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Magnetic-field dependence of thermodynamic quantities in the vortex state
of type-Il superconductors
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We develop an alternative method to solve the Eilenberger equations numerically for the vortex-lattice states
of type-Il superconductors. Using it, we clarify the magnetic-field and impurity-concentration dependences of
the magnetization, the entropy, the Pauli paramagnetism, and the mixing of higher Landau levels in the pair
potential for two-dimensiona- and d,2,2-wave superconductors with the cylindrical Fermi surface.
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[. INTRODUCTION venient for microscopically calculating responses of the
vortex-lattice state to external perturbatiGAssuch as
Recent experiments® have shown that magnetic-field de- vortex-lattice oscillations.

pendences of thermodynamic quantities in the vortex state of This method is applied here to calculate magnetic-field

type-ll superconductors provide unique information on thedependences of the magnetization, the entropy, the Pauli

pairing symmetry and gap anisotropy. On the theoreticabaramagnetism, and the pair potential at various tempera-

side, however, calculations of those quantities still remain aures for the two-dimensiona and d,o_.-wave supercon-

fairly difficult task to perform. The quasiclassical equationsductors in the clean and dirty limits. These quantities have

derived by Eilenbergérprovide a convenient starting point been obtained neat, for the swave pairing®334 Our pur-

for this purpose. Pes€lobtained a compact analytic solution pose here is to clarify the overall field dependence of those

to them based on the lowest Landau-level approximation fofuantities.

the pair potential. It has been used recently to discuss the This paper is organized as follows: Sec. Il gives the for-

field dependences of the thermal conductiffitie density of mulation, Sec. Il presents numerical results, and Sec. IV

states; ™! and thermodynamic quantitiés.On the other summarizes the paper. We ugg=1 throughout.

hand, Kleirt®' obtained a full numerical solution for the

vortex-lattice state using a standard procedure to solve ordi-

nary differential equations. This numerical approach has [l. FORMULATION

been used extensively by Ichiolet al,'>1° Miranovi¢ et

al.,?° Nakaiet al,?! Miranovi¢ et al.?? and Ichiokaet al >3 to

clarify the field dependences of the pair potential and the \ye take the external magnetic figtlalong thez axis and

density of states for type-Il superconductors with variousexpress the vector potential6gé35-38

energy-gap structures. It should be noted, however, that those

numerical studies all adopted simplified model Fermi sur- _

faces instead of complicated Fermi surfaces for real materi- A(r)=Bxy +A(r). (1)

als. Indeed, recent theoretical studi¥-26have clarified

that detailed Fermi-surface structures are indispensable fQiq e B is the average flux density produced jointly by the

the quantitative description of the vortex state. . | t and the int | ¢ Anib th
With these backgrounds, we here develop an alternatiygXtérnai curreént and the intérnal supercurrent, he
Spatially varying part of the magnetic field satisfying

method to solve the Eilenberger equations for the vortex: ~
lattice states. A key point lies in expanding the pair potentiall V X Adr =0. We choose the gauge such thatA=0.

and the quasiclassicélfunction in the basis functions of the ~ The Eilenberger equation for the even-parity pairing with-
vortex-lattice states, thereby transforming the differentialout Pauli paramagnetism is given®sy

equations into algebraic equations. This method has been

powerful for: (i) solving the Ginzburg-Landau equatidnhs 4 1 2

and the Bogoliubov—de Gennes equatfén¥ and (i) ob- <8n+ 2—<9> + EﬁVF ' 3>f = (A¢>+ 2—<f>>9- (2a)
taining quantitative agreements on the upper critical fi¢lg 4 T

of Nb, NbSe, and MgB, with Fermi surfaces from first-

principles electronic-structure calculatiofis® Thus, the Heree,=(2n+1)#T (n=0,%1,+2,..) is the Matsubara en-
method may be more advantageous for the calculations afrgy with T the temperaturez is the relaxation time by non-
thermodynamic quantities in finite magnetic fields when re-magnetic impurity scattering, an@d--) denotes the Fermi-
alistic Fermi surfaces are used as inputs. It will also be consurface average:

A. Eilenberger equations
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J(enKe:l) a I.| ¢ ic \Y
<g>J&;F N S T . . (62
(27)*N(0)|ve| a v2L- ¢y iy || Vy - 2miBX/ D,
with dS: an infinitesimal area on the Fermi surfab0) the  wjith | .= \®,/27B and C1C,+C1Co=2, andA andvg, are de-
density of states per spin and per unit volume at the Fermfined by
energy in the normal state, angt the Fermi velocity. The

operatord in Eq. (2a) is defined by \,E

A=-
|2—7TA i
D,

(clA + |02 y)) (6b)

d=V-
(60)

with dy=hc/2e the flux quantun?’ A(r) is the pair poten-  respectively. The constan(s; ,c,) can be fixed appropriately
tial, and ¢(kg) specifies the gap anisotropy satisfying 1o make the subsequent calculations efficient. A convenient
(¢(kp)y=1. Finally, the quasiclassical Green's functiohs choic&® is to impose the condition that the gradient term in
and g for &,>0 are connected byg=(1-ff")¥2 with  the Ginzburg-Landau equation be expressed in terns af
f(en, ke, 1) =1 (g, —Kg,1). without usingaa anda'a’, i.e., the pair potential nedr, will
Equation(2a) has to be solved simultaneously with the be described in terms of the lowest Landau level only. Alter-
self-consistency equatlon for the pair potential and the Maxnatively, one may follow Grasest all® to change them at

UF+ = CoUpy +IC1URy,

well equation forA, which are given, respectively, by every temperature and magnetic field so as to make the free-
energy within the lowest-Landau-level approximation small-

est.
Using Eq.(6a), we can make up a set of basis functions to
describe arbitrary vortex-lattice structureg’as

oml, P
n
LTy D{qu(wc—qxﬂ
C1a\ TV n=-pj/2+1
na na
xexp[l 21X<y+lgqx——ly>}
12 2
2 2
xeXp[—%(X_lcqy_”aM) }
2 Cqle
x—ngy—nalx>
Cyle .

INGURCES TE 20— (ke ek |,
(2b)
VR = ETNOT S e, (20
n=0

with T, the transition temperature far=co.

Finally, the free-energy functional corresponding to Eq.

(2) is given by-33

2
Fs:Fn+fdr{(V8X—’”+N(o>|A ftin -

cO

n=0 n

|A(r)[?
+2 TN(O)E —— = (epket |, (3

where F,, is the free energy in the normal state ahds
defined by

hmw—l

l=Af+AfT+2e,(g-1) +4
27

fETY + (F)FT .
41

flve . gf — fue- ' fT
e E Vet (4)
2(g+1)

Indeed, functional differentiations of E€3) with respect to
f, A, andA lead to Egs(2a—(2¢), respectively.

B. Operators and basis functions
We first express the gradient operator in E2p) as
vr(a+A) —vpa +A)

Vg-d= = . (5
: B )

Herea anda' are the boson operators:

1/’Nq(r) =

X L H ( (7)
V2N

Here N=0,1,2,...denotes the Landau levey, is an arbi-
trary chosen magnetic Bloch vector characterizing the bro-
ken translational symmetry of the vortex lattice and specify-
ing the core locations, and is the volume of the system.
The quantitiesa,,, a;,, and a, are the components of the
basic vectorsa; and a2 in the xy plane, respectively, with
aly and aja,= 27T|C, J\f2 denotes the number of the

flux quantum in the system, ari(x) = e[-(d/d e is
the Hermite polynomial. The basis functions are both
orthonormal and complete, satlsfy|@//Nq—\N¢//N 1q and

a' ‘/qu N N+ 1’/’N+1q
C. Algebraic Eilenberger equations

We now expand, f, andA in the basis functions of the
vortex lattice as

AN = WX Aging(D), (8a)
N=0

f(en ke ") = V2 f(enKe) ting(F),
N=0

(8b)
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"A(r) - E AKeiK-r, (80) E. Thermodynamic quantities

K#0 OnceA, f, andA are determined as above, we can calcu-

whereK is the reciprocal-lattice vectdf. Substituting Eq. late thermodynamic quantities of the vortex-lattice state.
(8) into Egs.(2) and using the orthogonality of the basis Specifically, the magnetizatiddl due to supercurrent and the
functions, Egs.(2) is transformed into a set of algebraic €ntropyS are obtained b¥

equations for{fy}, {An}, and{Ac} as

1 f [ -
— — —4aM=— | dr| (V X A)?+27°N(0)T
enfn+ B YN+ 1f\,1 — BYNT- BV

(. ( (Hg—(@f —~ _~*> o e of —fue- 9T
= A + ﬁ— - A+ BA dl’ y X F F 11
W) Pl adg on  BA*B EO T 1 ., (119
(93
N(0) S
T Sl A S=S- fdr A2 = 27T [((en K1)
Ayin =2 =27TX {—“—<¢<kF>fN(sn,kF>>}, (9b) =0
T n=0L €n
+2e,(g- D] [, (11b)
~  16@N(O)T < ik
K= (KI.B)2v go (Bg(en ke, r)e™dr,  (90) respectively, wher&,=272VN(0)T/3 is the entropy in the
_ normal state and is defined by Eq(4). Also, when it is
with much smaller than the diamagnetism by supercurrent, the
; ; magnetizatiorMgp due to Pauli paramagnetism can be calcu-
— + +
B= fi(Cvpy ’_lclva), _ h(Crvpx ’_|020F )_ (10) lated by
AV 2V2l, s
Together with the equation to determind., derived M. p= an[l—@-E dr@<1+m) ]
recently?® the above coupled equations form a basis for ef- V 2o den B
ficient numerical calculations of the Eilenberger equations
) ; . ; (119
for vortex-lattice states with arbitrary Fermi-surface struc-
tures. where M p=2VN(0) 3B with ug the Bohr magneton. The
quantity
D. Numerical procedures T
For a gi latti ified by the basi ﬁ——;<fi+a—ff’r) (12)
or a given vortex-lattice structure specified by the basic e 20 -1\ g6, T e

vectorsa; anda, in Eq. (7), the coupled equatiof®) may be
solved iteratively in order of Eqg9a—(9¢) by adopting a in Eq. (110 may be obtained either by numerical differentia-
standard technique to solve nonlinear equatfms.conve-  tions or directly from the equation of differentiating Hga)
nient starting point is to pmﬁ):aNoA(T)\e’l—B/ch, fy=0,  with respect tce,

and A =0 on the right-hand of Eq(9a), whereA(T) is the 5 1 of # g
angle-averaged energy gap in zero field. In this connection, it <sn +—(g) + ZhAVE- 0)— + (1 + ——)f

may be worth noting that the tridiagonal matrix constructed 2t 2 den 27 den

from the coefficients ofy on the left-hand side of Eq9a) h a9 h «F)

can be inverted analyticalfy. The Fermi-surface integrals = A¢+Z_<f> g*’;gg- 13
(-++) can be performed as described in Sec. IV of Ref. 25. In . "

contrast, integrations over in Egs. (98 and (9c) may be  This equation can be solved similarly to Ega).

carried out as follows: At the beginning of each calculation,

we preparefy,(r) andeX " at equally spacetliy, X Niy dis-

crete points in a unit cell. We then construdi(r), ll. RESULTS

f(en,Kg.1), Ar), andg=(1-ff")2 on those points by Eqs.  We now present numerical results for two-dimensional

(8) restricting the summations to those satisfyMg: N, ahd systems with the cylindrical Fermi surface which is placed in
|K|=K,, whereN; andK_ are some cutoffs. Now, the inte- the xy plane perpendicular t&d. We have considered a
grations can be performed by the trapezoidal rule; its convereouple of energy gaps:
gence is excellent for periodic functions. Also, the summa- _
tion overn in Eq. (9b) is restricted in the actual calculations 1 S wave

iafyi dkp) =1 =+ S
to those satisfyinde,| < .. The convergence can be checked 522 172\ du.2wave.
by increasingN;,, N¢, K., ande.. Finally, the vortex-lattice
structure can be fixed by requiring that the free enéByyoe  Then it is convenient to set;=c,=1 in Eq. (6). There is
minimum. another parameter in the system corresponding to the

(14)
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'8.0 0.2 0.4 0.6 0.8 1.0
B/H, ()
(b) FIG. 2. The expansion coefficientg, in Eq. (83 as a function

of B/Hg, in the clean limit atT=0.3T.: (a) s-wave pairing where
FIG. 1. The magnetization by supercurrent as a function ofthe curves areAq, Ag, and A;, from top to bottom and(b)
B/H, in the clean limit:(@) s wave and(b) d,z_y2 wave. The tem-  G-y2-wave pairing where the curves akg, A4, andAg from top to
peratures ard/T,=0.9, 0.7, 0.5, and 0.3 from top to bottom in the bottom neaH,.
high-field region.
parametett «,(T) as T—0. This feature ofx,(T) has also

Ginzburg-Landau parameter We have fixed it by been predicted in the case of the three-dimensional spherical
Fermi surface with thes-wave pairing®*41-43 Unlike the
(ic/2e)A(0) {10 ‘s wave 15 three-dimensional casé{*?3 however, the slope in these
Ko= FP——,22" 7 d wave two-dimensional cases remains finite and does not approach
V4mN(0)A "7 Xy ’ 0 even in the clean limit of —0, in agreement with a pre-

vious calculation of«,.23 The curves at low temperatures
become more and more concave upward, thereby compensat-
ing the initial reduction of the magnetization. The tempera-

with A(0) the angle-averaged energy gapTaO. It follows
from Eq. (46) of Ref. 33 that Eq.(15) corresponds to
«=49 and 40 for the- andd,.-wave pairings in the clean ture variation is slightly larger for thé._,.-wave pairing
limit, respectively, and«=1300 for thes-wave pairing with than thes-wave pairin Xy
7=0.012/A(0). The vortex-lattice structure has been fixed as™ _. P 9- . - .
hexagonal(square for the s-wave (d,2_,2-wave pairing so Figure 2 shows the expansion coefficietsg in Eq (83).
that finite contributions in the ex Xa_r%/sic(ISa) come onl as a function oB/H for thes- andds.>-wave pairings in
from N=0,6.12,.. (N=0.4.8, ..) Lpandau levels Y the clean Ii'm'it atT:O:STC. Compared with the case near
Equatic;n(é) fc;r”the abc;vé n",n;);:iel has been sol\./ed with theT-C’27 th_e mixing of higher Lanqlau_lev_els _develops from
higher fields. However, the contribution is sti0.1A, even
proqedure of Sec. IID over 0.8g,<B<H,. The valye around B=0.1H,. This fact implies that the Pesch
Neu 1S chosen as 3016) for the swave (d_xz_yz—wave) Pall”  approximation is excellent down tdd ~0.1H,, for the two-
ing. On the other hand, we have sef=20T; (S0T¢) at  gimansional cases with the isotropic Fermi surface. This may
T=0.9T; (0.3T). These values have been enough to get thg,,t e the case for systems with complicated Fermi surfaces,
convergence. Using, f, andA thus obtained, we have cal- however, as suggested by the fact that there is already an
culated the magnetization by supercurrent, the entropy, anamount of higher-Landau-level contributionsH, in those
the magnetization by Pauli paramagnetism by Eqscases*2% The Pesch approximation may be improved to
(113—(110), respectively. some degree by the procedure of Graateal X° to changec,
Figure 1 presents magnetic-field dependence of the magndc, in Eqg. (6a) at every temperature and magnetic field so
netization by supercurrent for tise andd,z_j2-wave pairings  that the free energy is smallest.
in the clean limit at several temperatures. In both cases, the Figures 3 and 4 plot the entrof® and the magnetization
initial slope atB=H,, gradually decreases as the temperatureM, due to Pauli paramagnetism, respectively, as a function
is lowered, implying a monotonic increase of the Maki of B/H, for thes- andd,z_,.-wave pairings in the clean limit
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FIG. 3. The entropy5; as a function oB/H,: (a) s wave;(b) FIG. 4. The magnetizatioMgp by Pauli paramagnetism as a
dy2_y2 wave. The temperatures aréT.=0.9, 0.7, 0.5, and 0.3 from function of B/H,: (a) s wave; (b) d,2y2 wave. The temperatures
bottom to top. They are normalized to vary from 1BatH,to 0 at areT/T;=0.9, 0.7, 0.5, and 0.3 from bottom to top. They are nor-
B=0. malized to vary from 1 aB=H, to 0 atB=0.

) 0.85H,=B=<0.9H,. Although not presented here, the pro-
at several temperatures. To see the field dependence cleardaqure excellently reproduced the values of a previous cal-
the entropy is normalized by usin§o=S(B=0) and  cylation neaH,,,3* as they should.

Si=S(B=H) as(S§-S0/(§-S); it varies from 1 to 0 Table | shows the exponeni obtained by the best fit to
for H,=B=0. The same normalization is adopted fdg-  the data of 0.08,<B<0.9%H,, in Fig. 3. The value of the

All curves deviate upwards from the linear behavid@/H,,  d,2_» pairing at T/T;=0.9 is almost the same as the
and become more and more convex upwardras0. This  correspondings-wave result. As the temperature is de-
tendency is more conspicuous for e .-wave pairing due creased, however, thel,._>-wave exponent decreases
to the residual low-energy density of states. To see the begnore rapidly so that the curve in Fig(l8 becomes more

havior quantitatively, we have fitted our numerical data byconvex upward; this is due to the residual low-energy density
the formulas: of states of thed,.>-wave pairing. Table Il presents

another exponent, obtained by the best fit to the data of
0.0H.,=<B=<0.91H,, in Fig. 4. Each value is fairly close to
the corresponding one fars, as may be expected from the
fact that both quantities probe the zero-energy density of
states. In this context, Ichiokat all’ calculated the field
(16b) dependence of the zero-energy density of stai€d) at
T/T,=0.5 to find N(0) = (B/H)%®" and N(0) « (B/H,)%4*
for the s- and d,2_2-wave pairings, respectively. Our esti-
§ mates forag(T—0) and a,(T—0) are somewhat smaller
(largey for the swave (dy2_,2-wave) pairing.

S-S ()" 264

$-So \He
Msp- Mspo:<3>“x
Ivln_MsPO Hc2

To confirm the numerical results, we first estimategdand
a, for the swave pairing by using only the data o

TABLE I. The exponentag of Eq. (1689 for the s- and TABLE Il. The exponenta, of Eg. (16b) for the s- and
dy2-y2-wave pairings in the clean limit calculated by the best fit to d,2_2-wave pairings in the clean limit calculated by the best fit to
the numerical data of Fig. 3. the numerical data of Fig. 4.

TIT, 0.9 0.7 0.5 0.3 TIT, 0.9 0.7 0.5 0.3
as (s wave 0.73 0.69 0.66 063  a,(swave 0.71 0.67 0.63 0.63
as (d wave 0.72 0.66 0.59 052  a,(dwave 0.70 0.63 0.56 0.49

144515-5



WATANABE, KITA, AND ARAI PHYSICAL REVIEW B 71, 144515(2005
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2 o2 T/T=0.5
—— T/T=0.3
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FIG. 5. Magnetization by supercurrent as a functiorBéH,
for the s-wave pairing with 7=A/A(0). The temperatures are 1.0
T/T.,=0.9, 0.7, 0.5, and 0.3 from top to bottom.
;g 0.8
Experiments on theT-linear specific-heat coefficient 0
v«(B) have been performed for clean$,** NbSe,*>*8and i L6 Y
CeRuy.*® The quantity y4(B)/7y, coincides forT—0 with ; 0.4} ; :$g33
(5-S0/(S,—-Sy) of Fig. 3. Those data all show marked g ol Sz T/r°=0:5_
upward deviations from the linear behavigiB/H.,, indicat- ’ —T/l‘:=o.3
ing that it is a common feature among clean superconductors 055 64 05 08 10
) : . a7 f . . i ;i .
irrespective of the energy-gap symmetry. Songr al. B/H,
thereby extracted the exponent 0.66 for the field dependence
of y¢B) asT—0, in good agreement with the result 0.67 by (b)
Ichiokaet all’ for the clean two-dimensionatwave model. o
However, a more recent experiment by Hanagtiral *® re- FIG. 6. (a) The entropySs and (b) the magnetizatioMsp by

ported a different exponent 0.5. This exponent 0.5 has beef@ull paramagnetism as a functionfH., for the swave pairing

reproduced by a more recent calculation for the cylindricalith 7=0-0%/A(0). The temperatures af&/T;=0.9, 0.7, 0.5, and
Fermi surface by Nakagt al?! using an anisotropis-wave 0.3 from top to bottom.
gap function. Thus, the work clearly indicates the importance
of the gap anisotropy. It should also be noted, however, thal-5Hc2<B=<0.93,; unlike the clean-limit case, it has been
NbSe has three kinds of Fermi surfaces and one of them igmpossible to fit the whole region by a single exponent, es-
quite different in structure from the cylinder. There also ex-Pecially at intermediate temperatures, as may be realized
ists a recent experiment which indicates the existence of diffrom Fig. 6. Compared with Figs.(8 and 4a), the curves
ferent Superconducting energy gaps on different Ferm@feé more monotonic with the almost linear beha\ﬁﬁ'/ch.
surfaces$ Hence the agreement between the experiment by-00king at the temperature dependence more closely, how-
Sonieret al#” and the theory by Ichiokat all” as well as  €ver, we observe a change from a convex-upward behavior at
that between the experiment by Hanagetial#® and the high temperatures to a convex-downward behavior at low
theory by Nakaiet al?! might be an artifact and should be temperatures, in agreement with a previous calculation near
confirmed by more detailed experiments as well as theoriell2>* This feature also appears in the field dependence of
incorporating both Fermi-surface and gap structures. In thighe zero-energy density of states as calculated recently by
context, it is worth noting that no detailed experiments havéMiranovic et al* The convex-downward behavior at
been performed on the field dependencegB) even for the ~ T=0.3Tc may become more pronounced at lower tempera-
classic type-ll superconductors V and Nb, although earlyiures to be observable experimentally.
experiment¥®>! suggest similar upward deviations from the
linear behaviory,B/H,.

We next focus on thes-wave pairing in the dirty IV. SUMMARY
limit. Figure 5 shows the magnetization fer 0.014/A(0) as
a function ofB/H.,. Compared with the clean-limit results Eil
of Fig. 1(a), we observe an extended linearity down to
B/H.,~0.2, irrespective of the temperature. The decrease of
:Breelgglstlestlj%[;ecéog'aé) I\I/lsa;s pea)ﬁzgcetfgdﬂrgym St(f:lae":]egn:r[])iesra- with 7=0.012/A(0) calculated by the best fit to the numerical data
change of the initial slope, all the curves almost fall onto aOf 0 =B=<0.9Hc.
single curve. This is a marked feature in the dirty limit which T/
is absent in the clean-limit result of Fig(dl.

Figure 6 shows the field dependencesSpland Mgp for 4 0.84 0.88 0.92 1.10
7=0.0%:/A(0) at various temperatures. Table Il presents the,, 0.84 0.89 0.99 1.15
corresponding exponenig anda, obtained from the data of

We have developed an alternative method to solve the
enberger equations for the vortex-lattice state. The main

TABLE lll. The exponentsasg and a, for the swave pairing

T, 0.9 0.7 0.5 0.3
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analytic formulas are given in Sec. Il C together with thelimit at low temperatures present convex-upward behaviors
numerical procedure to solve them in Sec. Il D. This methodfor both pairings. In contrast, the curves of thaave pair-
which directly extends thél,, equatio®?¢to lower fields, ing in the dirty limit are more monotonic and fairly close to
has a potential applicability to systems with complicatedthe linear behavior, but also acquire downward curvature at
Fermi surfaces and/or gap structures to carry out detailetbw temperatures. As for the magnetization by supercurrent,
calculations on the field dependences of thermodynamithere is a wide region of linear field dependence freim
quantities for various type-Il superconductors. both at high temperatures and in the dirty limit. The region
Using it, we have calculated the field dependences of thehrinks in the clean limit as the temperature is lowered, and
magnetization by supercurrent, the mixing of higher Landauhe curve acquires pronounced upward curvature. It is also
levels in the pair potential, the entropy, and the Pauli parafound that the mixing of higher Landau levels in the pair
magnetism for the two-dimensionad andd,z_,>-wave pair-  potential is small foB=0.1H., but develops rapidly as the
ings in the clean and dirty limits at various temperaturesfield is further decreased.
Previous results neat, for the s-wave pairing>3* have
been reproduced adequately and extended to lower fields to
clarify the overall field dependences. The differences be- ACKNOWLEDGMENTS
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