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Fractional statistics of Laughlin quasiparticles in quantum antidots
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In two dimensions, fractionally charged particles must possess fractional exchange statistics. In experiments
on quantum antidots in the quantum Hall regime the charge of the tunneling particles can be determined
directly as a measure of the gate voltage needed to attract one particle. In the same experiments, when the
magnetic field is varied, it is observed that the fundamental Aharonov-Bohm pefidd &ven for fractionally
charged Laughlin quasiparticles. In this paper we analyze these experiments, explicitly taking into account the
fractional statistical Berry’s phase contribution.
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The fundamental “elementary” particles exist in three spa-
tial dimensions, and thus all have either bosonic or fermionic Y= ijg d 9%<\If(9%,9%’ Z)
integer exchange statistics. However, in two spatial dimen- c
sions the laws of physics allow existence of particles withwhere W(97,%’;z) is the many-electron Laughlin wave
fractional statistics, dubbeainyons? This is so because in functiorf with the electron complex coordinates If the
two dimensions(2D) a closed loop executed by a particle path is executed counterclockwise, the difference between an
around another particle is topologically distinct from a loop“empty” loop and a loop containing another quasiparticle,
which encloses no particles, unlike the three-dimensionaldentified as the statistical contribution, is
case. An exchange of two patrticles is equivalent to one par- _ _
ticle executing a half loop around the other, so that a closed Ay=2mOy5= 43, @
loop is equivalent to exchange squared. The particles are sawhere® ;3 is the statistics of a quasihole excited in the fill-
to have statistic® if upon exchange the two-particle wave ing f=1/3 FQHcondensate.

a
ﬁxp(m,m’ z) ), (1)

function acquires a phase factor of éxp®), and, upon a Indeed, it is possible to assign definite fractional statistics
closed loop, a factor of exi27®). The integer value®g (Mod 1 to quasiparticles of certain simple FQH fluids based
=2} and ©@-=2j+1, wherej=0,%1,+2, --- describe the only on the same plausible assumptions that allow to assign

) amt .
familiar boson and fermion exchange statistics: (épj)  heir charge:? Without Ifoss of generg}:t);, \éve_can use }_t|he
—(-1)2= +1 and expin(2j+1)]=(~1)2*1=~1, respectively, aNsparent composite fermion mappihgf the integer Q

Upon execution of a closed loop both bosons and fermiongtates af=p to the fractional QH fluid at =p/(2jp+1). For

S example, for the one electron layer FQH fluids correspond-
produce a phase factor of +1, which is unobservable, so USLilﬁg to the main composite fermion sequerfcep/ (2jp+1)
ally the statistical contribution can be safely neglected Wher\\Nith p and] positive integers, the chargg=e/(2jp+1) qua,-
describing an interference experiment, such as the AharonO\é'iparticle statistics is expectéd to be
Bohm effect
Any particles having fractional statistics must be elemen- Op/2jp+1) = 2)/(2jp + 1)(mod D). (3
tary collective excitations of a nontrivial system of many
integer statistics particles confined to move in 2D. Thinking
in terms of a few of such weakly-interacting, fractional ef-
fective particles instead of in terms of very complex collec-
tive motions of all the underlying strongly-interacting, inte—fd

ger statistics particles greatly simplifies the description o

relevant physics. In particular, the elementary charged exCigantum antidot is a potential hill lithographically defined in
tations (Laughlin quasiparticléy of a fractional quantum 5 5p electron layer in the quantum Hall regime. The wave

Hall (FQH) electron fluid have a fractional electric chafe  fynctions of a chargey particle encircling the antidot are
and therefore, as pointed out by Halpetiare expected t0  guantized by the Aharonov-Bohm conditigexplicitly in-

Equation(3) is easy to derive following Ref. 2: two identical
anyons of chargey and J(2#h/e) of flux attached have
relative statistic®d=2jq/e.

A quantum antidot electromefel® has been used in the
irect observation of the charg#3 ande/5 quasiparticles,
subsequently confirmed in shot noise measureniénts.

obey fractional statistics. cluding the statistical contribution
Arovas, Schrieffer, and Wilczékhave used the adiabatic
theorem to calculate the Berry’s phase of a chargee/3 Vi = 9% + 270N = 27m, (4)

Laughlin quasiparticle at positioit encircling a closed path
C containing anothee/3 quasiparticle afR’ in the filling

wherem s an integer® is the enclosed magnetic flux, ahd
f=1/3 FQHcondensate,

is the number of particles being encircleAddition of one
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,E electrons f=1 FIG. 2. Aharonov-Bohm periodicity. In the experiment, a con-

ductance peak occurs when an antidot-bound single-particle state
crosses the chemical potential. Asis varied, so is the fluxp
through the antidot areéhe area encircled by the tunneling par-
ticle). Thus the periodAB is a direct measure of the flux period

00}l

L -~ Ad=h/e on bothf=1 andf=1/3 QH plateaus. Single-valuedness
-2.0 0.0 2.0 of the wave function requires the Berry’s phase difference between
Global backgate voltage Vpg (V) successive states be an integer multiple ef Zhis condition is

satisfied by fermionic electrons, but requires a fractional statistical

FIG. 1. Quantum antidot electrometer. In the experiment, a conPhase contribution by the fractionally-charged Laughlin quasiparti-
ductance peak occurs when the occupation of the antidot incremenf€S @s discussed in the text. The dashed vertical lines are guides
by one particle: an electron on the intederl QH plateau, and a °F the eye.

Laughlin quasiparticle on the fraction&+1/3 plateau. The mea- which it is localized on the antidét.A peak of the tunneling

gured charge of the partictgis directly proportional to the change conductance; is thus observed when an antidot-bound QP
in backgate voltage between the conductance peaks. It takes th

same gate voltage to attract thrgee/3 quasiparticles as ong S?ate Fr.o Stseﬂ ) Thtehtwo d'rfe(;em Wayf. tof_sfi!/m relipvde tcf)
=e electron. Thef=1/3 conductance data is offset vertically by * are: (i) to vary the applied magnetic fiel, in a kind o

0.26?/3h for clarity. The dashed vertical lines are guides for the eye.the Aharonov-Bohn{AB).effect, and(ii) to vary ’Fhe_global
backgate voltag®/zs, which produces an electric field nor-

_ . . mal to the 2D electron layer.
vortex to thef=p/(2jp+1) FQH condensate creatpsjuasi- Figure 1 shows the experimeni@l versusVgg data ob-

holes, one in each of the “composite fermion Landau lev-  aineq on the integei=1 and the fractional=1/3 quantum
els.” When the chemical potentigl moves between tWo | plateaus at 12 mK. The quantum antidot samples and
successive quasiparticle orbitalg, and .y, S0 thatA® e eyperimental procedure were described in Refs. 12,15.
=h/e andAN=p, the change in the phase of the wave func-pg giscussed previousfyi? the backgate voltage induces a
tion Is small change in the charge density of the 2D electron layer.
The induced charge is quantized in units of elementary
charged excitations of the surrounding quantum Hall conden-
sate within the area of the antidot. Thus, as seen in Fig. 1, it
2jp takes 1/3 as much variation Mgg to attract a charge/3
m - ®) Laughlin quasiparticle to the antidot, as it takes to attract an
electron. This experiment provides direct proof that on the-
Note that total ofp nondegenerate QP states correspond tdractional f=1/3 quantum Hall plateau the charge of the
each orbitaliy,. antidot-bound elementary excitationsgse/3.

In experiments, the occupation of the antidot-bound qua- Having established that the charge of thel/3 antidot-
siparticle states/,, is monitored by the interedge two-step bound particles i®/3, we now turn to the determination of
resonant tunneling. The tunneling proceeds via the antidotheir statistics. Figure 2 shows the experime@alversusB
bound QP states, each step being essentially a phase-coherdata obtained on the integér1 and the fractionaf=1/3
tunneling between two many body configurations: one inquantum Hall plateaus at 12 mK. The separation between the
which a QP is localized on the extended edge, and one inonductance peaksB gives the flux period through the area

Ay= Yoy = Y= %A(D +27OAN = 277( T
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encircled by the tunneling particle. The most significant ob- Thus the experimentally observed Aharonov-Bohm
servation here is that the Aharonov-Bohm periddd are  A®d,,;=h/e for the chargee/3 quasiparticles requires a frac-
equal for both the integeir=1 and the fractional=1/3 pla-  tional quasihole statistics dP,,;=2/3 in order to ensure
teaus:Ad, ,=AP;=h/e. single-valuedness of the quasiparticle wave functitirhas

It is easy to see that the Aharonov-Bohm flux period of abeen argued that this experiment, however, is not entirely
particle of chargeq in vacuum isA®=2x#%/q. Thus, if a  Satisfactory as direct demonstration of the fractional statis-
chargee/3 particle existed in vacuum, its flux period would tics of Laughlin quasiparticles, because in a quantum antidot
be @h/e. However, thee/3 Laughlin quasiparticle encircling the tunneling quasiparticle e_nC|rcIes p_hysma_l vacuum devo!d
the antidot does not exist in vacuum, and thus the statisticdlf 2D €lectrons. The most important ingredient, the experi-
contribution from the enclosed particles must be taken intgn€ntal fact thatin quantum antidots the periodi=h/e, and
account. It is easier to depict the antidot as a disk of comN0tA®=h/q, even for fractionally charged particles, is then
pletely filled quasihole states on top of tie1/3 FQH  €nsured Ey the gauge invariance argument of the Byers-Yang
condensaté® Addition of flux A®, 5 to the area of the anti- theoren® Since no known experiment violates gauge invari-
dot then adds one more vortex in the many-electron conder?1C€; the assignment of the degree of the directness is per-
sate wave function, that is, excites one more quasihole. Thig@Ps & matter of taste. We note that an experiment has been
corresponds to the transitiom—m+1 of the tunneling rep_orted ona guasiparticle m;er.ferome.ter which contains no
quasihole encirclingtN=1 more quasihole, so that region devoid of electrons within the interference path, so
that the Byers-Yang theorem is not applicalfle.

In summary, we have presented experimental single-
particle tunneling data obtained in quantum antidots on the
integerf=1 and the fractionaf=1/3 QH plateaus. The re-
= 2. (6) sults directly demonstrate, in the same experiment, the frac-

Otional charge of Laughlin quasiparticles and their magnetic
flux period of oneh/e, the same as for electrons. An explicit
Berry’s phase analysis of these data implies a fractional sta-
tistical angle 2r®,,3=4w/3 of the f=1/3 FQH quasiparti-

q
AY= You1= Ym= %Aq)1/3+ 2701 3AN = 2m(g/e + 1045

The equivalent description of the same process in terms
the tunneling €/3 quasielectrons must still include contri-
bution from the quasihole disk, but gives the saimed 2)

result,
cles.
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