PHYSICAL REVIEW B 71, 153407(2005

Static spin configuration in the one-dimensional Kondo lattice model
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The local spin order in the one-dimensional Kondo lattice model is studied for the conduction-electron band
filling nzg and% in a special parameter case. The local spin-dimerization ground state is confirmed for the
quarter-filling case. And the spin order is studied tfm% The spin and charge gaps are given for different
band-filling cases.
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In recent years, the Kondo lattice mod&ILM ) has been state in the form of a Gaussian wave functioch&e calcu-
extensively studied.This model can be used to describe thelate the ground-state energy, by which we investigate the
heavy fermion materials, in which there are two kinds ofstatic configuration of local spins fm:% andn:%. For the
electronic states corresponding to ttieand f orbitals, re- quarter filling (nzﬁ), it is confirmed that the spin-
spe.ctivelly. Thed.electron can propagate by hoping to r"ai(-:]h'dimerization order can exist in the 1D KLM. And for=2,
boring sites, while thé electron is localized at every site and we show another order for the local spins. Finally, thg spin

forms a magnetic moment. In this model, the important phys- ' e
ics arises from the interplay between the Kondo screenin&md charge gaps are calcullated for various band-filling cases.
The 1D KLM can be written as

and the effective interaction among localized spins. These
two effects may result in the nonmagnetic Kondo-singlet
phase and the antiferromagnetic long-range order phase. The
long-range order phase comes from the effective spin-spin
Ruderman-Kittel-Kasuya-YosidéRKKY) interaction medi- Wheret is the conduction-electron hopping strength, the op-
ated by the conduction electrons. eratorCL, creates an electron at sifewith spin o, 7; is a
The one-dimensiondllD) KLM has a complicated phase localized spin% operator, Sj:ZQB(C;"aaaBCjﬁ)/Z is the
diagram; depending on the band filling of the conduction  spin-density operator of the conduction electron, ang are
electron’s density. At half filingn=1), the ground state is a the Pauli matrices. We introduce the left- and right-moving
spin-liquid insulatot (or a Kondo-singlet stajefor any electron operatowiyo(x) with A=R,L and linearize the spec-
Kondo coupling. When the conduction electron density istrum around two Fermi points. In the continuum limit, the
below half filling (n=<1), things are quite different. For an Hamiltonian(1) is given by
incommensurate band filling, there is a phase transition
from a paramagnetic to a ferromagnetic state as the Kondo
interaction increases. However, for a commensurate band
filling, the results are very interesting. In a very recent work
on numerical calculation by the method of the density-matrix
renormalization grourb,((al dif;f)erent phase is found in the 1D
KLM at quarter filling (n=3); there is a spin-dimerization
phase for the localized spizns. This phase may be a possible Hy :‘]"E Tiz[\PIT(Rj)‘I’M(RJ) _\PIL(RJ')‘PM(RJ)]'
mechanism to explain the dimerization transition observed in bA
the quasi-one-dimensional organic compougRd),M(mnt), ot
(M=Pt,Pd.% In this phase, the local spim; dimerization Ho=J, > [Tj Wy (R)Wy (R +H.cl,
order parameteD(j)(=(7j-7j,1)) oscillates symmetrically JAN
near zero. As the conduction-electron density deviates fronvherev=2t sin(k-a) is the Fermi velocity(a is lattice con-
quarter fillingn# % D(j) has no such kind of behavior, and stanj, andkz=n/2a. The local spins are located at position
the local spin-dimerization does not exist. Therefore, oneR;=ja. Hy is the kinetic energy of the conduction electrons.
question may be raised naturally: Is there another spin ordet+H , is the coupling between the conduction electrons and
at a commensurate band filling besides spin dimerizationthe local spins. The anisotropic Kondo interaction is consid-
This order may be improperly described by the dimerizatiorered in this paper], andJ, are the longitudinal and trans-
order parameteD(j). verse parts of the Kondo interaction, respectively. In the fol-
Based on the above considerations, we intend to study thewing bosonization process, each of them can be divided
local spin configuration or spin order in the 1D KLM by the into forward- and back-scattering parts labeled by &nd “
bosonization technique. This paper is organized as followsh.” So the Kondo interaction has been divided into four
First, we give the bosonization form of the 1D KLM. Then parts:Jf, %, J' , and 357
under a spacial parameter condition, the bosonized KLM is With the standard bosonization technique, we can
treated by a variational method on the basis of a trial groun@xpress the conduction electrons by boson field. Here

H=-t> (C/ ,Cis1,+H.C)+IX S - 7, (1)

io i

H=Ho+H+H.,

HO == ivFE f d){w;oﬂX\PR,o’ - \P[,UanIL,U]!

)
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only the outlines of the bosonization process are d? 5 5

given. Details can be found in Refs. 7 and 8. After introduc- T2 M) [Upei9(X) = &), i Upc(X)- (7)
ing the boson fieldsp,(x) with its conjugate momentum
II,(x), we define gy, (X)=[¢,(x)F [*II,(y)dy]/2.  The ground state dofi.. in Eq. (6) satisfies the condition,
Then fermion operators can be expressed as 1
Wro),o=(1/V2ma)exp £ivanPg, ,(X)],  whereupon  the aM‘||¢):i,— f dxuﬂ,,(x){\vgj(pl(x)+i,=n,(x) )
Hamiltonian (2) may be bosonized. One can rewrite V2 Ve,

the bosonized Hamiltonian by_ introducing the _spin
and charge fieldspy(X)=[¢; — ¢ 112, ¢(X)=[b;+ ¢ 1/12.
After making a unitary transformatich, In the representation af(x), IT,(x) = (1/i)[ 8/ 5¢,(X)], the so-
U=exf-iv27Z;7[LI{y)dy], we obtain a transformed I|ution is a Gaussian wave functional,

Hamiltonian,

=0, foralluandl. (8)

w=NTI exp(—% | [ axata - o okoniam)

H=" f AX{[TIZ + (3xp0)?] + [T + (b1} I=cs
+ 23 A 1 ST 2 Isi\ 2w + 2l - "’""]})' ©
J

where ¢ o IS a variational parameter that represents the
€) : . . .

) o local classical value of the fielgh . Without losing gener-
V¥h6fi a=2J7/m. In (3), we have set\);=J,-mve=0 and alization, we restrairyg ¢ in the region of 0, x]. A is the
J} =J1=0. In the following, we will always work under this normalization coefficient. The kernel in wave-functit®) is
parameter condition. In this way, the operafg can com-  {efined as
mutate withH. 80{71-2} are good quantum numbers. Thus we
can treat them as constant numbefs £1/2. It should be f “Arr N — '

’ : ] dyK (X, YK (x",y) = 8(x—x'), 10
noted that the configuration G[frjz} should be properly se- YROGYIKTY) = 8 ) (10
lected in order to minimize the ground-state energy.
Since the Hamiltoniar3) cannot be solved exactly, one a@nd takes the form as

can simulate it by the following exactly solvable reference

model° Kt 6Y) = 2 £,1U,,1 00U, (), (11)
o
Hrer =Hs+ He, whose inversé(x,y) can be expressed as
v
Ho= =" f AX{TIZ + (dpd® + MEQ3), @ Kixy) = S, Letuly) (12)
© Eul
e ) ) By the trial wave function of Eq(9), we obtain the ground-
He= > dX{IT; + (dxebe)* + ME2}, state energy of Hamiltonia(8)
wherem, andmg are the charge and spin gaps, respectively. Eq(¢e.0Me ds,0My)
They will be determined variationally. The fietfl,s and its = (¢ e 0, M, Bs 0 MY H| Y .0, Me, s 0,MY)) = Eq + E,
canonicalllg can be expanded as (13)
=> - T where
¢c(s)(x) - /—u,LL,C(S)(X)[a/.L,C(S) + a,LL,C(S)]I
w NEEuc(s) el
© Ei= L) (g, (19
. Eucls)
Meig(0) = =12\ =5 U9 0Bt = i)
K a 1
E,=— exp — > (82K + BK 1
With a bilinear form, the Hamiltoniai,.; can be exactly 2" a exp{ 4(’8S s*Pe C)}j' (19
diagonalized as
and
1
— T =
Hyer = #ESSMJ(%J%J + 2) : (6) J=>J, (16)
T j
The eigenfunctioqu,, (X)} and eigenvaluge,, .} are ob-
tained by the following differential equation: Jj= sz(— 1)) SiN(Bce o+ 2keja)sin(Bsps o) , (17)
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1 ( 1+ AV 1+ mg(s)a2> (a) I,,’
In{ ——

Koo =7 . 18 \‘\
7 2m Mg (18 --I AIJI-I--I-i-I—-I--I-I-I-I-I-I-I-I-I
In the above equation@.=Bs= V2. L=Nais the length of N ’,/'

the system andl is the total number of lattice sites. By the )
ground-state energy equatigh3), one can investigate the ®) O
ground-state properties of the KLM. The four parameters 1 1
&0, Mg, b0, Ms and the configuration of local spins may be --%-¢-

BB
obtained by minimizing the ground-state energy. I I i

By carefully analyzing the second part of the ground-state (R I

energy equatioril3), one may find that this part is the total . . i . .

. . . . FIG. 1. The static, local spin configuratiof@ The conduction
energy contributed by the interaction of conduction eIectron%anol filing n=2. The spins ir?the das?hed circ)le area form a spin

. . . . 5.
and _Iocal SpIns. The_daSSIC.al path of the s_pln SeEQyIS dimer.(b) The conduction band fiIIing:%. The spins in the dashed
obtained bydE/d¢so=0, which will result in co§Bs¢s o) , . , )

. . square area form a period of the spin configuration.

=0 or sinBsps0)=1. Let us pay more attention to the term

J. Asn=3 (2kgja=jm/2), it is easy to find that

____.:,____

s, B m, B8 m, B8
(=) sin(Bedeo),  (j € Even 19 o= = (1+«1ﬂ&> <1+V1H@) '
#(= DIV cogBepe o), (j € Odd). (23

For a given set of parametefgco,M;, dso, Mg}, Min(7) in wh|ch a' =« m|n(J)/N:a\52_/4._ Since the spin and
=—|Jj|/2- If 7 is written in the forij:TjZQj, we obtain the charge in the referen_ce .Ham|lton|an are symmetrical, the
minimal 7; by selectingﬁ:—|gj|/(29j). This kind of selec- Value of th_e renormallzanon_ ma_tsst_andms are the_same.
tion will ensure that7 is minimal, that is to say, the total And Bcdeo=m/4 or 3m/4, which is g'ven.bWE/&‘ﬁC'O_o or
ground-state energy is minimal. Thus we have A1 I¢pe,0=0. .Up to now, our Ca_ICUI"’,‘t'On,S show that the
ground state is a static, local spin dimerizationAgk =0,

J =3 =o.

One may ask if there exists a similar static spin configu-
ration at other band fillings. As an example, the casea of

= = i . : o C
It 0=Pcdeo=m/2, the pattern of the local spin may be =% is considered. Whem=2, a similar calculation is still

UF

i=

J: - N[|Sin(,8c¢c,0)‘ + |COS(IBC¢C,O)|]/4- (20)

given as held. We obtain

(_ 1)(]/2+1) . N ] 20 .

Ty (j € Even J=- E sin ﬁc¢c,0_ ? + |S|n(,8c¢c,0)|

T2 v 29 o

— (j € Odd. + sin(ﬂc¢cyo+ ?> } (24)
As 7/ 2< Bohs o=, the configuration of the local spin takes The local spin configuration is
the form, 1 _

7= (- )mel, (25)
(= 1)i/2+D . 2
— (j € Even In this case, the form of the solutic{®3) for the spin and

7']-Z: (22 charge gap is unchanged lwit= /3 with B.¢ o= /6. The
, (j e Odd). static, local spin configuration is shown in Fig(bL Al-

2 though this result is obtained at our special parameter condi-

tion, we hope that such kinds of spin configurations may still

The above two local spin configurations are degenerated begye retained for isotropic KLM. We expect that this point can
cause their ground-state energies are equal. After the coe confirmed in future studies.
figuration of the local spins is fixed, the value of the local Before closing this paper, we would like to give a plot for
spin-dimer-order parameteD(j)=(7;-7j,1) can be calcu- the spin and charge gaps dependent on the band filling. In
lated. It is convenient to find thad(j)=-(-1)!/4 or D(j)  Fig. 2, we give the energy gap @$=0.5 andn=1/m (m
=(-1)'/4 by the expression of the local spin configuration=2,3,..). Each dot represents one kind of band filling. The
[(21) and (22)]. It means that there is an exact spin-line is just a guide line. By this figure, one may find that the
dimerization ground state. The value of our resultlBdf) is  spin or charge gap,,=ms~0.26 isn:%. This value is a little
very close to the numerical reslD(j)| =0.21) in Ref. 4. At larger than the results in Ref. 4. The reason is that we just
the same timem, and ms can be determined byE/dms  consider the case akJ[=0 andJ’ =35 =0. However,AJ[,
=¢E/dm,=0, which will yield the following equations: Ji, and th all have finite values in Ref. 4. These kinds of

(_ 1)[(j—l)/2+l]
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0.3 L S B S parameter case by the bosonization technique. It is confirmed
that there exists a spin-dimerization order in quarter filling in
/’ 1 1D KLM. Although our work is restrained in a special pa-
o rameter case, we argue that the local spin-ordered ground
02| ,/ J state may still exist in 1D KLM for the general case. Fur-
/-/ thermore, other kinds of band fillings are also considered in
I ] this paper. We find that, for a commensurate band filling,
g d there still may exist other kinds of local spin order that can-
not be described simply by order parameter. As an example,
0.1} - 1. ; . . .

the case fon=3 is studied, and the local spin configuration
is given. In the end, we calculate the spin and charge gap in
different band fillings. It is found that the energy gaps are
lowered by reducing the band fillings. This point may imply
0-000 : 0'1 : 0'2 : 0'3 : 0'4 : 0'5 that a state with a static spin configuration will be unstable as

) ) ) n ) ’ the band filling is low. It may be very easily destroyed by the
interactions, which are not considered in our treatment.

FIG. 2. The spin- and charge-gap dependence of the band filling ) ) ) )
(n=1/m, m=2,3,..) at Jhﬁ:o,s_ This work is supported by Natural Science Foundation of

China under Grant Nos. 10474072, 19904007, and
interactions may reduce the energy gaps. From this figur€d0103022. One of the authof¥.G. Chen is grateful to the

one can also find that the energy gap will be decreased as ttheternational Atomic Energy Agency for hospitality at the
band filling is lowered. International Centre for Theoretical Physics, Trieste, lItaly,

In conclusion, we study the local spin order in a speciawhere this work was finished.
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