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Quasiparticle bound states are found theoretically on transparent interfaces ofd-wave superconductors with
charge-density-wavesCDWd solids, as well ass-wave superconductors withd-density wavessDDWsd. These
bound states represent a combined effect of Andreev reflection from the superconducting side, unconventional
quasiparticleQ reflection from the density-wave solid, and standard specular reflection. If the order parameter
for a density-wave state is much less than the Fermi energy, bound states with almost zero energy take place
for an arbitrary orientation of symmetric interfaces. For larger values of the order parameter, dispersionless
zero-energy states are found only ons110d interfaces. Two dispersive energy branches of subgap quasiparticle
states are obtained fors100d symmetric interfaces. Andreev low-energy bound states, taking place in junctions
with CDW or DDW interlayers, result in anomalous junction properties, in particular, the low-temperature
behavior of the Josephson critical current.
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I. INTRODUCTION

Low-energy quasiparticle states play an important role in
forming electron transport in mesoscopic hybrid supercon-
ducting systems at low temperatures. In transparent
superconductor–normal-metal–superconductorsS-N-Sd junc-
tions, subgap states originate entirely in Andreev reflection
processes. In the presence of finite interface transparencies,
both Andreev and conventional reflections come into play in
forming subgap bound states. Zero-energy Andreev surface
states ind-wave superconductors also represent a combined
effect of Andreev and specular quasiparticle reflections.

Interesting possibilities for forming low-energy subgap
states arise in hybrid systems involving gapped solids with
various electronic ordering like charge-density waves
sCDWsd or itinerant antiferromagnetssAFsd. In the absence
of any potential barriers and/or a Fermi velocity mismatch,
the standard specular reflection from a plane interface van-
ishes. However, normal-metal quasiparticles moving with
subgap energies towards the gapped phase will be reflected
from the transparent interface. If the gap in the quasiparticle
spectrum originates in the electronic ordering, a nonspecular
quasiparticle reflection on various plane crystal interfaces
can arise in accordance with the order-parameter structure.
Andreev quasiparticle retroreflection on transparent S-N in-
terfaces is a remarkable and well-known effect of this kind,
but it is not the only one. Unconventional quasiparticle re-
flection resulting in low-energy quasiparticle bound states
arises, for example, at CDW-N interfaces,1–3 as well as on
AF-N interfaces.4

Normal-metal subgap quasiparticles change their mo-
menta by the wave vectorQ of the charge-density-wave pat-
tern, in an unconventional reflection process on interfaces
with the gapped CDW phase.1 Since the nesting condition
« fsk f +Qd=−« fsk fd is presumably satisfied in the CDW solid,
at least with the quasiclassical accuracy, the velocity]« f /]k
changes its sign in aQ-reflectionevent. ThenQ reflection
represents a retroreflection of quasiparticles. A neutral
electron-hole pair with the transferred momentumQ arises in

theQ-reflection event and forms the condensate in the CDW
solid. No electric current appears in this process, while in
Andreev reflection an incoming electron is reflected as a hole
and a Cooper pair carries the electric charge 2e into the bulk
of the superconductor. On the other hand, the retroreflection
leads to a possibility for forming quasiparticle bound states
in CDW-N-CDW systems with the same spectrum as for
Andreev bound states in S-N-S structures.2,3 Q reflection
contributes also to the conductance of N-CDW-N junctions.5

The excess resistance in CDW-N junctions at low voltages
has been observed experimentally and attributed toQ reflec-
tion processes, when the incident electron returns along its
original path with its charge unchanged.6 As this has been
demonstrated recently in Ref. 4, normal-metal quasiparticles
experience a spin-dependentQ reflection from interfaces
with itinerant antiferromagnets. Quasiparticle subgap states
located near interfaces with AFs, have been found, in par-
ticular, near S-AF interfaces.

In the present paper we determine subgap states represent-
ing a combined effect of Andreev andQ reflections on trans-
parent interfaces between a semiconductor with charge-
density waves and a superconductorsCDW-Sd. For
simplicity, we consider symmetric interfaces having identical
crystal orientations on both sides. All phases are assumed to
be squasi-d two-dimensional, taking place on a square lattice.
In particular, we study below solids with a two-dimensional
CDW ordering, as well as with ad-density-wave phase,
which has been suggested regarding the pseudogap state in
cupratesssee Refs. 7–11 and references thereind. We demon-
strate that quasiparticle subgap states arise ond-wave super-
conductor sdSCd-CDW and s-wave superconductor
d-density-wave ssSC-DDWd sand do not appear on
sSC-CDW anddSC-DDWd interfaces. We discuss an inter-
face between a low-temperatures-wave superconductor and
a d-density-wave phase implying a low doping range in cu-
prates. If the order parameter for a density-wave state is
much less than the Fermi energy, the quasiclassical theory
can be applied to describing the state. Within this framework,
zero-energy bound states take place for an arbitrary interface
orientation. For larger values of the order parameter, the
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S-matrix approach is developed to solving the problem in
question. Then dispersionless zero-energy states are found
only on s110d interfaces. Two dispersive energy branches of
subgap quasiparticle states are obtained fors100d interfaces.
Andreev low-energy bound states, taking place in junctions
with CDW or DDW interlayers, result in anomalous junction
properties, in particular, the anomalous low-temperature be-
havior of the Josephson critical current.

II. CDW-S INTERFACES

We consider a tight-binding model for electrons with a
superconductingDij and a density-waveWij order parameter
on a square lattice,

H = − t o
kij ls

cis
† cjs + o

i,j
sDijci↑

† cj↓
† + H.c.d + o

kij ls
Wijcis

† cjs

− mo
i

cis
† cis. s1d

Assume nearest-neighbor hopping, and consider either
s-wave pairingDij =−Vskci↓ci↑ldij =dijDs

i or d-wave pairing

Dij =−Vdkci↓cj↑l=Dd
ijdui−j u,1 such that Dd

ii±â=−Dd
ii±b̂. Here â

and b̂ are basis vectors for the square lattice with the
lattice constanta. The order parameter for a two-dimensional
CDW is taken in the form Wij =s−1dia+ibWs

i dij

=−sVCDW/2dkni↑+ni↓ldij , whereas for ad-density waveWij

= is−1dia+ibWd
ijdui−j u,1=sVDDW/2doskcis

† cjs−H.c.l and Wd
ii±â

=−Wd
ii±b̂. Thus we study only the simplest model for pinned

two-dimensional charge-density waves with the characteris-
tic wave vectorQ=sp ,pd on a square lattice. Although real-
istic two-dimensional CDW ordering usually takes place in
more complicated situations,12–14the main conclusions of the
present paper can be qualitatively applicable to them as well.
Thus if the nesting condition is valid only on a part of the
Fermi surface, just respective electrons will participate in the
density-wave ordering and theQ reflection will take place
for respective regions of momentum directions. Further, the
quasiclassical superconductingd-wave order parameter
Ddsk f ,xid=2Dd

ii+âfcosskfaad−cosskfbadg, taken for incoming
k f and outgoingk f +Q momenta in aQ-reflection event,
would have opposite signs for a wide range of possible wave
vectorsQ, not only for the particular valuesp ,pd.

In describing plane interfaces, it is convenient to work in
a coordinate system where axesx andy are chosen perpen-
dicular and parallel to the interface, respectively. For as100d
interfacex and y coincide with the crystal axes. Then the
normal-state electron bandjskd=−m−2tscoska+coskbd and
the respective Brillouin zone is spanned byka,bP f−p ,pg,
where momenta are given in units ofa−1. For as110d inter-
face we have jskd=−m−4tcosskx/Î2dcossky/Î2d and
kxP f−Î2p ,Î2pg, kyP f−p /Î2,p /Î2g, on account of the
periodic conditions along the surface.

A density-wave order parameterW is taken to be nonzero
only on one semi-infinite half spacex,0, while D may be
nonzero on the other. For simplicity, no interface potential
barrier is introduced in the problem and we consider only

identical crystal-to-interface orientations of both half spaces,
as if they formed one and the same square lattice. A devia-
tion from half filling will be assumed, first, to be equal to
zerosm=0d or negligibly small everywhere. This guarantees
the validity of the nesting condition« fsk f +Qd=−« fsk fd in the
normal-metal state of both solids. We assume always that the
superconducting order parameter is much less than the Fermi
energyD!« f, so that the quasiclassical theory of supercon-
ductivity applies to the problem in question. If a density-
wave order parameterW is sufficiently largeW@D, then the
S-matrix approach can be applied to describing the interface
Andreev bound states at CDW-S and DDW-S boundaries.
There is no need to consider the parameterW/« f to be small
within the S-matrix approach. Interface states can appear,
since quasiparticles with energies below the CDW or DDW
gap do not penetrate in the bulk of solids with density waves.
At the same time, Andreev reflection does not permit subgap
quasiparticles to enter into the bulk of the superconductor.

Quasiparticles in the superconducting half space can be
described in terms of standard Andreev equations for An-

dreev amplitudesc̃Tsx,k fd; (usx,k fd ,vsx,k fd)

f− iv f,xt̂3 + D̂sk f,xdgc̃sx,k fd = «c̃sx,k fd, s2d

complemented with the suitable boundary conditions at
CDW-S or DDW-S interfaces. Herev f,x=f]jskd /]kxguk=kf

is
thex component of the electron normal-state Fermi velocity,
t̂a are Pauli matrices in particle-hole space. The supercon-

ducting order-parameter matrixD̂sk f ,xd represents both
s-wave or d-wave order parameters, which are defined

as D̂ssxd=Dssxdt̂+/2+Ds
*sxdt̂−/2, D̂dsk f ,xd=Ddsk f ,xdt̂+/2

+Dd
*sk f ,xdt̂−/2. Continuous coordinatex in quasiclassical

equationss2d originated from thex components of site posi-
tions: xj = jd. Hered=a,a/Î2 for s100d ands110d interfaces,
respectively.

Boundary conditions for Andreev equationss2d can be
obtained by solving the scattering problem for quasiparticles
on the Fermi surface moving from the bulk of the normal
metal towards CDW-N or DDW-N interfaces. For this pur-
pose one can putDs,d=0 in the Bogoliubov–de Gennes equa-
tions, which follow from the Hamiltonians1d, and solve re-
spective interface problems. The differenceQ between the

outgoingk̃ f and the incomingk f momenta takes place for a
quasiparticleQ reflection both from the CDW or DDW
phase. The wave vector of the density wave on the square
lattice is Q=sp ,pd, with respect to the crystal axes. In the
x,y-coordinate system,Q=sp ,pd for s100d interface andQ
=sÎ2p ,0d in the s110d case. So, a quasiparticle going to-
wards thes100d boundary of an electronically ordered phase
can change its parallel to the interface momentum compo-
nentky by Qy=p in the Q-reflection process or keepky un-
changed in the process of specular reflection. Fors110d
boundary, by contrast, parallel to the interface componentky
does not change both inQ and specular reflections. For this
reason the boundary conditions fors100d ands110d interfaces
differ from each other.

For the s110d interface the boundary conditions take the
form
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c̃outs0,kyd = Sreskyd
1 + t̂3

2
+ rhskyd

1 − t̂3

2
Dc̃ins0,kyd. s3d

Andreev amplitudesc̃insx,k fd involve solutions withv f,x

,0, in contrast withc̃outsx,k fd.
Reflection amplitudes for electronsre and holesrh, which

enter the quasiclassical boundary conditions, are taken for
the normal-state phase of the superconducting region. At the
CDW-N interface we find the following relation between
electron and hole amplitudes:rCDW

h =rCDW
e . This differs from

the relation, which takes place at the DDW-N interface,
rDDW

h =−rDDW
e . The latter equality is a consequence of specific

time-reversal symmetry breaking in the DDW phase.7 Solv-
ing standard Andreev equationss2d for s-wave andd-wave
superconductors with boundary conditionss3d on the s110d
interface, we find simple results for the subgap spectrum of
quasiparticle interface bound states. There are only zero-
energy quasiparticle bound states at CDW-dSC and DDW-
sSC interfaces. At the same time, there are no subgap states
at all at CDW-sSC and DDW-dSC s110d interfaces. Andreev
amplitudes related to the bound states decay exponentionally
in the bulk of the CDWsDDWd and superconducting half
spaces on the scale of characteristic coherence lengths
jCDW,DDW,v f,x/Ws,d andjs,d,v f,x/Ds,d, respectively.

The above results can be qualitatively understood as fol-
lows. There are no subgap states at CDW-sSC interfaces, due
to the absence of interface-induced pair-breaking processes
in this case. Since ats110d interfaceQ reflection is quite
analogous to specular one, zero-energy bound states arise at
s110d CDW-dSC interfaces for the same reason as well-
known zero-energy states at an impenetrables110d surface of
a d-wave superconductor. Indeed, due to the energy gap in
the CDW solid, CDW-dSC interface is impenetrable for low-
energy quasiparticles even in the absence of any interface
potential barriers. The analogy with an impenetrables110d
surface of ad-wave superconductor works, in a more com-
plicated way, also for the zero-energy bound states ats110d
DDW-sSC interfaces. This is a pair-breaking interface, due
to a time-reversal symmetry breaking in the DDW solid. An
important role in forming subgap states on SC-DDW inter-
faces plays the differencep between phasesQe and Qh of
reflection amplitudesrDDW

eshd for electrons and holesrDDW
eshd

=eiQeshd. The phase differenceQe−Qh can be effectively as-
cribed to the variation of the phase of the superconducting
order parameter in a reflection event. In order to see this,

one can introduce auxiliary quantitiesũsx, k̃ f ,«d
=usx, k̃ f ,«de−iQe/2, ṽsx, k̃ f ,«d=vsx, k̃ f ,«de−iQh/2 into Andreev
equations and boundary conditions, taken for the outgoing

momentumk̃ f. Andreev amplitudes for incoming momentum
k f are kept unchanged. Then the problem becomes, formally,
identical to the one for specularly reflecting impenetrable
boundary and the effective order parameter for the outgoing

momentaDef fsk̃ f ,xd=e−isQe−QhdDsk̃ f ,xd. In general, if only a
phase differenceQ takes place between the order parameters
for incoming and outgoing quasiparticles, Andreev bound
states will appear with the energyu«u= uDcossQ /2du. Since
the s-wave order parameter itself does not change its sign in

a reflection process, an outgoing quasiparticle sees an effec-
tive superconducting order parameter with an additional
phaseQe−Qh=p as compared with the phase on the incom-
ing trajectory. This directly results in the zero-energy inter-
face states ats110d DDW-sSC interfaces. However, in the
case ofs110d DDW-dSC interface, there is also a sign change
of the d-wave order parameter in a reflection event:

Ddsk̃ f ,xd=−Ddsk f ,xd. As a whole, an outgoing quasiparticle
sees an effective superconducting order parameter with an
extra phasep−sQe−Qhd as compared with the phase on the
incoming trajectory. SinceQe−Qh=p, the total phase varia-
tion of the effective order parameter in a reflection event
vanishes. For this reason there are no pair-breaking processes
at transparents110d DDW-dSC interface and no interface
bound states there. We note that thed-wave order parameter
changes its sign in aQ-reflection event for any interface-to-
crystal orientation:Ddsk f +Q,xd=−Ddsk f ,xd. Thus there are
no subgap states on a transparent DDW-dSC interface with
an arbitrary orientation, if onlyQ reflection takes place there.

Consider nows100d interfaces, for which boundary con-
ditions can be written as follows:

S c̃outs0,kyd

c̃outs0,ky + Qyd
D = ŠS c̃ins0,kyd

c̃ins0,ky + Qyd
D . s4d

TheS matrix for a CDW-N or a DDW-N boundary takes the

form Š=Ŝefs1+t̂3d /2g+Ŝhfs1−t̂3d /2g, where

Ŝe,h = S rky,ky

e,h rky+Qy,ky

e,h

rky,ky+Qy

e,h rky+Qy,ky+Qy

e,h D . s5d

Since QyÞ0 for s100d interface,Q and specular reflec-
tions represent physically different reflection channels. Re-
flection amplitudes depend now on two parallel to the sur-
face momentum components of incoming and outgoing
quasiparticles, respectively. The momentum components co-
incide with each other for specular reflection and differ by

Qy for Q reflection. One can show thatŜCDW
h =ŜCDW

e for the

CDW-N interface andŜDDW
h = r̂3ŜDDW

e r̂3 for the DDW-N in-
terface. We define Pauli matricesra in space of two quasi-
particle trajectoriessk ,k+Qd. TheS matrix satisfies the uni-

tarity conditionŠŠ†=1, which follows from the conservation
of the probability current for each of independent quasipar-
ticle solutions. The unitarity of theSmatrix leads, in particu-
lar, to the following equations: urky,ky

e,h u2= urky+Qy,ky+Qy

e,h u2

=Rspskyd, urky+Qy,ky

e,h u2= urky,ky+Qy

e,h u2=RQskyd. HereRQ andRsp are
reflection coefficients forQ and specular reflections, respec-
tively. For subgap quasiparticlesRspskyd+RQskyd=1.

Solving Andreev equations fors-wave andd-wave super-
conductors with boundary conditionss5d on thes100d inter-
face, we find the following results. There are no bound states
at CDW-sSC and DDW-dSC interfaces, analogously to the
case of thes110d interface. However, on CDW-dSC and
DDW-sSC interfaces there are two dispersive energy
branches of quasiparticle Andreev bound states, which are
symmetric with respect to the zero level:

«CDW−dSCsk fd = ± uDdsk fduÎRCDW−N
sp sk fd, s6ad
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«DDW−sSCsk fd = ± uDsuÎRDDW−N
sp sk fd. s6bd

Here we assume spatially constant order parameters, so that
Dd

ii+â=Dd,Ds
i =Ds,Wd

ii+â=Wd,Ws
i =Ws coincide with their bulk

values. Quantitiesu«CDW−dSCsk fdu and u«DDW−sSCsk fdu, taken
for various values ofWd andWs, are shown in Figs. 1 and 2,

respectively, as functions of parallel tos100d interface qua-
siparticle momentum component.

We do not present explicit analytical expressions for the
reflection coefficientRDDW−N

sp sk fd and the dispersive subgap
energies«DDW−sSCsk fd at s100d interfaces, since they are too
cumbersome. The explicit expression for the energy subgap
spectrum ats100d CDW-dSC interface takes the form

«CDW−dSCsk fd = ± uDdsk fdu 31 Askyd +ÎA2skyd + 4SWs

2t
D2

Askyd + 2sin2 ky +ÎA2skyd + 4SWs

2t
D22

1/2

,

where

Askyd = SWs

2t
D2

− sin2 ky. s7d

As is seen in Figs. 1 and 2, as well as from Eq.s7d, the
coefficient of specular reflection froms100d interface in the
absence of potential barriers can become significant only if
the dimensionless parameterWs,d/ t is of the order of unity.
The appearance of specular reflection modifies effects ofQ
reflection and leads to a splitting of zero-energy interface
bound states. The larger the parameterWs,d/ t, the higher the
absolute value of the bound-state energy. This effect is not
present ats110d interfaces, sinceQ and specular reflections
are physically indistinguishable there, unless an interface po-
tential barrier and/or a Fermi velocity mismatch result in a
finite phase difference 0, uQe−Qhu,p. The barrier and the
mismatch open a channel of specular reflection. This results
in splitting of the zero-energy bound states ats100d CDW-
insulator sId-dSC and DDW-I-sSC interfaces. The bound-
state energies reach the edge of the continuous spectrum in
the limit of impenetrable insulating interlayer. The same ef-

fect takes place at DDW-I-sSC s110d interfaces. By contrast,
bound states ats110d CDW-dSC interfaces keep their zero
energy even in the presence of any interface potential barri-
ers and/or a mismatch of Fermi velocities.

If parametersWs,d/ t are sufficiently small as compared
with unity, Andreev bound states have very low energies
almost in the whole range ofky, except for narrow vicinities
of ky=0,p. The conditionWs,d/ t!1 allows us to apply the
quasiclassical approach to describing the density-wave
phases. Similarly, the conditionD! t is necessary for justi-
fying the applicability of the quasiclassical theory to super-
conductors. Then the characteristic lengths of the phases sig-
nificantly exceed the lattice spacingjs,d;"vF /Ds,d
@a,"vF /Ws,d@a, so that the density-wave amplitudes
Ws

i ,Wd
ij are also slowly varying functions as compared with

the atomic scalea. Below we represent a joint quasiclassical
approach to the superconducting and the density-wave
phases, as well as respective results on subgap spectra.

A specific feature of the density-wave phases, which is
important in the derivation of quasiclassical equations,
is associated with a rapidly oscillating order parameter
Wji ~ s−1d ja+jb=expsiQjd in the coordinate space. This pre-

FIG. 1. The dispersive bound-state energyu«CDW−dSCsk fdu, nor-
malized to the maximal value 4Dd of the d-wave order parameter,
vs ky at s100d CDW-dSC interface. Curves are taken for three val-
ues of the CDW order parameter: 1.Ws=0.005t; 2. Ws=0.2t; 3.
Ws= t.

FIG. 2. The dispersive bound-state energyu«DDW−sSCsk fdu, nor-
malized to thes-wave order parameter, vsky at s100d DDW-sSC
interface. Curves are taken for three values of the DDW order pa-
rameter: 1.Wd=0.005t; 2. Wd=0.2t; 3. Wd= t.

I. V. BOBKOVA AND YU. S. BARASH PHYSICAL REVIEW B 71, 144510s2005d

144510-4



vents one from using a standard quasiclassical approach,
analogously to the case of itinerant antiferromagnets consid-
ered in this respect in Ref. 4. Since 2Q coincides with a basis
vector of the reciprocal lattice of the crystal in the absence of
the density waves, the quasiclassical equations can be written
for pairs of coupled quasiparticle trajectoriesk and k+Q.
This contrasts with the standard equationss2d, which are
written separately for each quasiparticle trajectory. The qua-
siclassical theory, modified along this way, allows arbitrary
relation betweenWs,d andDs,d, taking into account all terms
of the first order in parametersWs,d/ t ,Ds,d/ t. Since the gap in
the energy spectrum of electrons and holes in the CDW
sDDWd phases takes place only forumu,WsfWdsk fdg, we as-
sume that the deviation from half filling in the CDWsDDWd
solid can be finite, but not largem!« f, so that the nesting
condition « fsk f +Qd=−« fsk fd holds in the system within the
quasiclassical accuracy. A small parametersm /« fd!1 can be
considered on the same footing as other small quasiclassical
parameters likeDs,d/« f and Ws,d/« f. Then m should be in-
cluded in the quasiclassical equations and hence into slowly
varying Andreev amplitudes. In this case the Fermi momenta
in rapidly oscillating exponentials exps±ik frd, which enters
the relation between Bogoliubov and Andreev amplitudes,
should be taken atm=0.

It is now convenient to collect into a Nambu four-spinor
the Andreev amplitudesc j

T; (ujsk fd ,ujsk f +Qd ,v jsk fd ,v jsk f

+Qd). Then the Andreev equations take the form

S− mt3r0 − it3r3v f,x
]

]x
+ W̌sxd + ĎsxdDcsxd = «csxd. s8d

Here v f,x is the Fermi velocity at half filling, Ďsxd
=Ďssxd+Ďdsk f ,xd, Ďssxd=r0Dssxdst+/2d+r0Ds

*sxdst−/2d,
Ďdsk f ,xd=Ddsk f ,xdr3st+/2d+Dd

*sk f ,xdr3st−/2d. W̌sxd
=W̌ssxd+ iW̌dsk f ,xd, W̌ssxd=Wssxdr1t3, W̌dsk f ,xd
=Wdsk f ,xdir2t0. DDW gap function Wdsk f ,xd
=2Wd

ii+âfcoskfa−coskfbg has the same form as thed-wave
superconducting order parameter.

We solve Eqs.s8d for superconducting and CDW regions
and match the solutions at a transparent interface atx=0. As
one could expect for an interface with no pair breaking, we
find no quasiparticle interface states for a CDW-sSC inter-
face with an arbitrary orientation. At the same time, zero-
energy bound states arise on transparent CDW-dSC inter-
faces for any surface-to-crystal orientations, since the
d-wave superconducting order parameterDdsk fd
=2Dd

ii+âfcoskfa−coskfbg always has opposite signs for mo-

mentak̃ f =k f +Q andk f. This differs from a specular reflect-
ing impenetrable surface where a fraction of momentum di-
rections, for which thed-wave order parameter changes its
sign in a reflection event, strongly depends on a surface ori-
entation.

The quasiclassical energy spectra exactly coincide with
more general results, obtained above fors110d interfaces, and
represent a good approximation fors100d interfaces under
the conditionsWs,d! t, Ds,d! t. One can see in Figs. 1 and 2,
that even forWs,d! t, Ds,d! t the quasiclassical approxima-
tion fails in narrow vicinities ofky=0,p. This agrees with

the fact that quasiclassical Eqs.s8d do not apply in vicinities
of quasiparticle momenta wherev f,x=0. In particular, they do
not apply near saddle points of quasiparticle energies where
van Hove singularities of the normal-metal density of states
take place. As it is seen from the expressions7d for disper-
sive bound-state energies, as well as Figs. 1 and 2, quasipar-
ticle interface states reach the edge of the continuous spec-
trum sthe superconducting gapd for momentum directions
where v f,x=0.15 This looks natural, since reflection coeffi-
cientsRCDW−N

sp sk fd ,RDDW−N
sp sk fd equal unity for these momen-

tum directions, while theQ reflection disappears. Since we
will be interested mostly in a transport across the interface,
where the additional factorv f,x arises, these momenta do not
contribute to the results noticeably and the conditions turn
out not to be restrictive.

Deviations from half filling withm!« f do not change
the zero-energy value of the bound-state energy, within the
quasiclassical accuracy. The point is that within this frame-
work relations Qe

CDW−Qh
CDW=0,Qe

DDW−Qh
DDW=p are still

valid for finite m. Indeed, we find, assuming alsoW@D, that
at transparent CDW-N and DDW-N boundaries specular re-
flection vanishes and there is onlyQ reflection for arbitrary
interface orientation. The respective quasiclassical reflection
amplitudes take the formrCDW

e =rCDW
h =sm− iÎWs

2−m2d /Ws,
rDDW

e =−rDDW
h =fm− iÎWd

2sk fd−m2g / iWdsk fd and satisfy re-
quired relations.

III. S-CDW-S TUNNEL JUNCTION

Consider now Josephson junctions with an interlayer
made of gapped CDWsor a DDWd solid. Although we as-
sume no potential barriers in the junction, its effective trans-
parency is finite and tunneling of subgap quasiparticles
through the gapped phases substantially depends on the in-
terlayer thicknessl !js,d. Low-energy states on the two
CDW-dSC boundaries ofdSC-CDW-dSC junctions influence
each other, resulting in finite energies of interlayer quasipar-
ticle bound states. AssumingWs@Ddsk fd, we find

«Bsk fd = ± ÎDsk fdDdsk fdcossx/2d. s9d

Herex is the phase difference of superconducting order pa-
rameters on the two banks of the junction andD=4K / s1
+Kd2, where Ksk fd=exps2l uWsu / uv f,xud. In the case«Bsk fd
!Ddsk fd, the self-consistency keeps the expression for
bound states unchanged, if one introduces effective order
parameters defined in Ref. 16. The Andreev states we study
in the present paper arise as a combined effect of Andreev
and Q reflections. Contributions of these states to electric
transport are quite important. The Josephson current, carried
by these states, takes the form

J =E
−p/2

p/2 dky

p
eÎDuDdsk fdusin

x

2
tanh

ÎDuDdsk fducos
x

2

2T
.

s10d

In the particular case of large interlayer width,K−1,D!1,
there are low-energy states«Bsk fd!Ddsk fd in the junction
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which dominate the Josephson critical current at low tem-
peraturesT!Tc and result in its low-temperature anomalous
behavior. Qualitatively, deviations from the conventional
Ambegaokar-Baratoff result can be associated with the pres-
ence of two different characteristic energiesu«Bsk fdu and
uDdsk fdu. In the standard case, when the order parameter does
not change its sign in quasiparticle reflection and transmis-
sion processes in tunnel junctions, «Bsk fd
= ± uDdsk fduÎ1−Dsk fdsin2sx /2d< ± uDdsk fdu and there is the
only energy scaleuDdsk fdu. Then the Josephson critical cur-
rent quickly saturates in the temperature regionT!Dd, to-
gether with the order parameter. However, in the case
u«Bsk fdu! uDdsk fdu, we find from Eq.s10d the two regimes in
the low-temperature behavior of the critical current, taking
place in the temperature regionsÎDuDdu!T! uDdu and T
!ÎDuDdu. In the former case the Josephson critical current
anomalously increases~1/T with decreasing temperature.
Only in the latter case does the critical current saturate taking
its zero-temperature value, which can noticeably exceed the
standard one under the conditionÎD@D. This behavior is
similar to what can happen in tunneldSC-I-dSC junctions
with d-wave superconductors, S-F-S junctions with low-
energy interface states, andsSC-AF-sSC junctions.4,17–20At
the same time, an important qualitative difference between
properties ofdSC-I-dSC anddSC-CDW-dSC junctions is
that, in contrast withdSC-I-dSC junctions, indSC-CDW-
dSC junctions low-energy bound states and respective
anomalies in the critical current take place, in particular, for
s100d interface. More generally, low-energy interface states
in dSC-I-dSC tunnel junctions arise only along quasiparticle
trajectories, where the order parameter changes its sign in a
specular reflection event. The fraction of such trajectories
vanishes fors100d interfaces and increases with misorienta-
tion angle up to unity fors110d orientation. Respectively,
low-temperature anomalies in the Josephson current is more
pronounced for s110d interface and vanishes fors100d
orientation.18 This is not the case fordSC-CDW-dSC junc-
tions considered above, since the order parameter changes its
sign in aQ-reflection event along all quasiparticle trajecto-
ries at any interface orientation.

In addition to symmetric junctions studied above, one can
also consider the so-called mirror junctions, where the junc-
tion barrier is a reflection-symmetry plane for superconduct-
ing electrodes with one and the same crystal orientations.
The d-wave superconducting order parameters in mirror
junctions have opposite signs and the same absolute value
for incoming and transmitted quasiparticles. Bound-state en-
ergies and the Josephson current through mirror junctions

can be obtained from respective quantities for symmetric
junctions with the substitutionx→x+p. We find that the
low-temperature critical current acquires opposite sign in a
mirror dSC-CDW-dSC junction, as compared with the sym-
metric one, even for particulars100d-s010d interface orienta-
tion.

As is known, it is substantially more difficult to observe
low-temperature anomalies in the Josephson current through
dSC-I-dSC junctions, as compared with the zero-bias con-
ductance peak. Since these junctions are faceted, the macro-
scopic current is represented as an average over junctions
with different misorientations. Opposite signs which the
anomalous critical currents10d possesses for various junction
orientations, can be the reason for a cancellation of the low-
temperature anomalies in the presence of large-scale facets at
the junction interface. For this reason only small mesoscopic
dSC-I-dSC junctions, containing few facets or so, manifest
deviations in the temperature dependence of the critical cur-
rent from the standard behavior.21–23

Under the conditionWdsk fd@Ds, energies of quasiparticle
bound states and Josephson current insSC-DDW-sSC junc-
tions are obtained from Eqs.s9d and s10d after the substitu-
tions Ddsk fd→Ds,Ws→Wdsk fd.

IV. CONCLUSIONS

We have shown that subgap Andreev bound states are
formed at CDW-dSC and DDW-sSC interfaces as a com-
bined effect of Andreev, specular, andQ reflection. These
states are dispersionless zero-energy bound states ats110d
interfaces, whereas they are dispersive fors100d interface-to-
crystal orientation. If the density-wave order parameter is not
too largeWs,d!« f, the Q reflection dominates the specular
one. Then Andreev bound states have almost zero energies
also at s100d CDW-dSC and DDW-sSC interfaces. At the
same time there are no bound states at CDW-sSC and DDW-
dSC interfaces. IndSC-CDW-dSC andsSC-DDW-sSC Jo-
sephson junctions, the interface low-energy bound states are
splitted and strongly influence the Josephson current, which
manifests low-temperature anomalies as compared with the
standard tunnel Ambegaokar-Baratoff result.
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