
Long Josephson junction in a resonant cavity

I. Tornes* and D. Stroud†

Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
sReceived 26 May 2004; revised manuscript received 16 December 2004; published 11 April 2005d

We present a model to describe an underdamped long Josephson junction coupled to a single-mode electro-
magnetic cavity, and carry out numerical calculations using this model in various regimes. The coupling may
occur through either the electric or the magnetic field of the cavity mode. When a current is injected into the
junction, we find that the time-averaged voltage exhibits self-induced resonant stepssSIRSsd due to coupling
between the current in the junction and the electric field of the cavity mode. These steps are similar to those
observed and calculated in small Josephson junctions. When a soliton is present in the junctionscorresponding
to a quantum of magnetic flux parallel to the junction platesd, the SIRSs disappear if the electric field in the
cavity is spatially uniform. If the cavity mode has a spatially varying electric field, there is a strong coupling
between the soliton and the cavity mode. This coupling causes the soliton to become phase locked to the cavity
mode, and produces steplike anomalies on the soliton branch of theI-V characteristics. If the coupling is strong
enough, the frequency of the cavity mode is greatly redshifted from its uncoupled value. We present simple
geometrical arguments which account for this behavior.
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I. INTRODUCTION

Josephson junction arrays have now been studied for
more than 20 years.1 They are of interest for many reasons.
On a fundamental level, many unusual physical phenomena
may occur in themsKosterlitz-Thouless transitions, and
quantum phase transitions from superconductor to insulatord.
On an applied level, they have been investigated as possible
sources of coherent microwave radiation, which would occur
if all the junctions in the array were to radiate in phase.

These studies have also been extended to Josephson junc-
tions, and arrays of junctions, coupled to a resonant cavity.
When such a system is driven by an applied current, it may
exhibit equally spaced self-induced resonant stepssSIRSsd at
voltages equal to multiples of"V /2e, whereV is the cavity
resonance frequency.2 More recently, it was shown that when
an array of underdamped junctions is placed in a single-
mode cavity, and the array is biased on one of the SIRSs, the
array phase locks and radiates energy coherently into the
cavity, provided that the number of junctions exceeds a criti-
cal threshold.3–6 The SIRSs are thought to occur because the
cavity acts back on the array like an ac driving field, produc-
ing voltage plateaus analogous to Shapiro steps. The physics
of the threshold is believed to be that, since each junction is
coupled to thesamemode, it is effectively coupled to all the
other junctions. Thus, there is a long range interaction for
which phase locking occurs when the coupling strength, mul-
tiplied by the junction number, exceeds a critical value.

Several models have been developed to describe these
steps.7–11 These models generally succeed in reproducing
many of the salient features of the experiments: SIRSs at the
expected voltage, and an increase in the energy in the cavity
proportional to the square of the number of junctions. The
models have now been extended to two-dimensionals2Dd
junction arrays,12 where they show that, on a given step, the
2D arrays radiate much more energy into the cavity than the
one-dimensionals1Dd arrays. However, recent work10 indi-
cates that, in contrast to experiment, the numerical models

always result in the junctions’ being phase locked to each
other whenever they are biased on a SIRS.

These theories have also been extended into thequantum
regime.13–19 This regime is relevant when the junctions are
very small, so that the noncommutation of the Cooper pair
number operator and the phase operator is important. In this
regime, the states of the junctionsor junctionsd and the cavity
become entangled, and uniquely quantum phenomena such
as Rabi oscillations may be detectable in suitable experi-
ments. Since such junction-cavity systems may be control-
lable externally, they may be useful as qubits in quantum
computation. For this reason, the quantum regime has lately
received extensive attention.

Several groups have also investigated theI-V characteris-
tics of a Josephson junction coupled to a phonon mode. This
system is formally analogous to the junction-resonant cavity
system, in that both involve coupling between a junction and
a harmonic oscillator mode. Helmet al.20,21 have developed
a model describing the coupling between longitudinal
phonons and intrinsic Josephson oscillations in cuprate su-
perconductors, which, when sufficiently anisotropic, behave
like stacks of underdamped Josephson junctions.22–24 These
theories have also been extended into the quantum regime.25

In all the above calculations, each superconducting island
was treated as asmallobject, with only two degrees of free-
dom: the phase of the superconducting order parameter, and
the number of Cooper pairs on each island. If the island is
still large enough for Cooper pair number and phase to com-
mute, then these two degrees of freedom can be treated clas-
sically. One then obtains a set of classical coupled second-
order differential equations describing the dynamics of the
junction array. For small islands, the phase and number are
noncommuting operators, but there are still only two such
operators per island.

But one may often be interested inlong junctions, and
arrays of long junctions. In such systems, the phase differ-
ence across the junction typically depends on position along
the junction. When such a junction is coupled to a cavity, its
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behavior may therefore differ from that of small junctions.
In this paper, we present a simple model for along Jo-

sephson junction coupled to a single-mode resonant cavity.
We present our model in the classical regime, in which num-
ber and phase degrees of freedom commute. However, the
model should be readily extendible into the quantum regime.
We consider both spatially uniform and spatially varying
coupling between the junction and the cavity. If the coupling
is uniform, we find that, as in the case of small junctions,
there are SIRSs in theI-V characteristics provided that there
is no magnetic field parallel to the junction plates. But when
such a magnetic field is introducedsin the form of a soliton
propagating in the junctiond, the SIRSs are no longer present
for uniform coupling. We will give simple arguments why
the steps are not to be expected in this case. If the coupling is
nonuniform, however, we find that a moving soliton in the
long junction does couple to the cavity mode. This coupling
perturbs theI-V characteristics of the junction, producing
steplike structures in theI-V characteristics, and excitation of
the cavity mode. If the coupling is strong enough, this inter-
action produces a substantial shift in the frequency of the
cavity mode. All these perturbations and steps can also be
understood by simple physical arguments.

As in the case of short junctions, some previous work has
also been done treating the coupling of intrinsic long junc-
tions to phonons. In particular, Preiset al.26 have treated this
coupling in systems with a magnetic field parallel to the
junction plates. They also find resonances and phonon fre-
quency shifts analogous to those found in the present work,
although they use a somewhat different mathematical model.
Besides this work, several other groups have studied the in-
teraction of solitons in long Josephson junctions with various
types of harmonic modes. For example, Kleiner27 has inves-
tigated the interaction of solitons in stacks of long junctions
with the cavity resonances whose frequency and wave num-
ber are determined by the stack geometry and by the Joseph-
son plasma frequency. Machidaet al.28 have numerically
studied emission of electromagnetic waves by solitons in
stacks of long junctions which are coupled to the Josephson
plasma resonances of the stack. Salernoet al.,29 and
Gronbech-Jensen,30 have considered the coupling of solitons
in long junctions to externally applied microwave fields. Be-
low we compare some of these results with our own.

Since SIRSs may occur in long junctions, they may be
useful as sources of sub-THz radiation. Hence,stacksof long
junctions may be even more useful as such sources. Since the
most anisotropic high-Tc cuprate superconductors behave as
stacks of long underdamped Josephson junctions, these natu-
ral materials, too, may serve as a source of coherent sub-THz
radiation.31

The remainder of this paper is arranged as follows. In Sec.
II, we derive the equations of motion for treating a long
junction coupled to a single-mode resonant cavity. In Sec.
III, we present numerical results obtained from these equa-
tions of motion, for both no-soliton and soliton initial condi-
tions, and for both uniform and non-uniform junction-cavity
coupling. Finally, in Sec. IV, we discuss the numerical results
and their experimental implications, and also suggest some
possible extensions of this work. A detailed derivation of the
Lagrangian for the junction-cavity interaction is presented in
the Appendix.

II. DERIVATION OF EQUATIONS OF MOTION

A. Lagrangian for a long Josephson junction

We will consider a long Josephson junction characterized
by a gauge-invariant phase differencefsx,y,td, wherex and
y are spatial coordinates andt is the time.fsx,y,td repre-
sents the phase difference between the two plates of the junc-
tion at pointssx,yd. We assume that the junction has length
Lx in thex direction andLy@Lx in they direction. For math-
ematical convenience, we assume periodic boundary condi-
tions in thex direction, so thatfsx+Lx,y,td=fsx,y,td. We
also assume that the phase varies only in thex direction.

In the absence of the cavity, the junction Lagrangian is
Ljunc=edxL juncLy. The Lagrangian densityL junc=K−U,
whereK andU are the kinetic and potential energies per unit
area.K=edE2/ s8pd is the energy density stored in the cavity
electric field,d is the spacing between the junction plates,
and e is the dielectric constant of the material within the
junction.

With the help of the Josephson relationft=2eV/"
=2edE/", whereV is the voltage drop across the junction,e
is the magnitude of the electronic charge, and the subscript
denotes a time derivative, this becomesK=e"2ft

2/
8ps2ed2d.

The potential energy density U=UJ+UB. UJ
=−s"Jc/2edcosf is the Josephson coupling energy density,
Jc being the critical current density. The magnetic field en-
ergy per unit junction area is

UB =
dB2

8p
, s1d

whereB= ¹ 3A is the local magnetic induction. The vector
potential A is related to the gauge-invariant phasef by
fsx,yd=usx,yd−s2p /F0deAsx,yddl, where u is the local
phase difference across the junction in a particular gauge,
F0=hc/ s2ed is the flux quantum, and the second term is
the integral of the vector potential across the junction at the
point sx,yd. We now assume thatB=Bŷ, i.e., is parallel to
the plates of the junction. If we choose the gauge
A =−Asxdẑ, then fsx,yd=usx,yd+s2p /F0dAsxdd and there-
fore

B =
F0

2pd
sfx − uxd, s2d

where the subscript denotes a partial derivative with respect
to x.

If the superconductor in the upper plate has a complex
order parameterCusx,yd= uCuuexpsiuud, then the correspond-
ing in-plane current density may be written

Jusx,yd =
e*

2m* FuCuu2 ¹ uu −
se*d2

m*c
A uCuu2G , s3d

wheree* =2e, m* is the effective mass of a Cooper pair, and
the gradient is taken in the xy plane. The coefficient ofA in
Eq. s3d can be identified with the London penetration depthl
of the material in the upper plate, via the relation
4pse*d2uCuu2/ sm*c2d=1/l2. Similar equations hold foru, on
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the lower plate. Hence,¹u; ¹ suu−u,d satisfies

¹u =
4pse*d2l2

"c2 sJu − J,d, s4d

where we have assumed that materials in the upper and lower
plates have the same penetration depth. Substituting Eq.s4d
into Eqs.s2d and s1d, we obtain

UB =
d

8p
FF0fx

2pd
−

4pl2

dc
sJu − J,dG2

, s5d

where we have assumed thatf varies only in thex direction,
as is reasonable forB i ŷ.

Given L junc, the equations of motion can be obtained
from32

]

]t

]L junc

]ft
+

]

]x

]L junc

]fx
−

]L junc

]f
= 0. s6d

In obtaining these equations and henceforth, we assumeJu
−J,=0. The equations then take the form

fxx −
1

c̄2ftt −
1

lJ
2 sinf = 0, s7d

where c̄2=c2/e and 1/lJ
2=4pe*dJc/ s"c2d is the squared

Josephson penetration depth. This is the well-known equa-
tion for the phase in a long Josephson junction, in the limit
of no dissipation. It leads to many solutions, including the
sine-Gordon soliton33 fsx,td=4 tan−1hexpfsx−x0d /lJ−btg /
sÎ1−b2dj where b=v / c̄ is a scaled velocity. This corre-
sponds to an excitation traveling in the positivex direction
with speedv. This excitation carries a single quantum,F0
=hc/2e of magnetic flux in the positivez direction. The soli-
ton is relativistically Lorentz contracted and cannot exceed a
speed ofc̄. A similar antisoliton travels with constant speedv
in the negativex direction.

B. Cavity Lagrangian

We assume that the cavity supports one harmonic oscilla-
tor mode, described by a “displacement” variableqr and its
time derivativeq̇r. A suitable Lagrangian for this mode is
Losc=Mq̇r

2/2−Kqr
2/2, whereM is the “mass” of the oscillator

mode andK is the “spring constant.” The corresponding
Lagrange equation of motion is

d

dt
S ]Losc

]q̇r
D −

]Losc

]qr
= 0, s8d

which givesq̈r +V2qr =0, whereV=sK /Md1/2 is the oscilla-
tor frequency. Here, we envision the oscillator as an electro-
magnetic mode of a suitable resonant cavity. In this case, for
some types of electromagnetic modes,qr is proportional to
the electric field of the mode. The formalism described here
would, however, also apply to suitable single-mode mechani-
cal oscillators. With some modifications, it would also apply
to electromagnetic modes in whichqr represents the mag-
netic, rather than the electric field.

C. Cavity-oscillator coupling and bias current

We assume a capacitive coupling between the junction
and the oscillator of the form as is shown in the Appendix,
the coupling Lagrangian takes the form

Lcoup= − q̇r E gEsxdftsxddxLy ;E LcoupdxLy. s9d

This is a natural extension of coupling assumed in Ref. 9 to
a long Josephson junctionfsee, in particular, Eq.s38d of that
paperg. If the cavity electric field isnonuniform, the coupling
depends on position along the cavity. In the numerical ex-
amples given below, we consider both position-independent
and position-dependent coupling.

Besides the capacitive coupling, there could, in principle,
also be aninductivecoupling between the junction and the
cavity mode. In the present work, we do not include this
term. However, if the cavity electric field has a nonzero curl,
there is a corresponding magnetic field which is already in-
cluded in Eq.s9d. We include this type of electric field in
some of our calculations below. A more general derivation of
the junction-cavity coupling can be found in the Appendix.

We also need to include a term in the Lagrangian corre-
sponding to the bias current. This takes the formLcurr
=s"Jz/2ededxfsxdLy.

D. Equations of motion

The equations of motion are obtained from the analogs of
Eqs.s6d ands8d, but using the full Lagrangian. We derive the
equations of motion assuming a sinusoidal couplinggEsxd
=gE sinskxd, wheregE is a constant. The equations of motion
for uniform coupling are discussed below.

The total Lagrangian is

Ltot =E sL junc + LcoupddxLy + Losc+ Lcurr. s10d

The Lagrange equations of motion take the form

]

]t
F ]

]ft
sL junc + LcoupdG +

]

]x
F ]

]fx
sL junc + LcoupdG

−
]

]f
sL junc + Lcoupd = 0 s11d

and

d

dt
S ]Ltot

]q̇r
D −

]Ltot

]qr
= 0. s12d

Carrying out these operations, we obtain the equations of
motion as

fxx −
1

c̄2ftt −
1

lJ
2Ssinf −

Jz

Jc
D + g8 sinskxdq̈r = 0, s13d

where

g8 =
4pdse*d2

"2c2 gE, s14d

and
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q̈r + V2qr =
"2c2

4pdse*d2M
g8E sinskxdfttdx Ly. s15d

The above equations of motion are derived for a cavity
electric field which varies sinusoidally with position. To ob-
tain the equations of motion for auniform cavity electric
field, one simply replaces the termg8 sinskxd in Eqs.s13d and
s15d sand subsequent equationsd by g8.

Equationss13d ands15d do not include any damping. We
simply incorporate damping by hand, by adding the appro-
priate terms to these equations. The resulting equations take
the form

fxx −
1

c̄2ftt −
vp

QJc̄
2ft −

vp
2

c̄2 Ssinf −
Jz

Jc
D + g8 sinskxdq̈r = 0

s16d

and

q̈r +
V

Qc
q̇r + V2qr =

"2c2

4pdse*d2M
g8E sinskxdfttdx Ly.

s17d

Here we have introduced dimensionless junction and cavity
quality factorsQJ andQc, and a Josephson plasma frequency
vp= c̄/lJ=f4pe*dJc/ s"edg1/2. In terms of the junction pa-
rameters,QJ=evp/s, wheres is the conductivity of the me-
dium within the junction. The additional terms in Eqs.s16d
and s17d ensure that, in the absence of cavity-junction cou-
pling, the equations of motion reduce to the standard results
for a long Josephson junction with damping,33 and for a
damped harmonic oscillator.

E. Reduction to a set of coupled first-order equations

Equationss16d and s17d are conveniently solved numeri-
cally if they are converted into a set of coupled first-order
differential equations. Thus, we introduce the momenta ca-
nonically conjugate to qr and f, namely pr =Mq̇r
−E0g8e sinskxdftdxLy and pf=E0ft / c̄

2−g8 sinskxdE0q̇r,
where E0="2c2/4pdse*d2. Substituting these variables into
Eqs.s16d ands17d, and rearranging, we obtain the following
set of four coupled partial differential equations:

q̇r =
1

K
S pr

M
+

c̄2g8

M
E sinskxdpfdx LyD ,

ṗr = − MV2qr −
MV

Qc
q̇r ,

ft =
c̄2

E0
pf + g8 sinskxdc̄2q̇r ,

spfdt = E0fxx −
E0vp

2

c̄2 Ssinf −
Jz

Jc
D −

vpE0

c̄2

ft

QJ
, s18d

whereK=1−sE0c̄
2g82Lx/Mde sin2skxddxLy.

F. Equations of motion in dimensionless form

It is convenient to rewrite these equations using a dimen-
sionless timet=vpt, length j=x/lJ, and cavity frequency

Ṽ=V /vp. We also introduce the dimensionless variablesp̃r

=pr / sMc̄d, p̃f=sMc̄2/E0d2spf /Mvpd. Ẽ0=E0/ sMc̄2d, q̃r

=qr /lJ, and finally g̃=g8Lyc̄
2. Finally, we require thatk

=2pm/Lx, wherem is an integer, consistent with periodic
boundary conditions. With these substitutions, and further
rearrangement, the equations of motion become

q̇̃r =
1

K̃
Sp̃r + Ẽ0

2g̃E p̃fsjxdsinS2pmjlJ

Lx
DdjxD ,

ḟ = Ẽ0p̃f + g̃
lJ

Ly
q̇̃r sinS2pmjlJ

Lx
D ,

Ẽ0ṗ̃f = fjj − Ssinf −
Jz

Jc
D −

ḟ

QJ
,

ṗ̃r = −
Ṽ

Qc
q̇̃r − Ṽ2q̃r , s19d

where the dot is a derivative with respect tot and K̃=1

−sẼ0sg̃d2/Lyde sin2skxddx.

III. NUMERICAL RESULTS

A. Algorithm

We solve Eqs.s19d numerically by discretizing them on a
spatial scale of D. Thus, fjj→ fsf j+1−2f j +f j−1d /D2g,
where j =1, . . . ,N, andN=Lx/DlJ is the number of discrete
sections of the long junction. In discretized form, Eqs.s19d
become

q̇̃r =
1

K̃
Fp̃r + DẼ0

2g̃o
i=1

N

p̃fi
sinS2pmi

N
DG ,

ḟi = Ẽ0p̃fi
+ g̃

lJ

Ly
sinS2pmi

N
Dq̇̃r ,

Ẽ0ṗ̃fi
=

fi+1 − 2fi + fi−1

D2 − Ssinfi −
Jz

Jc
D −

ḟi

QJ
,

ṗ̃r = −
Ṽ

Qc
q̇̃r − Ṽ2q̃r . s20d

With this discretization, we are basically treating the long
junction asN inductively coupled small junctions, each of
which has critical currentIc=JcsLxLyd.

We have solved Eqs.s20d numerically using a constant-
time-step fourth-order Runge-Kutta method with a time step
Dt=0.001. We begin the simulation by initializing the vari-
ables p̃r, q̃r, p̃f j

and the parameterJz/Jc to zero; we have
made various choices for initial values off j as discussed
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below. For a givenJz/Jc, we integrate the differential equa-
tions fromt=0 to t=53103, then evaluate the voltages by
averaging over the lastt=23103 units of time. The ratio
Jz/Jc is then increased or decreased by 0.01 and the set of
equations is solved again. In all cases, we use periodic
boundary conditions in thex direction.

We have considered two different initial phase distribu-
tions. To model a junction containing no soliton, we choose
all the initial phasesf j =0 for j =1, . . . ,N. To model a junc-
tion containing a single soliton, we assume an initial con-
figuration fnst=0d=2fp /2+tanhs2pn/Ndg, for n=1, . . . ,N.
As has been discussed in Ref. 33, for example, these bound-
ary conditions are consistent with the presence of a single
soliton, which carries one flux quantum. Our numerical re-
sults, as presented below, do show evidence for a soliton
with these boundary conditions.

B. Results with no soliton

In Fig. 1, we show theI-V curve for a single long junction
coupled to a cavity, using the no-soliton initial conditionssall
phases chosen to equal zerod. We choose aposition indepen-

dent junction-cavity coupling with a constantg̃Ẽ0
2D=1.0

310−4 andN=120. We plot the time-averaged voltageskVl
in units of NRIc, whereIc=JcsLxLyd is the critical current of
a single small junction. TheI-V characteristics have a step at

kVl / sNRIcd=4pṼ /QJ. This is a SIRS, similar to that seen in
individual small junctions for a similar modelssee Ref. 9d,
and occurs atkVl / sNRIcd=p. This is the voltage expected
from the model of Ref. 9, which predicts that the SIRSs will

occur whenkVl /NRIc is an integer multiple of 4psṼ /QJd.
The step in Fig. 1 occurs at 4ps2.5/10d=p for n=1. On this
step, the phases of all the junctions oscillate coherently and
are locked onto the cavity mode. To illustrate this coherence,
we show in Figs. 2sad and 2sbd plots of the voltages
Vistd /NRIc for small junctions Nos. 59 and 99 over the same
time interval. The plots show that the two junctions are in-
deed oscillating periodically and in phase with one another.
In fact, theVistd /NRIc plots for all the small junctions are
identical on this step.

The phase locking between the junctions and the cavity is
illustrated in Fig. 3. This figure shows that the period of
oscillation ofq̃rstd is identical to those ofVistd /NRIc shown

in Figs. 2; both equal 2p /Ṽ.

C. Results with soliton present

The results shown in Figs. 1–3 are very similar to those
obtained in Refs. 9 and 31 for asingle small junction
coupled to a cavity. However, we see very different results if
there is a soliton initially present in the junction. In this case,
it is important that the equation of motion for the long junc-
tion be discretized on a fine scale. IfN is too small, there are
spurious steps in theI-V characteristic produced by locking
of the soliton to certain linear excitations generated purely by
the numerical discretization. These steps, which are numeri-
cal artifacts of a too coarse discretization, are well known in
real sand discreted Josephson ladders, and have been dis-
cussed extensively.34–36 In all our calculations below,N is
sufficiently large to avoid these spurious steps.

We discuss first a position-independent coupling between
the junction and the cavity. An example of the calculated
current-voltage characteristics for this case is shown in Fig.
4. The portion of theI-V characteristic forJ/Jcø0.6 corre-
sponds to a soliton which moves freely through the long
junction. The soliton behaves like a free, massive, but rela-
tivistic, particle, with limiting velocity c̄. Its motion is en-
tirely unaffected by coupling to the cavity. The free motion
of the soliton can be understood in a simple way by the
following argument. If the cavity electric field isuniform, the

FIG. 1. I-V curve for single long junction, withQJ=10.0, D

=0.05,Ṽ=2.5, Ẽ0
2Dg̃=1.0310−4, Qc=10 and all the phases initial-

ized to zero. A SIRS is located atkVl / sNRIcd,p, whereIc is the
critical current of one of the individual small junctions.

FIG. 2. Vstd / sNRIcd vs dimensionless timet for small junctions
Nos.sad 59 andsbd 99 for 4000øtø4010, plotted for a voltage on
the SIRS of Fig. 1.

FIG. 3. Cavity variableqrstd for the long junction in Fig. 1, at
an applied current on the SIRS, plotted vs timet for the time
interval 4000øtø4010.
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coupling between the soliton and the cavity mode is indepen-
dent of the soliton position. Thus, the cavity electric field
exerts no force on the soliton, which therefore should still
travel with constant velocity even if there is a strong
junction-cavity coupling, consistent with our numerical re-
sults. In fact, theI-V characteristics shown in Fig. 4 would
be the same ifg̃=0.

Next, we consider aposition-dependentjunction-cavity
coupling. In this case, theI-V characteristics are clearly per-
turbed by the cavity. Figures 5–7 shows the soliton branch of
the full I-V curve for a spatially varying coupling of the form
used in Eqs.s16d and s17d. By the soliton branch, we mean
that part of theI-V curve produced when the current is in-
creased fromJz/Jc=0.0 to approximately 0.6. We use the
same model parameters as for uniform coupling, except that
we consider several different coupling strengths, namely

DẼ0
2g̃=g8, with g8=10−4, 10−3, and 10−2 and the dimension-

less cavity frequencyṼ=0.75. We also takem=1 in Eq.
s19d. There are now clear steplike structures in theI-V char-
acteristics for all three coupling strengths, atkVl / sNRIcd
,0.95, 0.65, and 0.33 respectively, which were absent in the

case of uniform coupling. These steplike structures corre-
spond in each case to the locking of the soliton to the cavity
mode. Specifically, the soliton circulates around the long
junction at a frequency of one cycle per cycle of the cavity
mode. For the weakest coupling shown, withg8=10−4, the

cavity mode is shifted very little fromṼ=0.75. The voltage
step thus occurs approximately at

kVl
NRIc

=
4pṼ

QJ
, s21d

or kVl / sNRIcd,0.95 for these parameters, corresponding to
one cycle of the soliton around the cavity per unperturbed
cavity period. For the two stronger couplings shown in Figs.
6 and 7, the soliton is still locked to the cavity, but the cou-
pling is strong enough that the cavity frequency is shifted
substantially down from its unperturbed value, to about

2Ṽ /3 and Ṽ /3, respectively. The corresponding time-
averaged voltage on the step is approximatelykVl / sNRIcd
=s2/3df4pṼ /QJg,0.66, and s1/3df4pṼ /QJg,0.33 for
these two couplings.

To see the effects of changing the cavity frequency, we
have carried out additional calculations with the same sinu-
soidal junction-cavity coupling but different cavity frequen-

cies Ṽ and various coupling strengths. The voltage plateaus

typically vary approximately linearly withṼ, as predicted by
Eq. s21d. An example of this behavior, for the rather large

FIG. 4. Current-voltage plot for a single long junction in a reso-

nant cavity, withQJ=10.0, D=0.05, Ṽ=0.75, a uniform coupling

with g̃Ẽ0
2D=1310−4, and Qc=10. Our initial conditions are such

that one soliton is present. This curve is the same for any choice of

the strength parameterg̃Ẽ0
2d.

FIG. 5. Current-voltage plot for a single long junction in a cav-

ity, with QJ=10.0,D=0.05,Ṽ=0.75,N=120,Qc=10, and coupling

g̃Ẽ0
2D sins2px/Lxd, with g̃Ẽ0

2D=1.0310−4. Our initial conditions
are such that one soliton is present.

FIG. 6. Same as Fig. 5, except thatg̃Ẽ0
2D=1.0310−3.

FIG. 7. Same as Fig. 5, except thatg̃Ẽ0
2D=1.0310−2.
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coupling constantg8=10−2, is shown in Fig. 8.kVl / sNRIcd is
approximately 2/3 the value of Fig. 7, as suggested by Eq.
s21d.

Besides the time-averaged voltages, we have also calcu-
lated time-dependent voltage differences at various points
across the junction for most of the examples shown in Figs.
5–8, and others. We have also computed the time-dependent
cavity variableqrstd. In all cases, these calculations provide
clear evidence of locking between the junction and the cav-
ity.

Some representative examples of the voltages are shown
in Figs. 9–11. In Figs. 9sad, 9sbd, 10sad, and 10sbd, we show
the time-dependent voltages for minijunctions Nos. 60, 120,
30, and 90 atJz/Jc=0.04, for the parameters and frequency
of Fig. 8. The voltages shown in Figs. 9sad and 9sbd have the
same characteristic shape and period, but are 180 deg out of
phase with one another. The same is true for Figs. 10sad and
10sbd. The voltages of the second pair differ in wave form,
but not in period, from those of the first pair. Indeed, we have
found that all 120 time-dependent voltages on this step have
the same period and that the voltages of all minijunction
pairs separated by exactly one-half the junction length are
identical but 180° out of phase. The corresponding behavior
of q̃rstd is shown in Fig. 11.q̃rstd has the same period as that
of all the individual minijunction voltages, showing that the
long junction is indeed locked to the cavity mode. Behavior
similar to that of Figs. 9 and 10 is also seen in cases with
smallerg8. Because of the weaker coupling, the amplitude of
the cavity parameterq̃r on these stepssnot shownd is much
smaller than in Fig. 11. The period ofq̃r is again the same as
that of all the minijunction voltages, and the time-dependent

voltages are again identical in pairs, but 180 deg out of
phase, as in Figs. 9 and 10.

We see from Figs. 5 to 8 that the voltage steps are not
completely flat. Despite this slight curvature, we have con-
firmed numerically that the voltages of all the individual
minijunctions have the same period as that of the cavity.
Furthermore, the time-averaged voltages across each mini-
junction are all the same. If we examine the voltages at cur-
rent values off the step, we find that the cavity and individual
junctions no longer have the same periods.

The behavior of the time-dependent voltages at different
points along the junction can be understood from the sinu-
soidal junction-cavity coupling. For every point on the junc-
tion, there is a corresponding point separated byLx/2 which
experiences an equal and opposite coupling to the cavity. If
the coupling has a spatial dependence sins2px/Lxd, there are
two nodal points along the junction where the coupling is
zero, and two points where the coupling has maximum am-
plitude but is 180° out of phase. At these two maximum
points, the cavity-soliton interaction at any given time is
equal in magnitude but opposite in sign. Because of this
feature, the time-dependent voltages at these two points
should have the same wave form but should be 180° out of
phase, as is seen in Figs. 9sad and 9sbd.

This picture also explains why the time-dependent volt-
ages along the junction are at all points equal in pairs but
180° out of phase. The different pairs have different voltage
wave forms because the coupling amplitude between each
minijunction and the cavity varies with the spatial depen-
dence sinskxd. Despite the different wave forms, we have
verified that thetime-averagedvoltage difference is the same
at each point along the junction. This is consistent with the

FIG. 9. Time-dependent voltageVstd for small junctions Nos.
sad 60 andsbd 120, for 4000øtø4050, plotted vs timet. Current is
such that time-averaged voltage is on the lowest steplike structure
of Fig. 8.

FIG. 10. Same as Figs. 9sad and 9sbd except that we plot volt-
ages for junctions Nos.sad 30 andsbd 90.

FIG. 11. Cavity variableqrstd for the long junction of Fig. 8,
plotted vs t for the voltage on the lowest steplike structure for
4000øtø4050.

FIG. 8. Same as Fig. 7, except thatṼ=0.5.
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picture that this voltage is produced by a soliton which
passes each point along the junction with the same average
frequency.

Further evidence of a strong soliton-cavity coupling can
be seen by comparing Figs. 7 and 12. Figure 7, as noted

above, shows the soliton branch of theI-V curve for Ṽ

=0.75, g̃Ẽ0
2D=10−2, and a coupling varying spatially as

sins2px/Lxd. In the second, we assume the same coupling

strength ofg̃Ẽ0
2D=10−2 but a frequencyṼ=1.5 and a spatial

dependence of sins4px/Lxd. In both cases, there are steps at
approximately the same value ofkVl, namely kVl / sNRIcd
,0.33,p /10. These figures show that simultaneously dou-
bling the cavity frequency and halving the coupling period-
icity leaves the step height unchanged. We interpret this be-
havior as showing that, in both cases, the soliton is locked to
the cavity mode so that it moves by a distance equal to the
wavelength of the mode per mode cycle.

We have also computedqrstd for Jz/Jc=0.05 and the pa-
rameters of Fig. 12snot shownd. We find that this amplitude
is much smaller than that shown in Fig. 11 for the step of
Fig. 7. A simple qualitative explanation for this behavior is
the following. The soliton has the same spatial width in both
cases, but the junction-cavity coupling varies spatially more
rapidly in Fig. 12 than in Fig. 7. Since the junction-cavity
coupling thus varies substantially over the width of the soli-
ton in Fig. 12, it has a smaller effect than in Fig. 7. Thus, we
expect a much weaker steplike feature in theI-V character-
istic of Fig. 12 than in Fig. 7, as is indeed observed numeri-
cally.

IV. DISCUSSION

A. Qualitative argument for soliton steps

The locking of the moving soliton to the mode of the
resonant cavity can be accounted for by a simple analytical
argument. The argument starts from the equations of motion
s16d and s17d. We assume solutions of the form

fsx,td = f0 + ksx − vtd + f1 sinfksx − vtdg, s22d

qrstd = Resq0e
ivtd. s23d

This solution is suggested by the fact that, ifg8=0, the so-
lution fsx,td is rigorously of the formfsx,td=fsx−vtd,
wherev is the soliton velocity. We now substitute these as-
sumed solutions into Eqs.s16d and s17d, carry out the indi-
cated derivatives, and use the standard expansion

sinhf0 + ksx − vtd + f1 sinfksx − vtdgj

= o
n=−`

`

Jnsf1dsinff0 + ksx − vtd + nksx − vtdg, s24d

whereJnsf1d is thenth order Bessel function. In Eq.s17d, we
use the expressionftt=−v2f1 sinfksx−vtdg, where v=vk,
and carry out the integral to obtain

q̈r +
V

Qc
q̇r + V2qr = −

1

2
v2Lxf1 cossvtd. s25d

Since this equation is linear, the driven solution forqr is
simply

qrstd = −
1

2
Kg8v2Lxf1 ReS eivt

V2 + iVv/Qc − v2D . s26d

Solution s26d can now be substituted, along with the
Bessel function expansion, Eq.s24d, back into the other
equation of motion, Eq.s16d. Next, we assume that the am-
plitudef1 is small, and expand the Bessel functions in pow-
ers off1. Finally, we retain only the lowest Fourier compo-
nents, namely those involving a constant term, and the
functions sinfksx−vtdg and cosfksx−vtdg. A similar approach
has been used previously in Refs. 20 and 26 to treat intrinsic
Josephson junctions to optical phonons in high-temperature
superconductors. Setting the coefficients of each of these
terms separately equal to zero in the expanded version of Eq.
s16d, we finally obtain the following three equations forf0,
f1, andsJ/Jcd:

1

lJ
2

J

Jc
−

vpv

QJc̄
2 +

1

lJ
2

f1

2
sinf0 = 0, s27d

vpv

QJc̄
2f1 +

1

lJ
2 sinf0 +

K9sVv/Qcd
4D

= 0, s28d

− k2S1 −
v2

c̄2Df1 +
1

lJ
2 cosf0 +

K9sV2 − v2d
4D

= 0, s29d

where v=vk, k=2p /Lx, K9=s"2c2g8d2v4Lx/ f16pdse*d2Mg
and

D = sV2 − v2d2 + V2v2/QC
2 s30d

is a resonant denominator.37

Equationss28d and s29d are readily solved forf0 andf1
in terms of the soliton velocityv, and the result substituted
into Eq. s27d. The resulting Eq.s27d expresses the currentJ
in terms of the soliton velocityv, or equivalently, the time-
averaged voltage across the long junction,kVlt

=2p"v / s2eLxd. As is suggested by the resonant form of Eqs.
s28d and s29d, this I-V characteristic has a peak whenv

FIG. 12. Current-voltage plot for a single long junction in a

cavity, with same parameters as in Fig. 7, except thatṼ=1.5 and

the coupling is g̃Ẽ0
2D sins2kxd with k=2p /Lx and g̃Ẽ0

2D=1.0
310−2. Our initial conditions are again such that one soliton is
present.
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,V, corresponding to the voltage plateaus observed in our
numerical results.

This same approach also shows, through Eq.s26d, that
there is a peak in the amplitudeqr of the cavity mode when
the same conditionsv=Vd is satisfied. Once again, this peak
in the amplitude is observed in our numerical simulations.
For example, Fig. 11 shows the large amplitude ofqr at a
voltage satisfying the resonance condition; the amplitude of
qr at other voltages is much smaller.

B. Comparison to predictions of other models

It is useful to compare our model and results for the
coupled soliton-cavity system to those of other workers. For
the case of auniform coupling, our results are formally
analogous to those obtained in Refs. 20 and 21. These work-
ers consider the response ofintrinsic Josephson junctions in
a high-Tc superconductor coupled to anoptical phononmode
within the junction. For spatially varying coupling, our nu-
merical results for the locking of a moving fluxon to a cavity
mode somewhat resemble those of Refs. 26 and 27, obtained
for a coupled fluxon/optical phonon system in an intrinsic
Josephson junction, though the equations describing the two
systems are not identical. However, there is a significant dif-
ference in the physics. The anomalies found in Refs. 26 and
27: in these systems, the quantities which play the role of
cavity modes are the optical phonons, which are intrinsic to
the junctions themselves. By contrast, our cavity modes are
assumed to arise from some cavity extrinsic to the junctions.

C. Possible realizations of sinusoidal coupling

Finally, we briefly discuss the type of electromagnetic
mode which could produce the sinusoidal coupling we use.
The electric field of this mode has a nonzero curl which
varies sinusoidally with position, i.e., it has a sinusoidally
varying magneticfield. This type of mode should be readily
achievable in a real cavity. The voltage steps should be
achievable so long as the phase velocity in the cavity is
smaller than the limiting soliton velocityc̄. Another way to
produce this type of coupling would be actually to prepare a
long Josephson junction in the shape of a ring, and then to
use a cavity mode with aspatially uniformmagnetic field. In
this case, the junction occupies the ribbonlike region be-
tween two circular rings of superconductor; if the planes of
the rings are parallel to thez axis, then the magnetic field of
the cavity mode should be uniform and parallel to one of the
ring diameters. This will produce a flux through the long
junction which varies sinusoidally around the ring, as in our
model. Measurements using a ring geometry, and astatic
uniform magnetic field, have recently been reported, in an-
other context, by Wallraffet al.,38 who also show a sche-
matic picture of this geometry.

V. SUMMARY

In this paper, we have described a model for a long un-
derdamped Josephson junction interacting with a single-
mode electromagnetic cavity. In our model, we have as-
sumed a capacitive interaction between the junction currents

and cavity mode, but we consider both a uniform coupling
and one which varies spatially along the junction length. If
no soliton si.e., no fluxond is present, the junction behaves
very much like a small Josephson junction.9 In particular,
there are SIRSs just as in a small junction, which occur at the
voltages expected for a small junction.

If a soliton is present, and the junction-cavity coupling is
position independent, then we find that there areno SIRSs.
The absence of SIRSs in this case is easily understood: since
the soliton-cavity interaction energy is independent of the
soliton’s position, the cavity exerts no force on the soliton. If,
however, the coupling varies sinusoidally with position, we
find steplike structure in theI-V characteristics, which arise
from the junction-cavity coupling. These structures arise
from the locking of the soliton to the cavity mode, so that the
soliton travels a distance equal to one wavelength of the
coupling interaction during one cycle of the cavity mode, or
equivalently, the average soliton velocity equals the phase
velocity v /k of the cavity mode. We find clear evidence of
the locking between the cavity mode and the junction
through the time-dependent voltages across the junction. Ev-
erywhere along the junction, these time-dependent voltages
have the same period of oscillation as the cavity mode.
Moreover, the voltage differences of points separated by half
a wavelength have exactly the same wave form, but are 180°
out of phase, showing that the soliton travels one wavelength
per cycle of the cavity mode.

We have also presented a simple qualitative argument
which explains both the positions of the self-induced voltage
steps and the occurrence of a peak in the radiated energy on
the steps. This argument agrees well with our numerical re-
sults in the limit of weak junction-cavity coupling.

If the junction-cavity coupling is strong, this simple argu-
ment does not give the position of the anomalies in theI-V
characteristics. Instead, the voltage of the steplike structure is
shifted substantiallydown, and the frequency of the cavity
mode is strongly redshifted. Nonetheless, the cavity is still
locked to the soliton motion.

The voltage on the steps is not absolutely constant, but
varies slightly with current. When the current lies on a volt-
age step, the cavity is strongly excited, with a large time-
averaged squared amplitudeqr

2. If the current does not lie on
a step, the cavity and Josephson junction are not locked, and
qr is much smallersat least by an order of magnitude in all
our numerical runsd. This behavior is once again in agree-
ment with our simple analytical model of the previous sec-
tion.

The present model could be modified to apply to astack
of long junctions coupled to a single-mode cavity. In the
absence of a cavity, it has been known for some time that
very anisotropic high-Tc cuprate superconductors, such as
BiSr2Ca2Cu2O8+x, behave like a stack of underdamped
Josephson junctions.23 Coupling such a stack to a cavity is of
great interest because it may provide a means for phase lock-
ing these junctions, and hence, providing a coherent source
of sub-THz radiation. The dynamics of a stack of long
junctionswithout a cavity has previously been modeled by
Sakaiet al.39 A stack of long junctions coupled to internal
phonon modes within the junctions has been modeled by
Preiset al.26 The present work suggests a means of modeling

LONG JOSEPHSON JUNCTION IN A RESONANT CAVITY PHYSICAL REVIEW B71, 144503s2005d

144503-9



the coupling of a stack of junctions tothe sameelectro-
magnetic cavity.

ACKNOWLEDGMENTS

This work was supported by NSF Grant Nos. DMR01-
04987 and DMR04-13395. The calculations were carried out
using the Ohio Supercomputer facilities. We are very grateful
for valuable conversations with Professor B. R. Trees and Dr.
E. Almaas.

APPENDIX: ALTERNATE DERIVATION OF A
LAGRANGIAN FOR A LONG JUNCTION

COUPLED TO A CAVITY

In this appendix, we present an alternate derivation of the
cavity-junction Lagrangian obtained in Sec. II. The deriva-
tion here is more general, in that we consider coupling to
both the electric and magnetic fields of the cavity.

We write the total Lagrangian as

L = K1 − U1. sA1d

The kinetic energy,K, is written as

K1 =E d3x
esxdE ·E

8p
, sA2d

where esxd is the spossibly position-dependentd dielectric
function, andEsxd is the electric field. We assume that the
electric field is the sum of two parts: that due to the junction,
which we denoteE junc, and the part due to cavity mode,
which we write asEcav. The junction field takes the form

E junc =
"

2ed
ftẑ. sA3d

ThenK1 takes the form

K1 = LyE dx
e"2ft

2

8ps2ed2d
+

1

8p
E d3xesxdsEcav ·Ecavd

+
1

4p
E d3xesxdEcavsxd ·

"

2ed
ftẑ.

Here the volume integral is taken over the cavity, and we are
assuming a geometry such that the junction is contained
within the cavity.

The potential energyU1 is the sum of two terms. The first
is the Josephson energy

U1,J = − LyE dx
"Jc

2e
cosf. sA4d

The other part is the energy of the magnetic field. This may
be written

U1,mag=E d3x
B ·B

8p
. sA5d

Once again, the magnetic field may be written

B = B junc + Bcav, sA6d

whereB junc and Bcav are the fields due to the junction and
cavity. As in the text, we again assume thatJu=J,, so that

B junc =
F0fx

2pd
ŷ. sA7d

Then the magnetic field energy takes the form

U1,mag= LyE dx
F0

2fx
2

32p3d
+

1

8p
E d3xBcav ·Bcav

+ LyE dx
1

4p

F0fx

2p
ŷ ·Bcavsxd.

To make further progress, we introduce operators describ-
ing the fieldsEcav andBcav. Both may be expressed in terms
of the operator for the cavity vector potential

Acavsx,td = Shc2

V
D1/2

fastd + a†stdgEsxd. sA8d

Herea anda† are the annihilation and creation operators for
the cavity mode, which satisfy the usual Bose commutation
relations

fa,a†g = 1. sA9d

Esxd is proportional to the position-dependent electric field
of the cavity mode; its normalization is given below.V is the
frequency of the cavity mode. In terms of this operator, the
electric field operatorEcavsx ,td is given by

Ecavsx,td = −
1

c

]Acav

]t
= − ishVd1/2sa − a†dEsxd sA10d

and the magnetic field operatorBcavsx ,td is

Bcavsx,td = ¹ 3 Acav = Shc2

V
D1/2

fa + a†g ¹ 3 Esxd.

sA11d

The operator describing the total energy in the cavity is

Wcav =E d3x
Ecav ·Ecav + Bcav ·Bcav

8p
. sA12d

We calculate the ensemble average of this operator, using the
resultska†al=n; kaa†l=n+1; kaal=ka†a†l=0, with the result

kWcavl =
1

2
Sn +

1

2
D"VE FuEu2 +

c2

V2u ¹ 3 Eu2Gd3x.

sA13d

In order for this energy to equal"Vsn+ 1
2

d, we require that
the functionEsxd be normalized so that

E FuEu2 +
c2

V2u ¹ 3 Eu2Gd3x = 2. sA14d

Also, we assume that the cavity energy is equally distributed
between the electric and magnetic fields. This implies that
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E uEu2d3x =
c2

V2 E u ¹ 3 Eu2d3x = 1. sA15d

Having obtained the operator forms for the cavity electric
and magnetic fields, we are now in a position to derive the
electric and magnetic parts of the junction-cavity coupling.
After some algebra, the electric field part of the coupling
Lagrangian may be written

Lcoup,E =
1

4p
LyE dx

"

2e
ftf− ishVd1/2sa − a†dgEzsxd.

sA16d

Similarly, the magnetic field part of the coupling Lagrangian
may be written

Lcoup,B =
1

4p
Ly

F0

2p
shc2/Vd1/2E dxsa + a†dfxf¹ 3 Esxdgy.

sA17d

To make contact with the notation in the main part of this
paper, we introduce position and momentum operators for
the cavity mode, by

pr = SM"V

2
D1/2

isa† − ad sA18d

and

qr = S "

2MV
D1/2

sa + a†d. sA19d

These operators have the standard canonical commutation
relations

fpr,qrg = − i". sA20d

In terms of these operators, we may write the Hamiltonian
for the cavity alone as

Hcav =
1

8p
E sEcav ·Ecav + Bcav ·Bcavd =

pr
2

2M
+

Kqr
2

2
,

sA21d

where we define the “spring constant”

K = MV2. sA22d

From Hcav we may infer the corresponding cavity Lagrang-
ian usingqr =pr /M, with the result

Lcav =
Mq̇r

2

2
−

1

2
Kqr

2. sA23d

It is readily verified that classical Hamiltonian equations of
motion resulting from the HamiltoniansA21d are equivalent
to the classical Lagrange equation of motion obtained from
the LagrangiansA23d; both lead to

q̈r − V2qr = 0. sA24d

Finally, we can express the coupling Lagrangians in terms
of the variables introduced above. FirstLcoup,E takes the form

Lcoup,E = LyE dxLcoup,Esxd, sA25d

where

Lcoup,Esxd = − gsxdq̇rft, sA26d

and

gsxd = − eÎ M

4p

"

2e
Esxd · ẑ. sA27d

Similarly, Lcoup,B takes the form

Lcoup,B = − LyE dxLcoup,Bsxd, sA28d

where

Lcoup,Bsxd = − gBsxdqrfx, sA29d

and

gBsxd =Î Mc2

16p3F0 ¹ 3 E · ŷ. sA30d

There is one additional term in the Lagrangian which also
represents a coupling between the cavity and the junction.
This is the term

Ld = LyE dx
d

8p
se − 1dEcav ·Ecav. sA31d

But this term does not couple the cavity variables to those of
the junction. Instead, its only effect will be to produce a
slight shift in the cavity resonance frequency. We have there-
fore not included this term in our calculations described in
the body of the paper.

*Email address: itornes@mps.ohio-state.edu
†Email address: stroud@mps.ohio-state.edu
1For a recent review, see, e.g., C. J. Lobb and R. S. Newrock, in

Solid State Physics, edited by H. Ehrenreich and F. Spaepen
s2000d, Vol. 54, p. 263 .

2A. Larsen, H. D. Jensen, and J. Mygind, Phys. Rev. B43, 10 179
s1991d.

3P. Barbara, A. B. Cawthorne, S. V. Shitov, and C. J. Lobb, Phys.
Rev. Lett. 82, 1963s1999d.

4B. Vasilić, P. Barbara, S. V. Shitov, and C. J. Lobb, IEEE Trans.
Appl. Supercond.11, 1188s2001d.

5B. Vasilić, P. Barbara, S. V. Shitov, and C. J. Lobb, Phys. Rev. B
65, 180503sRd s2002d.

6B. Vasilić, E. Ott, T. Antonsen, P. Barbara, and C. J. Lobb, Phys.

LONG JOSEPHSON JUNCTION IN A RESONANT CAVITY PHYSICAL REVIEW B71, 144503s2005d

144503-11



Rev. B 68, 024521s2003d.
7G. Filatrella, N. F. Pedersen, and K. Wiesenfeld, Phys. Rev. E61,

2513 s2000d.
8G. Filatrella, N. F. Pedersen, and K. Wiesenfeld, IEEE Trans.

Appl. Supercond.11, 1184s2001d.
9E. Almaas and D. Stroud, Phys. Rev. B65, 134502s2002d.

10G. Filatrella, N. Falsic Pedersen, C. J. Lobb, and P. Barbara, Eur.
Phys. J. B34, 3 s2003d.

11R. Bonifacio, F. Casagrande, and M. Milani, Lett. Nuovo Cimento
Soc. Ital. Fis.34, 520 s1982d.

12E. Almaas and D. Stroud, Phys. Rev. B67, 064511s2003d.
13A. Shnirman, G. Schön, and Z. Hermon, Phys. Rev. Lett.79,

2371 s1997d.
14O. Buisson and F. W. J. Hekking, cond-mat/0008275sunpub-

lishedd.
15A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J.

Schoelkopf, Phys. Rev. A69, 062320s2004d.
16M. J. Everitt, P. Stiffell, T. D. Clark, A. Vourdas, J. F. Ralph, H.

Prance, and R. J. Prance, Phys. Rev. B63, 144530s2001d.
17W. A. Al-Saidi and D. Stroud, Phys. Rev. B65, 014512s2002d;

65, 224512s2002d.
18A. Blais, A. Maassen van den Brink, and A. M. Zagoskin, Phys.

Rev. Lett. 90, 127901s2003d.
19J. Q. You and F. Nori, Phys. Rev. B68, 064509s2003d.
20C. Helm, C. Preis, F. Forsthofer, J. Keller, K. Schlenga, R.

Kleiner, and P. Müller, Phys. Rev. Lett.79, 737 s1997d.
21C. Helm, C. Preis, C. Walter, and J. Keller, Phys. Rev. B62,

6002 s2000d.
22R. Kleiner, P. Müller, H. Kohlstedt, N. F. Pedersen, and S. Sakai,

Phys. Rev. B50, 3942s1994d.
23R. Kleiner, F. Steinmeyer, G. Kunkel, and P. Müller, Phys. Rev.

Lett. 68, 2394s1992d.

24R. Kleiner and P. Müller, Phys. Rev. B49, 1327s1994d.
25See, e.g., E. K. Irish and K. Schwab, Phys. Rev. B68, 155311

s2003d; X. B. Zou and W. Mathis, Phys. Lett. A324, 484
s2004d; M. Blencowe, Phys. Rep.395, 159s2004d; I. Martin, A.
Shnirman, L. Tian, and P. Zoller, Phys. Rev. B69, 125339
s2004d.

26C. Preis, C. Helm, K. Schmalzl, J. Keller, R. Kleiner, and P.
Müller, Physica C362, 51 s2001d.

27R. Kleiner, Phys. Rev. B50, 6919s1994d.
28M. Machida, T. Koyama, and M. Tachiki, Physica C362, 16

s2001d.
29M. Salerno, M. R. Samuelsen, G. Filatrella, S. Pagano, and R. D.

Parmentier, Phys. Rev. B41, 6641s1990d.
30N. Gronbech-Jensen, Phys. Rev. B47, 5504s1993d.
31I. Tornes and D. Stroud, Phys. Rev. B68, 052512s2003d.
32See, e.g., A. L. Fetter and J. D. Walecka,Theoretical Mechanics

of Particles and ContinuasMcGraw-Hill, New York, 1980d, Eq.
s25.59d.

33A. V. Ustinov, M. Cirillo, and B. A. Malomed, Phys. Rev. B47,
8357 s1993d.

34H. S. J. van der Zant, T. P. Orlando, S. Watanabe, and S. H.
Strogatz, Phys. Rev. Lett.74, 174 s1995d.

35S. Watanabe, S. H. Strogatz, H. S. J. van der Zant, and T. P.
Orlando, Phys. Rev. Lett.74, 379 s1995d.

36For a review, see, e.g., A. V. Ustinov, Physica D123, 315s1998d.
37In obtaining these equations, we have written terms of the form

sinskxdcossvtd= 1
2fsinskx−vtd+sinskx+vtdg and sinskxdsinsvtd

= 1
2fcosskx−vtd−cosskx+vtdg and neglected the “counter-

rotating” terms cosskx+vtd and sinskx+vtd.
38A. Wallraff, A. Lukashenko, J. Lisenfeld, A. Kemp, M. V. Fistul,

Y. Koval, and A. V. Ustinov, NaturesLondond 425, 155s2003d.
39S. Sakai, P. Bodin, and N. F. Pedersen, J. Appl. Phys.73, 2411

s1993d.

I. TORNES AND D. STROUD PHYSICAL REVIEW B71, 144503s2005d

144503-12


