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We show that anLC parametric transducer can be effectively used to monitor an adiabatic evolution of the
superconducting flux qubit. We propose a scheme to measure the qubit’s state, which is a quantum nondemo-
lition measurement. The scheme can be easily extended to a three-qubit system and allows the reading out of
the qubits’ states while the system remains in the ground state. An implementation of the adiabatic quantum
algorithmMAXCUT for three superconducting flux qubits is discussed.
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I. INTRODUCTION

Ten years ago Shor demonstrated theoretically1 that a
quantum computer can factor large numbers much more ef-
fectively than a classical one. This discovery started an enor-
mous effort to find a physical system which would be a suit-
able qubit, the building block of a quantum computer. Qubits
are effectively two-level systems with controlled parameters.
There are many systems in physics which can play the role
of a qubit. One of them is a superconducting flux qubit
which can be realized as a superconducting loop with low
inductanceLq interrupted by three Josephson junctions. Its
properties have already been analysed2,3 and experimentally
verified.4 Superconducting qubits have several advantages
over qubits based on microscopic systems: they are scalable
and can be accessed more easily and controlled individually.
Moreover, aluminum technology, widely exploited for the
preparation of conventional silicon devices, can be used.

Recently, several groups succeeded in demonstrating co-
herent macroscopic tunneling and Rabi oscillations in super-
conducting qubits. This can be considered as the first impor-
tant step towards quantum computer realization.5–7 Most of
them were time domain measurements, which are supposed
to be important for quantum computing, since the much ef-
fort has been made in the direction of building a quantum
computer based on a universal set of gates. However, in or-
der to run an algorithm on such a universal quantum com-
puter, quantum error corrections should be implemented. For
a solid-state qubit the error rate is only slightly below the
threshold required for fault-tolerant computation. This places
tremendous requirements on the hardware.8 the number of
physical qubits should be larger than 104 and teleportation
between each two qubits should be possible. On the other
hand, a scheme of quantum computation based on adiabatic
quantum evolution, which has been proposed by Farhiet al.,9

could solve tasks beyond the reach of present-day classical
computers for a very moderate number of qubitss*30d. Very
recently a scalable superconducting architecture for adiabatic
quantum computation was proposed which requires nearest-
neighbor coupling only.10 Moreover, Aharonovet al.11 have
shown that adiabatic quantum computation is equivalent to
standard quantum computation. From an experimental point

of view the adiabatic quantum algorithmMAXCUT was dem-
onstrated by an NMR technique on three-qubit systems.12 In
this paper, we propose a specific implementation for adia-
batic quantum computing with a set of coupled supercon-
ducting flux qubits, which is possible to realize with the
present state of the art. We show that a parametric transducer
can be effectively used to read out the results of the adiabatic
evolution algorithm.

II. PARAMETRIC TRANSDUCER AS A QND READOUT
FOR ADIABATIC QUANTUM COMPUTATION

Parametric transducers have been shown to be very sen-
sitive instruments that can overcome the standard quantum
limit.13 The precision of the measurement of small changes
of the dielectric susceptibility by a capacity transducer is of
the order of 10−10. In addition, a parametric transducer can
work in a regime that satisfies the criteria of quantum non-
demolition sQNDd measurements. Usually, an electromag-
netic auto-oscillator is used as a key element of a parametric
transducer since the frequency can be measured with a very
high accuracy. The scheme of a parametric transducer is
shown in Fig. 1; it contains a high-qualityLC resonator con-
nected to an amplifier.14 The resonant frequency of theLC
circuit depends on both the inductanceL and the capacitance

FIG. 1. Scheme of a parametric transducer inductively coupled
to a superconducting flux qubit. The rf voltage across the tank is
amplified by a cooled HEMT amplifier thermally linked to a 1-K
pot, sRef. 14d. After room-temperature amplification the signal is
detected by an rf lock-in voltmeter. Both the amplitude and phase of
the rf voltage are measured as a function of the external magnetic
flux applied to the qubit produced by the currentsIdc andIb through
a coil and a wire, respectively.

PHYSICAL REVIEW B 71, 144501s2005d

1098-0121/2005/71s14d/144501s8d/$23.00 ©2005 The American Physical Society144501-1



C by the relationvr =1/ÎLC. In our experiments, typically
vr /2p,30 MHz. This satisfiesvr !vq, where vq is the
transition frequency between the ground and first excited en-
ergy level of the qubit. Thus, the magnetic susceptibility of
the qubit placed in a resonator can be measured from the
shift of the resonance frequency. It can be easily shown13 that
the tangent of the phase shiftu between the voltage across
the tank and driving current is proportional to the real part of
the ac susceptibilityx8:

tanu = − k2Qx8, s1d

where 0,k,1 is the coupling coefficient between the reso-
nator and sample. The ideas behind a parametric transducer
were also used in the design of an rf superconducting quan-
tum interference device sSQUIDd by Silver and
Zimmermann.15 It was shown theoretically that an rf-SQUID
can achieve the quantum limit.16 Therefore, the parametric
transducer is a suitable readout device for superconducting
flux qubits.

The magnetic susceptibility of the superconducting flux
qubit is17

x8 = LqIq
2 D2

sD2 + «2d3/2 tanhSÎD2 + «2

T
D , s2d

whereD is the tunneling amplitude,Lq is the inductance of
the flux qubit,Iq is the persistent current in the qubit,T is the
temperature, and«=F0Iqf is the bias of the qubit, wheref is
the deviation from degeneracy defined in terms of internal
magnetic flux in the qubit asf =Fi /F0−0.5. By using Eqs.
s1d ands2d the persistent current and the tunneling amplitude
can be determined experimentally by measuring the resona-
tor phase as a function of the external magnetic fluxFe.

18

The functionx8sfd fEq. s2dg has a simple form, and it is
easily seen thatx8sfd exhibits a peak at the degeneracy point
f =0. If the temperatureT!D, the explicit equations for the
persistent current and the tunneling amplitude can be readily
derived:

Iq =
F0

Lq

xa8 fFWHM

2Î22/3 − 1
, s3d

D = F0Iq
fFWHM

2Î22/3 − 1
, s4d

where xa8 and fFWHM are the peak amplitude and the full
width at half maximumsFWHMd, respectively.

Here we would like to point out that the measurement by
means of a parametric transducer is a quantum nondemoli-
tion measurement, because the qubit is staying in its ground
state the entire time of the measurement, as the resonant
frequency of the resonatorvr is much lower than the transi-
tion frequencyvq. The output signal of the parametric trans-
ducer contains information about the amplitude of the persis-
tent current, but holds no information about the phase of the
rapidly oscillating persistent current. A parametric transducer
cannot even distinguish whether the current flows clockwise
or counterclockwise. This can be directly seen for “qubits” in
the classical regimessee the hysteretic curve in Fig. 2d. Ex-

actly at the degeneracy pointf =0, the two branches of the
hysteretic curves corresponding to current flowing clockwise
and counterclockwise cross; i.e., the transducer gives the
same signal. The reason for this is that the operator probed
by the inductive transducer issx as we show below. In this
sense, such a readout is complemental to the SQUID readout
which measuressz ssx and sz are Pauli matricesd to make
the analogy with Stern-Gerlach apparatus complete.19 More
formally, the Hamiltonian of a qubit-resonator system at the
degeneracy pointf =0 can be written in the form20

H = Hr + Hq + Hint = "vrb
†b + Dsx + gsb† + bdsz, s5d

whereb† and b are creation and annihilation operators, re-
spectively, of the photon field in the resonator,g
=kÎ"vrLqIq is the coupling energy between the resonator
and qubit, andsx and sz are Pauli matrices of the natural
basis of the qubitsi.e., the two eigenstates of operatorsz
correspond to the currents flowing clockwise and counter-
clockwised. After unitary transformation

U1 =
1
Î2

S1 1

1 − 1
D , s6d

the Hamiltonians5d takes the form

U1HU1
† = "vrb

†b + Dsz8 + gsb†s−8 + bs+8d, s7d

where

s+8 = S0 1

0 0
D, s−8 = S0 0

1 0
D s8d

are spin-flip operators andsz8 is the Pauli matrix in the eigen-
basis of the qubit at the degeneracy point. Following the
approach in Ref. 21, after a second unitary transformation,

FIG. 2. The phase shiftu between the bias currentIrf and the rf
voltage of the parametric transducer inductively coupled to the su-
perconducting flux qubit as a function of the internal magnetic flux
in the qubit. The curve with hysteretic behaviorsblack curved cor-
responds to the “qubits” with a large ratiog=EJ/EC,103 sclassical
regimed. The straight linesvertically shifted for clarityd and the
nonhysteretic line correspond to qubits withg<60, anda=0.9 and
a=0.8, respectively.
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U2 = expS g

2D
sbs+8 − b†s−8dD , s9d

and by expanding to second order ing /D, the transformed
HamiltonianH8=U2U1HU1

†U2
† is

H8

"vr
= S1 − k2Wq

D
sz8Db†b + S D

"vr
−

k2

2

Wq

D
Dsz8, s10d

whereWq=LqIq
2/2 is the magnetic energy of the qubit. Ex-

perimentally, a shift of the resonant frequency of the resona-
tor, which depends on the qubit state, is measured. This shift
is determined by the first term of Eq.s10d—i.e., the mea-
sured observable issz8—and one can readily find that the
sufficient condition for QND measurementfsz8 ,H8g=0 is
satisfied.13 Provided that the coupling between resonator and
qubit is small,sz8 corresponds tosx in the original basis. This
means that the resonator measures the observablesx at the
degeneracy point in contrast with the SQUID which mea-
suressz. Let us point out an additional difference between
the resonator and SQUID measurement. The SQUID mea-
surement makes a projection of the spin into thez axis—i.e.,
at the degeneracy point the qubit is localized in one of the
classical states after the measurement—and the SQUID gives
a signal corresponding to this state. This measurement is
non-QND since the SQUID is coupled directly to the oscil-
lating variable.22 On the other hand, the resonator gives no
signal if the qubit is in the eigenstate of the operatorsz; i.e.,
the resonator does not perform a measurement and, therefore,
does not disturb the qubit. Such a readout method has a clear
advantage in the case of adiabatic quantum computing. The
qubit remains in its ground state also after the measurement;
i.e., the measurement of one qubit does not spoil the result of
the adiabatic evolution. However, it should be noted that this
statement is valid only if the amplitude of the circulating
current in the resonator is small enough to avoid Landau-
Zener transitions. Nevertheless, as we have shown theoreti-
cally in Ref. 23 and experimentally demonstrated in Sec.
III B, the noise temperature of the cooled amplifier14 enables
one to fulfill this condition.

The readout procedure could be as follows: let us suppose
that the qubit is in the stateu1l si.e., f .0; see Fig. 3d. If the
internal magnetic flux in the qubit is changing towards zero,
then the qubit is moving through its degeneracy pointsf
=0d where two classical energy levels crosssdashed lines in
Fig. 3d. At this point the qubit is in the superposition of the

statesu0l and u1l where the magnetic susceptibility of the
qubit changes rapidly. Thus, the inductive transducer gives a
considerable signal. On the other hand, if the qubit is in the
stateu0l si.e., f ,0d, one should increase the external mag-
netic flux to move the qubit to the degeneracy point. If we do
not know the state of the qubit atf = f0, we can sweep the
external magnetic flux in order to change the internal mag-
netic flux in the qubit around this point and from the re-
sponse of the parametric transducer we can determine
whether the qubit was in stateu0l or u1l ssignal is observed
for f . f0 or f , f0, respectivelyd. In the next section we will
show numerically that the qubits can be readout one after
another while staying all the time in the ground state of the
system.

III. ADIABATIC EVOLUTION

A. Theory

The idea of quantum computation by adiabatic evolution
is very simple but, surprisingly, was discovered only
recently.9,10 It is based on the fact that, in practice, it is very
difficult to find a ground state of certain Hamiltonians. Such
a task belongs to the set of nonpolynomialsNPd time prob-
lems. On the other hand, some Hamiltonians have a trivial
ground state which is easy to find. Let us assume that the
Hamiltonian ofN qubitsHspd can be externally controlled by
the parameterp and that its ground state is separated from
the first excited state by the energy gapgspd=E1spd−E0spd
fE0, E1 are the two lowest eigenvalues of the Hamiltonian
Hspdg. Provided that the ground state of the initial Hamil-
tonianHI =Hsp=0d can be easily found, we can construct it
and then change the parameterp slowly from p=0 to p=1. If
we do it sufficiently slowly—i.e., in a timet@"«max/gmin

2

where the «max,maxE1spd−min E0spd and
gmin=min gspd—the ground state ofHI is evolved to the state
which is with high probability the ground state ofHP=Hsp
=1d. Thus, we have prepared the system of the qubits in the
ground state of HamiltonianHP and they can be read out. As
a matter of fact the system is in the ground state of the
HamiltonianHspd during the whole adiabatic evolution; i.e.,
the system is immune against dephasing and relaxation. Here
we should emphasize that the adiabatic evolution of the
Hamiltonian is crucial in speeding up considerably the find-
ing of the ground state of the HamiltonianHP. One could
suggest that it is enough to wait a while and the system
would relax itself into the ground state. However, a Hamil-
tonian which encodes an NP problem exhibits a lot of local
minima and the physical system needs an exponentially long
time sas a function of the number of qubitsd to find its global
minimum. As an example, one can consider an Ising model
of N antiferromagnetically coupled magnetic moments. It is
well known that such a system can be highly frustrated. The
task of finding the minimum of the Ising Hamiltonian is
equivalent to the optimizationMAXCUT problem which be-
longs to a NP-complete problem.24 Thus, it seems that NP
problems cannot be solved in polynomial time on either digi-
tal or analog classical computers. Theoretically it was
shown25 that an adiabatic quantum algorithm can find the

FIG. 3. Quantum energy levels of the qubit as a function of
normalized internal magnetic fluxf =Fi /F0−0.5. For f much less
or greater than zero, the qubit is in the stateu0l or u1l, respectively.
The dashed lines correspond to the classical potential minima.
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global minimum of some functions in polynomial time
whereas a classical simulated annealing algorithm requires
exponential time. The crucial condition for adiabatic quan-
tum evolution is the existence of an energy gap between the
ground and upper levels. This is the key difference between
classical and quantum systems, thereby enabling an enor-
mous speed up of adiabatic quantum algorithms over classi-
cal ones. The size of the energy gap limits the speed of
adiabatic quantum evolution as we will show experimentally
in the next section.

Adiabatic evolution can be demonstrated on a single qu-
bit. Following the original paper by Farhiet al.,9 we start
from the initial Hamiltonian att=0:

HI = Dsx. s11d

Then we adiabatically evolve fromHI to the problem Hamil-
tonianHP in time t:

HP = «stdsz. s12d

This scheme can be implemented for a superconducting flux
qubit. Near the degeneracy pointf =0, the qubit can be de-
scribed by the Hamiltonian

Hstd = «stdsz + Dsx. s13d

At a bias«=0, the two lowest levels of the qubit anticross
sFig. 3d, with a gap of 2D. By increasing« slowly enough,
the qubit will adiabatically transform from the superposition
statesu0l+ u1ld /Î2 to u1l, but remains in the ground state. For
u«stdu@D, D diminishes and the Hamiltonian takes the form

Hstd = «stdsz. s14d

However, if the bias changes in time«std=lt, the qubit
can “jump” from the ground stateugl to the excited stateuel
with probability PLZ=exps−pD2/"ld. This process, known
as a Landau-Zener transition,26 would violate adiabatic evo-
lution and, therefore, should be avoided. This puts con-
straints on the characteristic timet of the adiabatic evolution
which can globally be estimated ast@"EJ/D2. Conse-
quently,t can be considerably shorter if we take into account
that a Landau-Zener transition takes place only in theD vi-
cinity of the anticrossing point. Thus,«std can be changed
quickly except in the region close to the anticrossing point.
For such a local adiabatic evolution the requirement fort
readst@" /D. Note that only this condition leads to a qua-
dratic speed-up of the adiabatic evolution version of Grov-
er’s algorithm.27 A measurement by a parametric transducer
provides the unique possibility of controlling the speed of an
adiabatic evolution. The smaller the energy gap is, the larger
is the signal from the transducerfsee Eqs.s1d ands2dg. This
signal can be used as feedback for«std sweeping so that the
condition for adiabatic evolution can be satisfied locally for
an unknown ground state of the system.

The tunnel splitting 2D is very sensitive to the Josephson
and Coulomb energy of the junctions. It can be finely tuned
by reducing the size of one junction in the superconducting
loop, while leaving the two others unchanged. If the ratio
between the area of the small and large junctions isa sa
,1d, D can be roughly estimated:3,23

D =
EJ

p
Î2a − 1

ag
expFÎgs2a + 1d

a

3Sarccos
1

2a
− Î4a2 − 1DG , s15d

whereg=EJ/EC. By changing the parametersa and g, one
obtains a crossover from the classical, through the Landau-
Zener, to the adiabatic regime.

B. Experiment

In order to demonstrate the crossover from the classical to
quantum regime we have prepared three qubits with different
parametersa andg. The qubits were placed inside pancake
niobium coil made by using electron-beam lithography on
oxidized Si substrates. The typical linewidth and the distance
between 20 and 30 coil windings are 1–2mm. The coils
self-inductances areL=50–140 nH. For all experiments re-
ported here we use an external capacitanceC=470 pF, there-
fore, the tank resonance frequency is 19.6–32.8 MHz with
quality factorsQ=700–1700. The 3JJ qubit structure was
fabricated out of Al in the middle of the coil by a conven-
tional shadow evaporation technique. The critical current
was determined, by measuring an rf-SQUID prepared on the
same chip, asIC=250–400 nA. The qubit’s loop area was
90 mm2, with Lq=40 pH. The typical coupling coefficient
between the coil and qubit is 1–2310−2. In Fig. 2 the typi-
cal response of the inductive transducer is shown for three
values of the parametersa andg, which correspond to three
different regimes: classical, Landau-Zener, and adiabatic. In
classical regime the signal from parametric transducer is pro-
portionate to the first derivative of the Josephson current
with respect to internal magnetic flux.28 Close to the degen-
eracy point there are two classical states corresponding to the
currents flowing clockwise and counterclockwiseshysteretic
behaviord. For g=60 anda=0.9 the qubit is in an interme-
diate regime where both tunneling between two classical
states and Landau-Zener transitions are not negligible. There
is still no visible dip in the phase characteristic but the losses
caused by Landau-Zener transitions decrease the quality fac-
tor of the resonant circuit and, consequently, the amplitude of
the rf voltage.29 By keepingg constant, but decreasing the
size of the third junction froma=0.9 to a=0.8, the tunnel
splitting 2D increases and Landau-Zener transitions are sup-
pressed. As a result, a shift of the resonance frequency of the
parametric transducer leads to huge dips in theu vs f curves
sadiabatic regimed. Nevertheless, if the voltage amplitude
across the parametric transducer is increased high enough,
the Landau-Zener transitions suppress the dip again. Under
this condition, a discrepancy between experimental and the-
oretical curves, calculated within the adiabatic approach, is
observedsFig. 4d. Thus, we have observed the crossover
from the classical, through the Landau-Zener, to the adia-
batic regime of a superconducting flux qubit by decreasing
the size of the Josephson junctions. Our experimental results
show that the idea of adiabatic quantum computing can be
demonstrated on a system of superconducting flux qubits. A
reasonable and primarily feasible design is shown in the next
section.
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IV. IMPLEMENTATION OF THE MAXCUT PROBLEM FOR
A SET OF INDUCTIVELY COUPLED SUPERCONDUCTING

QUBITS

The MAXCUT problem is a part of the NP-complete prob-
lems. Mathematically, in order to solve theMAXCUT prob-
lem, one should find the maximum of the payoff function12

Psusld = o
i

wisi + o
i,j

sis1 − sjdwi,j , s16d

wherewij and wi are the parameters of the problem andsi
=0,1 arecomponents of the vectorusl. The problem can be
encoded into a HamiltonianH of N inductively coupled su-
perconducting qubits:

H = o
i=1

N

«isf idsz,i + o
i=1

N

Disx,i + o
i, j

N

Ji,jsz,isz,j , s17d

wheresx andsz are Pauli matrices,«isf id is the energy bias
of the ith qubit, andJi,j is the coupling energy between the
ith and j th qubits. The eigenvectorusl, corresponding to the
ground state of the HamiltonianH, is the solution of the
payoff functionPsusld if sad Di !Ji,j ∀ i , j and sbd «i =−wi /2
andJi,j =wi,j /2.

For superconducting qubits, the initial HamiltonianHI can
be easily constructed by taking into account thatJi,j =0 and
Di =0 if f i =−0.5—i.e.,

HI = o
i=1

N

«is− 0.5dsz,i . s18d

The ground state ofHI is trivial, u0l. By changing the bias of
individual qubits adiabatically to«i =−wi /2, theHI is trans-
formed toH. sThe coefficientswi,j are set by design and they
are determined by coupling energies between qubits.d H en-
codes the payoff functionPsusld completely ifDi =0. Unfor-
tunately, we cannot switch off the tunnel splittingDi in su-
perconducting qubits, but it is not absolutely necessary if
Ji,j @Di. Nevertheless, we will show that by making use of a
parametric transducer,18 one can obtain the answer even if
Ji,j *Di. Moreover, the qubit states can be readout while
staying in the ground state of the system.

The most simple but still reasonable example of the adia-
batic quantum optimization algorithmMAXCUT can be imple-
mented by three coupled superconducting flux qubitssN
=3d. The coupling between the qubits can be realized by
means of a common Josephson junction30 shared between
two qubitsssee Fig. 5d. This enables us to increase the cou-
pling energy over pure magnetic one. The coupling energy

TABLE I. Energy of the system for various vectors.J1,2=J2,3=J1,3=0.3 K. «1=0.315 K, «2=0.252 K,
and«3=0.525 K.

usl 000 010 011 001 101 111 110 100

E sKd 1.992 0.288 −0.342 0.162 −0.889 −0.192 −0.762 −0.258

FIG. 4. The phase shiftu between the bias currentIrf and the rf
voltage of the parametric transducer as a function of the normalized
internal magnetic flux for smallVrf <0.5 mV slower curvesd and
largeVrf <5 mV supper curvesd rf voltages. The resonant frequency
of the parametric transducer was 32 MHz. The discrepancy between
experimentalssolid lined and theoreticalsdotted lined curves for the
large amplitude rf voltage is caused by Landau-Zener transitions. FIG. 5. Three-qubit design for theMAXCUT problem.sad Three

superconducting flux qubits are placed in a superconducting coil.
The qubits can be biased independently by dc bias wiresb1,b2,b3.
sbd The qubits are coupled through common Josephson junction
marked by circles. The coupling energysRef. 30d Ji,j =sMi,j

+F0/2pIcdIqiIqj, whereIc is Josephson critical current of the com-
mon junction.
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<0.3 K has been measured recently.31 Thus, for the present
design we have chosen the interaction energies between the
qubits to beJ1,2=J2,3=J1,3=0.3 K, the persistent currents are
Ip1= Ip3=350 nA, Ip2=420 nA, and tunneling matrix ele-
ments areD1=D2=D3=96 mK. By choosing appropriate val-
ues for«i it is possible to realize the situation that the system
exhibits both a local and a global minimum. We have chosen
the parameters«1s0.006d=0.315 K,«2s0.004d=0.252 K, and
«3s0.01d=0.525 K. The energy of the ground state for vari-
ous vectorsusl is shown in Table I. In the stateu101l the
system is in the global minimum. Note that foru110l the

FIG. 6. First three energy levels of the three-qubit system during

readout. Readout of the qubit starts at pointf1
p=0.006, f2

p=0.004,

and f3
p=0.01. Then its bias is changed adiabaticaly and separately

through qubit 1sad, 2 sbd, and 3scd while keeping it fixed in the

others. At the points with a large curvature of the ground level the

parametric transducer gives a considerable responsessee Fig. 7d. If

this point is on the leftsrightd side of the point corresponding to the

problem Hamiltoniansmarked by green vertical lined, the qubit is

sor better to say would be ifD=0d in the stateu0l su1ld.

FIG. 7. The phase shift between the voltage and bias current of
the parametric transducer with respect toDf = f − fp. Readout of the
qubit starts at pointf1

p=0.006, f2
p=0.004, andf3

p=0.01 then its in-
ternal magnetic flux is swept adiabaticaly around this point. The red
ssolidd, black sdottedd, and bluesdashedd lines correspond to bias
flux change in qubit 1, 2, and 3, respectively. From the position of
the dips we find that the stateu101l corresponds to the global mini-
mum scompare with Table Id.

FIG. 8. The phase shift between voltage and bias current of the
inductive transducer with respect toDf = f − fp for various values of
Di sDi is taken to be the same for all qubitsd. Readout of the qubit
starts at pointf1

p=0.006, f2
p=0.004, andf3

p=0.01. Then the internal
magnetic flux is swept adiabaticaly around this point. The red solid
line and black dotted line correspond to the qubits 1 and 2, respec-
tively. From the upper to lower curvesat Df =0.01d Di takes the
values 0.048, 0.096, 0.144, 0.192, and 0.240 K.
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system exhibits a local minimum; that is, there is no way to
decrease the energy of the system by flipping the persistent
current in one qubit only. Thus, the system can stay in the
state u110l for an exponentially long time at low tempera-
tures. In our design the lowest-“energy” barrier which the
system sees from the local minimum is higher than 0.5 K.
This could lead to a wrong answer, unless the Hamiltonian
transform is carried out adiabatically.

The qubits’ state can be readout by an inductive trans-
ducer as was described above. The internal magnetic flux of
the individual qubits can be changed by a current through the
wires placed nearby each of them. In such a configuration, all
three qubits can be readout by making use of one transducer
only. Nevertheless, the idea should be checked since qubits
interact andD is nonzero. The three-qubit Hamiltonian can
be solved numerically. In the following section we simulate
the readout of a parametric transducer inductively coupled to
three superconducting flux qubits.

Numerical simulation

The Hamiltonians17d was solved numerically and the en-
ergy levels of the Hamiltonians17d as a function off i are
shown in Fig. 6. We have used the same parameters as those
used in our design. We have also calculated the response of
the parametric transducer using the formula32,33

tanu = − 2Qo
n

R0n

En − E0
, s19d

whereEn−E0 is the distance between ground and upper en-
ergy levels and

R0n = So
i=1

N

ki
ÎLqiIqik0usz

sidunlDSo
j=1

N

kj
ÎLqjIqjknusz

s jdu0lD
s20d

are the real matrix elements. Hereki is the coupling coeffi-
cient between theith qubit and resonator andLqi is the qu-

bit’s inductance. ForQ=1000, L=81 nH, Lqi=40 pH, and
ki =0.036 the results are shown in Fig. 7. From these figures
it is apparent that the qubits’ states can be determined by a
parametric transducer. We have also tried to find the thresh-
old for Di below which the state of the qubit cannot be dis-
tinguished. As a criterion the existence of the distinguishable
dips on the experimental curves can be chosen. From Fig. 8
one can see that the positions of the dips do not change asD
increases and they can be distinguished for relatively large
values ofD. Thus, the parametric transducer readout delivers
the right solution of the problem.

V. CONCLUSIONS

Experimentally, we have demonstrated the principle of
adiabatic quantum evolution in a single qubit. Theoretically,
we have shown that three inductively coupled superconduct-
ing flux qubits placed in a superconducting coil can be used
to demonstrate the adiabatic quantum algorithmMAXCUT

which belongs to the set of NP-complete problems. A three-
qubit design has been proposed and simulated numerically.

Note added in proof. Recently, Lupascuet al.34 proposed
a similar readout method which enables to measure the ob-
servablesz in a nondestructive way.
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