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In two dimensions, fractionally charged particles must possess fractional exchange statistics. In experiments
on quantum antidots in the quantum Hall regime the charge of the tunneling particles can be determined
directly as a measure of the gate voltage needed to attract one particle. In the same experiments, when the
magnetic field is varied, it is observed that the fundamental Aharonov-Bohm period ish/e even for fractionally
charged Laughlin quasiparticles. In this paper we analyze these experiments, explicitly taking into account the
fractional statistical Berry’s phase contribution.
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The fundamental “elementary” particles exist in three spa-
tial dimensions, and thus all have either bosonic or fermionic
integer exchange statistics. However, in two spatial dimen-
sions the laws of physics allow existence of particles with
fractional statistics, dubbedanyons.1,2 This is so because in
two dimensionss2Dd a closed loop executed by a particle
around another particle is topologically distinct from a loop
which encloses no particles, unlike the three-dimensional
case. An exchange of two particles is equivalent to one par-
ticle executing a half loop around the other, so that a closed
loop is equivalent to exchange squared. The particles are said
to have statisticsQ if upon exchange the two-particle wave
function acquires a phase factor of expsipQd, and, upon a
closed loop, a factor of expsi2pQd. The integer valuesQB

=2j and QF=2j +1, where j =0, ±1, ±2, ¯, describe the
familiar boson and fermion exchange statistics: expsi2p jd
=s−1d2j = +1 and expfips2j +1dg=s−1d2j+1=−1, respectively.
Upon execution of a closed loop both bosons and fermions
produce a phase factor of +1, which is unobservable, so usu-
ally the statistical contribution can be safely neglected when
describing an interference experiment, such as the Aharonov-
Bohm effect.3

Any particles having fractional statistics must be elemen-
tary collective excitations of a nontrivial system of many
integer statistics particles confined to move in 2D. Thinking
in terms of a few of such weakly-interacting, fractional ef-
fective particles instead of in terms of very complex collec-
tive motions of all the underlying strongly-interacting, inte-
ger statistics particles greatly simplifies the description of
relevant physics. In particular, the elementary charged exci-
tations sLaughlin quasiparticles4d of a fractional quantum
Hall sFQHd electron fluid5,4 have a fractional electric charge6

and therefore, as pointed out by Halperin,7 are expected to
obey fractional statistics.

Arovas, Schrieffer, and Wilczek8 have used the adiabatic
theorem to calculate the Berry’s phase9 g of a chargee/3
Laughlin quasiparticle at positionR encircling a closed path
C containing anothere/3 quasiparticle atR8 in the filling
f =1/3 FQHcondensate,

g = iR
C

d RKCsR,R8;zjdU ]

] R
CsR,R8;zjdul , s1d

where CsR ,R8 ;zjd is the many-electron Laughlin wave
function4 with the electron complex coordinateszj. If the
path is executed counterclockwise, the difference between an
“empty” loop and a loop containing another quasiparticle,
identified as the statistical contribution, is

Dg = 2pQ1/3 = 4p/3, s2d

whereQ1/3 is the statistics of a quasihole excited in the fill-
ing f =1/3 FQHcondensate.

Indeed, it is possible to assign definite fractional statistics
smod 1d to quasiparticles of certain simple FQH fluids based
only on the same plausible assumptions that allow to assign
their charge.10 Without loss of generality, we can use the
transparent composite fermion mapping11 of the integer QH
states atf =p to the fractional QH fluid atf =p/ s2jp+1d. For
example, for the one electron layer FQH fluids correspond-
ing to the main composite fermion sequencef =p/ s2jp+1d,
with p and j positive integers, the chargeq=e/ s2jp+1d qua-
siparticle statistics is expected to be

Qp/s2jp+1d = 2j /s2jp + 1dsmod 1d. s3d

Equations3d is easy to derive following Ref. 2: two identical
anyons of chargeq and 2js2p" /ed of flux attached have
relative statisticsQ=2jq /e.

A quantum antidot electrometer6,12 has been used in the
direct observation of the chargee/3 ande/5 quasiparticles,
subsequently confirmed in shot noise measurements.13 A
quantum antidot is a potential hill lithographically defined in
a 2D electron layer in the quantum Hall regime. The wave
functions of a chargeq particle encircling the antidot are
quantized by the Aharonov-Bohm conditionsexplicitly in-
cluding the statistical contributiond:

gm =
q

"
F + 2pQN = 2pm, s4d

wherem is an integer,F is the enclosed magnetic flux, andN
is the number of particles being encircled.6 Addition of one
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vortex to thef =p/ s2jp+1d FQH condensate createsp quasi-
holes, one in each of thep “composite fermion Landau lev-
els.” When the chemical potentialm moves between two
successive quasiparticle orbitalscm and cm+1, so thatDF
=h/e andDN=p, the change in the phase of the wave func-
tion is

Dg ; gm+1 − gm =
q

"
DF + 2pQDN = 2pS 1

2jp + 1

+
2jp

2jp + 1
D = 2p. s5d

Note that total ofp nondegenerate QP states correspond to
each orbitalcm.

In experiments, the occupation of the antidot-bound qua-
siparticle statescm is monitored by the interedge two-step
resonant tunneling. The tunneling proceeds via the antidot-
bound QP states, each step being essentially a phase-coherent
tunneling between two many body configurations: one in
which a QP is localized on the extended edge, and one in

which it is localized on the antidot.14 A peak of the tunneling
conductanceGT is thus observed when an antidot-bound QP
state crossesm. The two different ways to shiftcm relative to
m are: sid to vary the applied magnetic fieldB, in a kind of
the Aharonov-BohmsABd effect, andsii d to vary the global
backgate voltageVBG, which produces an electric field nor-
mal to the 2D electron layer.

Figure 1 shows the experimentalGT versusVBG data ob-
tained on the integerf =1 and the fractionalf =1/3 quantum
Hall plateaus at 12 mK. The quantum antidot samples and
the experimental procedure were described in Refs. 12,15.
As discussed previously,6,12 the backgate voltage induces a
small change in the charge density of the 2D electron layer.
The induced charge is quantized in units of elementary
charged excitations of the surrounding quantum Hall conden-
sate within the area of the antidot. Thus, as seen in Fig. 1, it
takes 1/3 as much variation inVBG to attract a chargee/3
Laughlin quasiparticle to the antidot, as it takes to attract an
electron. This experiment provides direct proof that on the-
fractional f =1/3 quantum Hall plateau the charge of the
antidot-bound elementary excitations isq=e/3.

Having established that the charge of thef =1/3 antidot-
bound particles ise/3, we now turn to the determination of
their statistics. Figure 2 shows the experimentalGT versusB
data obtained on the integerf =1 and the fractionalf =1/3
quantum Hall plateaus at 12 mK. The separation between the
conductance peaksDB gives the flux period through the area

FIG. 1. Quantum antidot electrometer. In the experiment, a con-
ductance peak occurs when the occupation of the antidot increments
by one particle: an electron on the integerf =1 QH plateau, and a
Laughlin quasiparticle on the fractionalf =1/3 plateau. The mea-
sured charge of the particleq is directly proportional to the change
in backgate voltage between the conductance peaks. It takes the
same gate voltage to attract threeq=e/3 quasiparticles as oneq
=e electron. Thef =1/3 conductance data is offset vertically by
0.2e2/3h for clarity. The dashed vertical lines are guides for the eye.

FIG. 2. Aharonov-Bohm periodicity. In the experiment, a con-
ductance peak occurs when an antidot-bound single-particle state
crosses the chemical potential. AsB is varied, so is the fluxF
through the antidot areasthe area encircled by the tunneling par-
ticled. Thus the periodDB is a direct measure of the flux period
DF=h/e on both f =1 and f =1/3 QH plateaus. Single-valuedness
of the wave function requires the Berry’s phase difference between
successive states be an integer multiple of 2p. This condition is
satisfied by fermionic electrons, but requires a fractional statistical
phase contribution by the fractionally-charged Laughlin quasiparti-
cles, as discussed in the text. The dashed vertical lines are guides
for the eye.
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encircled by the tunneling particle. The most significant ob-
servation here is that the Aharonov-Bohm periodsDF are
equal for both the integerf =1 and the fractionalf =1/3 pla-
teaus:DF1/3=DF1=h/e.

It is easy to see that the Aharonov-Bohm flux period of a
particle of chargeq in vacuum isDF=2p" /q. Thus, if a
chargee/3 particle existed in vacuum, its flux period would
be 3h/e. However, thee/3 Laughlin quasiparticle encircling
the antidot does not exist in vacuum, and thus the statistical
contribution from the enclosed particles must be taken into
account. It is easier to depict the antidot as a disk of com-
pletely filled quasihole states on top of thef =1/3 FQH
condensate.16 Addition of flux DF1/3 to the area of the anti-
dot then adds one more vortex in the many-electron conden-
sate wave function, that is, excites one more quasihole. This
corresponds to the transitionm→m+1 of the tunneling
quasihole encirclingDN=1 more quasihole, so that

Dg ; gm+1 − gm =
q

"
DF1/3 + 2pQ1/3DN = 2psq/e+ 1Q1/3d

= 2p. s6d

The equivalent description of the same process in terms of
the tunneling −e/3 quasielectrons must still include contri-
bution from the quasihole disk, but gives the samesmod 2pd
result,

Dg ; gm+1 − gm =
q

"
DF1/3 + 2pQ1/3

−1/3DN

= 2ps− 1/3 + 1Q1/3
−1/3d = − 2p, s7d

where we use the quasielectron-quasihole relative statistics10

Q1/3
−1/3=−Q1/3.

Thus the experimentally observed Aharonov-Bohm
DF1/3=h/e for the chargee/3 quasiparticles requires a frac-
tional quasihole statistics ofQ1/3=2/3 in order to ensure
single-valuedness of the quasiparticle wave function.2 It has
been argued17 that this experiment, however, is not entirely
satisfactory as adirect demonstration of the fractional statis-
tics of Laughlin quasiparticles, because in a quantum antidot
the tunneling quasiparticle encircles physical vacuum devoid
of 2D electrons. The most important ingredient, the experi-
mental fact that in quantum antidots the periodDF=h/e, and
not DF=h/q, even for fractionally charged particles, is then
ensured by the gauge invariance argument of the Byers-Yang
theorem.18 Since no known experiment violates gauge invari-
ance, the assignment of the degree of the directness is per-
haps a matter of taste. We note that an experiment has been
reported on a quasiparticle interferometer which contains no
region devoid of electrons within the interference path, so
that the Byers-Yang theorem is not applicable.19

In summary, we have presented experimental single-
particle tunneling data obtained in quantum antidots on the
integer f =1 and the fractionalf =1/3 QH plateaus. The re-
sults directly demonstrate, in the same experiment, the frac-
tional charge of Laughlin quasiparticles and their magnetic
flux period of oneh/e, the same as for electrons. An explicit
Berry’s phase analysis of these data implies a fractional sta-
tistical angle 2pQ1/3=4p /3 of the f =1/3 FQH quasiparti-
cles.

Discussions with D. V. Averin are gratefully acknowl-
edged. This work was supported in part by U.S. NSA and
ARDA under Army Research Office Contract No. DAAD19-
03-1-0126 and by the NSF under Grant No. DMR-0303705.
The work at Brown was supported by the NSF under Grant
No. DMR-0302222.

1J. M. Leinaas and J. Myeheim, Nuovo Cimento Soc. Ital. Fis., B
37B, 1 s1977d.

2F. Wilczek, Phys. Rev. Lett.48, 1144s1982d; 49, 957s1982d; 69,
132 s1992d.

3Y. Aharonov and D. Bohm, Phys. Rev.115, 485 s1959d.
4R. B. Laughlin, Phys. Rev. Lett.50, 1395 s1983d; Rev. Mod.

Phys. 71, 863 s1999d.
5D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett.

48, 1559s1982d.
6V. J. Goldman and B. Su, Science267, 1010 s1995d; Physica E

sAmsterdamd 1, 15 s1997d.
7B. I. Halperin, Phys. Rev. Lett.52, 1583s1983d.
8D. Arovas, J. R. Schrieffer, and F. Wilczek, Phys. Rev. Lett.53,

722 s1984d.
9M. V. Berry, Proc. R. Soc. London, Ser. A392, 45 s1984d.

10W. P. Su, Phys. Rev. B34, 1031s1986d.
11J. K. Jain, Science266, 1199s1994d. While n;hn/eB is a vari-

able, the QH exact fillingf, defined as the value of thequantized

Hall resistanceRXY in units of h/e2 sthat is, f ;h/e2RXYd, is a
quantum number.

12V. J. Goldman, Surf. Sci.362, 1 s1996d; V. J. Goldman, I. Kara-
kurt, J. Liu, and A. Zaslavsky, Phys. Rev. B64, 085319s2001d.

13L. Saminadayeret al., Phys. Rev. Lett.79, 2526s1997d; R. De-
Picciottoet al., NaturesLondond 389, 162 s1997d.

14This is an example of a “macroscopic quantum tunneling:” the
tunneling many body state involves,103 electrons within the
immediate vicinity of the antidot, and,106 electrons within the
phase-coherent neighborhood of the antidot.

15I. Karakurt, V. J. Goldman, J. Liu, and A. Zaslavsky, Phys. Rev.
Lett. 87, 146801s2001d.

16A. H. MacDonald, Science267, 977 s1995d.
17C. L. Kane, Phys. Rev. Lett.90, 226802s2003d.
18N. Byers and C. N. Yang, Phys. Rev. Lett.7, 46 s1961d; C. N.

Yang, Rev. Mod. Phys.34, 694 s1962d.
19F. E. Camino, W. Zhou, and V. J. Goldman, cond-mat/0502406.

BRIEF REPORTS PHYSICAL REVIEW B71, 153303s2005d

153303-3


