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We present the analytical result of the expectation value of spin with respect to an arbitrarily spin-polarized
electron state which is injected via an ideal quantum point contact into a semi-infinite two-dimensional electron
gas confined in af001g-grown quantum well. Both the Rashba and Dresselhaus spin-orbit couplings are taken
into account. The spatial behaviors of the spin precession due to the Rashba term, the Dresselhaus term, and

simultaneously both terms are analyzed. We demonstrate that thef110g, f1̄10g ,f1̄1̄0g, and f11̄0g axes own
invariant behavior of spin precession, which is the same as that due to the Rashba term.
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Recent research on spin-polarized electron transport in
semiconductors has attracted great attention in the emerging
field of spintronics.1 Of particular interest is the manipulation
of spin via spin-orbitsSOd coupling in semiconductor nano-
structures. In a two-dimensional electron gass2DEGd con-
fined in a heterostructured quantum wellsQWd, two basic
mechanisms of the SO coupling have been often taken into
account:sid the structure inversion asymmetrysSIAd mecha-
nism described by the Rashba term,2

HR =
a

"
spxsy − pysxd, s1d

whose coupling strengtha is gate-voltage dependent,3–9 and
sii d the bulk inversion asymmetrysBIA d mechanism de-
scribed by the Dresselhaus term.10,11 When restricted to a
two-dimensional semiconductor nanostructure withf001g
growth geometry, this term is of the form,12,13

HD =
b

"
spxsx − pysyd, s2d

where the coupling parameterb is material specific. The in-
terface inversion asymmetry14,15sIIA d also provides a certain
contribution to the Dresselhaus term in the SO coupling, but
it is phenomenologically inseparable from BIA.

Whereas the competition between the Rashba and
Dresselhaus terms was concluded with the result that the
former dominates in narrow-gap systems,3,4 while the latter
dominates in wide-gap materials,16 Datta and Das proposed
the theoretical idea of constructing an electronic analog of
the optic modulator using ferromagnetic contacts as the spin
injector and the detector, with a 2DEG channel confined in a
narrow-gap semiconductor, where only the Rashba SO cou-
pling taken into account.17 In their proposal, the spin preces-
sion was envisioned due to the interference between the two
eigenfunctions, superposing the wave function of the in-
jected spin with a gate-voltage-tunable phase differenceDu
=2m*aL /"2, with L being the channel length. Therefore, the
spin-orientation angle for electrons arriving at the end of the
2DEG channel, and hence the resulting current, is theoreti-
cally tunable via the applied gate voltage. Hence the pro-

posed device was expected to serve as a field-effect transistor
sFETd based on the electron spin and has been commonly
referred to as the Datta-Das spin-FET.

Recently, Winkler further demonstrated this well known
spin precession described above and also the spin orientation
in a quasi-two-dimensionalsquasi-2Dd electron system by
using an 838 Kane model, which takes into account both
the SIA and the BIA mechanisms.18 The spin orientation was
shown to be sensitively dependent on the crystallographic
direction in which the quasi-2D system is grown. This was
also consistent with the previous results obtained by Lusa-
kowski et al. showing that the conductance of the Datta-Das
spin-FET depends significantly on the crystallographic direc-
tion of the channel when the Dresselhaus term is also
present.19 Indeed, the contribution to the SO coupling of the
Rashba and the Dresselhaus terms may be of the same order
in some QWsfsuch as GaAs QWssRef. 20dg and their ratio
was even shown to be experimentally determinable very
recently.21 Therefore, the possible effects caused by the
Dresselhaus term on spin-related devices has been an im-
perative issue in semiconductor spintronics.19,22

In this paper, we extend Winkler’s work,18 in which he
calculated the expectation value of the spin operatorkSl with
respect to the injected spin-polarized electron state. Whereas
the spin precession was shown by calculating the overlaps
between the spin vector and the polarization of the ferromag-
netic drain contact numerically, we present the analytical re-
sult of the spin vector as a function of the coupling strengths
a and b, the orientation angle of the injected spin, and the
position of determination. A pictorial interpretation of the
spin precession along certain transport directions is given.
By analyzing the two extreme cases, pure Rashba and pure
Dresselhaus, the spin precession due to SO couplings in
inversion-asymmetric 2DEGs can be understood more con-
cretely. Some crystallographic directions with interesting and
handleable spin-precession behavior are found and may im-
ply certain applicability in spintronics.

Consider an electron with a definite spin perfectly injected
via an ideal point contactfset on the origins0, 0dg into an
inversion-asymmetric 2DEG, where both the Rashba and
Dresselhaus SO couplings are present. The 2DEG is assumed
to be semi-infinite so that the boundary effect is out of con-
sideration. Let the electron be injected at an anglef with
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spin S0 orienting towardfs, with respect to thex axis. Set-
ting the growth direction of the 2DEG layer to bef001g, and
the x and y axes to bef100g and f010g, respectively, the
single electron Hamiltonian forx.0 swithin which the semi-
infinite 2DEG is set upd under the effective mass approxima-
tion can be written asH=sp2/2m*ds0+HR+HD wherem* is
the electron effective mass in the 2DEG, ands0 is the 2
32 unit matrix. Note thatHR andHD given by Eqs.s1d and
s2d, which are preferably described by a multiband approach,
are used. These two common expressions are in fact the
lowest-order terms when the multiband equations are trans-
formed to one-band equations.18 Defining

gsfd ; Îa2 + b2 + 2ab sin 2f, e−iw ;
ae−if − ibeif

gsfd
,

s3d

the corresponding eigenenergies and eigenfunctions can be
easily obtained as

E± =
s"ki

±d2

2m* ± gsfdki
±, s4ad

kr uk i
±, ± l ;

1
Î2

eiki
±·rSie−iw

±1
D , s4bd

where the in-plane wave vectork i and the position vectorr
represent the two-dimensional vectorsskx,kyd and sx,yd, re-
spectively. Note that the eigenenergies and eigenstates are
written in a way slightly different from the previously ob-
tained ones18,23 for convenience, which will be clearer later.
Separating the spin part from the state ketsuk i

± , ±l, we de-
note the eigenspinors asuw−p /2 , ±l with the usual defini-

tion uã , ±l;ub̃=0,ã , ±l=seiã±1d†/Î2, whereb̃ and ã are
the polar and azimuthal angles, respectively.24 Taking Eq.
s4bd as the basis, the injected spinufs, +l can be expanded as
ufs, +l=c+uw−p /2 , +l+c−uw−p /2 ,−l, where c±=kw
−p /2 , ±ufs, +l=s−ieisw−fsd±1d /2. Since there is a phase dif-
ference,Dusr d=2m*gsfdr /"2 betweenuw−p /2 , +l and uw
−p /2 ,−l, the spin state ket at positionr can be equivalently
written as ufs, +lr

RD=c+e−isDusr d/2duw−p /2 , +l+c−eisDusr d/2duw
−p /2 ,−l where the superscript “RD” denotes that both the
Rashba and Dresselhaus terms are nonvanishing. By comput-
ing the expectation values ofS with respect to the state ket
ufs, +lr

RD, regardless of the factor" /2, we obtain

kSlr
RD ; SkSxlr

RD

kSylr
RDD

=1cosfs cos2
Du

2
− coss2w − fsdsin2 Du

2

sinfs cos2
Du

2
− sins2w − fsdsin2 Du

2
2 . s5d

Note that the phase differenceDu is, in general, dependent of
f in the presence of both the Rashba and the Dresselhaus
terms, and is isotropic only when eithera or b vanishes, as
will be seen in the later discussion. In the following we dis-

cuss the behavior of the spin precession under two extreme
cases:saÞ0, b=0d and sa=0, bÞ0d.

In the absence of the Dresselhaus term, we return to the
familiar results of the Rashba case,gsb=0d=a. Here the
reason we set Eq.s3d is clear since the mathematical forms of
the eigenvalues, eigenfunctions, and the expectation values
of S expressed in Eqs.s4d ands5d are maintained. The results
for this case are obtained simply by replacingw with f, e.g.,
the expectation value ofS is kSlr

R=kSlr
RDuw=f where the su-

perscript “R” denotes, similar to the previous ones, that only
the Rashba term is nonvanishing.

As an example illustrating the Rashba spin precession
sRSPd, let fs be p /8. The spin orientations along nine
straight paths are shown in Fig. 1sad where a compact unit,
defined as

R0 ; 2p"2/sm*Îa2 + b2d, s6d

is used. Note thatR0 is essentially the precession period
length, within which the spin completes one period of pre-
cession on thex or y axes, and is typically of the order of or
less than 1mm for the Rashba case.17 Each pair of adjacent
paths includes an angle ofp /8, which divides a half-
circumferential angle into eight equal parts. Spin precessions
are clearly observed, except for the path which is perpen-
dicular to the injected spinfsee the −3p /8 path in Fig. 1sadg.
This is reasonably expected since the projection of the in-
jected spin on one of the two eigenspin states, which are
always perpendicular to the electron wave vector, vanishes.
Thus the fact that only one component of the basis is occu-
pied leads to zero spin precession.

Interestingly, the RSP behaves simply like a windshield
wiper swinging about the direction perpendicular to the elec-

FIG. 1. Spin precession due tosad Rashba andsbd Dresselhaus
spin-orbit couplings in a 2DEG. Each arrow indicateskSlr on the
corresponding space point. The injected spin, shown by the bold
arrow on s0, 0d, is set to orientp /8 with respect tof100g. The
compact unitR0 is defined in Eq.s6d, and the dotted lines are guides
for the eyes.
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tron wave vectorsor the propagation pathd. Also, it can be
observed that the projection ofkSlr

R on the direction perpen-
dicular to the path is universally conserved. Physically, these
can be understood as direct consequences of the spin pre-
cessing about the circular effective magnetic field generated
by the Rashba Hamiltonian, leading to such a projection of
the spin on thex-y plane. Mathematically, the conservation
of the perpendicular-spin projection can also be demon-
strated by calculatingkSlr

R·r̂ i and kSlr
R·r̂' where r̂ i and r̂'

are the unit vectors in the directions parallel and perpendicu-
lar to the path, respectively. Let us define these two projec-
tion quantities to bekSlr ,i

R and kSlr ,'
R . Straightforward math-

ematics yields

kSlr ,i
R = S0,i cosDu, kSlr ,'

R = S0,' s7d

whereS0,i and S0,' are the projections of the injected spin
swith normalized magnituded on r̂ i and r̂', respectively.

Furthermore, the transport directions, along which no spin
precession occurs, can be mathematically tested by calculat-
ing the scalar product ofkSlr

R andS0. The result iskSlr
R·S0

=cos2sDu /2d−cosf2sf−fsdgsin2sDu /2d, which reaches its
maximum whenf=fs+sn+1/2dp, with n being an integer.
That is, in the directions perpendicular to the injected spin,
we always havekSlr

R=S0 fsee the −3p /8 path in Fig. 1sadg.
In the absence of the Rashba term, we havegsa=0d=b

and w=p /2−f from Eq. s3d. Thus the expectation value
obtained in Eq.s5d is modified as

kSlr
D =1cosfs cos2

Du

2
+ coss2f + fsdsin2 Du

2

sinfs cos2
Du

2
− sins2f + fsdsin2 Du

2
2 , s8d

where the superscript “D” is, again, a reminder that only the
Dresselhaus term is present. The spin orientations on nine
straight paths are plotted in Fig. 1sbd. Although the Dressel-
haus spin precessionsDSPd appears to be more complicated
than the Rashba case, it is still analyzable mathematically.
We first turn to the projections ofkSlr

D on r̂ i and r̂'. Using
Eq. s8d, we obtain

kSlr ,i
D = S0,iScos2

Du

2
+ cos 4f sin2 Du

2
D

− S0,' sin 4f sin2 Du

2
, s9d

and

kSlr ,'
D = S0,'Scos2

Du

2
− cos 4f sin2 Du

2
D

− S0,i sin 4f sin2 Du

2
. s10d

The projections shown above do not in general exhibit con-
served quantities as in the Rashba case, except on two sets of
paths:sid For f=np /4, with n being an odd integer, we have
kSlr ,i

D =S0,i cosDu and kSlr ,'
D =S0,' , which are exactly the

same as Eqs.s7d. Thus in these directions, namely,f110g,

f1̄10g ,f1̄1̄0g, andf11̄0g sfor which only f110g and f11̄0g are
shown in our cased, the spin precession behaves like the RSP
fsee Fig. 1sbdg; sii d For f=np /4 with n being an even inte-
ger, we havekSlr ,i

D =S0,i and kSlr ,'
D =S0,' cosDu, which are

symmetric to the Rashba case such that the projection of
kSlr

D on r̂ i is conserved, while that onr̂' is oscillatory, lead-
ing to another type of “swinging” spin precession on those

directions, namely,f100g, f010g, f1̄00g swhich is not shown

in our cased, and f01̄0g fsee Fig. 1sbdg. Unlike the Rashba
case, in which the eigenspin states are symmetric under ro-
tations of aboutf001g and the spin precession depends only
on the injected spin, these eight directions found above show
that there is an intrinsic dependence of the DSP on crystal-
lographic directions.

Similar to the Rashba case, there also exists one straight
path on which no spin precession occurs. This can be found,
again, by calculating the scalar product ofkSlr

D andS0. Using
Eq. s8d we obtain kSlr

D ·S0=cos2sDu /2d+cosf2sf
+f0dgsin2sDu /2d showing that forf=−f0+np the spin pre-
cession vanishesfsee the −p /8 path in Fig. 1sbdg.

In the presence of both terms with the same order of cou-
pling strength, the spatial behavior of the spin precession is
correspondingly envisioned as the superposition of the RSP
and the DSP. Since the DSP behaves like the RSP on the

f110g, f1̄10g ,f1̄1̄0g, and f11̄0g axes, as we have explained
previously, the RSP behavior of the electron spin is unavoid-
ably preserved. As an example, the spin precession in the
presence of both the Rashba and the Dresselhaus terms is
shown in Fig. 2sad, where the coupling ratio is set to be
a /b=2.15, referring to the very recent experimental research
on a /b in n-type InAs QWs.21 As expected, the spin preces-

FIG. 2. Spin precession due to Rashba and Dresselhaus spin-
orbit couplings with the coupling ratioa /b=2.15 in a 2DEG. Each
arrow indicateskSlr

RD on the corresponding space point. The in-
jected spin, shown by the bold arrows ons0, 0d, is set to orientsad
p /8 and sbd p /4 with respect tof100g. The compact unitR0 is
defined in Eq.s6d and the dotted lines are guides for the eyes.
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sion onf110g and f11̄0g is still the same as the RSP, while
that on other paths seems less expectable. Other QWs, with
Rashba and Dresselhaus SO couplings being of the same
orderssuch as InGaAs QWs with a coupling ratioa /b rang-
ing between 1.5 and 1.85d,21 have spin-precession behaviors
similar to what we have shown in Fig. 2sad. When either
Rashba or Dresselhaus term dominates, the spin precession
returns to those shown in Figs. 1sad or 1sbd. A special case of
uau= ubu, which leads to the cancellation of thek dependence
of the eigenstates,25 exhibits universal directions±p /4 for
a= 7bd about which the electron spin precesses.

Another interesting point is that we can always suppress
the spin precession by properly arranging the injected spin.
In general, one can first determinea /b and then choose the
proper orientation of the injected spin corresponding to a
certain propagation direction. However, what we emphasize
is that on the four RSP-preserved axes, the eigenspinors are
always perpendicular tok i, so that the spin transport is pre-
cessionless on these four directions, no matter what the ratio
a /b is. As an example, when setting the injected spin point-

ing to p /4 we observed a precessionless axis lying onf11̄0g
fsee Fig. 2sbdg. This supression of spin precession is also
consistent with the previous work of Kiselev and Kim.26

In conclusion, we have presented the analytical results of
the space-dependent expectation values of the spin operator
with respect to the injected spin-polarized electron state in
the presence of both the Rashba and the Dresselhaus SO
couplings. Using the analytical results, the spatial behaviors
of the RSP, the DSP, and the composite case are analyzed.
The RSP is shown to behave like a swinging wiper, physi-
cally stemming from the projection onto the 2DEG layer of
the spin precessing around the in-plane effective magnetic
field generated byHR and mathematically resulting from the
conservation ofkSlr ,'

R and the oscillation ofkSlr ,i
R , as shown

in Eq. s7d. The DSP has a more complicated way of preces-
sion, but it is shown to preserve the RSP behavior on the
f110g, f1̄10g ,f1̄1̄0g, and f11̄0g axes. This implies that the
spatial behaviors of the spin precession, due to inversion
asymmetry in the 2DEG along these four directions, are al-
ways invariant and the same as those of the RSP regardless
of the influence of the Dresselhaus term. One can therefore
envision that a proper choice of the channel directionhsuch
as thef110g axis shown in Fig. 2sbdj in the structure of the
Datta-Das transistor may suppress the undesired influence of
the Dresselhaus term.
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