdFÎ«m,lflsxd + i

1
Î«m,l

PlsxdGucl

= 0, for all m and l . s8d

In the representation offlsxd, Plsxd=s1/idfd /dflsxdg, the so-
lution is a Gaussian wave functional,

ucl = N p
l=c,s

expX−
1

2
E E dxdyhfflsxd − fl,0gKl

−1sx,ydfflsyd

− fl,0gjC , s9d

where fcssd,0 is a variational parameter that represents the
local classical value of the fieldfcssd. Without losing gener-
alization, we restrainfcssd,0 in the region off0,pg. N is the
normalization coefficient. The kernel in wave-functions9d is
defined as

E dyKlsx,ydKl
−1sx8,yd = dsx − x8d, s10d

and takes the form as

Kl
−1sx,yd = o

m

«m,lum,lsxdum,lsyd, s11d

whose inverseKlsx,yd can be expressed as

Klsx,yd = o
m

um,lsxdum,lsyd
«m,l

. s12d

By the trial wave function of Eq.s9d, we obtain the ground-
state energy of Hamiltonians3d

Egsfc,0,mc,fs,0,msd

= kcsfc,0,mc,fs,0,msduHucsfc,0,mc,fs,0,msdl = E1 + E2,

s13d

where

E1 =
vFL

8pa2fÎs1 + mc
2a2d + Îs1 + ms

2a2dg, s14d

E2 =
a

a
expF−

1

4
sbs

2Ks + bc
2KcdGJ, s15d

and

J = o
j

J j , s16d

J j = t j
zs− 1d j sinsbcfc,0 + 2kFjadsinsbsfs,0d, s17d
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Kcssd =
1

2p
lnS1 +Î1 + mcssd

2 a2

mcssda
D . s18d

In the above equations,bc=bs=Î2p. L=Na is the length of
the system andN is the total number of lattice sites. By the
ground-state energy equations13d, one can investigate the
ground-state properties of the KLM. The four parameters
fc,0,mc,fs,0,ms and the configuration of local spins may be
obtained by minimizing the ground-state energy.

By carefully analyzing the second part of the ground-state
energy equations13d, one may find that this part is the total
energy contributed by the interaction of conduction electrons
and local spins. The classical path of the spin sectorfs,0 is
obtained by]E/]fs,0=0, which will result in cossbsfs,0d
=0 or sinsbsfs,0d=1. Let us pay more attention to the term
J j. As n= 1

2 s2kFja= jp /2d, it is easy to find that

J j = Ht j
zs− 1ds j /2d sinsbcfc,0d, s j P Evend

t j
zs− 1dfs j+1d/2g cossbcfc,0d, s j P Oddd.

J s19d

For a given set of parametershfc,0,mc,fs,0,msj, minsJ jd
=−uJ ju /2. If J j is written in the formJ j =t j

zG j, we obtain the
minimal J j by selectingt j

z=−uG ju / s2G jd. This kind of selec-
tion will ensure thatJ is minimal, that is to say, the total
ground-state energy is minimal. Thus we have

J = − Nfusinsbcfc,0du + ucossbcfc,0dug/4. s20d

If 0 øbcfc,0øp /2, the pattern of the local spin may be
given as

t j
z =5

s− 1ds j /2+1d

2
, s j P Evend

s− 1dfs j−1d/2g

2
, s j P Oddd.6 s21d

As p /2øbcfc,0øp, the configuration of the local spin takes
the form,

t j
z =5

s− 1ds j /2+1d

2
, s j P Evend

s− 1dfs j−1d/2+1g

2
, s j P Oddd.6 s22d

The above two local spin configurations are degenerated be-
cause their ground-state energies are equal. After the con-
figuration of the local spins is fixed, the value of the local
spin-dimer-order parameterDs jd=kt j ·t j+1l can be calcu-
lated. It is convenient to find thatDs jd=−s−1d j /4 or Ds jd
=s−1d j /4 by the expression of the local spin configuration
fs21d and s22dg. It means that there is an exact spin-
dimerization ground state. The value of our result forDs jd is
very close to the numerical resultsuDs jdu<0.21d in Ref. 4. At
the same time,mc and ms can be determined by]E/]ms
=]E/]mc=0, which will yield the following equations:

mc
2 = ms

2 =
a8bc

2

vF
S mc

1 +Î1 + mc
2Dbc

2/8pS ms

1 +Î1 + ms
2Dbs

2/8p

,

s23d

in which a8=a minsJd /N=aÎ2/4. Since the spin and
charge in the reference Hamiltonian are symmetrical, the
value of the renormalization massmc and ms are the same.
And bcfc,0=p /4 or 3p /4, which is given by]E/]fc,0=0 or
]sJd /]fc,0=0. Up to now, our calculations show that the
ground state is a static, local spin dimerization atDJi

f =0,
J'

f =J'
b =0.

One may ask if there exists a similar static spin configu-
ration at other band fillings. As an example, the case ofn
= 1

3 is considered. Whenn= 1
3, a similar calculation is still

held. We obtain

J = −
N

6
FUsinSbcfc,0 −

2p

3
DU + usinsbcfc,0du

+ UsinSbcfc,0 +
2p

3
DUG . s24d

The local spin configuration is

t j
z =

1

2
s− 1dmods j /3d. s25d

In this case, the form of the solutions23d for the spin and
charge gap is unchanged buta8=a /3 with bcfc,0=p /6. The
static, local spin configuration is shown in Fig. 1sbd. Al-
though this result is obtained at our special parameter condi-
tion, we hope that such kinds of spin configurations may still
be retained for isotropic KLM. We expect that this point can
be confirmed in future studies.

Before closing this paper, we would like to give a plot for
the spin and charge gaps dependent on the band filling. In
Fig. 2, we give the energy gap asJi

b=0.5 andn=1/m sm
=2,3, . . .d. Each dot represents one kind of band filling. The
line is just a guide line. By this figure, one may find that the
spin or charge gapmc=ms<0.26 isn= 1

2. This value is a little
larger than the results in Ref. 4. The reason is that we just
consider the case ofDJi

f =0 andJ'
f =J'

b =0. However,DJi
f,

J'
f , andJ'

b all have finite values in Ref. 4. These kinds of

FIG. 1. The static, local spin configuration.sad The conduction
band filling n= 1

2. The spins in the dashed circle area form a spin
dimer.sbd The conduction band fillingn= 1

3. The spins in the dashed
square area form a period of the spin configuration.
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interactions may reduce the energy gaps. From this figure,
one can also find that the energy gap will be decreased as the
band filling is lowered.

In conclusion, we study the local spin order in a special

parameter case by the bosonization technique. It is confirmed
that there exists a spin-dimerization order in quarter filling in
1D KLM. Although our work is restrained in a special pa-
rameter case, we argue that the local spin-ordered ground
state may still exist in 1D KLM for the general case. Fur-
thermore, other kinds of band fillings are also considered in
this paper. We find that, for a commensurate band filling,
there still may exist other kinds of local spin order that can-
not be described simply by order parameter. As an example,
the case forn= 1

3 is studied, and the local spin configuration
is given. In the end, we calculate the spin and charge gap in
different band fillings. It is found that the energy gaps are
lowered by reducing the band fillings. This point may imply
that a state with a static spin configuration will be unstable as
the band filling is low. It may be very easily destroyed by the
interactions, which are not considered in our treatment.
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