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Long Josephson junction in a resonant cavity
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We present a model to describe an underdamped long Josephson junction coupled to a single-mode electro-
magnetic cavity, and carry out numerical calculations using this model in various regimes. The coupling may
occur through either the electric or the magnetic field of the cavity mode. When a current is injected into the
junction, we find that the time-averaged voltage exhibits self-induced resonan{St&Ss due to coupling
between the current in the junction and the electric field of the cavity mode. These steps are similar to those
observed and calculated in small Josephson junctions. When a soliton is present in the jeoctésponding
to a quantum of magnetic flux parallel to the junction platéise SIRSs disappear if the electric field in the
cavity is spatially uniform. If the cavity mode has a spatially varying electric field, there is a strong coupling
between the soliton and the cavity mode. This coupling causes the soliton to become phase locked to the cavity
mode, and produces steplike anomalies on the soliton branch biMlodaracteristics. If the coupling is strong
enough, the frequency of the cavity mode is greatly redshifted from its uncoupled value. We present simple
geometrical arguments which account for this behavior.
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I. INTRODUCTION always result in the junctions’ being phase locked to each

Josephson junction arrays have now been studied fd?ther whenever they are biased on a SIRS.

more than 20 yearsThey are of interest for many reasons. _ 1hese theories have also been extended intqtiatum

On a fundamental level, many unusual physical phenomengdime:~ “This regime is relevant when the junctions are
may occur in them(Kosterlitz-Thouless transitions, and V€Y Small, so that the noncommutation of the Cooper pair
quantum phase transitions from superconductor to insilator"UMber operator and the phase operator is important. In this

On an applied level, they have been investigated as possib ggime, the Stat?SdOf th?jjunptic()ullrjunctions) an(r:i] the cavity h
sources of coherent microwave radiation, which would occuP€c0Me entangled, and uniquely quantum phenomena suc

if all the junctions in the array were to radiate in phase. as Rabi oscillations may be detectable in suitable experi-

. . ments. Since such junction-cavity systems may be control-
. These studies haye als_o been extended to Josephson Uhle externally, they may be useful as qubits in quantum
tions, and arrays of junctions, coupled to a resonant caV|tyC

. - . ) omputation. For this reason, the quantum regime has latel
When such a system is driven by an applied current, it ma¥eceﬁ/ed extensive attention q g y

exhibit equally spaced self-induced resonant st§RSs at Several groups have also investigated lthecharacteris-
voltages equal to multiples di()/2e, where() is the cavity  ics of a Josephson junction coupled to a phonon mode. This
resonance frequenéMore recently, it was shown that when system is formally analogous to the junction-resonant cavity
an array of underdamped junctions is placed in a single-system, in that both involve coupling between a junction and
mode cavity, and the array is biased on one of the SIRSs, thg harmonic oscillator mode. Helet al2°2* have developed
array phase locks and radiates energy coherently into thg model describing the coupling between longitudinal
cavity, provided that the number of junctions exceeds a critiphonons and intrinsic Josephson oscillations in cuprate su-
cal threshold® The SIRSs are thought to occur because theperconductors, which, when sufficiently anisotropic, behave
cavity acts back on the array like an ac driving field, produc-like stacks of underdamped Josephson junctférié.These
ing voltage plateaus analogous to Shapiro steps. The physitiseories have also been extended into the quantum regime.
of the threshold is believed to be that, since each junction is In all the above calculations, each superconducting island
coupled to thesamemode, it is effectively coupled to all the was treated as small object, with only two degrees of free-
other junctions. Thus, there is a long range interaction fodom: the phase of the superconducting order parameter, and
which phase locking occurs when the coupling strength, multhe number of Cooper pairs on each island. If the island is
tiplied by the junction number, exceeds a critical value. still large enough for Cooper pair number and phase to com-
Several models have been developed to describe theseute, then these two degrees of freedom can be treated clas-
steps’!! These models generally succeed in reproducingically. One then obtains a set of classical coupled second-
many of the salient features of the experiments: SIRSs at therder differential equations describing the dynamics of the
expected voltage, and an increase in the energy in the cavifynction array. For small islands, the phase and number are
proportional to the square of the number of junctions. Thenoncommuting operators, but there are still only two such
models have now been extended to two-dimensid@8l)  operators per island.
junction arrays? where they show that, on a given step, the But one may often be interested iang junctions, and
2D arrays radiate much more energy into the cavity than tharrays of long junctions. In such systems, the phase differ-
one-dimensiona(1D) arrays. However, recent wdfkindi-  ence across the junction typically depends on position along
cates that, in contrast to experiment, the numerical modelthe junction. When such a junction is coupled to a cavity, its
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behavior may therefore differ from that of small junctions. [l. DERIVATION OF EQUATIONS OF MOTION
In this paper, we present a simple model foloag Jo-
sephson junction coupled to a single-mode resonant cavity.
We present our model in the classical regime, in which num- We will consider a long Josephson junction characterized
ber and phase degrees of freedom commute. However, thgy a gauge-invariant phase differengéx,y,t), wherex and
model should be readily extendible into the quantum regimey are spatial coordinates arnds the time.#(x,y,t) repre-
We consider both spatially uniform and spatially varying sents the phase difference between the two plates of the junc-
coupling between the junction and the cavity. If the couplingtion at points(x,y). We assume that the junction has length
is uniform, we find that, as in the case of small junctions,| ;. thex direction and_,> L, in they direction. For math-
there are SIRSs in theV characteristics provided that there o o1 onveionce e assume periodic boundary condi-
is no magnetic field parallel to the junction plates. But Whentions in thex direction, S0 thatb(x+L,.,y, 0= d(x,y,1). We
such a magnetic field is introducéuh the form of a soliton also assume that the ’ hase varies (;r’ﬂ ' innméciioﬁ
propagating in the junctionthe SIRSs are no longer present P . Ny L
for uniform coupling. We will give simple arguments why In the absence of the cavity, the junction Lagrangian is
the steps are not to be expected in this case. If the coupling lsunc=JdXLjundy. The Lagrangian densityCjn=K-U,
nonuniform however, we find that a moving soliton in the whereK andU are the kinetic and potential energies per unit

long junction does couple to the cavity mode. This couplingdreaK=edE?/(8m) is the energy density stored in the cavity
perturbs thel-V characteristics of the junction, producing €lectric field,d is the spacing between the junction plates,
steplike structures in thieV characteristics, and excitation of and e is the dielectric constant of the material within the
the cavity mode. If the coupling is strong enough, this interjunction.
action produces a substantial shift in the frequency of the With the help of the Josephson relatiogy=2eV/%
cavity mode. All these perturbations and steps can also be2edE/ #, whereV is the voltage drop across the juncti@n,
understood by simple physical arguments. is the magnitude of the electronic charge, and the subscript
As in the case of short junctions, some previous work haglenotes a time derivative, this becomelé:eﬁ%f/
also been done treating the coupling of intrinsic long junc-g-(2e)2d.
tions to phonons. In particular, Preisal®® have treated this  The potential energy density U=U;+Ug. U,
coupling in systems with a magnetic field parallel to the:—(hJC/Ze)COngS is the Josephson coupling energy density,

junction plates. They also find resonances and phonon freJ—C being the critical current density. The magnetic field en-
quency shifts analogous to those found in the present Work?

although they use a somewhat different mathematical mode Ty per unit junction area is
Besides this work, several other groups have studied the in- de2
teraction of solitons in long Josephson junctions with various Ug=——,
types of harmonic modes. For example, Klefddras inves- 8m
tigated the interaction of solitons in stacks of long junctionsyhereB=V x A is the local magnetic induction. The vector
with the cavity resonances whose frequency and wave nunjptential A is related to the gauge-invariant phageby

ber are determined by the staqk georpsetry and by th_e Josep X,y) = 6(x,y) - (21 Dg) [ A(x,y)dl, where 6 is the local

son plasma frequency. Machid# al= have numerically .rﬁ)hase difference across the junction in a particular gauge,

studied emission of electromagnetic waves by solitons i ,=hc/(2e) is the flux quantum, and the second term is

stacks of long junctions which are coupled to the Josephsop ~ . . . .
plasma resonances of the stack. Salerto al,?® and Hwe integral of the vector potential across the junction at the

Gronbech-Jensefi,have considered the coupling of solitons POINt (X,y). We now assume th@=BY, i.e., is parallel to

in long junctions to externally applied microwave fields. Be-the plates of the junction. If we choose the gauge

low we compare some of these results with our own. A=-A(XZ, then ¢(x,y)=0(x,y) +(2m/ Dg)AX)d and there-
Since SIRSs may occur in long junctions, they may before

useful as sources of sub-THz radiation. Herstacksof long <I>

junctions may be even more useful as such sources. Since the B=—(¢~ 6,), (2

most anisotropic higf-, cuprate superconductors behave as 2md

stacks of long underdamped Josephson junctions, these nalynere the subscript denotes a partial derivative with respect

ral materials, too, may serve as a source of coherent sub-THg

radiation* _ _ If the superconductor in the upper plate has a complex
The remamder of thls'paper is arrgnged as follpws. In Secyrder parameteW (X, y)=| ¥ |exp(i6,), then the correspond-

II, we derive the equations of motion for treating a long ing in-plane current density may be written

junction coupled to a single-mode resonant cavity. In Sec.

lll, we present numerical results obtained from these equa- e 5 (e")? 2

tions of motion, for both no-soliton and soliton initial condi- Julxy) = ot [W[*V 0,- EAN’J ; )

tions, and for both uniform and non-uniform junction-cavity

coupling. Finally, in Sec. IV, we discuss the numerical resultsvheree’=2e, m" is the effective mass of a Cooper pair, and

and their experimental implications, and also suggest som#ne gradient is taken in the xy plane. The coefficienAaih

possible extensions of this work. A detailed derivation of theEq. (3) can be identified with the London penetration depth

Lagrangian for the junction-cavity interaction is presented inof the material in the upper plate, via the relation

the Appendix. 4m(e")?W %/ (m'c?)=1/\2 Similar equations hold fo#, on

A. Lagrangian for a long Josephson junction

(1)
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the lower plate. Hencey 6=V (6,- 6,) satisfies C. Cavity-oscillator coupling and bias current
Am(E)P\2 We assume a capacitive coupling between the junction
Vo=——5—0,-J0), (4) and the oscillator of the form as is shown in the Appendix,
hc the coupling Lagrangian takes the form

where we have assumed that materials in the upper and lower
plates have the same penetration depth. Substituting4gq. Leoup=— 0 f ge(X) p(x)dxLy, = f LeoudIXLy, . (9
into Egs.(2) and(1), we obtain

) ) This is a natural extension of coupling assumed in Ref. 9 to
d | Pody _4mh (J3,-J) (5) a long Josephson junctidsee, in particular, Eq38) of that
8m| 2md dc Y| papel. If the cavity electric field isxonuniform the coupling

) ) ) ) depends on position along the cavity. In the numerical ex-
where we have assumed thavaries only in thexdirection,  5mpjes given below, we consider both position-independent
as is reasonable fally. _ _and position-dependent coupling.

Gg\éen Liune the equations of motion can be obtained  pgegjdes the capacitive coupling, there could, in principle,
from also be arinductive coupling between the junction and the
5L P ar cavity mode. In the present work, we do not include this
Z “Tune O Tmlune | TEURG _ (6)  term. However, if the cavity electric field has a nonzero curl,
at dp  IX Iy 2 there is a corresponding magnetic field which is already in-
cluded in Eqg.(9). We include this type of electric field in
some of our calculations below. A more general derivation of
the junction-cavity coupling can be found in the Appendix.

UB:

In obtaining these equations and henceforth, we assijme
-J,=0. The equations then take the form

1 1 We also need to include a term in the Lagrangian corre-
b~ S~ 3 Sing=0, (7) sponding to the bias current. This takes the fokm,,
<N =(11d,12€) [ dxp(X)L,.
where ¢?=c?/e and 1A3=4me'dJ./(hc?) is the squared D. Equations of motion

Josephson penetration depth. This is the well-known equa- ) ) .
tion for the phase in a long Josephson junction, in the limit The equations of motion are obtained from the analogs of

of no dissipation. It leads to many solutions, including theEdS:(6) and(8), but using the full Lagrangian. We derive the
sine-Gordon solita®  ¢(x,t)=4 tar {ex (x—xo) /A ;- Bt]/ equat_lons of motlon_assumlng a smusmdal_couplg@gx)_
(v@)} where B=uv/c is a scaled velocity. This corre- =g sin(kx), wheregg is a constant. The equations of motion

sponds to an excitation traveling in the positiealirection for_lyhmform Ichpllng are _dlscussed below.
with speedv. This excitation carries a single quanturh, e total Lagrangian is

=hc/2e of magnetic flux in the positive direction. The soli-
ton is relativistically Lorentz contracted and cannot exceed a Liot= f (Liunc+ LeoupdXLy + Lose+ Leyrr- (10
speed of. A similar antisoliton travels with constant speed
in the negativex direction. The Lagrange equations of motion take the form
. . al o al d
B. Cavity Lagrangian 5{£(£jun°+ LCOUF)} + a_x[ﬂ(ﬁjun“ LCOUQ]
We assume that the cavity supports one harmonic oscilla- ‘ X

tor mode, described by a “displacement” variagleand its _ i(ﬁ. + Leou) =0 (11)
time derivativeq,. A suitable Lagrangian for this mode is g ne e

Los=M@2/2-Kq?/2, whereM is the “mass” of the oscillator

mode andK is the “spring constant.” The corresponding and
Lagrange equation of motion is g(oﬂ_‘tot) il . 12
E( aLosc) B al—osc_ 0 (8) dt dq, aq
dt\ 4q, a9, o Carrying out these operations, we obtain the equations of
motion as
which givesg, +Q?g, =0, whereQ=(K/M)¥? is the oscilla- L L ]
tor frequency. Here, we envision the oscillator as an electro- T —(sin _ _z) +0' sinkd. =0, (13
magnetic mode of a suitable resonant cavity. In this case, for Pox= 2 P A3 ¢ Je g’ sinflogg =0, (13)
some types of electromagnetic modgs,s proportional to h
the electric field of the mode. The formalism described herd/€®
would, however, also apply to suitable single-mode mechani- 4Amd(e")?
cal oscillators. With some modifications, it would also apply '= 22 % (14)

to electromagnetic modes in whiafp represents the mag-
netic, rather than the electric field. and
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#2c2 F. Equations of motion in dimensionless form

47d(€")’M

G+ Q%q, = g’ f sinkx)¢udx Ly, (15)

It is convenient to rewrite these equations using a dimen-

) , ) __sionless timer=wyt, length §=x/\;, and cavity frequency
The above equations of motion are derived for a cawty;l_ﬂl We also introd he di ionl .
electric field which varies sinusoidally with position. To ob- **~>*' “p: e also Introduce the Imensioniess variafpes
tain the equations of motion for aniform cavity electric ~ =P/(MC), By=(Mc?/Eg)*(py/Mwy). Eo=Eo/(Mc?), G,
field, one simply replaces the temnsin(kx) in Egs.(13)and  =d:/\;, and finally §=g'L,c* Finally, we require thatk
(15) (and subsequent equationsy g'. =2mm/L,, wherem is an integer, consistent with periodic
Equations(13) and(15) do not include any damping. We boundary conditions. With these substitutions, and further
simply incorporate damping by hand, by adding the approfearrangement, the equations of motion become
priate terms to these equations. The resulting equations take

L 1. = - [ 2rmén
the form Qr:E<pr+E(2)§ f p¢(§x)sm( C J)d§x>,
X
1 ® w2< J
- Shp— —Sd— =2 sin ——Z>+ " sin(kx)g, =0
TGN =B+ sin<277mém)
(16) T EL T L, /'

and

~ . ‘]Z :
EoPy = e~ (smq&— J_) - ¢

e Q . 2 2 . Q L
Or + aCQr + 0%, = mg’ f sin(kx) gydx L. ¢ J
(17) < 0. o
Pr==70G- Qzﬁr, (19
Here we have introduced dimensionless junction and cavity Qe

quality factorsQ, andQ,, and a Josephson plasma freqUeNCy,ynare the dot is a derivative with respect toand K=1
w,=C/\;=[4me dJ/ (he)]*2 In terms of the junction pa- e 20 d

rametersQ,;=ew,/ o, whereo is the conductivity of the me- (Eo@*/Ly) J sim(kx)dx.

dium within the junction. The additional terms in Eq46)

and (17) ensure that, in the absence of cavity-junction cou- lll. NUMERICAL RESULTS

pling, the equations of motion reduce to the standard results A. Algorithm

for a long Josephson junction with dampitigand for a ] . o
damped harmonic oscillator. We solve Egs(19) numerically by discretizing them on a

spatial scale ofA. Thus, ¢g—[(¢j1—2¢+d;_1)/A%],

wherej=1,... N, andN=L,/A\; is the number of discrete

sections of the long junction. In discretized form, E¢k9)
Equations(16) and (17) are conveniently solved numeri- become

cally if they are converted into a set of coupled first-order

E. Reduction to a set of coupled first-order equations

differential equations. Thus, we introduce the momenta ca- < _ 1. +AE2“§'“ [ 2ami
nonically conjugate tog, and ¢, namely p,=Mg, A== P Oglzl Pg, SIN N '
—Eqg' [ sinkxgdxLy, and p,=Egep/c?~g’ sin(kx)Eqq,
where E,=%°c?/4md(e")?. Substituting these variables into \ 2
Egs.(16) and(17), and rearranging, we obtain the following b =EB., +T— sin UL
ST . . i = EoPg, 9 Or
set of four coupled patrtial differential equations: Ly N
. 1f(p, g [ . . C_od 4+ 4
qr:E(Mr-FVfS”-](kX)p(ﬁdx Ly), E05¢_:—¢|+1 2¢;I +¢I_l_<sin ¢i _J_Z> _ﬁ,
' A o/ Qy
MQ P
D =—-MQ% — —¢ o Q. ~
P o Qc o Pr=- aqr - 07%,. (20)
Cc
2 With this discretization, we are basically treating the long
P = E—p¢+g’ sin(kx)c%q;, junction asN inductively coupled small junctions, each of
0

which has critical currenk,=J(L,L,).
We have solved Eq€20) numerically using a constant-
Eqwd( . J,\  wpEq time-step fourth-order Runge-Kutta method with a time step
(Pp)t = Eobxx = —EEZ (sm ¢~ J—> - _p_gz o, (18)  A7=0.001. We begin the simulation by initializing the vari-
¢ ablesp;, Gy, f)¢j and the parametet,/J. to zero; we have
whereK=1-(Ec?g'%Ly/M) [ sirf(kx)dxL,,. made various choices for initial values ¢f as discussed
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16 . . . . . 3.6 3.6
14 t - = =)
=1
12 K % 32 & 32
o 10} ; g g
%‘, 8t Y Y
; 6} 4000 4002.5 4005 4007.5 4010 4000 4002.5 4005 4007.5 4010
% 4 (@ Time (b) Time
2 3
0 FIG. 2. V(7)/(NRI,) vs dimensionless time for small junctions
) . . X . . Nos. (a) 59 and(b) 99 for 4000< r<4010, plotted for a voltage on
0 02 04 06 08 1 12 the SIRS of Fig. 1.

1./
o The phase locking between the junctions and the cavity is
FIG. 1. I-V curve for single long junction, withQ;=10.0, A illustrated in Fig. 3. This figure shows that the period of
=0.05,§=2.5,E§A§:1.0x 104 Q=10 and all the phases initial- 0scillation of¢j(7) is identical to those o¥;(7)/NRI, shown
ized to zero. A SIRS is located &¥)/(NRI,) ~, wherel. is the  jp Figs. 2; both equal 2/0.
critical current of one of the individual small junctions.

below. For a given,/J., we integrate the differential equa- C. Results with soliton present

tions from 7=0 to 7=5X 1C°, then evaluate the voltages by ~ The results shown in Figs. 1-3 are very similar to those
averaging over the last=2x 10° units of time. The ratio optained in Refs. 9 and 31 for aingle small junction
J;/J; is then increased or decreased by 0.01 and the set @bupled to a cavity. However, we see very different results if
equations is solved again. In all cases, we use periodighere is a soliton initially present in the junction. In this case,
boundary conditions in the direction. it is important that the equation of motion for the long junc-

We have considered two different initial phase distribu-tjon be discretized on a fine scale Nfis too small, there are
tions. To model a junction containing no soliton, we choosespyrious steps in theV characteristic produced by locking
all the initial phasesp;=0 for j=1,... N. To model a junc-  of the soliton to certain linear excitations generated purely by
tion containing a single soliton, we assume an initial con-the numerical discretization. These steps, which are numeri-
figuration ¢n(7=0)=2[w/2+tani2mn/N)], for n=1,... N.  ¢a] artifacts of a too coarse discretization, are well known in
As has been discussed in Ref. 33, for example, these boungeal (and discrete Josephson ladders, and have been dis-
ary conditions are consistent with the presence of a singleussed extensivef#=3¢ In all our calculations belowN is
soliton, which carries one flux quantum. Our numerical re-sufficiently large to avoid these spurious steps.

sults, as presented below, do show evidence for a soliton We discuss first a position-independent coupling between

with these boundary conditions. the junction and the cavity. An example of the calculated
current-voltage characteristics for this case is shown in Fig.
B. Results with no soliton 4. The portion of thd-V characteristic ford/J.<0.6 corre-

sponds to a soliton which moves freely through the long
coupled to a cavity, using the no-soliton initial conditica# junction. Th_e sollt_on peha_lves like a free, Massive, but rela-
phases chosen to ’equal Zpttve choose @osition indepen- t!VIStIC, particle, with I|m|t!ng velocityc. _Its motion is en-
o i i i ~, tirely unaffected by coupling to the cavity. The free motion

dent junction-cavity coupling with a constar§EgA=1.0  of the soliton can be understood in a simple way by the
X 10"* andN=120. We plot the time-averaged voltag®$ following argument. If the cavity electric field isiform, the

in units of NRI;, wherel.=J.(L,L,) is the critical current of

a single small junction. TheV characteristics have a step at 0.015

(W) (NRI)=4mQ/Q;. This is a SIRS, similar to that seen in

In Fig. 1, we show thé&-V curve for a single long junction

individual small junctions for a similar modétee Ref. 9 0oLt
and occurs atV)/(NRI.)=. This is the voltage expected 0.005 |
from the model of Ref. 9, which predicts that the SIRSs will = ol
occur when(V)/NRI, is an integer multiple of #(Q2/Q;).

The step in Fig. 1 occurs at#2.5/10 = for n=1. On this -0.005 ¢
step, the phases of all the junctions oscillate coherently and -0.01

are locked onto the cavity mode. To illustrate this coherence,
we show in Figs. @) and 2Zb) plots of the voltages
V;(7)/NRI, for small junctions Nos. 59 and 99 over the same
time interval. The plots show that the two junctions are in-
deed OSCi”ating periodica”y and in phase with one another. FIG. 3. Cavity Variab|a:]r(7-) for the |Ong junction in F|g 1, at
In fact, theV;(7)/NRI, plots for all the small junctions are an applied current on the SIRS, plotted vs timdor the time
identical on this step. interval 4000< 7<4010.

-0.015 : : .
4000  4002.5 4005 40075 4010

Time

144503-5



I. TORNES AND D. STROUD PHYSICAL REVIEW Br1, 144503(2009

14
12}

1F
08t
0.6 |
04t
02t

OF
-0.2

<V>/(NRI)
<V>/(NRI)

0 01 02 03 04 05 06 - 0 01 02 03 04 05 06
A AN

FIG. 4. Current-voltage plot for a single long junction in a reso- FIG. 6. Same as Fig. 5, except tfﬁi’ch=l.O>< 1073,
nant cavity, withQ;=10.0,A=0.05,(=0.75, a uniform coupling

with GEGA=1x 104, and Q.=10. Our initial conditions are such case of uniform coupling. These steplike structures corre-
that one soliton is present. This curve is the same for any choice afpond in each case to the locking of the soliton to the cavity
the strength parameth26 mode. Specifically, the soliton circulates around the long
junction at a frequency of one cycle per cycle of the cavity

coupling between the soliton and the cavity mode is indepenmode. For the weakest coupling shown, with=10"%, the
dent of the soliton position. Thus, the cavity electric field cavity mode is shifted very little fronf}=0.75. The voltage
exerts no force on the soliton, which therefore should stillstep thus occurs approximately at
travel with constant velocity even if there is a strong
junction-cavity coupling, consistent with our numerical re- Ny 4nQ)
sults. In fact, thd-V characteristics shown in Fig. 4 would NRL - 0, (21)
be the same i§=0. < J

Next, we consider gosition-dependenjunction-cavity  or (v)/(NRI,) ~0.95 for these parameters, corresponding to
coupling. In this case, theV characteristics are clearly per- . cycle of the soliton around the cavity per unperturbed
turbed by the cavity. Figures 5—7 shows the soliton branch o avity period. For the two stronger couplings shown in Figs.
the full1-V curve for a spatially varying coupling of the form g 54 7, the soliton is still locked to the cavity, but the cou-
used in Eqs(16) and(17). By the soliton branch, we mean pling is strong enough that the cavity frequency is shifted

that part of thel-V curve produced when the current is in- g pqrantially down from its unperturbed value, to about
creased fromJ,/J.=0.0 to approximately 0.6. We use the 0/3 and 073, respectively. The corresponding time-

same model parameters as for uniform coupling, except th d vol h /(NR
we consider several different coupling strengths, namely?Veraged voltage on the step is approximately/ (NRL)

A~E02§:gl, with g/:10—4, 10—3, and 102 and the dimension- —(2/3)[47TQ/QJ] 0.66, and (1/3)[47TQ/QJ] 0.33 for
these two couplings.

To see the effects of changing the cavity frequency, we
have carried out additional calculations with the same sinu-
soidal junction-cavity coupling but different cavity frequen-

ciesQ and various coupling strengths. The voltage plateaus
1.4 r T r . r typically vary approximately linearly witl), as predicted by

less cavity frequency)=0.75. We also taken=1 in Eq.
(19). There are now clear steplike structures in thé char-
acteristics for all three coupling strengths, @f)/(NRI,)
~0.95, 0.65, and 0.33 respectively, which were absent in the

12} Eq. (21). An example of this behavior, for the rather large
1 3
Eo 08 | 14
5 06 | 12
A 1}
> 0.4 [ —_
v = 08}
02 =2 ’
Z 06}
° 2
02 " 04 |
0 01 02 03 04 05 06 02 f
300, of
. . Lo -0.2
FIG. 5. Current-voltage plot for a single long junction in a cav- 0 01 02 03 04 05 06
ity, with Q;=10.0,A=0.05,Q2=0.75,N=120,Q.,=10, and coupling I3,
BE3A sin(2mx/L,), with GEAA=1.0x 1074 Our initial conditions B
are such that one soliton is present. FIG. 7. Same as Fig. 5, except tﬁj&%A=1.0>< 1072
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14 . r r r r 0.5 0.5
> 04 > 04
12
g 03 g 03
~ I € o2 € o2
[~ ! > ol > ol
Z 0.8 ; ;
; 0.6 | 1 4000 4010 4020 4030 4040 4050 4000 4010 4020 4030 4040 4050
\ 04| (a) Time (b) Time
02} 1 FIG. 10. Same as Figs(® and 9b) except that we plot volt-
0 ages for junctions Noga) 30 and(b) 90.
0 01 02 03 04 05 06 S .
10 voltages are again identical in pairs, but 180 deg out of
¢ phase, as in Figs. 9 and 10.
FIG. 8. Same as Fig. 7, except tHAE0.5. We see from Figs. 5 to 8 that the voltage steps are not

completely flat. Despite this slight curvature, we have con-
; r—1r2 i P . firmed numerically that the voltages of all the individual
couplm_g cct>n|sta2r}g3 thlo— ' :S shcf)v;rj |n7F|g. 8<V>/(N?'g: E minijunctions have the same period as that of the cavity.
(azpl;;roxma ely € value ot Fg. 7, as suggested by unrthermore, the time-averaged voltages across each mini-
y junction are all the same. If we examine the voltages at cur-

Besides the time-averaged voltages, we have also calc ent values off the step, we find that the cavity and individual

lated time-dependent voltage differences at various point

across the junction for most of the examples shown in Fig nctions no longer have the same periods.
5-8, and others. We have also computed the time-depende The behavior of the time-dependent voltages at different

. ) ) . S&nts along the junction can be understood from the sinu-
cavity variableq,(7). In all cases, these calculations provide

| id f locking bet the iuncti d th soidal junction-cavity coupling. For every point on the junc-
i(iyear evidence ot locking between the junction and the Cavgion there is a corresponding point separated P2 which

Some representative examples of the voltages are ShoV\?preriences an equal and opposite coupling to the cavity. If
in Figs. 9-11. In Figs. @, 9(b), 10(a), and 10b). we show e coupling has a spatial dependencéxin/L,), there are

: o ; two nodal points along the junction where the coupling is
the time-dependent voltages for minijunctions Nos. 60, 120 ; : - )
30, and 90 atl,/J,=0.04, for the parameters and frequencyZero, and two points where the coupling has maximum am

; D plitude but is 180° out of phase. At these two maximum
:;rf\lg-c%aTrzstc\a/rci)lsttailg2?1222\,;?1énpilﬁc%agsgtdagg)lg%\lgégeout ggints, the cavity-soliton interaction at any given time is
phase with one another. The same is true for Fig&)and ual in magnitude but opposite in sign. Because of this

- : feature, the time-dependent voltages at these two points
10(b). T_he vo_Itages of the second pair d|_ffer in wave form, should have the same wave form but should be 180° out of
but not in period, from those of the first pair. Indeed, we hav h - in Fi d 9b
found that all 120 time-dependent voltages on this step ha\(/%g ase, as 1s seen In |gs(§1}9an ab). :
This picture also explains why the time-dependent volt-

the same period and that the voltages of all mmuunctlonages along the junction are at all points equal in pairs but

pairs separated by exactly one-half the junction length are 5o : ; .
identical but 180° out of phase. The corresponding behavio(::rL80 out of phase. The different pairs have different voltage

0f (1) is shown in Fig. 11%,(7) has the same period as that .o forms because the coupling amplitude between each

N - . ) minijunction and the cavity varies with the spatial depen-
of all the individual minijunction voltages, showing that the dence siftkx). Despite the different wave forms, we have
long junction is indeed locked to the cavity mode. Behavior. | '

imilar to that of Fias. 9 and 10 is al nin wit verified that theime-averagedoltage difference is the same
simna ? ator Figs. = a S also see cases t each point along the junction. This is consistent with the
smallerg’. Because of the weaker coupling, the amplitude o

the cavity parameteq, on these step&ot shown is much 0.6
smaller than in Fig. 11. The period Gf is again the same as
that of all the minijunction voltages, and the time-dependent 04
02}
0.7 07
~ 06 ~ 06 o I
g 05 E 05 & 0
g 0.4 & o4
T 03 S 03 02 p
Y) g€ 02
" o > ol 04
0 0
4000 4010 4020 4030 4040 4050 4000 4010 4020 4030 4040 4050 06
(a) Time (b) Time 4000 4010 4020 4030 4040 4050
. . . Ti
FIG. 9. Time-dependent voltagé(r) for small junctions Nos. tme
(@ 60 and(b) 120, for 4006< 7= 4050, plotted vs time. Current is FIG. 11. Cavity variabley,(7) for the long junction of Fig. 8,
such that time-averaged voltage is on the lowest steplike structurgiotted vs 7 for the voltage on the lowest steplike structure for
of Fig. 8. 4000< 7= 4050.
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L4 — qr(t) = Re(ge'™). (23)
12} .
! This solution is suggested by the fact thatgi=0, the so-
-~ lution ¢(x,t) is rigorously of the formeo(x,t)=@(x—vt),
E 08 1 wherev is the soliton velocity. We now substitute these as-
S 0.6 | sumed solutions into Eq$16) and (17), carry out the indi-
T 04} cated derivatives, and use the standard expansion
021 sinf{ho + k(x = vt) + by sir[k(x = v1) ]}
0 4
0 o1 02 03 04 05 05 = 2 Ju(¢p)sin o+ k(x—ot) + nkx—vt)], (24)

n=-o

JAa
i whereJ, (¢,) is thenth order Bessel function. In E¢L7), we
FIG. 12. Current-voltage plot for a single IongNjunction in a yse the expressiomﬁtt=—w2q§1 sink(x-vt)], where w=uvk,
cavity, with same parameters as in Fig. 7, except fhatl.5 and  and carry out the integral to obtain
the coupling is GE2A sin(2kx) with k=27/L, and GE2A=1.0 Q 1
X 1072, Our initial conditions are again such that one soliton is qr+ —qr +qur = ——wZLXqﬁl coqwt). (25)
present. c

Since this equation is linear, the driven solution fgris
picture that this voltage is produced by a soliton whichsimply
passes each point along the junction with the same average

1 eiwt
frequency. (1) = - =Kg' w?Léb Re< : ) (26)
Further evidence of a strong soliton-cavity coupling can ' 2 02 +i100/Q - o

be seen by comparing Figs. 7 and 12. Figure 7, aanoted Solution (26) can now be substituted, along with the

above, shows the soliton branch of thé/ curve for ) Bessel function expansion, E¢24), back into the other

=0.75, GE5A=102 and a coupling varying spatially as equation of motion, Eq(16). Next, we assume that the am-
sin(2mx/L,). In the second, we assume the same couplinglitude ¢, i§ small, and e>§pand the Bessel functipns in pow-
strength of@EﬁAlez but a frequency2=1.5 and a spatial ©'S of ¢,. Finally, we retain only the lowest Fourier compo-

dependence of sidmx/L,). In both cases, there are steps atN€Nts, namely those involving a constant term, and the
approximately the same value ¢¥), namely (V)/(NRL) functions sifk(x—vt)] and copk(x-vt)]. A similar approach

~0.33~ 7/10. These figures show that simultaneously dou-has been used previously in Refs. 20 and 26 to treat intrinsic

bling the cavity frequency and halving the coupling period_Josephson junctions to optical phonons in high-temperature

icity leaves the step height unchanged. We interpret this pesuperconductors. Setting the coefficients of each of these

havior as showing that, in both cases, the soliton is locked tierms separately qual to zero ir_1 the expanded yersion of Eq.
the cavity mode so that it moves by a distance equal to th 16), we fmally obtain the following three equations g,
wavelength of the mode per mode cycle. b1, and(J/ Jo):

We have also computeg}(7) for J,/J.=0.05 and the pa- 1) o 1
rameters of Fig. 12not shown. We find that this amplitude 23 0 + \2p o $o=0, (27)
is much smaller than that shown in Fig. 11 for the step of ITe J J
Fig. 7. A simple qualitative explanation for this behavior is 1
the following. The soliton has the same spatial width in both ﬂpﬁqsl + = singyg +

K'(Qw/Q,) _

= 0, (298
cases, but the junction-cavity coupling varies spatially more Qs J 4D
rapidly in Fig. 12 than in Fig. 7. Since the junction-cavity
coupling thus varies substantially over the width of the soli- _ k2<1 _ v_2>¢ + L cosgy+ K"(Q2 - w?) 0. 29
ton in Fig. 12, it has a smaller effect than in Fig. 7. Thus, we )t )\3 0 4D -

expect a much weaker steplike feature in thé character- 2 o 4 -
istic of Fig. 12 than in Fig. 7, as is indeed observed numeriWhere w=vk, k=2m/L,, K"=(%°c"g')w"L,/[167d(e )"M]

cally. and
D = (0%~ 0)? + Q%w?QZ (30)
IV. DISCUSSION . .
is a resonant denominat.
A. Qualitative argument for soliton steps Equations(28) and (29) are readily solved foeb, and ¢

in terms of the soliton velocity, and the result substituted

The locking of the moving soliton to the mode of the . :
resonant cavity can be accounted for by a simple analytica{mO Eq.(27). The r_esultmg E_q(27) EXPresses the curr_eﬂt
terms of the soliton velocity, or equivalently, the time-

argument. The argument starts from the equations of motiol{!

(16) and(17). We assume solutions of the form averaged voltage across the long junction\V)
=2mhv/(2eLy). As is suggested by the resonant form of Egs.

P(X,t) = g+ k(X —vt) + 1 Sik(x = vt)], (22 (28) and (29), this I-V characteristic has a peak when
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~ (1, corresponding to the voltage plateaus observed in ouand cavity mode, but we consider both a uniform coupling
numerical results. and one which varies spatially along the junction length. If
This same approach also shows, through &), that no soliton(i.e., no fluxon is present, the junction behaves
there is a peak in the amplitudg of the cavity mode when very much like a small Josephson junctibim particular,
the same conditiofw=)) is satisfied. Once again, this peak there are SIRSs just as in a sm.all ju_nction, which occur at the
in the amplitude is observed in our numerical simulationsVoltages expected for a small junction. , o
For example, Fig. 11 shows the large amplitudegpfat a If_ a so_llton is present, and the_: junction-cavity coupling is
voltage satisfying the resonance condition; the amplitude O#OSI'[IOH independent, then we find that there @oeSIRSs.
g, at other voltages is much smaller. he absence 01_‘ SI_RSs in FhIS case is gaglly understood: since
the soliton-cavity interaction energy is independent of the
_ o soliton’s position, the cavity exerts no force on the soliton. If,
B. Comparison to predictions of other models however, the coupling varies sinusoidally with position, we
It is useful to compare our model and results for theﬁnd Steplike structure in theV CharaCteriStiCS, which arise

coupled soliton-cavity system to those of other workers. Foffom the junction-cavity coupling. These structures arise
the case of auniform coupling, our results are formally from the locking of the soliton to the cavity mode, so that the

analogous to those obtained in Refs. 20 and 21. These workPliton travels a distance equal to one wavelength of the
ers consider the responseinfrinsic Josephson junctions in cCUPling interaction during one cycle of the cavity mode, or

. : ivalently, the average soliton velocity equals the phase
a highT. superconductor coupled to aptical phonormode equiva . : .
within the junction. For spatially varying coupling, our nu- velocity w/k of the cavity mode. We find clear evidence of

merical results for the locking of a moving fluxon to a cavity the locking between the cavity mode and the junction

mode somewhat resemble those of Refs. 26 and 27, obtainé}alrough the time-dependent voltages across the junction. Ev-

for a coupled fluxon/optical phonon system in an intrinsicery\"'here along the junction, th_esg tme—dependent voltages
V\}E)ave the same period of oscillation as the cavity mode.

Josephson junction, though the equations describing the t . )
systems are not identical. However, there is a significant dif_l\/loreover, the voltage differences of points separated by half

ference in the physics. The anomalies found in Refs. 26 and wavelength have_exactly the same wave form, but are 180°
27: in these systems, the quantities which play the role Of)ut of phase, showing that the soliton travels one wavelength

cavity modes are the optical phonons, which are intrinsic tde" cycle of the cavity mode. . o
the junctions themselves. By contrast, our cavity modes are we havel also presenteq.a simple quall_tatlve argument
assumed to arise from some cavity extrinsic to the junctions\{vhICh explains both the positions of t_he self-ln_duced voltage
Steps and the occurrence of a peak in the radiated energy on

the steps. This argument agrees well with our numerical re-
sults in the limit of weak junction-cavity coupling.

Finally, we briefly discuss the type of electromagnetic If the junction-cavity coupling is strong, this simple argu-
mode which could produce the sinusoidal coupling we usement does not give the position of the anomalies inlthe
The electric field of this mode has a nonzero curl whichcharacteristics. Instead, the voltage of the steplike structure is
varies sinusoidally with position, i.e., it has a sinusoidally shifted substantialldown and the frequency of the cavity
varying magneticfield. This type of mode should be readily mode is strongly redshifted. Nonetheless, the cavity is still
achievable in a real cavity. The voltage steps should béocked to the soliton motion.
achievable so long as the phase velocity in the cavity is The voltage on the steps is not absolutely constant, but
smaller than the limiting soliton velocity. Another way to  varies slightly with current. When the current lies on a volt-
produce this type of coupling would be actually to prepare sage step, the cavity is strongly excited, with a large time-
long Josephson junction in the shape of a ring, and then teveraged squared amplituqé If the current does not lie on
use a cavity mode with spatially uniformmagnetic field. In ~ a step, the cavity and Josephson junction are not locked, and
this case, the junction occupies the ribbonlike region bed; is much smallerat least by an order of magnitude in all
tween two circular rings of superconductor; if the planes ofour numerical runs This behavior is once again in agree-
the rings are parallel to theaxis, then the magnetic field of ment with our simple analytical model of the previous sec-
the cavity mode should be uniform and parallel to one of theion.
ring diameters. This will produce a flux through the long The present model could be modified to apply tetack
junction which varies sinusoidally around the ring, as in ourof long junctions coupled to a single-mode cavity. In the
model. Measurements using a ring geometry, anstatic  absence of a cavity, it has been known for some time that
uniform magnetic field, have recently been reported, in anvery anisotropic highF, cuprate superconductors, such as
other context, by Wallrafiet al,*® who also show a sche- BiSr,CaCuw,0g.,, behave like a stack of underdamped

C. Possible realizations of sinusoidal coupling

matic picture of this geometry. Josephson junctiorfS.Coupling such a stack to a cavity is of
great interest because it may provide a means for phase lock-
V. SUMMARY ing these junctions, and hence, providing a coherent source

of sub-THz radiation. The dynamics of a stack of long

In this paper, we have described a model for a long unjunctionswithout a cavity has previously been modeled by

derdamped Josephson junction interacting with a singleSakaiet al3° A stack of long junctions coupled to internal
mode electromagnetic cavity. In our model, we have asphonon modes within the junctions has been modeled by
sumed a capacitive interaction between the junction currentreiset al?® The present work suggests a means of modeling
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the coupling of a stack of junctions tthe sameelectro- B =Bjunct Bea: (AB)

magnetic cavity.
g y where Bj,,c and B¢,, are the fields due to the junction and

cavity. As in the text, we again assume thgtJ,, so that
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(A7)

1 q)0¢x»~
+L, | dx———Y Bca(X).
APPENDIX: ALTERNATE DERIVATION OF A A 2
LAGRANGIAN FOR A LONG JUNCTION

COUPLED TO A CAVITY To make further progress, we introduce operators describ-

ing the fieldsk.,, andB.,,. Both may be expressed in terms
In this appendix, we present an alternate derivation of th@f the operator for the cavity vector potential
cavity-junction Lagrangian obtained in Sec. Il. The deriva- 12
tion here is more general, in that we consider coupling to Aca(X,1) = (-) [a(t) +af(t) JE(x). (A8)
both the electric and magnetic fields of the cavity. Q

We write the total Lagrangian as Herea anda' are the annihilation and creation operators for

L=K,;-U;. (A1)  the cavity mode, which satisfy the usual Bose commutation
relations
The kinetic energykK, is written as
[a,a]=1. (A9)
s €X)E-E
Ki=|[ d X~ g (A2)  E(x) is proportional to the position-dependent electric field

of the cavity mode; its normalization is given beldw.is the
where e(x) is the (possibly position-dependgntielectric  frequency of the cavity mode. In terms of this operator, the
function, andE(x) is the electric field. We assume that the electric field operatoE.,,(x,t) is given by
electric field is the sum of two parts: that due to the junction,
which we denoteE,,., and the part due to cavity mode, Ecw(x,t):_l‘mﬂ:_i(hQ)llz(a_aT)E(X) (A10)
which we write asE,,. The junction field takes the form c o

hoo and the magnetic field operatBy,,(x,t) is
Ejunc: - hZ. (A3) ¥
2ed 2\12
= =| — t
ThenK, takes the form Bea (0= V X Aca ( Q ) [a+al]V X Ek).
g2 1 (A11)
Ki=L, f dx—¢t2 + = | d®*e(X)(Eca - Eca) . _ o
8m(2e)°d 8w The operator describing the total energy in the cavity is
1 oo E.o -Eca + Bes, - B
= | 43 o
‘o f oxe(0)Eca () - 5. Weg = f dhe s S S (A1)

Here the volume integral is taken over the cavity, and we argye calculate the ensemble average of this operator, using the
assuming a geometry such that the junction is containegagyits(ata)=n; (aa'y=n+1; (aa)=(a’ah=0, with the result
within the cavity.

The potential energyl, is the sum of two terms. The first 1 1 ) c? 5| 3
is the Josephson energy (Wea) = 2 ”+§ ﬁﬁf |E[*+ §| V X E[*|d.
Upy=- Lyf dX%COS(ﬁ. (A4) (AL3)

€ In order for this energy to equaﬁlﬂ(n+%), we require that
The other part is the energy of the magnetic field. This maythe functionE(x) be normalized so that
be written 2

B.B f[|E|2+§|V ><E|2]d3x:2. (A14)

U1 mag= f d3x8—. (A5)
7 Also, we assume that the cavity energy is equally distributed

Once again, the magnetic field may be written between the electric and magnetic fields. This implies that
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M§Z 1,
- ZKd?.
> " oKar

2

f|E|2d3x=éf |V X E’d®=1. (A15) Lew = (A23)
Having obtained the operator forms for the cavity electriclt is readily verified that classical Hamiltonian equations of

and magnetic fields, we are now in a position to derive theanotion resulting from the Hamiltonia@A21) are equivalent

electric and magnetic parts of the junction-cavity coupling.to the classical Lagrange equation of motion obtained from

After some algebra, the electric field part of the couplingthe LagrangiarfA23); both lead to

Lagrangian may be written

g, - Q% =0. (A24)
Lcoupe = iLyJ dxiqst[— i(hQ)Y2(a-a"]E,x). Finally, we can express the coupling Lagrangians in terms
4 2e of the variables introduced above. Fikst, e takes the form
(A16)
Similarly, the magnetic field part of the coupling Lagrangian Lcoupe = Lyf AXLcoupe(X), (A25)
may be written
1 @ where
- — =0 / t .
Looups =7 Ly (NCTV™® f dx(@+a ¢V X E(x)),. Leoune®) == 9000 ¢, (A26)
(A17) and
To make contact with the notation in the main part of this M A .
paper, we introduce position and momentum operators for gx)=-¢ ZTZ_GE(X) "z (A27)
the cavity mode, by
MEQ\ 12 Similarly, Leo,pg takes the form
(= (—2 ) i(a"-a) (A18)
LcoupB == Lyf dXEcoupB(X): (A28)
and
5 o\12 where
- +
O (zm) (a+a). (A19) Looups®) =~ GaX)0 . (A29)
These operators have the standard canonical commutati@nd
relations 5
i = /2 5oV XE - A30
[P0 =~ i, (A20) 96() =\ 160V X E-V. (A30)
In terms of these operators, we may write the Hamiltonian  here is one additional term in the Lagrangian which also
for the cavity alone as represents a coupling between the cavity and the junction.
1 P K This is the term
Hcav:gTJ(Ecau'Ecav"'Bcau'Bcau):m"'?a q
(A21) Ly= Lyf dxaT(e— 1DEca - Eca- (A31)
where we define the “spring constant” But this term does not couple the cavity variables to those of
K=MO2. (A22) the junction. Instead, its only effect will be to produce a

slight shift in the cavity resonance frequency. We have there-
From H.,, we may infer the corresponding cavity Lagrang- fore not included this term in our calculations described in

ian usingq, =p,/M, with the result the body of the paper.
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