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Magnetic properties of superconductors coated with metals of arbitrary resistivityrN are calculated using the
time-dependent Ginzburg-Landau equations in which bothTc andrN vary. AsrN in the coating is reduced, the
initial vortex penetration fieldHpsrNd does not decrease monotonically from the insulatingsMatricond limit to
the extreme metallicsBean-Livingstond limit, but has a minimum valueHpsmind below the extreme metallic
value. The minimum occurs because the barrier is weakened by proximity-effect penetration of superelectrons
into the coating which only occurs at finite resistivity. In an applied magnetic field, local depressions inc
nucleate in the coating which do not have the well-known quantum of magnetic fluxsh/2ed until they have
crossed the coating and entered the interior of the superconductor. WhenT=0 andTc of the normal metal
coating is zero, the minimum vortex penetration fieldHpsmind<0.76k−1.17Hc2 which occurs for a coating
resistivity rN<1.1k−0.6rS. For T.0 the minimum is attenuated. Adding a thick weakly superconductingS8
layer between the superconductor and normal metal coating reduces the irreversibility markedly.
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I. INTRODUCTION

Within the past decade, the CPU clock speed of PCs has
increased by about 100 times, and the use of parallel process-
ing has increased supercomputer speed by up to 3 orders of
magnitude, making many problems accessible to solution by
computational techniques. In addition, a Crank-Nicolson1 al-
gorithm established for solving the superfluid Gross-
Pitaevskii equations2 has been adapted for solving the time-
dependent Ginzburg-Landau equations,3 which provides a
further improvement in efficiency of one or two orders of
magnitude. These improvements permit the use of TDGL
computation to model superconductors with high finitek val-
ues in contact with nonsuperconducting materials.

The phenomenological TDGL equations provide a way of
modeling superconductivity more complete than simple mac-
roscopic models,4,5 but without the extreme complexity of
microscopic theory which makes such calculations impracti-
cal for the mixed state. The TDGL equations have been used
to calculate I-V characteristics for superconductors with
insulating-boundary surface pinning6 and with bulk pinning
by point pinning sites.7 The initial vortex penetration field of
a superconductor with a notch8 has also been investigated
using TDGL theory, along with the current flow in a 3D
layered superconductor.9,10 Some of the systems considered
in the literature consider spatially varying material properties
by invoking a variation in the critical temperatureTc.

9–12

The effect of surface barriers on superconductors is a phe-
nomenon which has been researched in detail for most of the
history of superconductivity. The effect of coatings on the

surface critical fieldHc3 has been determined by using lin-
earized equations to obtainHc3 as a function of coating
resistivity.13 The question of initial vortex penetration into a
coated superconductor was first posed by Bean and
Livingston,14 and solved in the high-k limit using London
theory, and using 1-D Ginzburg-Landau theory.15 The Bean-
Livingston model is based on the competition between the
attraction from an “image force” and repulsion due to the
screening currents, and predicts an initial vortex penetration
field Hp<Hc. Much later, it was confirmed
computationally16 that their result is valid for the extreme
metallic limit irrespective ofk. The case of the supercon-
ductor with an insulating surface was solved by Matricon
and Saint-James using the 1-D Ginzburg-Landau equations,17

showing that Hp was noticeably higher than the Bean-
Livingston value, due to the need to force the material nor-
mal at the insulating edge before fluxons can enter. This has
more recently been followed by computational work16,18

which confirmed the Matricon result.
This paper extends our understanding of coated supercon-

ductors from the insulating and extreme metallic limits to the
case of superconductors coated with metals of arbitrary re-
sistivity. These systems involve spatial variation of bothTc
and normal-state resistivityr. The generalization of the com-
putation to include spatially-dependentr necessitates imple-
mentation of internal boundary conditions, but enables the
direct computational simulation of new classes of systems.
Hence coated superconductors, polycrystalline bulk materi-
als swhere the grain boundaries may be nonsuperconductingd
and superconducting composite conductorsswhich may in-
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clude normal metal matrix materialsd can all begin to be
addressed computationally. Our aim in this work is to deter-
mine the effect of the surface barrier on the hysteretic mag-
netic response to an applied magnetic field. As part of our
long-standing interest in bulk superconducting properties, we
have also considered how best to eliminate the surface bar-
rier from a superconductor. For this reason the properties of
bilayer coatings, which consist of a weakly superconducting
S8 layer interposed between the superconductor and normal
coating are calculated. This bilayer structure was chosen in
light of the experimental findings19,20 that the creation of a
diffusion layer between a superconductor and its normal
metal coating reduces the superconductor’s magnetic irre-
versibility.

In Sec. II an overview of the time-dependent Ginzburg-
Landau model is given, and the appropriate parameters based
on normal-state material properties are determined. In Sec.
III we discuss the general impact of symmetry considerations
on TDGL computation, the numerical method itself, and how
the calculations were optimized.

In Sec. IV we consider a superconductor coated with a
normal metal. The magnetization characteristics themselves
are calculated along with the initial vortex penetration field
Hp and the hysteresis. The minimum possibleHp and corre-
spondingrN/rS are also found.srN/rS is the ratio of the
coating resistivity to the normal-state resistivity of the super-
conductor.d

In Sec. V we consider the effect of introducing a weakly
superconducting region between the superconductor and the
normal metal coating. As for the single normal metal coating,
complete magnetization loops andHp values are calculated.
The implications of all the results obtained are discussed
further in Sec. VI. Finally, in Sec. VII we give a summary of
the results and conclusions.

II. BACKGROUND THEORY

A. The TDGL equations

The work described in this paper involves Ginzburg-
Landau computations on systems containing both supercon-
ductors and normal metals. As given in the literature the
standard form of the TDGL equations is21,22
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The values ofj and l, which are the characteristic lengths
for the order parameter and supercurrent, respectively, can be
deduced from microscopic theory in the dirty limit:23
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, s3d
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whereTc is critical temperature,Ds=1
3vF

2td is diffusivity, r is
the normal-state resistivity andz is the Riemann zeta func-
tion fzs3d<1.202g. Similarly there are two characteristic
time constantsts1d
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z8 is the ratio of the two time constants, given by

z8 =
tc

t J =
p4

14zs3d
, s7d

which is material-independent, unlike the Ginzburg-Landau
parameterk=l /j.

For the equations to refer to both superconducting and
normal states the temperature dependence must be explicitly
included. Calculations from the Usadel theory24,25 gives the
following boundary conditions at a material interface26 sthe
first boundary condition corresponds to the continuity of pair
conservation amplitude, while the second corresponds to su-
percurrent conservationd:

fcs2dgBoundary= fcs1dgBoundary, s8d
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where

ucu2 = STc

T
− 1Ducu2. s10d

By substitutings10d into s1d ands2d we can obtain a form of
the TDGL equations appropriate for both superconducting
and normal states:

1

j2S ucu2

sTc/Td− 1
− 1Dc + S=

i
−

2e

"
AD2

c +
1

D
S ]

]t
+ i

2e

"
wDc

= 0, s11d

Je =
"

2em0l2sTc/Td− 1
ReSc*S=

i
−

2e

"
ADcD −

1

r
S=w

+
]A

]t
D . s12d

The first of these boundary conditions implies thatc can be

replaced by an alternative normalizationĉ=Cc whereC has
the same value everywhere. Making the substitution
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ucu2 = STcs1d

T
− 1Duĉu2, s13d

restores Eqs.s1d and s2d for material 1sin material 1ĉ=cd
while giving
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for material 2. Using the identitiessDs2d /js2d
2 d(sTcs1d
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Here, D, Tc and r, without subscripts, represent thelocal
values of diffusivity, critical temperature and resistivity. The
equations can then be rewritten throughout the entire system
si.e., materials 1 and 2d in dimensionless units based on the
properties of material 1, using

= =
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The unit of normalized length is the coherence lengthjs1d,
while normalized time is in units of the supercurrent time
constantt s1d

J . The normalized magnetic field unit is the upper
critical field:

Hc2s1d =
"

2em0js1d
2 . s19d

We can now apply the following normalization to get the
dimensionless equations used in the rest in this paper:
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where the boundary conditions are Eqs.s8d and s9d with ĉ
substituted forc.

B. Varying coating resistivity

The Ginzburg and Landau original paper27 described a
superconductor in terms of the two free parametersa andb,
which can be expressed in terms of the coherence lengthj
and penetration depthl. Both j and l are temperature de-
pendent, and so together with the critical temperatureTc de-
fine the thermodynamic properties of any homogeneous iso-
tropic superconductor as a function of field and temperature.
The time-dependent Ginzburg-Landau equations add the dif-
fusivity D and the normal-resistivityr to the equations, but
D can be obtained fromj andTc via Eq.s3d, while ther can
be obtained froml andTc using Eq.s4d, thus showing that
introducing time dependence does not introduce any new
free parameters. Hencer, D, andTc also provide a complete
set of variables.

In this paper we consider both simple normal metal coat-
ings and bilayer coatings which include an additional weakly
superconducting layer to represent a diffusion layer. Chang-
ing the resistivity of the normal metal coating leaves com-
plete freedom in setting its diffusivity. In this paper the
Fermi-level density of statesgs«Fd, given by

gs«Fd =
1

2e2Dr
, s22d

was held constant throughout the grid, whileTc andr were
used to define material properties. This is appropriate if
changes in resistivity are determined mainly by impurity
concentrationsand therefore by changes inDd. In the bilayer
sS8 /Nd coating simulations,Tc and r were varied linearly
across theS8 layer. Since the core superconductor in the
computation is the critical part of the system, and in most
relevant experiments is far larger than the coatings, the mag-
netization data were obtained from a sum over the core su-
perconductor alonesi.e., not including theS8 layerd. The
approach excludes the possibility that the data are dispropor-
tionally representative of the coatings.

III. COMPUTATIONAL METHOD

A. Symmetry problems

If a local energy minimum in a physical system can be-
come a local maximum while equilibrium is maintained
throughout, changes in the system cannot be described cor-
rectly without explicit consideration of symmetry breaking.
Whereas an analytic calculation can check for the point at
which a minimum becomes a maximum and then identify the
correct minimum-energy equilibrium state, a time-dependent
computation can get stuck at an energy maximum unless
symmetry breaking is introduced. In a superconductor, both
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the Meissner state and the normal state may be erroneously
preserved if symmetry breaking is absent.

In the Meissner state of an infinitely long superconductor,
every point along the edge is equivalent to every other point,
which may mean that the superconductor remains trapped in
this state even aboveHp. We have addressed this symmetry
problem by considering finite rectangularswhere the corners
break the symmetryd and circularswhere roughness is im-
posed by the rectilinear discretizationd superconductors. If
the surface barrier is not weakened by the corners,Hp ob-
tained from both rectangular and circular computations will
agree with analytic values in the large-grid limit.

Similarly, if the superconductor becomes completely nor-
mal it is impossible for superconductivity to renucleate even

if this is energetically favorable. Whenĉ is zero everywhere,

]ĉ /]t8=0 fcf. Eq. s20dg and the normal state is erroneously
preserved whatever the shape of the superconductor. Re-
nucleation of superconductivity can be enabled by adding
random Gaussian noise to both real and imaginary compo-

nents ofĉ after every 50 iterations. This noise is of mean
zero and standard deviation 10−6. Within the superconducting
regime this noise has a negligible effect on the results, as
noise 104 times more intense was found to have a negligible
effect on the results18 except for the time scale—more noise
leads to faster equilibration.

B. Numerical method

Much of the existing TDGL computational work has been
done using the simple explicitU-c method.6,8,18An explicit
algorithm for solving partial differential equations involves
calculating the time-derivatives based on existing data, and
then advancing in time by a simple Euler step. Unfortunately,
this method is very computationally expensive for diffusion
equations such as the TDGL equations—as the explicit algo-
rithm only considers nearest neighbors, the timestepdt be-
tween iterations must be shorter than the diffusion time
across a cell of widthdx for the algorithm to be stable.28

Many of the calculations presented here would have required
a dt,0.001t ms1d

J had they been calculated using theU-c

method, even fork=2, and at highk values even smallerdt
values would have been needed, scaling as 1/k2. In this pa-
per we used a semi-implicit algorithm3 which considers the
effect of the entire grid on any given location, thus allowing
a dt of up to 0.5t ms1d

J , although forrN/rS values far from 1,
dt values as low as 0.1t ms1d

J were needed for accuracy and
stability. We note that to successfully use these much larger
time steps, one of the link variables must be calculated first,
and the new results used in calculating the second link vari-
able. When the two link variables were calculated in parallel,
even the semi-implicit algorithm became unstable. The order
of link-variable calculation is switched on alternate iterations
to preservex/y symmetry as much as possible.

C. Optimizing the computation

In Schmid’s dirty-limit TDGL theory, the ratio of the time
constantsz8=p4/14zs3d=5.78, while in TDGL theory as ob-
tained for superconductors dominated by paramagnetic
impurities,29 z8=12. In Fig. 1, where the time evolution is of
explicit interest, our calculation usesz8=5.78. The remaining
work in this paper considers equilibrium properties, where
the time-dependent terms ultimately tend to zero. As a result,
z8 was set to 1 to reduce computational expense. We have
confirmed that this setting ofz8 does not affect the results,
while reducing computation times considerably—this is con-
sistent with work in the literature.8 In order to obtain the
equilibrated magnetic properties, the applied magnetic field
was ramped from one value to the next, and then held con-
stant. The field increment was typically 0.05Hc2, ramped
over 100t ls1d

J , although when obtaining preciseHp values

much smaller increments were used. The equilibration time
stypically 400t ms1d

J , although this varied depending on the
systemd was determined by confirming the convergence ofM
to 3 significant figures.

In all computations included in this paper, a grid spacing
of 0.5j in bothx andy directions was used.Hp is dependent
on grid size—it is higher for small superconductors, as the
screening current on the near side of the superconductor
which induces flux entry is partially cancelled by the oppo-

FIG. 1. Time evolution ofuĉu2 showing vortex
entry into ak=2 superconductor of dimensions
80j370j with an insulating surface and with a
rN=rS, 20j thick metal coatingspartly shown for
clarityd and insulating outer surface. The applied
magnetic field is increased above the initial vor-
tex penetration fieldsi.e., to Hp+0.01Hc2d at t
=0. Time frames at 200t s1d

J , 500t s1d
J and 2000t s1d

J

are shown.uĉu2 contours are at intervals of 0.1.
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site screening current at the far side. This meant it was nec-
essary to check that the grid size was large enough to obtain
Hp results consistent with results in the literature for the
insulating and extreme metallic limits. For the rectangular
grid, for k=2 the grid size was 50j340j, with a 10j thick
coating. Fork=5 calculations, a 100j380j grid with a 10j
thick coating was used, 250j3200j with a 20j coating for
k=10 and 625j3500j for k=20 with a 20j coating. For the
circular superconductors referred to in Fig. 3, the diameters
used were 50j for k=2, 100j for k=5, 250j for k=10 and
500j for k=20, with the same coating. The large grid sizes
for k=10 andk=20 use up to 1 GB of RAM—to reduce the
computational expense the superconductor was divided into
symmetric quarters, and the computation was restricted to a
single quarter. The sameS grid sizes andN thicknesses are
used in the bilayer coating calculations.

IV. RESULTS

A. Flux entry behavior

Figure 1 shows the time evolution ofuĉu2 as flux enters a
superconductor with an insulating surface and a supercon-
ductor with arN=rS normal metal coatingsthe outer surface
of the coating was set to be insulatingd. For each system, the
superconductor was equilibrated in the Meissner state with
an applied field ofHp−0.01Hc2 swhereHp is the minimum
field at which flux entry occursd then the field was increased
to Hp+0.01Hc2. The mechanism of flux entry is quite differ-
ent in the two cases—in the insulating surface case a con-
tinuous normal region forms at the edges which then breaks
up into fluxons, while in the metal-coated superconductor
individual fluxons enter the superconductor from the edge of

the material whereuĉu2 has been depleted by the proximity
effect. When the magnetization response was calculated for a
superconductor with normal metal coatings of various thick-
nesses, it was found that any thickness above 2js1d gave the
same result forHp. This shows that the order parameter
within the coating becomes negligible within 2js1d for H
<Hp, and so the normal metal coatings used here can be
considered to be infinitely thick. A metal coating slows the
diffusion of fluxons into the superconductor compared to an
insulating surface becauseHp, and therefore the driving force
on the fluxons, is lower for the metal-coated superconductor.

In the analytic work on initial vortex penetration, the non-
superconducting side of the barrier is not explicitly consid-
ered. In both the insulating17 and extreme metallic14 limits,
c=0 outside the superconductor, and the fluxons first nucle-
ate just inside the superconductor. For a superconductor
coated with a normal metal this leads to the question as to
where current vortices first form. Figure 2 is a logarithmic
contour plot for such a system. It consists of three main
regions: an outer region in the normal coating dominated by

noise whereuĉu2,10−10, a second region containing screen-
ing currents which circulate near the superconductor-normal
interface and exists in both regions and an inner region
which contain a few fluxons, but where the order parameter
is in most regions close to unitysMeissner stated. It can be
seen that there are small depressions ofc within the normal

metal layer, which have associated vortex currents. These
proto-fluxons do not have quantized flux off0 associated
with them. We have found that unlike the two extreme limits
considered analytically, the proto-fluxons first nucleate
within the “noisy” region in the normal coating, then cross
the screening current region into the superconductor.

B. Normal metal coatings

Figure 3 shows the complete magnetization characteristics
for superconductors coated with insulator and with metals of
various resistivities. The sample magnetizationM was calcu-
lated by subtracting the applied magnetic fieldH from the
internal magnetic fieldB scalculated by=ÃAd, and then
averaging over theS region onlysthe demagnetization factor
can be ignored for a 2D systemd. Adding a metal coating
reduces the surface critical fieldHc3 from its insulating-
surface value of 1.69Hc2 to Hc2 when rNørS, consistent
with the Hurault result.13 sNote that superconductivity can
persist in corners even aboveHc3, as noted in the
literature.18d The magnitude of the magnetic hysteresis de-
creases asrN/rS decreases, or ask increases. However, the
field dependence of the hysteresis is a property not only of
the coating itself but also of the shape of the superconductor
because in superconductors with small dimensions, fluxons
which have already entered the superconductor impede the
entry of further fluxons.16 In contrast to the hysteresis, the
initial vortex penetration fieldHp is characteristic of the coat-
ing alone, and is considered in more detail below.

Figure 4 shows the results ofHp calculations for coating
resistivity values ranging fromrN=0.1rS to rN=10rS at k
values of 2, 5, 10, and 20.Hp was calculated for both rect-
angularsopen symbolsd and circular superconductorssclosed
symbolsd. It is clear thatHpsrN/rSd has a minimum value
sHpsmindd that is lower than the extreme metallic limit

FIG. 2. Contour plot of log10sucu2d for a k=2 superconductor of
dimensions 80j370j coated with arN=rS, 20j thick normal metal
and bounded by an insulating outer surface. The applied magnetic
field was increased to above the initial vortex penetration fieldsi.e.,

to Hp+0.01Hc2d at t=0 and data obtained att=500ts1d. log10suĉu2d
contours are at intervals of 1—the outer region has random

log10suĉu2d due to noise.
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(Hps0d), and that the resistivity ratio at which the minimum
occurs srN/rSdopt, decreases ask increases. They axes in
Fig. 4 have been scaled so that the extreme metallicsrN

=0d and insulatingsrN=`d limits are at the same positions
for all values ofk stheHp values at these two limits converge
in the extreme high-k limit 17d. The rectangular and circular
Hp results agree to within a reasonable accuracy. We there-
fore conclude that the corners are not responsible for deter-
mining Hp in the rectangular superconductor and that the
grid size is sufficiently large. The existing result that

notches8 reduceHp and the observation in Fig. 1 that fluxons
do not enter directly at corners suggest that convex features
increaseHp, and in particular that corners do not weaken the
surface barrier, and so that the computedHp values in Fig. 4
are equivalent to values determined by the Bean-Livingston
and Matricon calculations.

To confirm that the minimum in Fig. 4 is not specific to
the conditionsT=Tcs2d=0, Fig. 5 shows the effect of pair
breaking onHp. The same system is considered as in Fig. 4,
but atT= 2

3Tcs1d andTcs2d=0 sthis is also equivalent toT=0
and Tcs2d=−2Tcs1dd. In this system the minimum is attentu-

ated considerably, as the pair-breaking forcesĉ rapidly to
zero in the normal metal, reinforcing the surface barrier for
rN,rS, while weakening it forrN.rS. However, the mini-
mum is not suppressed completely. The convergence of the
data at highrN/rS in Figs. 4 and 5 suggests that in therN
@rS limit, fHpsrN/rSd−Hps0dg / fHps`d−Hps0dg depends pri-
marily on rN/rS andT, not k.

Figure 6 focuses on the minima in theHpsrN/rSd charac-
teristics in Fig. 4swith some additionalk valuesd, and dem-
onstrates thatHpsmind, and srN/rsdopt have approximate
power-law dependences. Figure 7 shows therN/rS depen-
dence of the hysteresis energy, which is calculated from the

FIG. 3. Magnetization of a superconductor with an insulating
surface and of superconductors with normal metal coatings of vari-
ous resistivitiessad k=2, sbd k=5 with an inset fork=20.

FIG. 4. Initial vortex penetration fieldHp as a function ofrN/rS

for k=2, 5, 10, and 20 for rectangularsopen symbolsd and circular
sclosed symbolsd superconductors. They-axes are scaled so that the
asymptotic values ofHp in both the insulating and extreme metallic
limits are at the same position for allk values.

FIG. 5. Initial vortex penetration fieldHp as a function ofrN/rS

for k=2, 5, 10, and 20 for rectangular superconductors where
TcsNd=−2TcsSd. The y-axes are scaled so that the asymptotic values
of Hp in both the insulating and extreme metallic limits are at the
same position for allk values.

FIG. 6. Minimum initial vortex penetration fieldHpsmind sleft
axisd and required resistivity ratiorN/rS sright axisd as a function
of k.
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area enclosed by theM-H loop. For rN.rS, the hysteresis
energy increases withrN/rS, while for rN,rS it is approxi-
mately independent ofrN/rS. The minimum observed in the
Hp characteristic does not appear in the hysteresis energy
characteristic because hysteresis energy depends on both flux
entry and flux exit, and the barrier for flux exit drops mono-
tonically asrN/rS decreases in the important low field re-
gion. This cancels out the effect of theHp minimum on the
hysteresis energy.

C. Bilayer „S8 /N… coatings

It is clear from the results presented so far that single
normal metal coatings cannot destroy the surface barrier in
any significant field range. The effect of a weakly supercon-
ducting S8 layer between theS and N layers was therefore
investigated with the intention of reducing the magnetic hys-
teresis further and obtaining reversible magnetic behavior
over the widest possible field range.

Figure 8 shows examples of magnetization curves calcu-
lated for k=2, bilayer coated superconductors. For anN
layer with rN=rS, adding a 2j -thick S8 layer has a minimal
effect, while anS8 layer at least 10j thick makes the magne-
tization essentially reversible above 0.4Hc2. For anN layer
with rN=10rS adding anS8 layer results in a less pronounced
reduction of the hysteresis, and for a 2j-thick S8 layer there
is an anomalous increase in bothHp and hysteresis energy,
which is discussed below. It may be noted that the calcula-
tions in Fig. 8sbd are more computationally expensive—not
only does the largerN require the simulation time step to be
reduced, but the equilibration itself is slower—taking up to
10 times longer in normalized time than for a system with a
simple normal metal coating.

In Fig. 8sad the magnetization characteristics forS8 thick-
nesses of 10j or more appear to be reversible for fields above
0.3Hc2, which opens the possibility of the existence of an
irreversibility field. Since the irreversibility field marks the
point at which critical current densityJc becomes zero, it is
an important issue both experimentally30–32 and theoret-
ically.30,31 The magnetization irreversibilityDM obtained
from the data in Fig. 8sad is plotted on a logarithmic scale in
Fig. 9. It is clear that there is no evidence for a phase tran-

sition in high fields. ForS8 thicknesses of 20j, DM eventu-
ally becomes less than that resulting from a single fluxon for
Hù0.35Hc2. A limited set of calculations for a much larger
grid of 250j3200j, where one fluxon would make a much
smaller contribution toM, still showed a nonzeroDM, thus
confirming that the apparent irreversibility field in Fig. 8sad
is not the result of any phase transition.

Figure 10sad showsHp as a function of the thickness ofS8
for k=2 andrN values of 0.1rS, rS and 10rS. The anomalous
increase inHp first noted in Fig. 8sbd srN=10rSd is found for

FIG. 7. Hysteretic energy density as a function ofrN/rS at k
=2, 5, and 20.

FIG. 8. Magnetization of ak=2 superconductor coated with
weakly superconductingS8 layers of thicknesses up to 20j and an
outer normal layer withsad rN=rS and sbd rN=10rS.

FIG. 9. Magnetization irreversibility on a logarithmic scale for
k=2 superconductors withrN=rS normal metal coatings andS8
layers of various thicknesses.sNegative values are indicated by
open symbols.d
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S8 thicknesses of 3j or less and confirmed to exist even for
much finer grid spacings. In Eq.s20d for rN=10rS, diffusiv-
ity D is decreased within theS8 layer, which lowers the

kinetic energy term and thus increasesĉ at theS8 /S inter-
face, increasing the energy penalty associated with moving
fluxons into the superconductor. ForS8 thickness of 3j or
less this effect dominates, resulting in the anomalousHp in-
crease, while for thickerS8 layers,Hp decreases because the
Bean-Livingston image force begins to dominate again. The
initial vortex penetration field never reaches the lower criti-
cal field value33 of 0.195Hc2, but instead tends asymptoti-
cally to a somewhat higher value of 0.205Hc2. This differ-
ence and hysteretic behaviour is found even for a 50j-thick
S8 layer fcf. Fig. 8sadg and is discussed in the next section.
Figure 10sbd demonstrates the effect of changingk on theHp
characteristic as a function ofS8 thickness—for all values of
k there is a general trend of decreasingHp as theS8 thickness
is increased, but again full reversibility is not achieved for
thicknesses up to 20j.

V. DISCUSSION

A. The effects of coatings onHp

The value ofHp is determined principally by two consid-
erations. The first is the gradient of the order parameter at the
interface of the superconductor. The dependence ofHp on the

gradient explains the existence of the minimum. Both very
low and very highrN/rS have high Hp as the interface
boundary conditions force a steep gradient: on theN side of
the interface for highrN/rS and on theS side for lowrN/rS.
This means that in both of these cases the Bean-Livingston
“image force” is close to full strength. Close tosrN/rNdopt,
the screening supercurrent extends somewhat into the normal
metal, weakening the image force and loweringHp. This

dependence ofHp on =ĉ also explains why adding a weakly
superconductingS8 layer reducesHp, asc8 is gradually re-
duced to zero over the width of theS8 layer. The decrease in
srN/rSdopt as k increases results from the second Ginzburg-
Landau equation—at highk values the screening current can
penetrate farther into the normal metal, meaning gradients at
the interface are optimized at a lowerrN/rS value. The first
Ginzburg-Landau equation only plays a minor role—it was
found that changing the relation betweenDN/DS and rN/rS
changedHpsmind but not srN/rSdopt.

The second consideration in determiningHp is the value

of ĉ itself at the interface. In the extreme metallic limit,ĉ

=0 at the interface while in the insulating limit,ĉ at zero

field is the Meissner state value.ĉ must be reduced to zero
near the edge of the superconductor before any fluxons can
enter, which results in a greater energy penalty for fluxon
entry in the insulating limit, and thus a higherHp than for the
extreme metallic limit.16 This “condensation energy” consid-
eration also explains the anomalous increase inHp observed
in Fig. 8sbd.

Finally we consider the general issue of the field depen-
dence of the hysteretic magnetization data. Clearly, the re-
versible magnetization of a superconductor does not depend
on its shape or size, provided that the separation between the
parallel surface size is much larger than,20l sl= the pen-
etration depthd. The surface barrier contribution to the irre-
versible magnetization can be interpreted as a critical current
along the surface of the superconductor per unit length in the
z direction, and is thus also independent of shape and size.
This means that the magnetization characteristics presented
in Figs. 3 and 8 are completely general for a givenk value
and surface, rather than being specific to a given shape or
size. These calculations have also confirmed that thick
smoothS8 layers cannot completely destroy the surface bar-
rier, to achieve complete reversibility surface defects such as
notches or surface roughness are required.8 It may also be
noted that the magnitude ofDM for the superconductors with
insulating coatings can be approximated by

DM <
0.35

k2ÎHc2

sHc3 − Hd3/2. s23d

If we consider a thin film conductor of thickness,l, for
example, of a high-temperature superconducting RABITS
conductor,32 the surface contribution to the average current
density sJcd is DM /l which can be rewritten asJc

<0.64JD/ k swhereJD<Hc/ l is the theoretical upper limit
known as the depairing current density34d. Such high current
densities are clearly of technological interest.

FIG. 10. Initial vortex penetration fieldHp as function ofS8
thickness forsad k=2 superconductors withrN=rS and rN=10rS

normal metal coatings, andsbd k=2, 5, and 20 superconductors
with coating resistivity given bysrN/rSdopt. They axes are normal-
ized toHp for a 10j-thick S8 layer.
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B. Comparison with experimental results

In many superconducting samples, the effect of the barrier
is complicated by a combination of suppression of the super-
conductivity near the surfacesdue for example to oxidationd,
by roughness of the surfacesthe effect of notches onHp has
been investigated computationally8d, or by the presence of
twin boundaries or other defects. In such samples the effect
of the surface barrier is most apparent in the immediate vi-
cinity of Hc1, but obscured in higher fields by the effects of
bulk pinning. Surface barriers strong enough for the charac-
teristic asymmetric irreversibility shown in Fig. 3, with the
almost-zero magnetization of the descending branch, has
been observed in materials with surfaces which are flat on
the scale of the coherence length, for example, in single crys-
tals of YBCOsRef. 35d and Bi-2212sRef. 36d as well as thin
well-annealed samples of elemental niobium36 and powdered
MgB2 sRef. 37d.

There has been relatively little experimental work on the
effect of plating normal metals onto a superconductor with
flat surfaces, although measurements reported on cylindrical
samples of a niobium-zirconium alloy38 showed a small de-
crease in magnetization irreversibility on plating with silver.
The computational work presented in Sec. IV C of this paper
shows that diffusing the boundary between a superconductor
and its normal-metal coating radically reduces surface hys-

teresisscompare Fig. 3 with Fig. 8d. This result has been
observed experimentally in metallic interdiffusion experi-
ments on a lead-thallium alloy19 and in oxide-coated
niobium.20

VI. CONCLUSIONS

This paper has considered the issue of coating supercon-
ductors with finite size single layer and bilayer coatings. The
properties of superconductors of differentk and coated with
materials with a range of resistivity andTc have been calcu-
lated using the TDGL equations and discussed. Flux nucle-
ation and penetration into a superconductor have been de-
scribed, and the values forHp, including conditions for it to
be a minimum, have been reported. General characteristics
for the hysteretic magnetization of large samples have been
presented, which can be applied to coated materials of arbi-
trary shape.
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