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We develop an alternative method to solve the Eilenberger equations numerically for the vortex-lattice states
of type-II superconductors. Using it, we clarify the magnetic-field and impurity-concentration dependences of
the magnetization, the entropy, the Pauli paramagnetism, and the mixing of higher Landau levels in the pair
potential for two-dimensionals- anddx2−y2-wave superconductors with the cylindrical Fermi surface.
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I. INTRODUCTION

Recent experiments1–5 have shown that magnetic-field de-
pendences of thermodynamic quantities in the vortex state of
type-II superconductors provide unique information on the
pairing symmetry and gap anisotropy. On the theoretical
side, however, calculations of those quantities still remain a
fairly difficult task to perform. The quasiclassical equations
derived by Eilenberger6 provide a convenient starting point
for this purpose. Pesch7 obtained a compact analytic solution
to them based on the lowest Landau-level approximation for
the pair potential. It has been used recently to discuss the
field dependences of the thermal conductivity,8 the density of
states,9–11 and thermodynamic quantities.12 On the other
hand, Klein13,14 obtained a full numerical solution for the
vortex-lattice state using a standard procedure to solve ordi-
nary differential equations. This numerical approach has
been used extensively by Ichiokaet al.,15–19 Miranović et
al.,20 Nakaiet al.,21 Miranović et al.,22 and Ichiokaet al.23 to
clarify the field dependences of the pair potential and the
density of states for type-II superconductors with various
energy-gap structures. It should be noted, however, that those
numerical studies all adopted simplified model Fermi sur-
faces instead of complicated Fermi surfaces for real materi-
als. Indeed, recent theoretical studies10,24–26 have clarified
that detailed Fermi-surface structures are indispensable for
the quantitative description of the vortex state.

With these backgrounds, we here develop an alternative
method to solve the Eilenberger equations for the vortex-
lattice states. A key point lies in expanding the pair potential
and the quasiclassicalf function in the basis functions of the
vortex-lattice states, thereby transforming the differential
equations into algebraic equations. This method has been
powerful for: sid solving the Ginzburg-Landau equations27

and the Bogoliubov–de Gennes equations28–31 and sii d ob-
taining quantitative agreements on the upper critical fieldHc2
of Nb, NbSe2, and MgB2 with Fermi surfaces from first-
principles electronic-structure calculations.25,26 Thus, the
method may be more advantageous for the calculations of
thermodynamic quantities in finite magnetic fields when re-
alistic Fermi surfaces are used as inputs. It will also be con-

venient for microscopically calculating responses of the
vortex-lattice state to external perturbations,32 such as
vortex-lattice oscillations.

This method is applied here to calculate magnetic-field
dependences of the magnetization, the entropy, the Pauli
paramagnetism, and the pair potential at various tempera-
tures for the two-dimensionals- and dx2−y2-wave supercon-
ductors in the clean and dirty limits. These quantities have
been obtained nearHc2 for the s-wave pairing.33,34 Our pur-
pose here is to clarify the overall field dependence of those
quantities.

This paper is organized as follows: Sec. II gives the for-
mulation, Sec. III presents numerical results, and Sec. IV
summarizes the paper. We usekB=1 throughout.

II. FORMULATION

A. Eilenberger equations

We take the external magnetic fieldH along thez axis and
express the vector potential as6,27,35–38

Asr d = Bxŷ + Ãsr d. s1d

Here B is the average flux density produced jointly by the

external current and the internal supercurrent, andÃ is the
spatially varying part of the magnetic field satisfying

e= 3 Ãdr =0. We choose the gauge such that= ·Ã =0.
The Eilenberger equation for the even-parity pairing with-

out Pauli paramagnetism is given by6,25

S«n +
"

2t
kgl +

1

2
"vF · ­D f = SDf +

"

2t
kflDg. s2ad

Here«n=s2n+1dpT sn=0, ±1, ±2, . . .d is the Matsubara en-
ergy withT the temperature,t is the relaxation time by non-
magnetic impurity scattering, andk¯l denotes the Fermi-
surface average:
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kgl ; E dSF
gs«n,kF,r d

s2pd3Ns0duvFu
,

with dSF an infinitesimal area on the Fermi surface,Ns0d the
density of states per spin and per unit volume at the Fermi
energy in the normal state, andvF the Fermi velocity. The
operator­ in Eq. s2ad is defined by

­ ; = − i
2p

F0
A ,

with F0;hc/2e the flux quantum,39 Dsr d is the pair poten-
tial, and fskFd specifies the gap anisotropy satisfying
kfskFdl=1. Finally, the quasiclassical Green’s functionsf
and g for «n.0 are connected byg=s1− f f†d1/2 with
f†s«n,kF,r d= f*s«n,−kF,r d.

Equations2ad has to be solved simultaneously with the
self-consistency equation for the pair potential and the Max-

well equation forÃ, which are given, respectively, by

Dsr dln
Tc0

T
= 2pTo

n=0

` FDsr d
«n

− kfskFdfs«n,kF,r dlG ,

s2bd

− ¹2Ãsr d = − i
16p2eNs0dT

c o
n=0

`

kvFgs«n,kF,r dl, s2cd

with Tc0 the transition temperature fort=`.
Finally, the free-energy functional corresponding to Eq.

s2d is given by6,33

Fs = Fn +E drHs= 3 Ad2

8p
+ Ns0duDsr du2ln

T

Tc0

+ 2pTNs0do
n=0

` F uDsr du2

«n
− kIs«n,kF,r dlGJ , s3d

where Fn is the free energy in the normal state andI is
defined by

I ; D* f + Df† + 2«nsg − 1d + "
fkf†l + kflf†

4t
+ "

gkgl − 1

2t

− "
f†vF · ­f − fvF · ­* f†

2sg + 1d
. s4d

Indeed, functional differentiations of Eq.s3d with respect to

f, D, andÃ lead to Eqs.s2ad–s2cd, respectively.

B. Operators and basis functions

We first express the gradient operator in Eq.s2ad as

vF · ­ =
v̄F+

* sa + Ãd − v̄F+sa† + Ã*d
Î2lc

. s5d

Herea anda† are the boson operators:

F a

a†G =
lc
Î2
F c1 ic2

− c1
* ic2

* GF ¹x

¹y − 2piBx/F0
G , s6ad

with lc;ÎF0/2pB andc1c2
* +c1

*c2=2, andÃ and v̄F+ are de-
fined by

Ã ; − i
Î2plc

F0
sc1Ãx + ic2Ãyd, s6bd

v̄F+ ; c2vFx + ic1vFy, s6cd

respectively. The constantssc1,c2d can be fixed appropriately
to make the subsequent calculations efficient. A convenient
choice25 is to impose the condition that the gradient term in
the Ginzburg-Landau equation be expressed in terms ofa†a
without usingaa anda†a†, i.e., the pair potential nearTc will
be described in terms of the lowest Landau level only. Alter-
natively, one may follow Graseret al.10 to change them at
every temperature and magnetic field so as to make the free-
energy within the lowest-Landau-level approximation small-
est.

Using Eq.s6ad, we can make up a set of basis functions to
describe arbitrary vortex-lattice structures as27

cNqsr d =Î 2plc

c1a2
ÎpV

o
n=−Nf/2+1

Nf/2

expFiqySy +
lc
2qx

2
DG

3 expFi
na1x

lc
2 Sy + lc

2qx −
na1y

2
DG

3expF−
c1c2

2
Sx − lc

2qy − na1x

c1lc
D2G

3
1

Î2NN!
HNSx − lc

2qy − na1x

c1lc
D . s7d

Here N=0,1,2, . . .denotes the Landau level,q is an arbi-
trary chosen magnetic Bloch vector characterizing the bro-
ken translational symmetry of the vortex lattice and specify-
ing the core locations, andV is the volume of the system.
The quantitiesa1x, a1y, and a2 are the components of the
basic vectorsa1 and a2 in the xy plane, respectively, with
a2i ŷ and a1xa2=2plc

2, Nf
2 denotes the number of the

flux quantum in the system, andHNsxd;ex2
f−sd/dxdgNe−x2

is
the Hermite polynomial. The basis functions are both
orthonormal and complete, satisfyingacNq=ÎNcN−1q and
a†cNq=ÎN+1cN+1q.

C. Algebraic Eilenberger equations

We now expandD, f, andÃ in the basis functions of the
vortex lattice as

Dsr d = ÎVo
N=0

`

DNcNqsr d, s8ad

fs«n,kF,r d = ÎVo
N=0

`

fNs«n,kFdcNqsr d, s8bd
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Ãsr d = o
KÞ0

ÃKeiK ·r , s8cd

where K is the reciprocal-lattice vector.27 Substituting Eq.
s8d into Eqs. s2d and using the orthogonality of the basis
functions, Eqs.s2d is transformed into a set of algebraic

equations forhfNj, hDNj, andhÃKj as

«nfN + b̄*ÎN + 1fN+1 − b̄ÎNfN−1

=
1

ÎV
E cNq

* SDfg + "
kflg − kglf

2t
− b̄*Ã + b̄Ã*Ddr ,

s9ad

DN ln
Tc0

T
= 2pTo

n=0

` FDN

«n
− kfskFdfNs«n,kFdlG , s9bd

ÃK = −
16p2Ns0dT
sKlcBd2V

o
n=0

` E kbgs«n,kF,r dle−iK ·rdr , s9cd

with

b̄ ;
"sc2vFx + ic1vFyd

2Î2lc
, b ;

"sc1vFx + ic2vFyd
2Î2lc

. s10d

Together with the equation to determineHc2 derived
recently,25 the above coupled equations form a basis for ef-
ficient numerical calculations of the Eilenberger equations
for vortex-lattice states with arbitrary Fermi-surface struc-
tures.

D. Numerical procedures

For a given vortex-lattice structure specified by the basic
vectorsa1 anda2 in Eq. s7d, the coupled equations9d may be
solved iteratively in order of Eqs.s9ad–s9cd by adopting a
standard technique to solve nonlinear equations.40 A conve-
nient starting point is to putDN

s0d=dN0DsTdÎ1−B/Hc2, fN=0,

and ÃK =0 on the right-hand of Eq.s9ad, whereDsTd is the
angle-averaged energy gap in zero field. In this connection, it
may be worth noting that the tridiagonal matrix constructed
from the coefficients offN on the left-hand side of Eq.s9ad
can be inverted analytically.25 The Fermi-surface integrals
k¯l can be performed as described in Sec. IV of Ref. 25. In
contrast, integrations overr in Eqs. s9ad and s9cd may be
carried out as follows: At the beginning of each calculation,
we preparecNqsr d andeiK ·r at equally spacedNint3Nint dis-
crete points in a unit cell. We then constructDsr d,
fs«n,kF,r d, Ãsr d, andg=s1− f f†d1/2 on those points by Eqs.
s8d restricting the summations to those satisfyingNøNc and
uK uøKc, whereNc andKc are some cutoffs. Now, the inte-
grations can be performed by the trapezoidal rule; its conver-
gence is excellent for periodic functions. Also, the summa-
tion overn in Eq. s9bd is restricted in the actual calculations
to those satisfyingu«nuø«c. The convergence can be checked
by increasingNint, Nc, Kc, and«c. Finally, the vortex-lattice
structure can be fixed by requiring that the free energys3d be
minimum.

E. Thermodynamic quantities

OnceD, f, andÃ are determined as above, we can calcu-
late thermodynamic quantities of the vortex-lattice state.
Specifically, the magnetizationM due to supercurrent and the
entropySs are obtained by34

− 4pM =
1

BV
E drFs¹ 3 Ãd2 + 2p2Ns0dT

3o
n=0

` K f†vF · ­f − fvF · ­* f†

g + 1
LG , s11ad

Ss = Sn −
Ns0d

T
E drHuDsr du2 − 2pTo

n=0

`

fkIs«n,kF,r dl

+ 2«nkg − 1lgJ , s11bd

respectively, whereSn;2p2VNs0dT/3 is the entropy in the
normal state andI is defined by Eq.s4d. Also, when it is
much smaller than the diamagnetism by supercurrent, the
magnetizationMsP due to Pauli paramagnetism can be calcu-
lated by34

MsP= MnPF1 −
2pT

V
o
n=0

` E dr
]kgl
]«n

S1 +
¹ 3 Ã

B
D2G ,

s11cd

whereMnP;2VNs0dmB
2B with mB the Bohr magneton. The

quantity

]g

]«n
= −

1

2s1 − f f†d1/2S f
]f†

]«n
+

]f

]«n
f†D s12d

in Eq. s11cd may be obtained either by numerical differentia-
tions or directly from the equation of differentiating Eq.s2ad
with respect to«n

S«n +
"

2t
kgl +

1

2
"vF · ­D ]f

]«n
+ S1 +

"

2t

]kgl
]«n

D f

= SDf +
"

2t
kflD ]g

]«n
+

"

2t

]kfl
]«n

g. s13d

This equation can be solved similarly to Eq.s2ad.

III. RESULTS

We now present numerical results for two-dimensional
systems with the cylindrical Fermi surface which is placed in
the xy plane perpendicular toH. We have considered a
couple of energy gaps:

fskFd =H1 :s wave

Î2sk̂Fx
2 − k̂Fy

2 d :dx2−y2 wave.J s14d

Then it is convenient to setc1=c2=1 in Eq. s6d. There is
another parameter in the system corresponding to the
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Ginzburg-Landau parameterk. We have fixed it by

k0 ;
s"c/2edDs0d
Î4pNs0d"2vF

2
= H10 :s wave

7 :dx2−y2 wave,J s15d

with Ds0d the angle-averaged energy gap atT=0. It follows
from Eq. s46d of Ref. 33 that Eq.s15d corresponds to
k=49 and 40 for thes- anddx2−y2-wave pairings in the clean
limit, respectively, andk=1300 for thes-wave pairing with
t=0.01" /Ds0d. The vortex-lattice structure has been fixed as
hexagonalssquared for the s-wave sdx2−y2-waved pairing so
that finite contributions in the expansions8ad come only
from N=0,6,12, . . .sN=0,4,8, . . .d Landau levels.

Equations9d for the above model has been solved with the
procedure of Sec. II D over 0.05Hc2øBøHc2. The value
Ncut is chosen as 30s16d for the s-wave sdx2−y2-waved pair-
ing. On the other hand, we have set«c=20Tc s50Tcd at
T=0.9Tc s0.3Tcd. These values have been enough to get the

convergence. UsingD, f, andÃ thus obtained, we have cal-
culated the magnetization by supercurrent, the entropy, and
the magnetization by Pauli paramagnetism by Eqs.
s11ad–s11cd, respectively.

Figure 1 presents magnetic-field dependence of the mag-
netization by supercurrent for thes- anddx2−y2-wave pairings
in the clean limit at several temperatures. In both cases, the
initial slope atB=Hc2 gradually decreases as the temperature
is lowered, implying a monotonic increase of the Maki

parameter41 k2sTd as T→0. This feature ofk2sTd has also
been predicted in the case of the three-dimensional spherical
Fermi surface with thes-wave pairing.33,41–43 Unlike the
three-dimensional case,33,42,43 however, the slope in these
two-dimensional cases remains finite and does not approach
0 even in the clean limit ofT→0, in agreement with a pre-
vious calculation ofk2.

33 The curves at low temperatures
become more and more concave upward, thereby compensat-
ing the initial reduction of the magnetization. The tempera-
ture variation is slightly larger for thedx2−y2-wave pairing
than thes-wave pairing.

Figure 2 shows the expansion coefficientsDN in Eq. s8ad
as a function ofB/Hc2 for thes- anddx2−y2-wave pairings in
the clean limit atT=0.3Tc. Compared with the case near
Tc,

27 the mixing of higher Landau levels develops from
higher fields. However, the contribution is still,0.1D0 even
around B=0.1Hc2. This fact implies that the Pesch
approximation7 is excellent down toH,0.1Hc2 for the two-
dimensional cases with the isotropic Fermi surface. This may
not be the case for systems with complicated Fermi surfaces,
however, as suggested by the fact that there is already an
amount of higher-Landau-level contributions atHc2 in those
cases.24–26 The Pesch approximation may be improved to
some degree by the procedure of Graseret al.10 to changec1
andc2 in Eq. s6ad at every temperature and magnetic field so
that the free energy is smallest.

Figures 3 and 4 plot the entropySs and the magnetization
MsP due to Pauli paramagnetism, respectively, as a function
of B/Hc2 for thes- anddx2−y2-wave pairings in the clean limit

FIG. 1. The magnetization by supercurrent as a function of
B/Hc2 in the clean limit:sad s wave andsbd dx2−y2 wave. The tem-
peratures areT/Tc=0.9, 0.7, 0.5, and 0.3 from top to bottom in the
high-field region.

FIG. 2. The expansion coefficientsDN in Eq. s8ad as a function
of B/Hc2 in the clean limit atT=0.3Tc: sad s-wave pairing where
the curves areD0, D6, and D12 from top to bottom andsbd
dx2−y2-wave pairing where the curves areD0, D4, andD8 from top to
bottom nearHc2.
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at several temperatures. To see the field dependence clearly,
the entropy is normalized by usingSs0;SssB=0d and
Sn;SssB=Hc2d as sSs−Ss0d / sSn−Ss0d; it varies from 1 to 0
for Hc2ùBù0. The same normalization is adopted forMsP.
All curves deviate upwards from the linear behavior~B/Hc2
and become more and more convex upward asT→0. This
tendency is more conspicuous for thedx2−y2-wave pairing due
to the residual low-energy density of states. To see the be-
havior quantitatively, we have fitted our numerical data by
the formulas:

Ss − Ss0

Sn − Ss0
= S B

Hc2
DaS

, s16ad

MsP− MsP0

Mn − MsP0
= S B

Hc2
Dax

. s16bd

To confirm the numerical results, we first estimatedaS and
ax for the s-wave pairing by using only the data of

0.85Hc2øBø0.95Hc2. Although not presented here, the pro-
cedure excellently reproduced the values of a previous cal-
culation nearHc2,

34 as they should.
Table I shows the exponentaS obtained by the best fit to

the data of 0.05Hc2øBø0.95Hc2 in Fig. 3. The value of the
dx2−y2 pairing at T/Tc=0.9 is almost the same as the
correspondings-wave result. As the temperature is de-
creased, however, thedx2−y2-wave exponent decreases
more rapidly so that the curve in Fig. 3sbd becomes more
convex upward; this is due to the residual low-energy density
of states of thedx2−y2-wave pairing. Table II presents
another exponentax obtained by the best fit to the data of
0.05Hc2øBø0.95Hc2 in Fig. 4. Each value is fairly close to
the corresponding one foraS, as may be expected from the
fact that both quantities probe the zero-energy density of
states. In this context, Ichiokaet al.17 calculated the field
dependence of the zero-energy density of statesNs0d at
T/Tc=0.5 to find Ns0d~ sB/Hc2d0.67 and Ns0d~ sB/Hc2d0.41

for the s- and dx2−y2-wave pairings, respectively. Our esti-
mates foraSsT→0d and axsT→0d are somewhat smaller
slargerd for the s-wave sdx2−y2-waved pairing.

TABLE I. The exponentaS of Eq. s16ad for the s- and
dx2−y2-wave pairings in the clean limit calculated by the best fit to
the numerical data of Fig. 3.

T/Tc 0.9 0.7 0.5 0.3

aS ss waved 0.73 0.69 0.66 0.63

aS sd waved 0.72 0.66 0.59 0.52

FIG. 3. The entropySs as a function ofB/Hc2: sad s wave; sbd
dx2−y2 wave. The temperatures areT/Tc=0.9, 0.7, 0.5, and 0.3 from
bottom to top. They are normalized to vary from 1 atB=Hc2 to 0 at
B=0.

FIG. 4. The magnetizationMsP by Pauli paramagnetism as a
function of B/Hc2: sad s wave; sbd dx2−y2 wave. The temperatures
areT/Tc=0.9, 0.7, 0.5, and 0.3 from bottom to top. They are nor-
malized to vary from 1 atB=Hc2 to 0 atB=0.

TABLE II. The exponentax of Eq. s16bd for the s- and
dx2−y2-wave pairings in the clean limit calculated by the best fit to
the numerical data of Fig. 4.

T/Tc 0.9 0.7 0.5 0.3

ax ss waved 0.71 0.67 0.63 0.63

ax sd waved 0.70 0.63 0.56 0.49
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Experiments on theT-linear specific-heat coefficient
gssBd have been performed for clean V3Si,44 NbSe2,

45–48and
CeRu2.

49 The quantitygssBd /gn coincides forT→0 with
sSs−Ss0d / sSn−Ss0d of Fig. 3. Those data all show marked
upward deviations from the linear behaviorgnB/Hc2, indicat-
ing that it is a common feature among clean superconductors
irrespective of the energy-gap symmetry. Sonieret al.47

thereby extracted the exponent 0.66 for the field dependence
of gssBd asT→0, in good agreement with the result 0.67 by
Ichiokaet al.17 for the clean two-dimensionals-wave model.
However, a more recent experiment by Hanaguriet al.48 re-
ported a different exponent 0.5. This exponent 0.5 has been
reproduced by a more recent calculation for the cylindrical
Fermi surface by Nakaiet al.21 using an anisotropics-wave
gap function. Thus, the work clearly indicates the importance
of the gap anisotropy. It should also be noted, however, that
NbSe2 has three kinds of Fermi surfaces and one of them is
quite different in structure from the cylinder. There also ex-
ists a recent experiment which indicates the existence of dif-
ferent superconducting energy gaps on different Fermi
surfaces.3 Hence the agreement between the experiment by
Sonieret al.47 and the theory by Ichiokaet al.17 as well as
that between the experiment by Hanaguriet al.48 and the
theory by Nakaiet al.21 might be an artifact and should be
confirmed by more detailed experiments as well as theories
incorporating both Fermi-surface and gap structures. In this
context, it is worth noting that no detailed experiments have
been performed on the field dependence ofgssBd even for the
classic type-II superconductors V and Nb, although early
experiments50,51 suggest similar upward deviations from the
linear behaviorgnB/Hc2.

We next focus on thes-wave pairing in the dirty
limit. Figure 5 shows the magnetization fort=0.01" /Ds0d as
a function ofB/Hc2. Compared with the clean-limit results
of Fig. 1sad, we observe an extended linearity down to
B/Hc2,0.2, irrespective of the temperature. The decrease of
the initial slope forT→0 is as expected from the tempera-
ture dependence of the Maki parameterk2.

41 By scaling this
change of the initial slope, all the curves almost fall onto a
single curve. This is a marked feature in the dirty limit which
is absent in the clean-limit result of Fig. 1sad.

Figure 6 shows the field dependences ofSs and MsP for
t=0.01" /Ds0d at various temperatures. Table III presents the
corresponding exponentsas andax obtained from the data of

0.5Hc2øBø0.95Hc2; unlike the clean-limit case, it has been
impossible to fit the whole region by a single exponent, es-
pecially at intermediate temperatures, as may be realized
from Fig. 6. Compared with Figs. 3sad and 4sad, the curves
are more monotonic with the almost linear behavior~B/Hc2.
Looking at the temperature dependence more closely, how-
ever, we observe a change from a convex-upward behavior at
high temperatures to a convex-downward behavior at low
temperatures, in agreement with a previous calculation near
Hc2.

34 This feature also appears in the field dependence of
the zero-energy density of states as calculated recently by
Miranović et al.22 The convex-downward behavior at
T=0.3Tc may become more pronounced at lower tempera-
tures to be observable experimentally.

IV. SUMMARY

We have developed an alternative method to solve the
Eilenberger equations for the vortex-lattice state. The main

FIG. 5. Magnetization by supercurrent as a function ofB/Hc2

for the s-wave pairing with t=" /Ds0d. The temperatures are
T/Tc=0.9, 0.7, 0.5, and 0.3 from top to bottom.

FIG. 6. sad The entropySS and sbd the magnetizationMsP by
Pauli paramagnetism as a function ofB/Hc2 for the s-wave pairing
with t=0.01" /Ds0d. The temperatures areT/Tc=0.9, 0.7, 0.5, and
0.3 from top to bottom.

TABLE III. The exponentsaS and ax for the s-wave pairing
with t=0.01" /Ds0d calculated by the best fit to the numerical data
of 0.5Hc2øBø0.95Hc2.

T/Tc 0.9 0.7 0.5 0.3

aS 0.84 0.88 0.92 1.10

ax 0.84 0.89 0.99 1.15
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analytic formulas are given in Sec. II C together with the
numerical procedure to solve them in Sec. II D. This method,
which directly extends theHc2 equation25,26 to lower fields,
has a potential applicability to systems with complicated
Fermi surfaces and/or gap structures to carry out detailed
calculations on the field dependences of thermodynamic
quantities for various type-II superconductors.

Using it, we have calculated the field dependences of the
magnetization by supercurrent, the mixing of higher Landau
levels in the pair potential, the entropy, and the Pauli para-
magnetism for the two-dimensionals- anddx2−y2-wave pair-
ings in the clean and dirty limits at various temperatures.
Previous results nearHc2 for the s-wave pairing33,34 have
been reproduced adequately and extended to lower fields to
clarify the overall field dependences. The differences be-
tween thes- anddx2−y2-wave pairings are quite small at high
temperatures but develop gradually as the temperature is
lowered, reflecting the marked difference in the low-energy
density of states between the two cases. The field depen-
dences of the entropy and Pauli paramagnetism in the clean

limit at low temperatures present convex-upward behaviors
for both pairings. In contrast, the curves of thes-wave pair-
ing in the dirty limit are more monotonic and fairly close to
the linear behavior, but also acquire downward curvature at
low temperatures. As for the magnetization by supercurrent,
there is a wide region of linear field dependence fromHc2
both at high temperatures and in the dirty limit. The region
shrinks in the clean limit as the temperature is lowered, and
the curve acquires pronounced upward curvature. It is also
found that the mixing of higher Landau levels in the pair
potential is small forB*0.1Hc2 but develops rapidly as the
field is further decreased.
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