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Low-energy quasiparticle states at superconductor/charge-density-wave interfaces
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Quasiparticle bound states are found theoretically on transparent interfagegaoe superconductors with
charge-density-waveCDW) solids, as well as-wave superconductors witlrdensity wavegDDWSs). These
bound states represent a combined effect of Andreev reflection from the superconducting side, unconventional
quasiparticleQ reflection from the density-wave solid, and standard specular reflection. If the order parameter
for a density-wave state is much less than the Fermi energy, bound states with almost zero energy take place
for an arbitrary orientation of symmetric interfaces. For larger values of the order parameter, dispersionless
zero-energy states are found only @40 interfaces. Two dispersive energy branches of subgap quasiparticle
states are obtained f¢t00) symmetric interfaces. Andreev low-energy bound states, taking place in junctions
with CDW or DDW interlayers, result in anomalous junction properties, in particular, the low-temperature
behavior of the Josephson critical current.
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[. INTRODUCTION the Q-reflection event and forms the condensate in the CDW

solid. No electric current appears in this process, while in

Low-energy quasiparticle states play an important role inAndreev reflection an incoming electron is reflected as a hole
forming electron transport in mesoscopic hybrid superconand a Cooper pair carries the electric chargén2o the bulk

ducting systems at low temperatures. In transparen®f the superconductor. On the other hand, the retroreflection

superconductor-normal-metal-supercondu¢®N-9 junc-  leads to a possibility for forming quasiparticle bound states

tions, subgap states originate entirely in Andreev reflectiod? CDW-N-CDW systems with the same spectrum as for
processes. In the presence of finite interface transparencigdNdreev bound states in S-N-S structufésQ reflection

both Andreev and conventional reflections come into play ircontributes also to the conductance of N-CDW-N junctidns.
forming subgap bound states. Zero-energy Andreev surfacphe excess resistance in CDW-N junctions at low voltages

states ind-wave superconductors also represent a combine as been observed expe“me'f“a"y and attributed teflec- .
effect of Andreev and specular quasiparticle reflections lon processes, when the incident electron returns along its
P 4 P " __original path with its charge unchanggds this has been

Interes_tlng_ poss'.b'“t'es for f_ormln_g low-energy sfubga_p demonstrated recently in Ref. 4, normal-metal quasiparticles
states arise in hybrid systems involving gapped solids with, o rience a spin-depende@ reflection from interfaces
various  electronic ordering like charge-density waves it jtinerant antiferromagnets. Quasiparticle subgap states
(CDWs) or itinerant antiferromagnet#Fs). In the absence |cated near interfaces with AFs, have been found, in par-
of any potential barriers and/or a Fermi velocity mismatch sicylar, near S-AF interfaces.
the standard specular reflection from a plane interface van- |n the present paper we determine subgap states represent-
ishes. However, normal-metal quasiparticles moving withing a combined effect of Andreev a@ireflections on trans-
subgap energies towards the gapped phase will be reflectgfrent interfaces between a semiconductor with charge-
from the transparent interface. If the gap in the quasiparticlglensity waves and a superconduct¢€DW-S). For
spectrum originates in the electronic ordering, a nonspeculaimplicity, we consider symmetric interfaces having identical
quasiparticle reflection on various plane crystal interfacegrystal orientations on both sides. All phases are assumed to
can arise in accordance with the order-parameter structurge (quasiy two-dimensional, taking place on a square lattice.
Andreev quasiparticle retroreflection on transparent S-N intn particular, we study below solids with a two-dimensional
terfaces is a remarkable and well-known effect of this kind,CDW ordering, as well as with a-density-wave phase,
but it is not the only one. Unconventional quasiparticle re-which has been suggested regarding the pseudogap state in
flection resulting in low-energy quasiparticle bound statesuprategsee Refs. 7—11 and references theréive demon-
arises, for example, at CDW-N interfaces,as well as on strate that quasiparticle subgap states arisé-orve super-
AF-N interfacest conductor (dSO-CDW and swave superconductor

Normal-metal subgap quasiparticles change their mod-density-wave (sSC-DDW) (and do not appear on
menta by the wave vect@ of the charge-density-wave pat- sSC-CDW anddSC-DDW) interfaces. We discuss an inter-
tern, in an unconventional reflection process on interfaceface between a low-temperatusavave superconductor and
with the gapped CDW phaseSince the nesting condition a d-density-wave phase implying a low doping range in cu-
(ks +Q)=-g¢(k;) is presumably satisfied in the CDW solid, prates. If the order parameter for a density-wave state is
at least with the quasiclassical accuracy, the velogifyok  much less than the Fermi energy, the quasiclassical theory
changes its sign in &-reflectionevent. ThenQ reflection  can be applied to describing the state. Within this framework,
represents a retroreflection of quasiparticles. A neutrakzero-energy bound states take place for an arbitrary interface
electron-hole pair with the transferred momentQarises in  orientation. For larger values of the order parameter, the
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Smatrix approach is developed to solving the problem inidentical crystal-to-interface orientations of both half spaces,
question. Then dispersionless zero-energy states are fourd if they formed one and the same square lattice. A devia-
only on (110 interfaces. Two dispersive energy branches oftion from half filling will be assumed, first, to be equal to
subgap quasiparticle states are obtained f00) interfaces. zero(u=0) or negligibly small everywhere. This guarantees
Andreev low-energy bound states, taking place in junctionshe validity of the nesting conditiosy(k;+Q)=—g:(k;) in the
with CDW or DDW interlayers, result in anomalous junction normal-metal state of both solids. We assume always that the
properties, in particular, the anomalous low-temperature besuperconducting order parameter is much less than the Fermi
havior of the Josephson critical current. energyA <g;, so that the quasiclassical theory of supercon-
ductivity applies to the problem in question. If a density-
wave order paramet&¥ is sufficiently largews A, then the
Il. CDW-S INTERFACES Smatrix approach can be applied to describing the interface
Andreev bound states at CDW-S and DDW-S boundaries.
There is no need to consider the param&tée; to be small
within the Smatrix approach. Interface states can appear,
since quasiparticles with energies below the CDW or DDW

We consider a tight-binding model for electrons with a
superconducting\" and a density-wave\" order parameter
on a square lattice,

—_ + Al tHO + S Wi gap do not penetrate in the bulk of solids with density waves.
H= t%“a CioCio E ( C'TCW c) %U C"’CJ" At the same time, Andreev reflection does not permit subgap
quasiparticles to enter into the bulk of the superconductor.
-2l CiyCio- (1) Quasiparticles in the superconducting half space can be
i

described in terms of standard Andreev equations for An-

Assume nearest-neighbor hopping, and consider eithetreev amplitudes)"(x, k) = (u(x, k) ,u(%,ky))
s-wave pairing A =-V(c; ci;)8;=8;Ag or d-wave pairing

AV=-Vci 6;)=A]d 1 Such thatAlR=-Al®. Here & [=ivexms+ Atk ) Jgx ke) = egx.k), (2)

and b are basis vectors for the square lattice with thecomplemented with the suitable boundary conditions at
lattice constana. The order parameter for a two-dimensional CDW-S or DDW-S interfaces. Here ,=[d&(K)/ k= K is

CDW is taken in the form Wi=(-1)a* bW S the x component of the electron normal-state Fermi velocny,
:—(VCDW/2)<n,T+n,l> j, Whereas for ad-density waveW! T, are Pauli matrices in particle-hole space. The supercon-

=i(-1)! +'bV\/”é5| Sja=(VPPW2)s Sl ,Cio—H.c) and Wit ducting order-parameter matrid(k;,x) represents both

—W'*b Thus we study only the simplest model for pinned SWave or d-wave order parameters which are defined
two- dlmen5|onal charge-density waves with the characterisas As(x) AX) T/ 2+A(X)7-12, Ad(kf X)=Aq(Ks,X) 7,/ 2
tic wave vectoiQ=(r, ) on a square lattice. Although real- +Ad(kf,x)r /2. Continuous coordinat in quasiclassical
istic two-dimensional CDW ordering usually takes place inequationg2) originated from thex components of site posi-
more complicated situatiort$;4the main conclusions of the tions: x;=jd. Hered=a, al\2 for (100 and (110 interfaces,
present paper can be qualitatively applicable to them as weltespectively.
Thus if the nesting condition is valid only on a part of the  Boundary conditions for Andreev equatiof®) can be
Fermi surface, just respective electrons will participate in theobtained by solving the scattering problem for quasiparticles
density-wave ordering and th@ reflection will take place on the Fermi surface moving from the bulk of the normal
for respective regions of momentum directions. Further, thenetal towards CDW-N or DDW-N interfaces. For this pur-
quasiclassical superconducting-wave order parameter pose one can put4=0 in the Bogoliubov—-de Gennes equa-
Ag(Ks,x)=2A 4 cos(kea) - cos(kg,a) ], taken for incoming — tions, which follow from the Hamiltoniaril), and solve re-
k; and outgoingk;+Q momenta in aQ-reflection event, spective interface problems. The differen@ebetween the

would have opposite signs for a wide range of possible waveutgoingk; and the incoming; momenta takes place for a
vectorsQ, not only for the particular valuérm, ). quasiparticleQ reflection both from the CDW or DDW
In describing plane interfaces, it is convenient to work inphase. The wave vector of the density wave on the square
a coordinate system where axesndy are chosen perpen- lattice is Q=(, ), with respect to the crystal axes. In the
dicular and parallel to the interface, respectively. Fot@0 x,y-coordinate systenQ=(, ) for (100 interface andQ
interfacex andy coincide with the crystal axes. Then the =(,2+ 0) in the (110 case. So, a quasiparticle going to-
normal-state electron bargik)=—u—2t(cosk,+cosky) and  \yards the(100) boundary of an electronically ordered phase
the respective Brillouin zone is spanned ky, e [-m,7],  can change its parallel to the interface momentum compo-
where momenta are glven in units Hffl For a(llO) inter- nen’[ky by Qy:ﬂ- in the Q-reflection process or kedg un-
face we have {(k)=-u-4tcogk,/ V2)cogk,/V2) and  changed in the process of specular reflection. Er0)
Ky [—\27,27], ky e [-m/\2,7/2], on account of the boundary, by contrast, parallel to the interface compokgnt
periodic conditions along the surface. does not change both i@ and specular reflections. For this
A density-wave order paramet@' is taken to be nonzero reason the boundary conditions fa100) and(110) interfaces
only on one semi-infinite half space<0, while A may be differ from each other.
nonzero on the other. For simplicity, no interface potential For the (110 interface the boundary conditions take the
barrier is introduced in the problem and we consider onlyform
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~ 1+7 0 1-T3\~ a reflection process, an outgoing quasiparticle sees an effec-
YPU(0 k) = fe(ky)T +r (ky)T $"(0ky). (3  tive superconducting order parameter with an additional
phase®.—0,=m as compared with the phase on the incom-
~ ing trajectory. This directly results in the zero-energy inter-
Andreev amplitudesy(x,k) involve solutions withvy, fage s{ates i'/:\(llO) DDW—gSC interfaces. However,gi)rll the
<0, in contrast withi®"(x, k). case 0f(110) DDW-dSC interface, there is also a sign change
Reflection amplitudes for electrongand holeg", which  of the d-wave order parameter in a reflection event:

enter the quasiclassical boundary conditions, are taken fOAd(Ef,x):—Ad(kf,x). As a whole, an outgoing quasiparticle
the normal-state phase of the superconducting region. At thgaeg an effective superconducting order parameter with an
CDW-N interface we find the following relation between gyirq phaser—(®,-0), as compared with the phase on the
electron and hole amplitudetgoy=rpye This differs from incoming trajectory. Sinc®.— 0=, the total phase varia-
the relation, which takes place at the DDW-N interface o of the effective order parameter in a reflection event
r'pow=—Tppw- The latter equality is a consequence of specificyanishes. For this reason there are no pair-breaking processes
time-reversal symmetry breaking in the DDW phasgolv- 4t transparent110) DDW-dSC interface and no interface
ing standard Andreev equatio®) for swave andd-wave o nq states there. We note that thaave order parameter
superconductors with boundary conditiof® on the (110 changes its sign in @-reflection event for any interface-to-
interface, we find simple results for the subgap spectrum Of:rystal orientationAy(k+Q,x) =—A4(k;,x). Thus there are
quasiparticle_ inte_rface bound states. There are only zergy] subgap states on a transparent DBSE interface with
energy quasiparticle bound states at COBE and DDW- 5, 4phitrary orientation, if onl reflection takes place there.

sSC interfaces. At the same time, there are no subgap states ~,,sider now(100) interfaces, for which boundary con-
at all at CDWsSC and DDWESC (110 interfaces. Andreev Fitions can be written as follows:
y

amplitudes related to the bound states decay exponentional
in the bulk of the CDW(DDW) and superconducting half ~zr/,out(o,ky) . “J”(O,ky)
spaces on the scale of characteristic coherence lengths ~ o =S ~n . (4)
gCDW,DDWNUf,x/Ws,d and fS’dN Uf,x/As,dv reSpeCtiVE‘ly. ¢P t(O’ky + Qy) l# (O’ky + Qy)

I Th?l_ sbove results ga” bet (1“3""??%3&;9”?3;3"00(1 O";‘S forhe S matrix for a CDW-N or a DDW-N boundary takes the
ows. There are no subgap states ai interfaces, due “_z N 2 R

to the absence of interface-induced pair-breaking processé%rm S=S1(1+79)/2]+ST(1-75)/2], where
in this case. Since afl10) interface Q reflection is quite R

analogous to specular one, zero-energy bound states arise at Sh=
(110 CDW-dSC interfaces for the same reason as well- r
known zero-energy states at an impenetrablé) surface of

a d-wave superconductor. Indeed, due to the energy gap i['lno
the CDW solid, CDWESC interface is impenetrable for low-
energy quasiparticles even in the absence of any interfa
potential barriers. The analogy with an impenetra{d&0
surface of ad-wave superconductor works, in a more com-
plicated way, also for the zero-energy bound stated H) ] 2 -
DDW-sSC interfaces. This is a pair-breaking interface, dueQy for Q reflection. One can show thak o= SEow for the

to a time-reversal symmetry breaking in the DDW solid. An CDW-N interface and3py,=psSopwds for the DDW-N in-
important role in forming subgap states on SC-DDW inter-terface. We define Pauli matriceg in space of two quasi-
faces plays the difference between phase®, and ®, of  particle trajectoriegk ,k+Q). The S matrix satisfies the uni-
reflection amplitudesr 57, for electrons and holesg,, tarity conditionSS=1, which follows from the conservation
=¢%n. The phase differenc®,-0), can be effectively as- of the probability current for each of independent quasipar-
cribed to the variation of the phase of the superconductingicle solutions. The unitarity of th& matrix leads, in particu-
order parameter in a reflection event. In order to see thisar, to the following equations:|re*" |2:|rﬁ;:-Q, +Q 2
one can introduce auxiliary —quantitiesti(x,k;, )  =RM(k,), |rEvyle ’ky|2:|r§vyf’1ky+Q 2=R(k,). HereR? andkagp are
=u(x,Kr,£)e7992 B(x, ki, 8)=v(x, K, £)e®¥2 into Andreev  reflection coefficients fof) and specular reflections, respec-
equations and boundary conditions, taken for the outgoindjvely. For subgap quasiparticléé‘*p(ky)+RQ(ky)=1.
momentunk;. Andreev amplitudes for incoming momentum ~ Solving Andreev equations farwave andd-wave super-

k; are kept unchanged. Then the problem becomes, formallgonductors with boundary conditiot§) on the(100) inter-
identical to the one for specularly reflecting impenetrableface: we find the following re;ults. There are no bound states
boundary and the effective order parameter for the outgoingt CPDWsSC and DDWESC interfaces, analogously to the
momentad g (k;,x) =€ ©OA (K, x). In general, if only a 2S¢ of the(110 interface. However, on CDWSC and

phase differenc@ takes place between the order parameterDDW_SSC interfaces there are two dispersive energy
for incoming and outgoing quasiparticles, Andreev boun ranches of quasiparticle Andreev bound states, which are

states will appear with the enerdy|=|Acog®/2)|. Since symmetric with respect to the zero level.
the sswave order parameter itself does not change its sign in ecowedasdKr) = £ |Ag(ke) VR wen(Ks) (6a)

eh eh

kykyrQy Tyt QukyrQy

Since Q,# 0 for (100 interface,Q and specular reflec-

ns represent physically different reflection channels. Re-
flection amplitudes depend now on two parallel to the sur-

Yace momentum components of incoming and outgoing

quasiparticles, respectively. The momentum components co-
incide with each other for specular reflection and differ by

rah FQE
ky’ky ky Qy’ky ) (5)
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FIG. 1. The dispersive bound-state enefgypw-qsdks)|, nor-
malized to the maximal valueA}, of the d-wave order parameter,
vs k, at (100 CDW-dSC interface. Curves are taken for three val-
ues of the CDW order parameter: W;=0.003; 2. W;=0.2; 3.
W=t.

FIG. 2. The dispersive bound-state enefgypw-ssdks)|, nor-
malized to thes-wave order parameter, g at (1000 DDW-sSC
interface. Curves are taken for three values of the DDW order pa-
rameter: 1Wy=0.005; 2. Wy=0.2; 3. Wy=t.

respectively, as functions of parallel (@00) interface qua-
eppw-ssdKi) =  |Ad VR w-n(Ks). (6b)  siparticle momentum component.
We do not present explicit analytical expressions for the
Here we assume spatially constant order parameters, so thafflection coefficientR3, n(kf) and the dispersive subgap
AYTP=Ayg, AL=Ag, Wi =Wy, W,=W; coincide with their bulk  energieseppw-ssdk;) at (100 interfaces, since they are too
values. Quantitiegecpw-asdKs)| and |eppw-ssdKs)|, taken  cumbersome. The explicit expression for the energy subgap
for various values o¥Wy andW;, are shown in Figs. 1 and 2, spectrum a{100 CDW-dSC interface takes the form

2 1/2
Alky) + | A%(k)) + 4(\;—\/;)

A
A(k,) + 2sir? k, + \/Az(ky) + 4(2—:>

ecpw-asdKp) = [Ag(kp)| X

where fect takes place at DDW4SC (110) interfaces. By contrast,
5 bound states at1100 CDW-dSC interfaces keep their zero
A(k,) = (ﬂs) —sirPk @) energy even in the presence of any interface potential barri-
2t v ers and/or a mismatch of Fermi velocities.

i o If parametersW,y/t are sufficiently small as compared

As is seen in Figs. 1 and 2, as well as from &g, the  ith unity, Andreev bound states have very low energies
coefficient of specular reflection froid00) interface in the  glmost in the whole range &, except for narrow vicinities
absence of potential barriers can become significant only iff k,=0,7. The conditionWsq/t<1 allows us to apply the
the dimensionless parametéf 4/t is of the order of unity. quasiclassical approach to describing the density-wave
The appearance of specular reflection modifies effec® of phases. Similarly, the conditioh <t is necessary for justi-
reflection and leads to a splitting of zero-energy interfaceying the applicability of the quasiclassical theory to super-
bound states. The larger the paramétgy/t, the higher the conductors. Then the characteristic lengths of the phases sig-
absolute value of the bound-state energy. This effect is natificantly exceed the lattice spacingsq=nve/Aqqg
present a(110) interfaces, sinc&® and specular reflections >a,fivg/Ws4>a, so that the density-wave amplitudes
are physically indistinguishable there, unless an interface poA4, W, are also slowly varying functions as compared with
tential barrier and/or a Fermi velocity mismatch result in athe atomic scale. Below we represent a joint quasiclassical
finite phase difference €|0.-0,| <. The barrier and the approach to the superconducting and the density-wave
mismatch open a channel of specular reflection. This resultghases, as well as respective results on subgap spectra.
in splitting of the zero-energy bound states(a0 CDW- A specific feature of the density-wave phases, which is
insulator (1)-dSC and DDW-IsSC interfaces. The bound- important in the derivation of quasiclassical equations,
state energies reach the edge of the continuous spectrum ign associated with a rapidly oscillating order parameter
the limit of impenetrable insulating interlayer. The same ef-Wil  (-1)la*ib=exp(iQj) in the coordinate space. This pre-
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vents one from using a standard quasiclassical approacthe fact that quasiclassical Ed8) do not apply in vicinities
analogously to the case of itinerant antiferromagnets considsf quasiparticle momenta whewe,=0. In particular, they do
ered in this respect in Ref. 4. Sinc®2oincides with a basis not apply near saddle points of quasiparticle energies where
vector of the reciprocal lattice of the crystal in the absence offan Hove singularities of the normal-metal density of states
the density waves, the quasiclassical equations can be writteake place. As it is seen from the expressi@ for disper-
for pairs of coupled quasiparticle trajectoriksand k+Q. sive bound-state energies, as well as Figs. 1 and 2, quasipar-
This contrasts with the standard equatid@$, which are ticle interface states reach the edge of the continuous spec-
written separately for each quasiparticle trajectory. The quatrum (the superconducting gagor momentum directions
siclassical theory, modified along this way, allows arbitrarywhere v¢,=0.> This looks natural, since reflection coeffi-
relation betweeW, 4 andAg g, taking into account all terms  cientsR¥,.n(Ks) , Ribw-n(Ks) equal unity for these momen-
of the first order in parameteW; 4/t,Aq4/t. Since the gap in  tum directions, while the reflection disappears. Since we
the energy spectrum of electrons and holes in the CDWill be interested mostly in a transport across the interface,
(DDW) phases takes place only flr| <WJ{Wj(ky)], we as-  where the additional factar; , arises, these momenta do not
sume that the deviation from half filling in the CDW®@DW) contribute to the results noticeably and the conditions turn
solid can be finite, but not large <&;, so that the nesting out not to be restrictive.
condition g(k;+Q)=—¢;(k;) holds in the system within the Deviations from half filling with u<e; do not change
guasiclassical accuracy. A small paraméjefs;) <1 can be the zero-energy value of the bound-state energy, within the
considered on the same footing as other small quasiclassicgliasiclassical accuracy. The point is that within this frame-
parameters likedgq/e; and W, q/g;. Then u should be in-  work relations ©S°V-05""=0,00°"-0P"Y=7 are still
cluded in the quasiclassical equations and hence into slowlyalid for finite «. Indeed, we find, assuming al¥é¢> A, that
varying Andreev amplitudes. In this case the Fermi momentat transparent CDW-N and DDW-N boundaries specular re-
in rapidly oscillating exponentials ekpikr), which enters flection vanishes and there is oy reflection for arbitrary
the relation between Bogoliubov and Andreev amplitudesinterface orientation. The respective quasiclassical reflection
should be taken gi=0. amplitudes take the formgo,=rlow=(u—ivWa—u?) /W,

It is now Convenient to collect into a Nambu four-spinor rgDW:—rBDW:[,u—iV/\Nﬁ(kf)—uz]/iwd(kf) and satisfy re-
the Andreev amplitudesy] = (u;(ky),u;(k¢+Q),vj(kg),vj(ks  quired relations.
+Q)). Then the Andreev equations take the form

g - . - 2
(_ s mapa s W)+ A(x)>¢(x) = eyl%). (8) IIl. S-CDW-S TUNNEL JUNCTION

X Consider now Josephson junctions with an interlayer
Here vs, is the Fermi velocity at half fiIIing,B(x) made of gappeq CDV(lpr a_DD\M_ SOI".j' AIFhough We as-
v 5 v * sume no potential barriers in the junction, its effective trans-
=A400 +Aq(ks,X), As(x)‘QOAs(X)(ﬁ/Z)+P0As(x)(7—f2)’ parency is finite and tunneling of subgap quasiparticles
Adv(kf,x):vAd(kf,x)p3(7-+/2)v+Ad(kf,x)p3(r_/2). 5 W(x)  through the gapped phases substantially depends on the in-
=W,(x) +iWy4(Ks, X), W(X) =W(X) py 73, W,y(k;,x)  terlayer thicknesd <{g4. Low-energy states on the two
=W,y(k{,X)ip,7,, DDW  gap  function Wyk,x) CPW-dSC boundaries adSC-CDW4SC junctions influence
=2V\/‘+é[coskf —cosk,] has the same form as thwave each other, resulting in finite energies of interlayer quasipar-
supedrconduct?ng order parameter. ticle bound states. Assuming,> A4(k;), we find

We solve Eqs(8) for superconducting and CDW regions — + JD
and match theqsolutions al?a transparegt interface-at %s ealki) = £ VD(kp)Aq(krcodx/2). ©
one could expect for an interface with no pair breaking, weHere y is the phase difference of superconducting order pa-
find no quasiparticle interface states for a CRBE inter- rameters on the two banks of the junction abe4K/(1
face with an arbitrary orientation. At the same time, zero-+K)?, where K(k¢)=exp2I|Wy/|vi,]). In the caseeg(k;)
energy bound states arise on transparent GIB&- inter- <Ay(k;), the self-consistency keeps the expression for
faces for any surface-to-crystal orientations, since thébound states unchanged, if one introduces effective order
d-wave  superconducting order  parameterAq(ky) parameters defined in Ref. 16. The Andreev states we study
=2A 4" cosk,—cosks,] always has opposite signs for mo- in the present paper arise as a combined effect of Andreev
mentaEf:kf+Q andk;. This differs from a specular reflect- and Q reflectlon_s. _Contrlbutlons of these states to electr!c
ing impenetrable surface where a fraction of momentum difransport are quite important. The Josephson current, carried
rections, for which thed-wave order parameter changes its PY these states, takes the form
sign in a reflection event, strongly depends on a surface ori-

entation. 2 \s’5|Ad(kf)|cos)—(
The quasiclassical energy spectra exactly coincide with  j= %e\6|Ad(kf)|sin)—(tanh 2

more general results, obtained above(ft0) interfaces, and w2 T 2 2T

represent a good approximation fGt00 interfaces under (10)

the conditiondNs 4 <t, As4<<t. One can see in Figs. 1 and 2,
that even forW,y<t, Agg<t the quasiclassical approxima- In the particular case of large interlayer widtk;t, D <1,
tion fails in narrow vicinities ofk,=0,7. This agrees with there are low-energy stateg(k) <A4(kg) in the junction
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which dominate the Josephson critical current at low temcan be obtained from respective quantities for symmetric
peraturesT <T. and result in its low-temperature anomalousjunctions with the substitutiory— y+ . We find that the
behavior. Qualitatively, deviations from the conventionallow-temperature critical current acquires opposite sign in a
Ambegaokar-Baratoff result can be associated with the presnirror dSC-CDW4SC junction, as compared with the sym-
ence of two different characteristic energieg(k;)| and  metric one, even for particul#d00-(010) interface orienta-
|A4(k¢)|. In the standard case, when the order parameter dod®n.

not change its sign in quasiparticle reflection and transmis- As is known, it is substantially more difficult to observe
sion  processes in  tunnel  junctions, eg(k;)  low-temperature anomalies in the Josephson current through
=2 |Ay(ke)|y1-D(ky)sir?(x/2) = +|Aq4(ks)| and there is the dSC-1dsC junctiqns, as con_wparejd with the zero-bias con-
only energy scaléAy(k;)|. Then the Josephson critical cur- ductance peak. Since these junctions are faceted, the macro-
rent quickly saturates in the temperature regios Ay, to- ~ SCOPIC current is represented as an average over junctions
gether with the order parameter. However, in the casdith different misorientations. Opposite signs which the
lea(k)| <|Aq(ky)|, we find from Eq.(10) the two regimes in @nomalous critical currerii.0) possesses for various junction
the low-temperature behavior of the critical current, takingorlentatlons, can be _the_ reason for a cancellation of the low-
place in the temperature region5|Ad|<T<|Ad| and T tem_perat_ure_anomalles in th_e presence of large-scale facets_ at
<\DJA. In the former case the Josephson critical currenf€ Junction interface. For this reason only small mesoscopic
anomalously increases1/T with decreasing temperature. dSC-I1-dSC junctions, containing few facets or so, manifest

Only in the latter case does the critical current saturate takin%eev'at'ons in the temperature dependence of the critical cur-

23
its zero-temperature value, which can noticeably exceed th nt from the Sta”?'f”“d behavir. . L
standard one under the conditiai®> D. This behavior is Under the conditioWs(k;) > As, energies of qua5|part|cle
similar to what can happen in tunnéSC-1dSC junctions Pound states and Josephson currer#gS€-DDWsSC junc-

with d-wave superconductors, S-F-S junctions with |OW_tions are obtained from Eq$9) and (10) after the substitu-

energy interface states, as8C-AF-sSC junctiong17-20at  1ONS Ag(Kp) — Ag, Ws— We(Ky).
the same time, an important qualitative difference between
properties ofdSC-1-dSC and dSC-CDW4SC junctions is IV. CONCLUSIONS

that, i.n Cof"raS‘ withdSC-1-dSC junctions, indSC-CDW- . We have shown that subgap Andreev bound states are
dSC junctions low-energy bound states and respective, . ned at CDWESC and DDWsSC interfaces as a com-
anomalies in the critical current take place, in particular, fory: 4 affect of Andreev. specular, a@l reflection. These
.(100) interface. More geqerally, .Iow—energy interfac_e StateS;iates are dispersionles:s zero-en’ergy bound statekl@t
N (_jSC—IﬁSC tunnel junctions arise only along qu"?‘s'p{?‘rt'c!einterfaces, whereas they are dispersive(id}0) interface-to-
trajectories, where the order parameter changes its sign "N @ystal orientation. If the density-wave order parameter is not
specular reflection event. The fraction of such trajectorieg largeW, y<e;, the Q reflection dominates the specular
vanishes for(100 interfaces and increases with misorienta-One Then anre,ev bound states have almost zero energies
tion angle up to unity for(110 orientation. Respectively, also at(100 CDW-dSC and DDWsSC interfaces. At the
low-temperature anomalies in the Josephson current is MOIE, | o time there are no bound states at C&3@-and DDW-
pronounced for(110 interface and vanishes fo(100 dSC interfaces. IMISC-CDWASC andsSC-DDW-sSC Jo-

. e ; .
quentatlon_.d Th(|js 'E not the caie fO%SC'CDWdSC Jlr"]nc' sephson junctions, the interface low-energy bound states are
tions considered above, since the order parameter c "?‘ngesétﬁlitted and strongly influence the Josephson current, which
sign in aQ-reflection event along all quasiparticle trajecto- manifests low-temperature anomalies as compared with the

ries at any interface orientation. . standard tunnel Ambegaokar-Baratoff result.
In addition to symmetric junctions studied above, one can

a}lso con_S|d_er the so—c_alled mirror junctions, where the junc- ACKNOWLEDGMENTS
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