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We explore, in three spatial dimensions, the transition from the normal state to the Fulde-Ferrel-Larkin-
Ovchinnikov superfluid phases. We restrict ourselves to the case of the “planar” phase, where the order
parameter depends only on a single spatial coordinate. We first show that, in the case of the simple Fulde-
Ferrell phase, singularities occur at zero temperature in the free energy which prevents, at low temperature, a
reliable use of an expansion in powers of the order parameter. We then introduce in the quasiclassical equations
a Fourier expansion for the order parameter and the Green’s functions, and we show that it converges quite
rapidly to the exact solution. We finally implement numerically this method and find results in excellent
agreement with the earlier work of Matsuoet al. In particular, when the temperature is lowered from the
tricritical point, the transition switches from first to second order. In the case of the first-order transition, the
spatial dependence of the order parameter at the transition is found to be always very nearly a pure cosine,
although the maximum of its modulus may be comparable to the one of the uniform BCS phase.
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I. INTRODUCTION

Despite being actively investigated for 40 years the prob-
lem of the structure of the superconducting order parameter
in very high fields is still the subject of intensive research. In
the compounds of interest the coupling of the magnetic field
to electronic spins can no longer be ignored, and the situation
where it is the only relevant one has to be considered. In this
case one faces the problem of pairing electrons, for which
the spin up and spin down chemical potentials are not the
same. This question has been addressed independently by
Fulde and Ferrell1 sFFd and by Larkin and Ovchinnikov2

sLOd, who proposed that the best order parameter corre-
sponds to pairs formed with a nonzero total momentum, in
contrast to the standard situation of the BCS theory. It is
worth noting that this kind of problem has been found re-
cently to be quite relevant for ultracold atomic Fermi gases3

as well as for the physics of neutron stars.4–6 More specifi-
cally, Larkin and Ovchinnikov2 considered for the order pa-
rameter superpositions of different plane waves, correspond-
ing physically to different pair total momentum. They
investigated which superposition was favored near the tran-
sition at T=0. Nevertheless they considered only a second-
order phase transition, which is not the most general situa-
tion as we will discuss below. Moreover, in addition to the
“crystalline” states that they investigated, there are other pos-
sible states. For example, it has been found by Shimahara7

that a “cylindrical” state, made by a superposition of plane
waves with orientation in all possible directions within a
plane, is favored for a second-order phase transition com-
pared to the “crystalline” structures investigated by LO.
Similarly in a two-dimensional situation, Shimahara8 has
shown that it is favorable to increase the number of plane
waves as the temperature is lowered. Very recently we have
shown in the same two-dimensional situation9 that, when the
temperature goes to zero, the complexity of the order param-
eter further increases with a cascade of phase transitions cor-

responding to order parameters with larger and larger num-
ber of plane waves. Hence the question of the exact structure
of the order parameter in the FFLO phases is still an open
problem. Since most experiments identifying tentatively
FFLO phases rest heavily on the theoretical analysis, this is
also a problem with major experimental implications.

In a preceding paper10 we have investigated analytically
the transition to the FFLO phases in the vicinity of the tric-
ritical point sTCPd, where the FFLO transition line starts.
This point is located atTtcp/Tc0=0.561 whereTc0 is the criti-
cal temperature form̄=0, with 2m̄=m↑−m↓ being the chemi-
cal potential difference between the two fermionic popula-
tions forming pairs, as for example spin up and down
electrons sthe corresponding effective field ism̄tcp/Tc0
=1.073d. In agreement with preceding numerical work11–13

we have found that the transition is first order to an order
parameter which is, to a very good precision, simply propor-
tional to a one-dimensional “planar” textureDsr d
,cossq ·r d. This order parameter is actually the one which
has been shown by Larkin and Ovchinnikov2 to be the most
favorable for assecond orderd transition atT=0. Compared
with other works, we have been able to understand qualita-
tively and quantitatively the reasons which favor this order
parameter with respect to all the other possible ones. Namely
we have shown that a real order parameter is favored, and
that, among these states, those with the smallest number of
plane waves are preferred. This then leads to an order param-
eter with a cossq0·r d dependence, in agreement with preced-
ing work.

A remarkable feature of the results is that the location in
the m̄ ,T plane of this first-order transition toward the “pla-
nar” order parameter is very near the standard FFLO second-
order phase transition. This is true not only near the TCP10–12

but also almost down toT=013 sactually the transition to the
“planar” order parameter goes back to a second-order phase
transition at low temperature in agreement with LOd. This
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proximity of a second-order transition may lead one to be-
lieve that the order parameterD is reasonably small at the
first-order transition. This is trivially valid near the TCP
where a Landau-Ginzburg-type expansion up to sixth order
in order parameterD could be performed,10,11 but it is a
tempting hypothesis even at lower temperature. This possi-
bility has been explored by Houzetet al.12 They found prob-
lems in applying this scheme because, for the stablest phase,
namely the planar one, the coefficient of the sixth order inD
changes sign when the temperature is lowered not much be-
low the TCP. This leads to an instability and so the expansion
up to sixth order in powers ofD becomes inconsistent.

We will first analyze this problem and show that it is
already present in the simple case of the Fulde-Ferrell phase
where the order parameter is given byDsr d=D expsiq ·r d.
This analysis gives a clear hint that an expansion in powers
of D is going to fail anyway at low temperature. This sug-
gests that one should avoid performing such an expansion.
Among the various possibilities for improving the situation,
one of them is to remark that, at the transition, near the TCP,
the actual order parameter is quite near a simple superposi-
tion of plane waves10 even if the transition is first ordersfor
a second-order transition the order parameter is exactly such
a superposition, as investigated,2 for example, by Larkin and
Ovchinnikov atT=0d. So the power expansion near the TCP
amounts also to keep only the lowest order in a Fourier ex-
pansion of the order parameter. This leads to look for a Fou-
rier expansion in the equations instead of aD expansion.

Since we want to deal with the full nonlinear, space-
dependent problem, the convenient starting point is not
Gorkov’s equations, but rather the quasiclassical equations of
Eilenberger,14 and Larkin and Ovchinnikov.15 Not only are
those equations in their simplest form the most compact and
convenient formulation of our problem, but a major advan-
tage is that they can be extended in full generality to much
more complex situations16 and allow to formulate transport
problems, including many-body effects, with the same level
of efficiency. However, since we have to deal with a com-
paratively simpler problem, we will use for simplicity in this
paper the original formulation and notations of Eilenberger.14

In comparison, the general formalism is used by Burkardt
and Rainer17 for an analysis of a FFLO transition in two
dimensions with a planar order parameter.

In this paper we will show that the introduction of a Fou-
rier expansion in the quasiclassical equations allows one to
obtain a solution which converges very rapidly toward the
exact result. As a consequence a few terms in the expansion
provide an excellent approximation. Here we will just deal
with the principle of this method and its application to the
planar transition. In particular we will rederive the results of
Matsuo et al.13 Applications to other more complex cases,
which are the more fundamental interest of this procedure,
will be considered in another paper.

The paper is organized as follows. In the next section we
consider the free energy and study in particular the simple
case of the Fulde-Ferrell phase, and show that it has singu-
larities atT=0 which make an expansion in powers of the
order parameter unreliable. In Sec. III we explain our Fourier
expansion for the simplest case of a cosine order parameter.
This is then generalized in the following section to anysone-

dimensionald order parameter. Finally, we give in Sec. V the
results of the numerical implementation of our method.

II. THE FULDE-FERRELL PHASE
T=0 FREE ENERGY

We will show that the problems arising in the expansion
of the free energy in powers of the order parameter are al-
ready present when one considers the simple Fulde-Ferrell
sFFd state. Let us start with the completely general expres-
sion, that we will use further on, for the free energy differ-
ence per unit volume between the superconducting state and
the normal state:17–19

Vs − Vn =E dr
1

V
uDsr du2

+ 4pTN0 Reo
n=0

` E
v̄n

`

dvE dVk

4p
fgssv,k̂,r d

− gnsv,k̂,r dg. s1d

Here V is the standard BCS interaction andN0 is the
single spin density of states at the Fermi energy. The
difference m↑−m↓=2m̄ between spin up and spin down
chemical potentials comes in the definition ofv̄n=vn− im̄
where vn=pTs2n+1d are Matsubara frequencies. For
the “j-integrated” or quasiclassical Green’s functions

we have used Eilenberger’s notationsgsv , k̂ ,r d
=si /pdedjkGsv ,k ,r d where jk is the kinetic energy mea-
sured from the average Fermi levels1/2dsm↑+m↓d and
Gsvn,k ,r d is the usual temperature Green’s functionfthese
Green’s functions we deal with are those for up spin; the
down spin Green’s functions are obtained by a simple trans-
form and the sum over the spin leads us to take the real part

in Eq. s1dg. With these notations we havegnsvn, k̂ ,r d=1 for
vn.0. It results directly from the starting Gorkovs
equations2 that the Green’s functions in the presence of the
effective fieldm̄ are obtained from those in the absence of it
by the simple replacement ofvn by v̄n.

We look now for the expression of this free energy atT
=0 for the simple FF state where the order parameter is given
by Dsr d=D expsiq ·r d. Since in this caseuDsr du2=D2, the
Green’s function is just obtained from the standard BCS one
by shifting2 all the momenta byq /2. Finally, the quasiclas-
sical Green’s function is just the BCS one, except that we

have to changev into v− im̄k with m̄k=m̄s1−q̄k̂ ·q̂d, where
we have defined the reduced wave vectorq̄=qkF / s2mm̄d
sthis results also from the general Eilenberger’s equations we
will write belowd.

The free energy for the standard uniform BCS phase with
m̄=0 is

V ; Vs − Vn = 1
2N0D0

2x2 lnsx2/ed, s2d

where D0=2vc exps−1/N0Vd is the zero temperature BCS
phase gapsvc is the standard cutoff of BCS theoryd, and we
have expressedD in units of D0 by introducingx=D /D0.
This free energy is naturally minimum forx=1 and the mini-
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mum is −1
2N0D0

2. In the presence of a nonzero effective field
m̄.0 this expression becomes from Eq.s1d

V

N0D0
2 = −

x2

2
+ m̄2 + Refx2 lnsm̄+ Îm̄2 − x2d − m̄Îm̄2 − x2g,

s3d

where we have also expressedm̄ in units of D0 by setting
m̄=m̄ /D0. For D.m̄ this free energy reduces to
V /N0D0

2= 1
2x2 lnsx2/ed+m̄2 and gives the standard

Clogston-Chandrasekhar20,21 first-order transitionm̄=1/Î2.
On the other hand, it gives for smallD!m̄ the expansion
V /N0D0

2=x2 lns2m̄d−x4/8m̄2−x6/32m̄4, leading in particular
to the second-order spinodal transition form̄=1/2. This ex-
pansion can be generalized atTÞ0 as

V

N0
= lnfT/Tspsm̄/TdgD2 + o

p=1

`

s− 1dp+1 s2pd!
22pp!sp + 1d!

A2pD2p+2

s4d

with

A2p = 2pT ReSo
n=0

`
1

v̄n
2p+1D s5d

andTspsm̄ /Td is the temperature of the second-order spinodal
transition toward the standard BCS phase. It is interesting to
note that, while the coefficientsA2p are clearly all positive
when m̄→0, they are given byA2p=s−1dp/ s2pm̄2pd when
T→0. Moreover, one can see thatA2p hasp zeros whenm̄ /T
goes from 0 tò sone goes basically fromA2p to A2p+2 by
taking a double derivative with respect tom̄d. Hence the
higher order coefficients have many changes of sign in the
low temperature range. This feature corresponds to the sin-
gular behavior which occurs forD=m̄ at T=0 in Eq. s3d. It
allows also us to understand that the changes of signs found
by Houzetet al.12 are not simple accidents, but a systematic
behavior linked to the singularity appearing atT=0.

Finally, theT=0 free energy of the FF phase is obtained

by replacing in Eq.s3d m̄ by m̄k=m̄s1−q̄k̂ ·q̂d and averaging

over the directionk̂ as in Eq.s1d. We give the result only in
the case whereq̄.1 since this is the range of wave vector
corresponding to the actual minimum of the free energy. One
finds

V

N0D0
2 = −

x2

2
+ m̄2S1 +

q̄2

3
D +

x2

2m̄q̄
Refm̄+ lnsm̄+

+ Îm̄+
2 − x2d − Îm̄+

2 − x2 + sm̄+ → m̄−dg

−
1

6m̄q̄
Refsm̄+

2 − x2d3/2 + sm̄+ → m̄−dg, s6d

where we have used the notationm̄± ;m̄sq̄±1d.
This result has singularities forD=m̄sq̄±1d. These are

just the manifestation of the singularity found in Eq.s3d for
D=m̄, corresponding to the upper and lower bounds in the
angular integration. In particular, the singularity atD
=m̄sq̄−1d gives the radius of convergence of the expansion

in powers ofD. A particular consequence is that no expan-
sion is possible forq̄=1. This is just the situation that is
found when one works in a two-dimensional space. This sin-
gular situation leads to a cascade involving an infinite num-
ber of phase transitions when the temperature goes to zero,
as we have shown elsewhere.9 In the case of a three-
dimensional space, with which we deal in this paper, the
radius of convergence is nonzero, but it is fairly small since
the minimum free energy is found at low temperature for
values ofq̄ not far from theT=0 LO resultq̄=1.2. Therefore
a rapidly convergent expansion for the free energy is only
valid for quite smallD, and this happens to be in contradic-
tion with the values ofD needed to minimize this free en-
ergy. Naturally this expansion of Eq.s6d can be performed
explicitly and the problem with the convergence is then quite
obvious.

Now it is clear that these same problems arise if, instead
of a phase with a single plane-wave as is the FF phase, we
consider a more complicated phase which is a sum of plane
waves, such as the planar phaseDsr d,cossq ·r d. This is al-
ready obvious from the fact that the terms which arise in the
expansion for the FF phase will also appear in the expansion
for this phase. Other terms with weaker singularities atD
=m̄sq̄−1d will also be present. We note that a singularity is
already present in the fourth-order terms investigated2 by
LO, as it can be seen from the explicit expression of their
integral J, but it occurs for a specific value of the angle
between the wave vectors, which happens to be irrelevant for
their final conclusion. Therefore we come to the conclusion
that, due to the singular behavior which occurs atT=0, we
cannot rely anymore on an expansion in powers ofD when
the temperature is lowered. It is conceivable that such an
expansion could still be proper by accident for a specific
phase, but it is unsafe for a general exploration of the various
phases in competition. A possible partial cure for this prob-
lem could be to sum up the most divergent contributions,
which are precisely those occuring in the FF phase. We have
tried such an approach, but, although it provides some im-
provement, it clearly does not lead to a satisfactory situation.

Therefore, in an attempt to extend the simple approach
around the TCP, we will in the next section proceed to a
Fourier expansion in the exact quasiclassical formulation of
the problem. This will prove to be completely satisfactory.

III. FOURIER EXPANSION

We start from Eilenberger’s equations for the diagonal

gsv , k̂ ,r d and off-diagonalfsv , k̂ ,r d quasiclassical propaga-
tors, which we simplify from the outset by taking"=1 and
m=1/2. They read14

sv + k · = dfsv,k̂,r d = Dsr dgsv,k̂,r d,

sv − k · = df+sv,k̂,r d = D*sr dgsv,k̂,r d,

2k · = gsv,k̂,r d = D*sr dfsv,k̂,r d − Dsr df+sv,k̂,r d, s7d

wherek is at the Fermi surfacek=kF. Actually g is given in
terms of f and f+ by the normalization condition:
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gsv,k̂,r d = f1 − fsv,k̂,r df+sv,k̂,r dg1/2, s8d

so the last equation results from the two first ones. These
ones are also related14 since

f*s− v,k̂,r d = f+sv,k̂,r d, g*s− v,k̂,r d = − gsv,k̂,r d,

f*sv,− k̂,r d = f+sv,k̂,r d, g*sv,− k̂,r d = gsv,k̂,r d. s9d

In this paper we consider only an order parameter that
varies only along thex axis. Accordingly f and g depend
only on this variable. Moreover, we assume that the order
parameter is periodic in this direction, which is the situation
occuring in the FFLO transition. We also restrict ourselves to
real order parameters since these have been found to corre-
spond to the highest critical temperature in the vicinity of the
TCP, and the LO solutions are also real, so this property is
expected to be widely satisfied. Anyway, the generalization
to an intrinsically complex order parameter should not make
many difficulties.

Then we proceed to a Fourier expansion of this order
parameter. Let us first assume, in order to present our method
in the simplest case, that only the lowest harmonic is rel-
evant. This amounts to taking

Dsxd = 2D cossqxd. s10d

We will consider at the end of the paper the general situation,
but we will actually find that, for our problem, the actual
order parameter at the transition is very nearly a simple co-
sine. For fixedk Eilenberger’s equations are a set of first-
order differential equations for the variation of the Green’s
functions alongk. So we take a reduced variable along this
direction by settingr =kX, which gives k ·¹ =d/dX and
Dsxd=2D cossQXd where we have introducedQ=kFq cosu
with u the angle betweenk and thex axis. Then we make a
Fourier expansion of the Green’s functions:

fsXd = o
n

fne
inQX, f+sXd = o

n

fn
+einQX, gsXd = o

n

gne
inQX.

s11d

Explicit substitution of Eq.s11d in Eilenberger’s equations
fEq. s7dg gives

fn =
D

v + inQ
sgn−1 + gn+1d,

fn
+ =

D

v − inQ
sgn−1 + gn+1d,

gn =
D

2inQ
sfn−1 + fn+1 − fn−1

+ − fn+1
+ d. s12d

The solutions of these equations have simple symmetry
properties, which can be checked directly for example by
generating explicitly the solution by a perturbation expan-
sion. Actually they arise quite generally from the fact that we
deal with an order parameter that is real and evensi.e., parity
is not brokend. This is more conveniently seen by taking the
case wherev is real. However, one has to keep in mind that

we will deal finally with a complexv. Nevertheless the sym-
metry properties are still valid generally in this case.

For a real order parameter,fsXd, f+sXd, andgsXd are real,
which is consistent with Eilenberger’s equations. This im-
plies f−n= fn

* , f−n
+ = fn

+*, and g−n=gn
* . Moreover, for an even

order parameter, Eqs.s7d are unchanged whensk̂ ,r d is

changed intos−k̂ ,−r d, which shows thatf, f+, andg are also
unchanged. Hence from Eq.s9d, fs−Xd= f+sXd and gs−Xd
=gsXd, which leads finally tofn

+= f−n andgn=g−n.
It is then convenient to make explicit the relation between

fn and fn
+ by introducing dn=sfn− fn

+d /2i, which gives fn

=si −v /nQddn. We have then for the two quantitiesgn anddn

swhich are real for realvd the recursion relations

dn = −
nQD

v2 + n2Q2sgn−1 + gn+1d,

gn =
D

nQ
sdn−1 + dn+1d. s13d

It is clear from these equations thatgnÞ0 only for evenn,
anddnÞ0 only for oddn, as it can be seen, for example, by
generating the solution perturbatively. Moreover, they satisfy
g−n=gn andd−n=−dn. These equations are linear and must be
supplemented by the normalization condition Eq.s8d. The
n=0 component is enough and it provides us precisely with

the spatial integralg0=edrgssv , k̂ ,r d, which we need in Eq.
s1d to calculate the free energy:

g0
2 = 1 − o

nÞ0
sgng−n + fnf−n

+ d = 1 − o
n=1

`

s2gn
2 + fn

2 + f−n
2 d.

s14d

Now the interesting point is the largen behavior ofgn and
dn. If for example, we eliminatedn in Eq. s13d, we obtain a
linear recursion relation that linksgn+2 to gn andgn−2. Since
g−n=gn we have only to considernù0, but this becomesn
ù2 when one takes into account that in Eq.s13d the relation
for g0 is identically satisfied becaused−1=−d1. The general
solution of such a recursion relation is a linear combination
of two independent solutions. The largen behavior is found
from the recursion relation, which forD , uvu! unQu simplifies
into D2sgn+2+gn−2d+n2Q2gn=0. One sees that this equation
has very rapidly growing solutions satisfyinggn+2@gn
@gn−2 and behaving as g2p+2,s−1dps2Q/Dd2psp!d2.
Naturally these solutions are not physically acceptable. On
the other hand, the recursion relation has also a solution
satisfying gn+2!gn!gn−2 and behaving asg2p,s−1dpsD /
2Qd2ps1/p!d2, which is the physical solution we are looking
for. This solution is found only ifg0 andg2 are related by a
specific boundary condition.

The very fast decrease ofgn anddn provides an easy way
to obtain a set of approximate solutions, which moreover
converges rapidly to the exact one, all the more since these
aregn

2 anddn
2 which come in Eq.s14d for the calculation of

g0. Sincegn and dn are very small for largen we just take
them to be zero beyond some fixed value. This serves as a
boundary condition. Then we work backward to obtain the
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whole set of Fourier components and normalize them prop-
erly through the normalization condition Eq.s14d. Specifi-
cally we proceed as follows. Since the recursion relations
are linear we rescalegn and dn in order to have convenient
initial values. We setgn=g0Gn swhich implies G0=1d and
dn=nQg0Dn and take as initial valuesG2N+2=0 andD2N+1
Þ0 to be determined later. Then, starting withp=N, we use
for decreasing values ofp the following recursion obtained
from Eq. s13d:

G2p = − G2p+2 −
v2 + s2p + 1d2Q2

D
D2p+1,

D2p−1 =
1

D
S 2p

2p − 1
G2p −

2p + 1

2p − 1
D2p+1D . s15d

down toG0. All the G’s andD’s are proportional toD2N+1,
which is now found by enforcingG0=1. Finally Eq. s14d
gives explicitly forg0

g0
−2 = 1 + 2o

p=1

N

G2p
2 + 2o

p=0

N

fv2 − s2p + 1d2Q2gD2p+1
2 .

s16d

When we letN→` this equation provides the exact result
for g0. It is interesting to note that for these largen we have
found thatgn is proportional toDn. This makes a precise link
between the expansion in powers ofD we discussed at the
beginning and the Fourier expansion we are considering
now. One can see our result as corresponding to resumma-
tions of infinite series, eliminating in this way the troubles
mentioned in Sec. II occuring because coefficients in the
Landau-Ginzburg expansion change sign as the temperature
is lowered. One finds also that in the limit of largeuvu
@D , unQu, where one must recover the normal state Green’s
functions, one hasg2p,s−1dpsD /vd2p. Naturally the recur-
sion relations Eq.s15d are very convenient and very fast for
a numerical implementation and in practice the situation is
not very different from having an analytical expression for
g0. The only practical problem is linked to the determination
of the square root in obtainingg0 from Eq. s16d, but this is
solved by noticing that, from the general spectral represen-
tation, one has Reg0ù0 whenvn.0.

The simplest of these approximations corresponds to take
N=0 and it is given explicitly by

g0 = S1 + 2D2 v2 − Q2

sv2 + Q2d2D−1/2

. s17d

This is already a quite nontrivial approximation. Since it is
correct up to orderD2 it gives the proper location for the
standard FFLO second-order transition line. Moreover, as we
will see it gives qualitatively and semiquantitatively the cor-
rect results, with a first-order transition down from the TCP
which becomes a second-order transition at low temperature
in agreement with Ref. 13.

Although it is quite simple, the calculation of the free
energy has to be carried out numerically and naturally it is
the same for all the higher order approximations. In practice
it is convenient to make use in Eq.s1d of lnfT/Tspsm̄ /Tdg
=1/N0V−pTo sgnsvnd / v̄n to rewrite it as

Vs − Vn

N0
= lnfT/Tspsm̄/Tdg E dr uDsr du2

+ 4pTo
n=0

` E
vn

`

dv ReSkg0sv − im̄,k̂dlk − 1

+
1

2sv − im̄d2 E dr uDsr du2D , s18d

where we have made no assumption on the spatial depen-
dence of Dsr d. In the present case Eq.s10d gives
edr uDsr du2=2D2. The form Eq.s18d is convenient for the
frequency integration since the integrant behaves asv−4 for
largev, with a corresponding behaviorvn

−3 in the Matsubara
frequency summation. One may replace lnfT/Tspsm̄ /Tdg by
lnfm̄ / m̄spsm̄ /Tdg where m̄spsm̄ /Td is the spinodal field for a
given m̄ /T, sincem̄spsm̄ /Td /Tspsm̄ /Td=m̄ /T. Finally the an-
gular average amounts to an integration overQ since

kg0sk̂dlk;esdVk/4pdg0sk̂d=e0
1dug0sQ=m̄q̄ud with u=cosu

and q̄=qkF / m̄;"qkF / s2mm̄d.
Since we are only interested in the transition from the

normal to the FFLO state, in order to obtain the correspond-
ing critical temperatureTc we look for the highest tempera-
ture T sor effective fieldm̄d at which Vs−Vn=0. Precisely
this leads to the following equation forT=Tc:

lnfT/Tspsm̄/Tdg = − Min
2pT

D2 o
n=0

` E
vn

`

dv ReSkg0sv − im̄,k̂dlk

− 1 +
D2

sv − im̄d2D . s19d

Since for homogeneity the right-hand side of this equation is
only a function ofT/ m̄, D / m̄, andq̄/ m̄, one has to minimize
with respect toD / m̄ and q̄/ m̄, at fixedT/ m̄.

At T=0 this simplifies somewhat. The summation over
Matsubara frequencies goes to an integral which is per-
formed by a by-parts integration. This gives for the critical
field m̄

lnfm̄/m̄spsT = 0dg = − Min
1

D2E
0

`

dvv ReSkg0sv − im̄,k̂dlk

− 1 +
D2

sv − im̄d2D . s20d

Finally we write down the self-consistency equationsor
“gap equation”d for the order parameter, which comes out
quite generally when the free energy is minimized with re-
spect to variations of this order parameter. This equation
gives the necessary feedback to Eq.s7d whereDsr d cannot be
naturally an open function. In practice we will make little use

TRANSITION TO THE FULDE-FERREL-LARKIN-… PHYSICAL REVIEW B 71, 144517s2005d

144517-5



of it since we will rather minimize directly the free energy
with respect to the order parameter. The self-consistency
equation14 can be written as

Dn lnfT/Tspsm̄/Tdg = 2pTo
m=0

`

ReSkfnsv − im̄,k̂dlk −
Dn

v − im̄
D

s21d

by making the same transformation fromTc0 to Tspsm̄ /Td as
we did to find Eq.s18d. In this equationDn is the component
in the Fourier expansion ofDsr d, as it is explicitly defined in
Eq. s22d at the beginning of the next section.

IV. GENERAL ORDER PARAMETER

We consider now the extension of our Fourier expansion,
presented in Sec. III, to a general order parameter:

Dsxd = o
n

Dne
inQX. s22d

We assume again a real order parameter, which impliesDn
*

=D−n. We also restrict ourselves as before to an order param-
eter even with respect tox, which makesDn real. Substitu-
tion as above in Eilenberger’s equations gives the following
generalization of Eq.s12d:

sv + inQdfn = sv − inQdfn
+ = o

p=1

`

Dpsgn−p + gn+pd,

2inQgn = o
p=1

`

Dpsfn−p + fn+p − fn−p
+ − fn+p

+ d. s23d

Here we have also assumed for the moment that the spatial
average of the order parameter is zero, that is,D0=0. Intro-
ducing againdn=sfn− fn

+d /2i, we obtain the recursion rela-
tions:

dn = −
nQ

v2 + n2Q2o
p=1

`

Dpsgn−p + gn+pd,

gn =
1

nQ
o
p=1

`

Dpsdn−p + dn+pd. s24d

We consider now the practical situation met in numerical
use of these equations. In this case the number of Fourier
components for the order parameter will be finite, so we have
a maximum integerP for which Dp=0 whenp. P. We look
again at the behavior of the physical solution fordn and gn
whenn goes to infinity, and show that it is consistent with a
fast factorial type decrease, as we have found in Sec. III.
Indeed in this case the dominant term in the sums found on
the right-hand side of Eq.s24d is the one wheredn or gn has
the smallest indexn, which givesdn,−DPgn−P/ snQd and
gn,DPdn−P/ snQd. This leads togn,sDP/Qdn/P/ sn!d1/P. Al-
though this is still a fast-factorial-type decrease, it gets
slower whenP increases. On the other hand, the largen
behavior contains the power law dependencesDPdn/P, where

in generic situationsDP is expected to be very small for large
P. This is indeed what is found when one writes the self-
consistency equation,14 Eq. s21d, which givesDn in terms of
fn. This fast decrease ofDn corresponds to the standard situ-
ation, where there is no smaller physical length scale for
Dsxd than 1/q itself. However, one can think of other par-
ticular situations, where this fast decrease ofDn does not
hold and which should be dealt with specifically. Ultimately
this convergence problem has to be handled numerically by
making calculations for increasingP and looking when rea-
sonable convergence has been achieved. This is what we will
do below with our present problem of finding the location of
the transition.

Finally we make the same practical use of this fast con-
vergence property as in Sec. III. We take as the boundary
condition thatgn anddn are zero beyond some fixed valueN.
This allows us to calculate all thegn anddn within a common
multiplicative factor, which is then found by the normaliza-
tion condition, Eq.s14d. N is progressively increased until
convergence has been obtained. The situation for solving the
practical problem of finding thegn’s and thedn’s is less con-
venient than in Sec. III. However, we still have a linear prob-
lem for which very efficient numerical procedures are
known. We have basically to handle a matrix. Instead of
having a tridiagonal matrix, with just matrix elements right
below and above the main diagonal, we have now a band
diagonal matrix with, in addition to the main diagonal, 2P
diagonals with nonzero matrix elements.

To be more specific we have now to take into account
that, in our problem, only odd Fourier componentsD2p+1 of
the order parameter are nonzero. First we consider only order
parameters with a zero spatial averageD0=0, since taking a
nonzero value amounts to mix in the order parameter of the
uniform BCS phase, which is energetically unfavorable.
Hence it is reasonable to assume that similarly a nonzeroD0
is unfavorable. Next we can see, for example, by an iterative
treatment to all orders, in order to obtain an exact solution of
Eilenberger’s equations, that we have only odd components.
Indeed if we start with the simpleDsxd=2D cossqxd that we
considered in Sec. III, we generate only odd Fourier compo-
nents infsXd and even components ingsXd as we have seen.
Now this fsXd in turn generates only odd components for
Dsxd from the self-consistency equation, Eq.s21d. But from
Eq. s24d this is again completely compatible with only odd
components forfsXd and even forgsXd. Naturally it can also
be seen directly from the starting Eilenberger’s equations
that such a solution is a consistent one. We note that such a
solution with odd components means that, by shiftingx by
p / s2qd, we obtain an order parameter that is odd with re-
spect tox, in the same way as it transforms Eq.s10d into
2D sinsqxd.

Then it results from Eq.s24d that, just as in Sec. III,gn
Þ0 only for evenn, anddnÞ0 only for oddn. In the same
way we setgn=g0Gn simplying G0=1d anddn=nQg0Dn, and
we have againG−n=Gn andD−n=Dn. It is now convenient to
include gn and dn into a single unknown vectorVn, defined
by V2p=G2p andV2p+1=D2p+1. Then Eq.s24d can be merely
written asMmnVn=Am with An=−Dn and the matrixM given
by
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M2n,2n = 2n,

M2n+1,2n+1 = v2 + s2n + 1d2Q2,

M2m+1,2n = D2sm+nd+1 + Du2sm−nd+1u,

M2m,2n+1 = s2n + 1dfD2sm+nd+1 − Du2sn−md+1ug, s25d

with m,nù1.
As explained above we truncate the infinite matrixM by

m,nøNmax, which gives a matrix with finite orderNmax. The
corresponding linear equation forVn, with nøNmax, can be
solved numerically by efficient standard routines, since as
mentioned above the matrixM has a generalized band diag-
onal form. Once this is done,g0 is still obtained from Eq.
s16d, the free energy calculated from Eq.s18d and the critical
temperature obtained by minimization. Finally the whole
procedure is repeated for increasing values ofNmax until con-
vergence is achieved. In the next section we will display the
corresponding numerical results.

V. NUMERICAL RESULTS

We present now the results of our numerical implementa-
tion of the above procedure. In the first susbsection below we
restrict ourselves to an order parameter with only the lowest
harmonic as it is given by Eq.s10d. The general case is
considered afterwards.

A. Lowest harmonic

We first give in Fig. 1 the results for the calculation of the
critical temperature, down from the TCP. Rather than giving
Tcsm̄d, we cover for convenience thesm̄ ,Td plane in polar
coordinates, rather than Cartesian coordinates, and give the
critical temperatureTcsm̄ /Td as a function ofm̄ /T, equivalent
to a polar angle. More precisely we plot its ratioTc/TFFLO to
the FFLO critical temperatureTFFLOsm̄ /Td obtained for the
same value of the ratiom̄ /T. This is more suited to the

present situation since we find this ratio to be always near
unity. However, to make the graph more readable, we give
on thex axis, instead ofm̄ /T, the value ofTFFLOsm̄ /Td itself,
compared to the standard BCS critical temperatureTc0,
found for m̄=0 sthis corresponds to go along the standard
FFLO transition lined. Naturally when our result for
Tc/TFFLO goes below 1, this means that the first-order tran-
sition is less favorable than the second-order one, so when
the temperature is lowered there is actually a switch from
first to second order when one finds thatTc/TFFLO=1.

We give the results of the calculation with increasing val-
ues ofNmax going up to 6. The approximationNmax=1 cor-
responds to the explicit result Eq.s17d for g0. As already
mentioned above, it is correct up to second order inD and
consequently it gives the correct location for the FFLO tran-
sition. Moreover, we see that it gives already the proper re-
sult semiquantitatively for the order of the transition, since it
gives a switch from first to second order when the tempera-
ture goes belowTFFLO/Tc0=0.195. The next approximation
Nmax=3 for odd Nmax is already quite good quantitatively
since it gives 0.063 for the above ratio. Full convergence is
obtained forNmax=5 where we findTFFLO/Tc0=0.076 in very
good agreement with Matsuoet al.13 For completeness we
give also in Fig. 1 our results for evenNmax. It is less natural,
from the structure of the recursion equations, to truncate
them in this way. Hence it is not so surprising that the ap-
proximation Nmax=2 is much worse thanNmax=1 since it
does not even give a switch from first to second order for the
transition. Nevertheless we naturally have convergence when
we increaseNmax, and indeed we find thatNmax=4 is already
very good since the switch is located atTFFLO/Tc0=0.074,
while Nmax=6 is completely converged.

A noticeable feature of Fig. 1 is that the ratioTc/TFFLO
stays always very near unity, while one would have expected
to find it larger since there is no obvious relation between the
order parameters of the first- and second-order transitions.
This behavior is also found10 near the TCP. A natural conclu-
sion from this feature is to say that the first-order transition is
actually always quite near to being a second-order one. We
can check in our results if this interpretation is a coherent
one by looking at the size of the order parametersmore pre-
cisely its maximal value as a function of spatial positiond,
that is essentially the value ofD1 at the first order transition.
If the first-order transition is nearly a second-order one, it
should be small compared to a typical gapD0 in the uniform
BCS phase. Equivalently, in Fig. 2, we compare it tom̄ since
it is of order D0 in all the range we are interested insat T
=0 the FFLO result isū=0.754D0d. Our results show clearly
that the size of the order parameter at the transition is of
order of the one deep in the standard BCS phase, so it is not
at all possible to consider that the first-order transition is
nearly a second-order one.

Finally, it is also of interest to compare the reduced wave
vectors of the order parameter for our first-order transition
and for the standard second-order FFLO transition. This is
done in Fig. 3 where it is seen that, although there are dif-
ferences, they are not very large so that the reduced wave
vector is rather similar for the two transitions, in contrast
with the size of the order parameter.

FIG. 1. The critical temperatureTcsm̄ /Td for the transition to the
order parameter given by Eq.s10d, divided by the FFLO critical
temperatureTFFLOsm̄ /Td obtained for the same value ofm̄ /T. On
thex axis, instead ofm̄ /T, we have givenTFFLOsm̄d /Tc0, whereTc0

is the maximal critical temperature, obtained form̄=0.
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B. Higher harmonics

Naturally it is not consistent to keep only the lowest har-
monic in the order parameter, as it is immediately seen from
the self-consistency equations21d. Hence we consider now
the effect of higher harmonics. In a first step we have ex-
plored the effect at the transition of the inclusion ofD3. We
have found it quite small. This would imply normally to stop
the exploration at this stage since one expects the effect of
harmonicsD5 and higher to be even smaller. However, one
might wonder whether this result is not somewhat accidental
and specific toD3. This is especially a concern in the vicinity
of the switching temperature from first to second order,
whereD3 is particularly smallssee Fig. 5d. It could be that
higher order harmonics dominate in this region, leading to a
quantitative change of the first-order transition line. Hence,
in order to eliminate any doubt on this question, we have
explored the effect of takingD5 andD7 to be different from
zero. Our study shows that these harmonics give also a very
small contribution. Hence our conclusion is that the optimal
order parameter remains always very close to a simple cosine

in the whole temperature range from the tricritical point
down to zero temperature.

Our numerical procedure is to use directly the free energy
Eq. s18d by taking as an ansatz our form for the order pa-
rameter, with either three or four odd Fourier components.
More precisely we maximize, with respect toq̄,Di with i
=1,3,5,7, thecritical temperature from the generalization to
our case of Eq.s19d, as explained in Sec. III. We then check
that our optimal form satisfies the gap equation. We have
also performed calculations by making use only of the gap
equation. The results are not significantly different from the
ones we display below, and most of the time agree with them
within numerical accuracy. From a practical point of view,
we have chosen high enough values ofNmax, typically Nmax
=12, so that numerical results are insensitive to changes in
Nmax.

We give first in Fig. 4 our result for the critical tempera-
ture of the first-order transition. The effect of all our higher
order harmonics can be only barely seen in the figure, as
compared to our calculation with only the lowest harmonics
D1, already given in Fig. 1.

Next we display in Fig. 5, as a function of temperature,
the values of the higher order harmonicsD3, D5, andD7 for
the optimal order parameter. It is seen that they are always
quite small compared toD1. Nevertheless, around and below
the switching temperature,D3 andD5 are of the same order
while one would have rather expectedD5 to be small com-
pared toD3 snote that anyway these results are physically
irrelevant below the switching temperature since they are for
the first-order transition, while the actual transition is second
orderd. On the other hand,D7 is always negligible compared
to D3 andD5, except near the TCP where anywayD5 andD7
are essentially zero. Finally Fig. 5 shows also the results for
the optimalD3 andD5 whenD7=0. The difference with the
preceding results is within numerical error. Similarly our re-
sult for D3 whenD5=D7=0 snot shownd are also essentially
indistinguishable from the result displayed in Fig. 5.

VI. CONCLUSION

In this paper we have shown that performing a Fourier
expansion in the quasiclassical Eilenberger’s equations pro-

FIG. 4. Dashed line: critical temperature for the first-order tran-
sition for a one-dimensional order parameter form with four odd
Fourier componentsDi with i =1, 3, 5, and 7. Solid line: same result
for the simple cosine ansatz, whereonlyD1 is different from zero.

FIG. 2. Solid line: size of the componentD1 of the order param-
eter for the first-order transition, compared tom̄, when all higher
order harmonics are taken equal to zero. Dashed line: same quantity
for an order parameter whereD3 is also non zero.

FIG. 3. Solid line: optimal reduced wave vectorq̄ of the order
parameter at the first order transition, for the converged solution, as
a function of temperature, when only the componentD1 is different
from zero. Long dashed line: same result whenD3 is also nonzero.
Short dashed line: corresponding result for the second-order FFLO
transition.
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vides a very efficient way to study the transition from the
normal state to the FFLO phases in three dimensions, at least
in the vicinity of the transition. We have applied this tech-
nique to the case of the transition to the one-dimensional
“planar” order parameter and we have found perfect agree-
ment with the earlier work of Matsuoet al. In particular we
have rederived their remarkable result that, when the tem-

perature is lowered, the transition switches from first to sec-
ond order. We have shown in detail that, in the case of the
first-order transition, the order parameter is nevertheless
dominated by its lowest order Fourier component, in some-
what surprising contrast to what one might guess for such a
transition. This feature contributes naturally to make our
Fourier expansion very rapidly converging.

However, the strength of our method is not so much dis-
played in this case of a one-dimensional order parameter. Its
major interest is rather that our approach can be fairly easily
generalized to more complex order parameters, with full
three-dimensional spatial dependence. As shown by Larkin
and Ovchinnikov, these order parameters come in competi-
tion and, in the case of a first-order transition, it is not clear
that they are not more advantageous than the standard
second-order FFLO phase transition. We will indeed show, in
forthcoming work, that this is the case at low temperature in
three dimensions. Finally another interest of our approach is
to provide some insight, even if approximate, in the analyti-
cal structure of the theory, as we have seen by providing
explicit approximate analytical solutions. We believe that
this might be helpful in a theoretical situation where the
intrinsic nonlinearity of the equations forces mostly to purely
numerical work.
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