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Transition to the Fulde-Ferrel-Larkin-Ovchinnikov planar phase:
A quasiclassical investigation with Fourier expansion
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We explore, in three spatial dimensions, the transition from the normal state to the Fulde-Ferrel-Larkin-
Ovchinnikov superfluid phases. We restrict ourselves to the case of the “planar” phase, where the order
parameter depends only on a single spatial coordinate. We first show that, in the case of the simple Fulde-
Ferrell phase, singularities occur at zero temperature in the free energy which prevents, at low temperature, a
reliable use of an expansion in powers of the order parameter. We then introduce in the quasiclassical equations
a Fourier expansion for the order parameter and the Green'’s functions, and we show that it converges quite
rapidly to the exact solution. We finally implement numerically this method and find results in excellent
agreement with the earlier work of Matsw@d al. In particular, when the temperature is lowered from the
tricritical point, the transition switches from first to second order. In the case of the first-order transition, the
spatial dependence of the order parameter at the transition is found to be always very nearly a pure cosine,
although the maximum of its modulus may be comparable to the one of the uniform BCS phase.

DOI: 10.1103/PhysRevB.71.144517 PACS nuni®er74.20.Fg, 74.25.0p

[. INTRODUCTION responding to order parameters with larger and larger num-

Despite being actively investigated for 40 years the prob_ber of plane waves. Hen.ce the question of thg exact structure
lem of the structure of the superconducting order paramete?f the order parameter in the FFLO phases is still an open
in very high fields is still the subject of intensive research. InProblem. Since most experiments identifying tentatively
the compounds of interest the coupling of the magnetic fieldFLO phases rest heavily on the theoretical analysis, this is
to electronic spins can no longer be ignored, and the situatioflso a problem with major experimental implications.
where it is the only relevant one has to be considered. In this In a preceding papé& we have investigated analytically
case one faces the problem of pairing electrons, for whictihe transition to the FFLO phases in the vicinity of the tric-
the spin up and spin down chemical potentials are not théitical point (TCP), where the FFLO transition line starts.
same. This question has been addressed independently Byis point is located &,/ To=0.561 whereT, is the criti-
Fulde and Ferrell (FF) and by Larkin and Ovchinnikgv ~ cal temperature fop=0, with 2u=pu,-u, being the chemi-
(LO), who proposed that the best order parameter correcal potential difference between the two fermionic popula-
sponds to pairs formed with a nonzero total momentum, irfions forming pairs, as for example spin up and down
contrast to the standard situation of the BCS theory. It islectrons (the corresponding effective field igucp/ Te
worth noting that this kind of problem has been found re-=1.073. In agreement with preceding numerical wdri®
cently to be quite relevant for ultracold atomic Fermi géseswe have found that the transition is first order to an order
as well as for the physics of neutron st&r$More specifi- ~ parameter which is, to a very good precision, simply propor-
cally, Larkin and Ovchinniko¥ considered for the order pa- tional to a one-dimensional “planar” textureA(r)
rameter superpositions of different plane waves, correspond=codq-r). This order parameter is actually the one which
ing physically to different pair total momentum. They has been shown by Larkin and Ovchinnikde be the most
investigated which superposition was favored near the tranfavorable for a(second ordertransition atT=0. Compared
sition at T=0. Nevertheless they considered only a secondwith other works, we have been able to understand qualita-
order phase transition, which is not the most general situatively and quantitatively the reasons which favor this order
tion as we will discuss below. Moreover, in addition to the parameter with respect to all the other possible ones. Namely
“crystalline” states that they investigated, there are other poswe have shown that a real order parameter is favored, and
sible states. For example, it has been found by Shiméharahat, among these states, those with the smallest number of
that a “cylindrical” state, made by a superposition of planeplane waves are preferred. This then leads to an order param-
waves with orientation in all possible directions within a eter with a co§yy-r) dependence, in agreement with preced-
plane, is favored for a second-order phase transition coming work.
pared to the “crystalline” structures investigated by LO. A remarkable feature of the results is that the location in
Similarly in a two-dimensional situation, Shimahtiraas the w,T plane of this first-order transition toward the “pla-
shown that it is favorable to increase the number of planear” order parameter is very near the standard FFLO second-
waves as the temperature is lowered. Very recently we haverder phase transition. This is true not only near the @
shown in the same two-dimensional situafitimat, when the  but also almost down t@=0"3 (actually the transition to the
temperature goes to zero, the complexity of the order paraniplanar” order parameter goes back to a second-order phase
eter further increases with a cascade of phase transitions cdransition at low temperature in agreement with )LOhis
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proximity of a second-order transition may lead one to be-dimensiongl order parameter. Finally, we give in Sec. V the
lieve that the order parametér is reasonably small at the results of the numerical implementation of our method.
first-order transition. This is trivially valid near the TCP

where a Landau-Ginzburg-type expansion up to sixth order

in order paramete® could be performed®!! but it is a Il. THE FULDE-FERRELL PHASE

tempting hypothesis even at lower temperature. This possi- T=0 FREE ENERGY

bility has been explored by Houzet al1? They found prob-

lems in applying this scheme because, for the stablest phas(f)af }{/r\]/g :‘,;”e”esgr?:: tha;:] thgv\s)erfsblgfn:ﬁeag?éne? maﬁgﬁqgi(eﬁagzo;-
namely the planar one, the coefficient of the sixth ordek in gy inp P

changes sign when the temperature is lowered not much bf_aady present when one_considers the simple Fulde-Ferrell
low the TCP. This leads to an instability and so the expansiof’ ) State. Let us start with the completely general expres-

up to sixth order in powers ok becomes inconsistent. sion, that we will use further on, for the free energy differ-

We will first analyze this problem and show that it is €Nce per unit volume between the superconducting state and

already present in the simple case of the Fulde-Ferrell phadge normal staté’ "

where the order parameter is given Ayr)=A exp(iq-r). 1

This analysis gives a clear hint that an expansion in powers () - Qn:f dr =|A(r)[?

of A is going to fail anyway at low temperature. This sug- \

gests that one should avoid performing such an expansion. © e

Among the various possibilities for improving the situation, +47TN,Re D, dwf ﬂ‘[gs(w,lz,r)
one of them is to remark that, at the transition, near the TCP, n=0" & 47

the actual order parameter is quite near a simple superposi- .

tion of plane wave¥ even if the transition is first ordefor = n(w,k,1)]. (1)

a second-order transition the order parameter is exactly Sugh., .. \/ is the standard BCS interaction aidy is the

a sup.erposmon, as investigatétor example_, by Larkin and single spin density of states at the Fermi energy. The
Ovchinnikov atT=0). So the power expansion near the TCP e oo - =21 between spin up and spin down
amounts also to keep only the lowest order in a Fourier exz, - poTtentilaIs comes in the definition ©f = .~z

pansion of Fhe prder parameter. .Th's leads to Iook_for a l:()u\7vhere wp=7T(2n+1) are Matsubara frequencies. For
rier expansion in the equations instead ok &xpansion. ve " . . ) .

) . . the “&integrated” or quasiclassical Green’s functions

Since we want to deal with the full nonlinear, space-

dependent problem, the convenient starting point is nofV¢ have used Eilenbergers notationgy(w,k,r)
Gorkov’s equations, but rather the quasiclassical equations 6f(i/7) J d§G(w,k,r) where § is the kinetic energy mea-
Eilenbergett* and Larkin and Ovchinnikot? Not only are ~ sured from the average Fermi level/2)(u;+u ) and
those equations in their simplest form the most compact an€(wp,K,r) is the usual temperature Green’s functidhese
convenient formulation of our problem, but a major advan-Green’s functions we deal with are those for up spin; the
tage is that they can be extended in full generality to muctlown spin Green’s functions are obtained by a simple trans-
more complex situatiod and allow to formulate transport form and the sum over the spin leads us to take the real part
problems, including many-body effects, with the same levein Eq. (1)]. With these notations we hawg(w,,k,r)=1 for
of efficiency. However, since we have to deal with a com-, >0. It results directly from the starting Gorkovs
paratively simpler problem, we will use for simplicity in this equation3 that the Green's functions in the presence of the
paper the original formulation and notations of Eilenbefder. effective fieldz are obtained from those in the absence of it
In comparison, the general formalism is used by Burkardpy the simple replacement af, by ;.
and RaineY’ for an analysis of a FFLO transition in two ~ we look now for the expression of this free energyTat
dimensions with a planar order parameter. =0 for the simple FF state where the order parameter is given
In this paper we will show that the introduction of a Fou- by A(r)=A exp(iq-r). Since in this caseA(r)[2=A2, the
rier expansion in the quasiclassical equations allows one tgreen’s function is just obtained from the standard BCS one
obtain a solution which converges very rapidly toward theby shifting? all the momenta by/2. Finally, the quasiclas-
exact result. As a consequence a few terms in the expansifical Green's function is just the BCS one, except that we
provide an excellent approximation. Here we will just dealhave to change into w—iz with z=7(1-gk -§), where

with the principle of this method and its application to the ) —
planar transition. In particular we will rederive the results of V& have defined the reduced wave VeW?"F’(Zm_ﬁ)
Matsuo et al® Applications to other more complex cases (tr_us re;ults also from the general Eilenberger’s equations we
which are the more fundamental interest of this procedure\f"III write below). . .
will be considered in another paper __The free energy for the standard uniform BCS phase with
The paper is organized as follows. In the next section we"“zo IS
consider the free energy and study in particular_ the simple Q=0,-Q,= %NOASXZ In(x¥e), ()
case of the Fulde-Ferrell phase, and show that it has singu-
larities atT=0 which make an expansion in powers of the where Ay=2w. exp(—1/NgV) is the zero temperature BCS
order parameter unreliable. In Sec. lll we explain our Fouriephase gafw, is the standard cutoff of BCS thegryand we
expansion for the simplest case of a cosine order parametdrave expressed in units of Ay by introducingx=A/A,.
This is then generalized in the following section to dage-  This free energy is naturally minimum fa=1 and the mini-
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mum is —%NOAS. In the presence of a nonzero effective field in powers ofA. A particular consequence is that no expan-

>0 this expression becomes from Ed) sion is possible forg=1. This is just the situation that is
5 found when one works in a two-dimensional space. This sin-
Q X M + R In(m+ VM — x2) — mym? — 2], gular situation Iead_s_ to a cascade involving an infinite num-
NOA(Z) 2 ber of phase transitions when the temperature goes to zero,

(3 as we have shown elsewhérdn the case of a three-
. dimensional space, with which we deal in this paper, the
where we have also expressgdin units of Ay by setting  radius of convergence is nonzero, but it is fairly small since
m=ul/Ag. For A>pu this free energy reduces to the minimum free energy is found at low temperature for
Q/NGAZ=3x2In(x*/e)+m? and gives the standard values ofg not far from theT=0 LO resuliq=1.2. Therefore
Clogston-Chandrasek!faf! first-order transitionm=1/\2.  a rapidly convergent expansion for the free energy is only
On the other hand, it gives for small< u the expansion valid for quite smallA, and this happens to be in contradic-
Q/NoAZ=x2 In(2m) -x*/8mP?-x8/32m*, leading in particular ~ tion with the values ofA needed to minimize this free en-
to the second-order spinodal transition for1/2. This ex-  ergy. Naturally this expansion of E¢6) can be performed

pansion can be generalized&#0 as explicitly and the problem with the convergence is then quite
obvious.
_ - (2p)! Now it is clear that these same problems arise if, instead
S5 2 _ 1 2p+2 . . .
Ng IN[T/Tsy w/T)JAS + gl( v 220l (p+ DI 2P P of a phase with a single plane-wave as is the FF phase, we

consider a more complicated phase which is a sum of plane
(4) waves, such as the planar phase)~cogq-r). This is al-

with ready obvious from the fact that the terms which arise in the
expansion for the FF phase will also appear in the expansion
S} for this phase. Other terms with weaker singularitiesAat
Ay =21TRe > —opr1 (5  =u(g-1) will also be present. We note that a singularity is
n=0 ®Wn

already present in the fourth-order terms investigateyl

andT.{(u/T) is the temperature of the second-order spinodal-O. as it can be seen from the explicit expression of their

transition toward the standard BCS phase. It is interesting t§t€gral J, but it occurs for a specific value of the angle
note that, while the coefficient&,, are clearly all positive between the wave vectors, which happens to be irrelevant for

when z—0, they are given byA,,=(~1)°/(2px?°) when their final conclusion. Therefore we come to the conclusion
that, due to the singular behavior which occursTato, we
cannot rely anymore on an expansion in powerdofhen

taking a double derivative with respect jo). Hence the the temperature is lowered. It is conceivable that such an

higher order coefficients have many changes of sign in th&xpansion .cc')uld still be proper by accident for a speqific
low temperature range. This feature corresponds to the silPhase, but it is unsafe for a general exploration of the various
gular behavior which occurs fak=z at T=0 in Eq. (3). It phases in competition. A possible partial cure for this prob-

allows also us to understand that the changes of signs fourl§™ could be to sum up the most divergent contributions,
by Houzetet al12 are not simple accidents, but a systematicVNich are precisely those occuring in the FF phase. We have
behavior linked to the singularity appearingTat0. tried such an approach, but, although it p_rowdes some im-

Finally, the T=0 free energy of the FF phase is obtainegProvement, it glearly does not lead to a satlsfgctory situation.

L —_ = = =2 . . Therefore, in an attempt to extend the simple approach

by replacing in Eq(3) p by m=u(1-gk-q) and averaging 516, ng the TCP, we will in the next section proceed to a
over the directiork as in Eq.(1). We give the result only in  Fourier expansion in the exact quasiclassical formulation of
the case wherg>1 since this is the range of wave vector the problem. This will prove to be completely satisfactory.
corresponding to the actual minimum of the free energy. One

T—0. Moreover, one can see th&f, hasp zeros wheru/T
goes from 0 tox (one goes basically fromy, to Ay, by

finds I1l. FOURIER EXPANSION
Q x? o7 X2 _ We start from Eilenberger’s equations for the diagonal
=—-—+m?|1+— |+ —Rdm, In(m, ~ . ~ . .
NoA2 2 3 2mq d(w,k,r) and off-diagonalf(w,k,r) quasiclassical propaga-
= 5 — tors, which we simplify from the outset by takirfg=1 and
+ VM =) = VM =% + (M, — M)] m=1/2. They read*
1 _ ~ -
-G—WRe[(ﬁ—xz)g’“(rm—WL)], (6) (0+k - V)f(ok ) =Arg(wk,r),
where we have used the notation=m(q+1). (w=K - V) (w,k,r) =A"(Ng(w,k,r),

This result has singularities foA=u(q+1). These are
just the manifestation of the singularity found in Eg) for . A S PR
A=u, corresponding to the upper and lower bounds in the 2 Volwkr)=an)flekr)=ANflokr), (7)
angular integration. In particular, the singularity &  wherek is at the Fermi surfack=kg. Actually g is given in
=u(q-1) gives the radius of convergence of the expansiorterms off andf* by the normalization condition:
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g(w,l?,r) =[1- f(w,&,r)ﬁ(w,'z,r)]l/z, (8 Wwe will deal finally with a complem Neve_rthel_ess the sym-
metry properties are still valid generally in this case.
so the last equation results from the two first ones. These For a real order parametdiX), f*(X), andg(X) are real,
ones are also relat&tsince which is consistent with Eilenberger’s equations. This im-
. A . . - - plies f_,=f, f*.=f}", andg_,=g,. Moreover, for an even
Fokn=Mokn, gEekn=-gokr), order parameter, Eqg7) are unchanged whefk,r) is

. A . A~ ~ changed intd—k,-r), which shows thaf, f*, andg are also
Flo—krn)=(wkrn), glo-kr=gekr). (9 unchanged. Hence from Eq9), f(-X)=f*(X) and g(-X)
In this paper we consider only an order parameter thatg(X), which leads finally tof,=f_, andg,=g-,.

varies only along thex axis. Accordinglyf and g depend It is then convenient to make explicit the relation between

only on this variable. Moreover, we assume that the ordef,, and f; by introducing d,=(f,~f;)/2i, which givesf,

parameter is periodic in this direction, which is the situation=(i— w/nQ)d,. We have then for the two quantitigs andd,,

occuring in the FFLO transition. We also restrict ourselves tqwhich are real for reab) the recursion relations

real order parameters since these have been found to corre-

spond to the highest critical temperature in the vicinity of the d=- nQA (Gt + Grit)

TCP, and the LO solutions are also real, so this property is T @222t I

expected to be widely satisfied. Anyway, the generalization

to an intrinsically complex order parameter should not make A

many difficulties. On= @(dn—l + e (13

Then we proceed to a Fourier expansion of this order

parameter. Let us first assume, in order to present our methdtlis clear from these equations thg{+ 0 only for evenn,

in the simplest case, that only the lowest harmonic is relandd,+# 0 only for oddn, as it can be seen, for example, by

evant. This amounts to taking generating the solution perturbatively. Moreover, they satisfy

0-,=0, andd_,=-d,. These equations are linear and must be

A(x) = 2A codqx). (10 supplemented by the normalization condition E§). The

We will consider at the end of the paper the general situation)=0 component is enough and it provides us precisely with

but we will actually find that, for our problem, the actual the spatial integrad,=/drgw,k,r), which we need in Eq.

order parameter at the transition is very nearly a simple cof1) to calculate the free energy:

sine. For fixedk Eilenberger’'s equations are a set of first- "

order differential equations for the variation of the Green'’s 5 L 2> 2 2

functions alongk. So we take a reduced variable along this %=1~ go (GnG-n * fuf-p) =1 _n% (29, + fo + 12,).

direction by settingr =kX, which givesk-V=d/dX and -

A(x)=2A cog4QX) where we have introduce@=kgq cosé 14
with ¢ the angle betweek and thex axis. Then we make a  Now the interesting point is the largebehavior ofg, and
Fourier expansion of the Green’s functions: d,. If for example, we eliminatel, in Eq. (13), we obtain a

linear recursion relation that linkg,.» to g, andg,_,. Since

0-n=0, We have only to considen=0, but this becomen

=2 when one takes into account that in Ef@) the relation
(11) for gy is identically satisfied becausk;=-d;. The general

Explicit substitution of Eq(11) in Eilenberger’s equations Solution of such a recursion relation is a linear combination

[Eq. (7)] gives of two independent solutions. The largeébehavior is found

from the recursion relation, which fdy, |o| < |nQ| simplifies

iNto A2(gp+2+0n-2) +N°Q°g,=0. One sees that this equation

100 =3 £, £(0=3 16" gx) =3 g, "
n n n

f,= 1t , i ” . o

"o+ inQ(gn 1+ G has very rapidly growing solutions satisfying,.,> g,
>0n, and behaving as g2~ (-1)P(2Q/A)*P(p!)%

o Naturally these solutions are not physically acceptable. On

n— w—inQ(g”"1+g”+l)’ the other hand, the recursion relation has also a solution
satisfying g,+»<9,<0gn-, and behaving ag,,~ (-1)P(A/
A . . 2Q)?P(1/p")?, which is the physical solution we are looking
m(fn—ﬁ fres = o= frea)- (12 for. This solution is found only ify, andg, are related by a
specific boundary condition.

The solutions of these equations have simple symmetry The very fast decrease gf andd, provides an easy way
properties, which can be checked directly for example byto obtain a set of approximate solutions, which moreover
generating explicitly the solution by a perturbation expan-converges rapidly to the exact one, all the more since these
sion. Actually they arise quite generally from the fact that weare g2 and d2 which come in Eq(14) for the calculation of
deal with an order parameter that is real and even, parity  go. Sinceg, andd, are very small for largen we just take
is not broken. This is more conveniently seen by taking the them to be zero beyond some fixed value. This serves as a
case wherev is real. However, one has to keep in mind thatboundary condition. Then we work backward to obtain the

On=
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whole set of Fourier components and normalize them prop- Although it is quite simple, the calculation of the free
erly through the normalization condition E(L4). Specifi- energy has to be carried out numerically and naturally it is
cally we proceed as follows. Since the recursion relationghe same for all the higher order approximations. In practice
are linear we rescalg, andd, in order to have convenient it is convenient to make use in E¢l) of In[T/Tg(u/T)]
initial values. We set,=goG,, (which impliesGy=1) and  =1/NoV-#TZ sgnw,)/ v, to rewrite it as

d,=nQg,D, and take as initial value&,y.»,=0 and Dy,

# 0 to be determined later. Then, starting with N, we use Q.- Q, _ 5
for decreasing values gf the following recursion obtained = IN[T/ T/ T)] dr|A(r)]
from Eq. (13):
(1)2 + (2p + 1)2Q2 + 4’7TTE dw Re<<go(a) - |EI2)>|(_ 1
Gop=—Ggpia— Tszu, n=0 - wp
1
+——— | dr|A(r 2), 18
D = 1(&(; - MD ) (15)
17 A\2p-1"% 2p-1 ) where we have made no assumption on the spatial depen-

dence of A(r). In the present case Eq(10) gives
down toG,. All the G's andD’s are proportional tD,y.y,  Jdr|A(r)|?=2A2 The form Eq.(18) is convenient for the
which is now found by enforcings,=1. Finally Eq.(14)  frequency integration since the integrant behaves dsfor
gives explicitly forgg large w, with a corresponding behavior;3 in the Matsubara

frequency summation. One may replacé‘l‘IhTsp(E/T)] by

N N In[e/ s ! T)] where ug(u/T) is the spinodal field for a
o’ =1+2> G5+ 22 [0® - (2p+ 1)*Q%|D5ps1. given u/T, since ug(u! T)/ Tsy(1u/ T)= I T. Finally the an-
p=1 p=0 gular average amounts to an integration ov@r since

(16)  (go(k)=J (d/ 4m)go(k) = [dug(Q=qu) with u=cose
. _ _ andq=qke/ u="hqke/ (2mu).
When we letN—c this equation provides the exact result  since we are only interested in the transition from the
for go. It is interesting to note that for these langave have  ormal to the FFLO state, in order to obtain the correspond-
found thatg, is proportional taA"™. This makes a precise link  jng critical temperaturd’, we look for the highest tempera-
between the expansion in powers dfwe discussed at the e T (or effective fieldz) at which Q—€,,=0. Precisely

beginning and the Fourier expansion we are consideringyis |eads to the following equation fdi=Tk:
now. One can see our result as corresponding to resumma-

tions of infinite series, eliminating in this way the troubles 2 TS [* A
mentioned in Sec. Il occuring because coefficients in theln[T/Ts{(u/T)] = - Min — > dw Re((go(w—iﬁk»k

Landau-Ginzburg expansion change sign as the temperature A oo,

is lowered. One finds also that in the limit of large| A2

>A,|nQ|, where one must recover the normal state Green’s -1 +—,2). (19
functions, one hagzp~(—1)p(A/w)2F’. Naturally the recur- (w=ip

sion relations Eq(15) are very convenient and very fast for _. . . : : L
a numerical implementation and in practice the situation isSlnce for homogeneity the right-hand side of this equation is

not very different from having an analytical expression foror.]tla/ a functiotnglfI/ K dA_//,u_,ar:dfq/ "S’Tc;rf has to minimize
Jo- The only practical problem is linked to the determination"V! Atr?l'sfgcth' K alrjf. 9’ a 'Xﬁ t _I'f‘h i
of the square root in obtaining, from Eq. (16), but this is - IS SImplifies somewnat. The summation over

solved by noticing that, from the general spectral represenMatSUbara frequencies goes to an integral which is per-

tation, one has Rey=0 whenw, > 0. formed by a by-parts integration. This gives for the critical

The simplest of these approximations corresponds to tak%eld M
N=0 and it is given explicitly by

w? = Q? )—1/2

_ 1 (" -
In{jal 2T = 0)] = = Min f dow Re<<go<w ~ iR
0

0o = (1 +27? (17) It
-1+ —) . (20)

. . . L . L (w—iw)?
This is already a quite nontrivial approximation. Since it is
correct up to order\? it gives the proper location for the Finally we write down the self-consistency equati@n
standard FFLO second-order transition line. Moreover, as wégap equationy for the order parameter, which comes out
will see it gives qualitatively and semiquantitatively the cor- quite generally when the free energy is minimized with re-
rect results, with a first-order transition down from the TCPspect to variations of this order parameter. This equation
which becomes a second-order transition at low temperaturgives the necessary feedback to E§.whereA(r) cannot be
in agreement with Ref. 13. naturally an open function. In practice we will make little use
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of it since we will rather minimize directly the free energy in generic situationap is expected to be very small for large
with respect to the order parameter. The self-consistenc. This is indeed what is found when one writes the self-

equatiod* can be written as consistency equatiott,Eq. (21), which givesA,, in terms of
B f,. This fast decrease df,, corresponds to the standard situ-
— — A, ation, where there is no smaller physical length scale for
A IN[TI Tyl T)] = ZWTEO Re<<fn(“’_ K= o iﬁ) A(x) than 14 itself. However, one can think of other par-

ticular situations, where this fast decreaseAgf does not
(21) " hold and which should be dealt with specifically. Ultimately

by making the same transformation frofg, to Teg(/T) as this convergence problem has to be handled numerically by

we did to find Eq(18). In this equation\,, is the component Making calculations for increasirg and looking when rea-
in the Fourier expansion af(r), as it is explicitly defined in sonable convergence has been achieved. This is what we will

Eq. (22) at the beginning of the next section. do below_\_/vith our present problem of finding the location of
the transition.
Finally we make the same practical use of this fast con-
IV. GENERAL ORDER PARAMETER vergence property as in Sec. lll. We take as the boundary
condition thatg, andd, are zero beyond some fixed valhe
This allows us to calculate all trgg, andd,, within a common
multiplicative factor, which is then found by the normaliza-
AX) = D) A, (22)  tion condition, Eq.(14). N is progressively increased until
n convergence has been obtained. The situation for solving the
practical problem of finding thg,’s and thed,’s is less con-
venient than in Sec. lll. However, we still have a linear prob-
Mem for which very efficient numerical procedures are
known. We have basically to handle a matrix. Instead of
gnaving a tridiagonal matrix, with just matrix elements right
below and above the main diagonal, we have now a band
o diagonal matrix with, in addition to the main diagonaR 2
(w+inQ)f,=(w— inQ)f; = E Ap(gn—p + gn+p), diagonals with nonzero matrix elements. _
p=1 To be more specific we have now to take into account
that, in our problem, only odd Fourier components,,, of
* the order parameter are nonzero. First we consider only order
2inQg,= >, Ap(frp* frep = frop = frp).- (23)  parameters with a zero spatial averagg=0, since taking a
p=1 nonzero value amounts to mix in the order parameter of the

Here we have also assumed for the moment that the spatiHP'form_ BCS phase, which is energe.tlc_ally unfavorable.

average of the order parameter is zero, thatis:0. Intro- Hence it is reasonable to assume that similarly a nonagro

ducing againd, = (f,~f*)/2i, we obtain t'he recdrs.ion rela- 1S unfavorable. Next we can see, for example, by an iterative
n treatment to all orders, in order to obtain an exact solution of

We consider now the extension of our Fourier expansion
presented in Sec. lll, to a general order parameter:

We assume again a real order parameter, which impﬂﬂes

eter even with respect to, which makesA,, real. Substitu-
tion as above in Eilenberger’s equations gives the followin
generalization of Eq(12):

tions: Eilenberger’s equations, that we have only odd components.
nQ * Indeed if we start with the simpl&(x)=2A cogqx) that we
U= 5552 Ap(Gn-p+ Gnep)s considered in Sec. lll, we generate only odd Fourier compo-

T w2+ n°Q? . )
p=1 nents inf(X) and even components gi{X) as we have seen.

Now this f(X) in turn generates only odd components for
1 < A(x) from the self-consistency equation, Eg1). But from
On= E% Ap(dnp + dnep). (24) Eq. (24) this is again completely compatible with only odd
. components fof(X) and even foig(X). Naturally it can also
We consider now the practical situation met in numericalbe seen directly from the starting Eilenberger’s equations
use of these equations. In this case the number of Fourighat such a solution is a consistent one. We note that such a
components for the order parameter will be finite, so we haveolution with odd components means that, by shiftingy
a maximum integeP for which A,=0 whenp>P. We look  7/(2q), we obtain an order parameter that is odd with re-
again at the behavior of the physical solution thrandg,  spect tox, in the same way as it transforms EJ0) into
whenn goes to infinity, and show that it is consistent with a 2A sin(gx).
fast factorial type decrease, as we have found in Sec. Ill. Then it results from Eq(24) that, just as in Sec. Ilig,
Indeed in this case the dominant term in the sums found 080 only for evenn, andd,+ 0 only for oddn. In the same
the right-hand side of Eq24) is the one wherél, or g, has way we set,=g,G, (implying Gy=1) andd,=nQg,D,, and
the smallest index, which givesd,~-Apg,p/(NQ) and  we have agaiG_,=G, andD_,=D,,. It is now convenient to
0n~ Apdy_p/ (NQ). This leads tog,~ (Ap/Q)™P/(n))*P. Al-  includeg, andd, into a single unknown vectov,, defined
though this is still a fast-factorial-type decrease, it getsby V,,=G,, andVy,.1=Dyp.q. Then Eq.(24) can be merely
slower whenP increases. On the other hand, the large written asM,,V,=A, with A,=—A, and the matrixV given
behavior contains the power law dependettg)™”, where by
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FIG. 1. The critical temperaturg,(u/T) for the transition to the
order parameter given by E@10), divided by the FFLO critical
temperaturel g o(u/T) obtained for the same value @f/ T. On
the x axis, instead ofu/T, we have giverTgg o)/ Teo, WhereTy
is the maximal critical temperature, obtained for 0.

M0 =20,
IV|2n+1,2n+1 =w’+ (2n+ 1)2Q21
Mome1,on = Aomeny+1 + Ajameny+1»

MZm,2n+1 = (2n + 1)[A2(m+n)+1 - A\Z(n—m)+1\]a (25)

with m,n=1.

As explained above we truncate the infinite matvixby
M, N=<Nya, Which gives a matrix with finite ordeé¥, .. The
corresponding linear equation f&f,, with n<N,,,,, can be

solved numerically by efficient standard routines, since a
mentioned above the matri¥ has a generalized band diag-

onal form. Once this is doney, is still obtained from Eq.
(16), the free energy calculated from Ed8) and the critical

temperature obtained by minimization. Finally the whole

procedure is repeated for increasing valueblgf, until con-

vergence is achieved. In the next section we will display th

corresponding numerical results.

V. NUMERICAL RESULTS

S

PHYSICAL REVIEW B 71, 144517(2005

present situation since we find this ratio to be always near
unity. However, to make the graph more readable, we give
on thex axis, instead ofu/T, the value ofTgg o(u/T) itself,
compared to the standard BCS critical temperatiigg
found for =0 (this corresponds to go along the standard
FFLO transition ling. Naturally when our result for
T/ TerLo goes below 1, this means that the first-order tran-
sition is less favorable than the second-order one, so when
the temperature is lowered there is actually a switch from
first to second order when one finds tAaf Tgg o=1.

We give the results of the calculation with increasing val-
ues ofNpay going up to 6. The approximatioN,,=1 cor-
responds to the explicit result E¢L7) for g,. As already
mentioned above, it is correct up to second ordeAiand
consequently it gives the correct location for the FFLO tran-
sition. Moreover, we see that it gives already the proper re-
sult semiquantitatively for the order of the transition, since it
gives a switch from first to second order when the tempera-
ture goes belowlrg o/ T;o=0.195. The next approximation
Nmax=3 for odd N, is already quite good quantitatively
since it gives 0.063 for the above ratio. Full convergence is
obtained folN,,,=5 where we findl e o/ Teo=0.076 in very
good agreement with Matsuet all® For completeness we
give also in Fig. 1 our results for evéMy,,,. It is less natural,
from the structure of the recursion equations, to truncate
them in this way. Hence it is not so surprising that the ap-
proximation Npha=2 is much worse thamN,,,=1 since it
does not even give a switch from first to second order for the
transition. Nevertheless we naturally have convergence when
we increaséN,,, and indeed we find tha\,,,,,=4 is already
very good since the switch is located Bir o/ T,p=0.074,
while N,2=6 is completely converged.

A noticeable feature of Fig. 1 is that the raflg/ Tgr o
stays always very near unity, while one would have expected
to find it larger since there is no obvious relation between the
order parameters of the first- and second-order transitions.
This behavior is also fourfinear the TCP. A natural conclu-
sion from this feature is to say that the first-order transition is

eactually always quite near to being a second-order one. We

can check in our results if this interpretation is a coherent
one by looking at the size of the order paraméteore pre-
cisely its maximal value as a function of spatial posijion
that is essentially the value df; at the first order transition.

We present now the results of our numerical implementaif the first-order transition is nearly a second-order one, it
tion of the above procedure. In the first susbsection below wghould be small compared to a typical g&pin the uniform
restrict ourselves to an order parameter with Only the lowesgcs phase_ Equiva|ent|y, in F|g 2, we compare it_ﬂeince

harmonic as it is given by EqA0). The general case is

considered afterwards.

A. Lowest harmonic

it is of order A, in all the range we are interested (at T

=0 the FFLO result izi=0.754\,). Our results show clearly
that the size of the order parameter at the transition is of
order of the one deep in the standard BCS phase, so it is not
at all possible to consider that the first-order transition is

We first give in Fig. 1 the results for the calculation of the nearly a second-order one.
critical temperature, down from the TCP. Rather than giving  Finally, it is also of interest to compare the reduced wave

T.(w), we cover for convenience thgs,T) plane in polar

vectors of the order parameter for our first-order transition

coordinates, rather than Cartesian coordinates, and give tkgd for the standard second-order FFLO transition. This is

critical temperaturd (u/T) as a function ofu/ T, equivalent
to a polar angle. More precisely we plot its rafig/ Ter o to
the FFLO critical temperatur&gg o(u/T) obtained for the

done in Fig. 3 where it is seen that, although there are dif-
ferences, they are not very large so that the reduced wave
vector is rather similar for the two transitions, in contrast

same value of the ratiqu/T. This is more suited to the with the size of the order parameter.
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0.6 . I I I I 1.012 1 I I I 1
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' 1.008 -
04 [ - 1.006 .
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0 1 1 1 1 1 0.994 | 1 1 1 |
0 0.1 0.2 0.3 04 0.5 0.6 0 0.1 0.2 0.3 04 0.5 0.6
Trrro/Teo Trrro/Teo
FIG. 2. Solid line: size of the componeAj of the order param- FIG. 4. Dashed line: critical temperature for the first-order tran-

eter for the first-order transition, compared g when all higher  sition for a one-dimensional order parameter form with four odd
order harmonics are taken equal to zero. Dashed line: same quantifyurier componenta; withi=1, 3, 5, and 7. Solid line: same result
for an order parameter whets; is also non zero. for the simple cosine ansatz, whereodly is different from zero.

B. Higher harmonics in the whole temperature range from the tricritical point

Naturally it is not consistent to keep only the lowest har-doWn to zero temperature. .
monic in the order parameter, as it is immediately seen from ©Our humerical procedure is to use directly the free energy
the self-consistency equatid@l). Hence we consider now Ed- (18) by taking as an ansatz our form for the order pa-
the effect of higher harmonics. In a first step we have ex{@meter, with either three or four odd Fourier components.
plored the effect at the transition of the inclusion/of We ~ More precisely we maximize, with respect gA; with i
have found it quite small. This would imply normally to stop =1,3,5,7, thecritical temper:_ﬂure_from the generalization to
the exploration at this stage since one expects the effect GUr case of Eq(19), as explained in Sec. Ill. We then check
harmonicsAg and higher to be even smaller. However, onethat our optimal form s.atlsﬁes the gap equation. We have
might wonder whether this result is not somewhat accidenta!SC Performed calculations by making use only of the gap
and specific ta\,. This is especially a concern in the vicinity €duation. '_I'he results are not S|gn|f|cantl_y different fr_om the
of the switching temperature from first to second order,On€S we display below, and most of the time agree with them
whereA; is particularly small(see Fig. 5. It could be that within numerical accuracy. From a practical pomt of view,
higher order harmonics dominate in this region, leading to &€ have chosen high enough values\af,,, typically Npa,
guantitative change of the first-order transition line. Hence=12, SO that numerical results are insensitive to changes in
in order to eliminate any doubt on this question, we have“max N
explored the effect of takinds and A, to be different from We give f_|rst in Fig. 4 our result for the critical tempera-
zero. Our study shows that these harmonics give also a vei§!"® of the first-order transition. The effect of all our higher
small contribution. Hence our conclusion is that the optimalOrder harmonics can be only barely seen in the figure, as

order parameter remains always very close to a simple cosifg?mpared to our calculation with only the lowest harmonics
A,, already given in Fig. 1.

» | | | : : Next we display in Fig. 5, as a function of temperature,
_____________ without harmonie the values of the higher order harmonits, As, andA; for
-------- with harmonic -----

) - EFLO prediction ------ 1 the optimal order parameter. It is seen that they are always
1 quite small compared td,. Nevertheless, around and below
the switching temperaturéy; and Ag are of the same order

0.8 | . . while one would have rather expectad to be small com-

R NS .
06 k- % i pared toA; (note that anyway these results are physically
' Ay irrelevant below the switching temperature since they are for
0.4 | L the first-order transition, while the actual transition is second
09 b v orden. On the other hand); is always negligible compared

. to Az andAs, except near the TCP where anywayandA-,
0 L L L L L ' are essentially zero. Finally Fig. 5 shows also the results for
0 0.1 0.2 03 04 0.5 06 the optimalA; and As whenA,=0. The difference with the
Trrro/Teo preceding results is within numerical error. Similarly our re-
FIG. 3. Solid line: optimal reduced wave veciof the order ~ SUlt for A3 whenAs=A;=0 (not shown are also essentially
parameter at the first order transition, for the converged solution, alfldistinguishable from the result displayed in Fig. 5.
a function of temperature,_ When only the compc_)mepts different VI. CONCLUSION
from zero. Long dashed line: same result whignis also nonzero.
Short dashed line: corresponding result for the second-order FFLO In this paper we have shown that performing a Fourier
transition. expansion in the quasiclassical Eilenberger’s equations pro-
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0.001 I I I I I

perature is lowered, the transition switches from first to sec-
. ond order. We have shown in detail that, in the case of the
_ first-order transition, the order parameter is nevertheless
dominated by its lowest order Fourier component, in some-

0.002 . L ;
what surprising contrast to what one might guess for such a
S0 7 transition. This feature contributes naturally to make our
-0.004 . Fourier expansion very rapidly converging.
-0.005 - However, the strength of our method is not so much dis-
0.006 i played in this case of a one-dimensional order parameter. Its
major interest is rather that our approach can be fairly easily
0.007 0.1 0.2 0.3 04 0.5 0.6 generalized to more complex order parameters, with full
Trrro/Tw three-dimensional spatial dependence. As shown by Larkin

and Ovchinnikov, these order parameters come in competi-
tion and, in the case of a first-order transition, it is not clear
that they are not more advantageous than the standard
second-order FFLO phase transition. We will indeed show, in
forthcoming work, that this is the case at low temperature in
vides a very efficient way to study the transition from thethree dimensions. Finally another interest of our approach is
normal state to the FFLO phases in three dimensions, at leakst provide some insight, even if approximate, in the analyti-
in the vicinity of the transition. We have applied this tech- cal structure of the theory, as we have seen by providing
nigue to the case of the transition to the one-dimensionagxplicit approximate analytical solutions. We believe that
“planar” order parameter and we have found perfect agreethis might be helpful in a theoretical situation where the
ment with the earlier work of Matsuet al. In particular we  intrinsic nonlinearity of the equations forces mostly to purely
have rederived their remarkable result that, when the temaumerical work.

FIG. 5. The optimal values for the amplitudé&s, As, andA; in
the order parameter as a function of temperatsodid lines. For
comparison the results fdr; andAs whenA;=0 are also given as
dashed lines.
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