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Frustrated quantunXXZ spin chains with the next-nearest-neighbor couplings are typically deterministic
many-body systems exhibiting Gaussian orthogonal ensemble spectral statistics. We investigate energy diffu-
sion for these spin chains in the presence of a periodically oscillating magnetic field. Diffusion coefficients are
found to obey the power law with respect to both the field strength and driving frequency with its power
varying depending on the linear response and nonperturbative regimes. The widths of the linear response and
the nonperturbative regimes depend on the strength of frustrations. We have also elucidated a mechanism for
oscillation of energy diffusion in the case of weakened frustrations.
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I. INTRODUCTION In this paper, we investigate dynamics ¥KZ quantum
spin chains which have antiferromagnetic exchange interac-

There exists an accumulation of studies on quantum dyg -« to the nearest-neighbdNN) and the next-nearest-

namics of classically chaotic systems, e.g., kicked rOtator.sneighbor(NNN) couplings. The NNN couplings cause the

kicked spin-tops, hydrogen atoms in time-dependent eIeCm?rustration i.e., difficulty in achieving the ground state

field, and the standard map model, to mention af&@uan- thereby attributi f frustrated h i chains
tum suppression of energy diffusion, dynamical localization, ereby atiributing a name ot Irustrated quantum sp
these systems. In fact, the level statistics of the NNN

and other signatures of quantum chaos are notable in thed@ ) . _ . L
dynamics. However, most of the systems treated so far afgPUPIedXXZ spin chains without an applied magnetic field

confined to those with a few degrees-of-freedom, and littl'@s been studied intensively in Refs. 17 and 18, and it has
attention is paid to dynamics of quantum many-bodybee” shown that GOE behawor, which is typical .of quantum
system&* whose adiabatic energy levels are characterize§haos, appears already in the low energy region near the
by Gaussian orthogonal ensem@OE) spectral statistics, ground staté?2° The ground-state phase diagram is shown
i.e., by a hallmark of quantum chaos. While some importanin Ref. 21 for the NNN coupleXXZ spin chains without a
contribution§ ! are devoted to dynamics of a kind of many- magnetic field.
body systems, those systems are actually described by the A natural extension of the research is to investigate dy-
random-matrix models, and not by deterministic quantunrmamics of the frustrated quantum spin chains with an applied
Hamiltonians. It is highly desirable to explore dynamical be-periodically oscillating magnetic field. We calculate a time
haviors of deterministic quantum many-body systems exhibevolution of the system starting from their ground state and
iting GOE or Gaussian unitary ensembl€UE) spectral  analyze the nature of energy diffusion. We shall numerically
statistics. _ exhibit the time dependence of energy variance, and show
On the other hand, the frustrated quantum spin systemgow the diffusion coefficients depend on the coupling con-
have been receiving much attention, and we can find theigiants, the anisotropy parameters, the magnetic field, and the
realization ins=; antiferromagnetic chains CampyBr,  frequency of the field. Furthermore, to compare with the en-
(Ref. 12 and (N,Hs)CuCh!® and in s=3 triangular ergy diffusion in the case of weakened frustrations, we also
antiferromagnet$? The high-lying states of these quantum investigate dynamics of the corresponding energy diffusion
many-body systems deserve being studied in the context af XXZ spin chains with small NNN couplings.
“quantum chaos.” The advantage of the frustrated quantum The organization of the paper is as follows: In Sec. I, we
systems is that one can expect quantum chaotic behaviolsiefly describe a numerical approach to obtain the time evo-
appearing already in the low energy region near the grountiution operator. In Sec. Ill we shall show the time depen-
statet>16 From the viewpoint of real physics of condenseddence of energy variance starting from the ground state of
matters, novel features observed in the low-energy region arthe many-body system and explain a way to evaluate diffu-
very important and welcome. Recalling that in most detersion coefficients. Section IV elucidates how diffusion coeffi-
ministic Hamiltonian systems quantum chaotic behaviors apeients depend on field strength and driving frequency. Here
pear in high-lying states, the role of frustration is essential irpower laws are shown to exist in the linear response and
the study of quantum dynamics from the ground state ohonperturbative regions. Section V is devoted to a mecha-
deterministic many-body systems with GOE or GUE levelnism of oscillation of energy diffusion. Conclusions are
statistics. given in Sec. VI.
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Il. NUMERICAL PROCEDURE text. The Schrédinger equation is then given by

We give Hamiltonian for the NN and NNN exchange- )
coupled spin chain oh sites with a time-periodic oscillating lﬁahﬂ(t)) =H(®)[(1)) = [Ho + Hi(®][4(1)). (5)
magnetic field as
The solution of Eq(5) consists of a sequence of the infini-

H(t) =Ho+ Halt), @D tesimal processes as
where l(t)) = U(t;t — AU(t — At;t — 2At)
L L
Ho=d2 (SS'1+ 9,1 +ASS,) + 3,2 (SS,+ S, ---U(2At; ADU(AL; 0)| (0)). (6)
j=1 j=1
L The initial state|¢(0)) is taken to be the ground state, since
. A%Z%Z+2) B 2 B]-Z(O)qz, ) our concern lies in the dynamical behaviors starting from the
]:

many-body ground state. To calculate a time evolution op-
erator U(t+At;t) for each short time stept, we use the
L L fourth-order decomposition formula for the exponential
Hi(0) = 2 BiO)S - X B[S, (3  operator®
= = U(t+ At;t) = S(— ipAtif, ts) S(— ip,At/h, ty)
Here,S'=(1/2)a}' and(o)j‘,ajy,of) are the Pauli matrices on e »
the jth site; the periodic boundary conditiofBBC) are im- S(=ipAUR, ) S(= ip1 AU, L),  (7)
posed. The magnetic fieIBjZ on jth site along thez axis is  where
chosen to form a traveling wave:

Sx b = exp( %ﬂt)) exp(xHO)exp< Xt(t) ) . ®

BA(t) =B, sin( wt— %) . (4) 2
Here,t;'s andp;'s are the following:

The period of Eqg.(1) as well as Eq.(4) is T=27/w.
Because of the coexisting spatial PBC, however, the effective i=t+(pitpat -+t P/2)At,
period of the adiabatic energy spectra is given by
T'=T/L=27/(wl). In other words, the period of the Hamil- pP=p1=P2=Ps=Ps,
tonian operator i, and the spectral flow of the eigenvalues (9)
has the effective period’. This periodicity property comes =0.414 490771794 375'7-,
from the traveling-wave form of Ed4), and is advantageous
for our getting a sufficient number of relevant data in each ps=1-4p.
periodT.

WhenJ; >0 andJ,> 0, the unperturbed Hamiltoniak,, The numerical procedure based on the above-mentioned de-
without coupling to the magnetic field is translationally in- compositions is quite effective whei,(t) and Ho do not
variant and corresponds to a frustrated antiferromagneti€ommute and each time step is very small. Our computation
quantum spin model exhibiting GOE level statis#é48 If ~ in the following is concerned mainly with the system of
J,=0 andB,=0, it describes an integrable and nonfrustrated-=10, whoseS,=1 manifold involves 210 levels. To check
model. Before calculating energy diffusion, we have to conthe validity of our assertion, some of the results will be com-
sider the symmetries of the model. We divide the Hamil-pared to those for the system bfF14 andS,=4 whose
tonian matrix to some sectors which have the same quantuianifold involves 364 levels.
numbers. In the Hamiltonian Eql), total & (S, is con-
served. The eigenstates with differe®t, are uncorrelated. IIl. TIME DEPENDENCE OF ENERGY VARIANCE
On the other hand, the nonuniform magnetic field breaks the . .
translational symmetry, and leads to mixing between mani- We calculate time evolution of the state and evaluate en-
folds of different wave-number values. ergy variances at each integer multiple of the effective period

Before proceeding to consider the time evolution of al =T/L=2m/(wL). As mentioned already, we choose the
wave function, we should note: If we use the original Hamil-ground state as an initial state, following the spirit of real
tonian H(t)=Hy+H,(t) as it stands, the mean level spacing physics of condensed matFers. This viewpoi_nt_ _is in contrast
of eigenvalues would change dependinglem\, andB,. To !0 that of the random maitrix models where initial states are
see a universal feature of the energy diffusion, it is essentigthosen among high-lying onés.° Consequently, the energy
to scale the Hamiltonian so that the full range of adiabatic/ariance of our primary concern is theriance around the
energy eigenvalues becomes almost free from these parar@found state energy Fand is defined by
eters. Noting that this energy range for the original Hamil- 2_ _ET?
tonian is of order ofL when J;=J,=A=1, we define the OB = (YOI = Bo (D). (10
scaled HamiltoniarH(t)=Hy+H;(t) so that the full energy Time evolution ofSE(t)? is shown in Fig. 1. The parameters
range equals att=0, which will be used throughout in the except forw are fixed. The largew is, the faster the energy
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FIG. 1. (Color online Time evolution of energy diffusion foi) FIG. 2. Driving frequency dependence of the diffusion coeffi-
L=10 and(b) L=14. The parameters are the following;=J, cients. The chained line and the solid line are just eye guides for
=1.0,A=0.3,B,=1.0. D« wf with B=1 and 2, respectively. The symbol®) are the

average of the diffusion coefficients calculated for several values of

e L . . . A (0.3=A<0.8). The parameters are the followind:=10,
diffusion grows, which is consistent with our expectatlons.lel_O;(a) 3,=1.0, (b) 3,=0.2.

The details will be explained in Sec. IV. For wide parameter
values of the NNN coupling, and exchange anisotropy, Beyond the LZ region, however, so long as the changing
the early stage of quantum dynamics shows the normal difrate X of a perturbation parameter is not very lafdehe
fusion in energy space, i.e., a linear growths&(t)* in time.  diffusion coefficient can be calculated using the Kubo for-
While we proceed to investigate this normal diffusion pro-mula. We call such a parameter regime the “linear response”

cess, energy variances will finally saturate because the SYfegime. In the linear response reginiex X2 (see, e.g., Refs.

tem size we consider is finite. On the other hand, energ_)é and 7. WhenX is large, however, the perturbation theory

variances can also saturate because of another reason, i.g. . A L
fails. We call such a parameter regime “nonperturbative” re-

;)heertgyt? ;?Sﬁal localization effect associated with a IoerIOdICgime. In the nonperturbative regime, the diffusion coefficient

During the first period JE(t)2 shows a linear growth in is smaller than that predicted by the Kubo formUfaAc-

time as shown in Fig. (&). The range of the linear growth is ©0rding to Ref. 7D« X” with y<1 in the nonperturbative
not sufficiently wide because the number of levels is notregime. We note thaX«=Byw in this paper since the pertur-
large enough fot. =10. However, if the number of levels as bation is given by Eq(4). Both Refs. 7 and 9 are based on
well as the system size is increased, the length of a linedhe random matrix models, which are utterly different from
region may be elongated. In fact, the linear growthsgft)>  our deterministic one.

during the first period can be recognized more clearly for Numerical results of diffusion coefficients in Fig. 2 are
L=14 than forL=10 [see Fig. 1b)]. The diffusion coeffi- almost consistent with the argument of Ref. 7. Diffusion co-
cient has to be determined much earlier than the time wherefficients as a function ab are shown in Fig. 2. In Fig.(2),
saturation begins. We determine the diffusion coefficient whereJ,=1.0 (i.e., the fully frustrated cageD is larger as

from the fitting By is larger for a fixed value ob. In a smalle regime,D
) «wP with =2, though3>2 for small B,. The latter is
SE(t)”= Dt + const (11D merely attributed to the fact that the perturbation is too small
to some data points around the largest slope in the first pd® observe a sufficient energy diffusion when betfand B,
riod, where the normal diffusion is expected. are small. In a large» regime, 8=1. Namely, we observe

that 8=2 in the linear response regime afe 1 in the non-
perturbative regime. In fact, for a large-regime, the in-
crease of energy variances per effective period hardly de-
pends onw by the time whensE(t)? starts to decrease. This
explains the observation thBtx »” with 8=1 in both Figs.
Since the time evolution of our system starts from the2(a) and 2b). Let us represent the increase of energy vari-
ground state, we consider nonadiabatic regions where inteances per effective period @€ 5E?). From the definition of
level transitions frequently occur. In other words, we sup-D, i.e., Eq. (11), DxA(SE?)/T'. If A(SE?) is constant,
press a near-adiabatic or the so-called Landau—-Z€rér Do w.
region where the driving frequenay is much smaller than On the other hand, in Fig.(B) where J,=0.2 (i.e., a
the mean level spacing divided by Planck constant. Becausgeakly frustrated cagethe region withg=1 is expanding.
of a large energy gap between the ground and first exciteBor smallB,, 8>2 in a smallw regime is the same as in the
states, the near-adiabatic region cannot result in the notablase ofl,=1.0. For smallB, and aroundw~ 1, D seems to
energy diffusion and will be left outside the scope of therather decrease than increase especially in the case of
present study. J,=0.2. Some kind of localization would have occurred in

IV. DIFFUSION COEFFICIENTS: DEPENDENCE
ON FIELD STRENGTH AND FREQUENCY
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FIG. 3. Dependence of the diffusion coefficients on the product
of field strengthBy and driving frequency» for (a) L=10 and(b)
L=14. The symbol$ < ) are the average of the diffusion coefficient
calculated for several values df (0.3<A<0.8). The parameters
areJ;=J,=1.0; for the insetJ;=1.0 andJ,=0.2. The chained line .
and the solid line are just eye guides p (Byw)? with =1 and 0 05
2, respectively. Some error bars are too short to see.
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FIG. 4. Examples for time evolution of energy variancées:
the very early stage of energy diffusion for largeand small ~ 5E(t)2 and (b) SE(t)? (see the teyt Solid lines are ford,=1.0;
B,, leading to the suppression bBf. broken lines,J,=0.2. The parameters are the following=10,

It is seen more clearly in Fig. 3 how the behavior®f J;=1.0,A=0.3,B,=1.5,w=0.5.
changes between a linear response regime and a nonpertur-

bative regime. The diffusion coefficief obeys the power energy variance fod,=0.2 shows large-amplitude oscilla-
law D (Bow)” with its power 8 being two in the linear tjons. To investigate more details, we introduce another defi-
response regime angk 1 in the nonperturbative regime. For njtion of energy variance:

small Byw, the power law seems to fail because of some _

finite-size effects. These universal feature is confirmed in SE(1)% = (p(t)|[H(t) = (p(O)|H®)| ()P p(1)).  (12)

systems of larger size. Actualli) obeys the power law bet- . I .
ter for L=14 [Fig. 3b)] thanL=10[Fig. 3a@]. In addition, This follows a standard definition of the variance and quan-

error bars are shorter fdr=14 thanL=10. Here, we have gfles Lhe tdegreet tc?g‘lbfetrrl]ergy dlffu|s_||on _I?ropnd _I_t:?m?'
used the data ab=<1. We cannot expect meaningful results ependent expectall € energy namiftonian. fhe ime

in a largew regime since, as mentioned earlier, energy dif-evolutions of 5E(t)? corresponding to that obE(t)* are

fusion is not normal there. shown in Fig. 4b). In the fully frustrated casé&l,=1.0), the
Figure 3 suggests that the strength of frustration shoulgrofile of SE(t)? is similar to that ofSE(t)2. This observation

affect the range of the linear response regime. The lineghdicates that an occupation probability spread over the

response regime is shorter f&=0.2 than forJ,=1.0, while  whole levels after normal diffusion of energy.

the nonperturbative regime is larger f@5=0.2 than for On the contrary, in a weakly frustrated cagg=0.2) in

J,=1.0. In fact, whenJ,=0 (i.e., the integrable caseD . = 0 i : _ .
o (Byw) with B=1 for aimost all the data in the same range Fig. 4, 6E(t) shows small-amplitude oscillations reflecting

of Byw as that of Fig. 3. the large-amplitude oscillations @E(t)2 Most of SE(t)2 for
J,=0.2 is smaller than that fal,=1.0. Furthermore, minima

of SE(t)> come just before minima and maxima 6E(t)2.
V. OSCILLATION OF ENERGY DIFFUSION IN WEAKLY These observations indicates the following: an occupation
FRUSTRATED CASES probability, which is diffusing slowly, clustering around the

We shall now proceed to investigate oscillations of diffu- €xpectation of energy oscillates together with the expectation
sion which occur in the nonperturbative regime of a weaklyin the energy space. To make the picture of such behavior
frustrated case. Figure@ shows an example of oscillatory clearer, let us consider an occupation probability described
diffusion for J,=0.2, which is compared with a nonoscilla- bY
tory diffusion forJ,=1.0. The two examples have the same PUE,) = (o D)2, (13)
set of parameters except fak. However, the cases of
J,=1.0 andJ,=0.2 are in the linear response regime and inwhere|¢,) is thenth excited eigenstate ¢
the nonperturbative regime, respectively. The variance for Holbo) = E.| ) (14)
both cases shows normal diffusion at the very early stage of O/ =l
time evolution. ForJ,=1.0, the energy variance seems to Whent=0, P(E,) is given by the Kronecker deltd®y(E,)
saturate after a normal diffusion time. On the contrary, the= %, g, WhereE, is the energy of the ground state. As
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FIG. 5. Parts of energy spectra depending on adiabatically fixed 0.2¢
time t with 0<t=<T/4. Effective period iswT'=27/10. The pa-
rameters are the followingt =10, J;=1.0, A=0.3, By=0.8; (a) 0 I
J,=1.0,(b) J,=0.2. 0 0.5 1

mcreasfslr?(i”) flormls av\\;\;]avetﬁa(:ket n enir%y Sp?]ce and FIG. 6. (Color online Level-spacing distributions at /4 for
MOVES 1o higher Ievels. vvnen the wave packet reaches Somg, ot 300 levels from the ground staf@bout 10% of all 3003
highest level, it reflects like a soliton and moves back ©levels. Blue histogram is fod,=1.0: red bars},=0.2: solid curve,
lower levels. Such behavior is repeated, although the Wave o spectral statistics. The other parameters are the following:
packet ofP(Ey) broadens slowly. We have actually watched| _ 1, ‘s —1 j,=10,A=0.3, B,=0.8. The inset is for all levels
this soliton-like _behaVIor oPt(En) Ina form of an animation. .when J,=1.0. The numerical methods to obtain the level-spacing
The above-discussed picture is also supported by the adidstributions are referred to in Refs. 17 and 18.
batic energy spectra in Fig. 5. Figure@band 3b) corre-
spond to fully and weakly frustrated cases, respectively . . . .
. : - for all energy levels in the inset is also described by GOE
Much more sharp avoided crossings appear in Hig) than o . . . .
Fig. 5a). Some e?wergy levels appegr topt[))e cross?n% althoug pectral statistics. It is typical of this frustrated spin system
they are very close and never crossing in fact. At a shar hat GOE rlgg/el statistics is observed already in the low en-
avoided-crossing point, Landau—Zener formula for two adja—ergy region.
cent levels is applicable. Then the nonadiabatic transition
leads to one-way transfer of a populat_ion from a level to its VI. CONCLUSIONS
partner, failing to result in the energy diffusion. For snill -
therefore, successive sharp avoided crossings can suppress'We have explored the energy diffusion from the ground
diffusion of energy. state in frustrated quantui¥XZ spin chains under the ap-
We believe that large-amplitude oscillations 6E(t)2  Plied oscillating magnetic field. In a wide parameter region
should be one of the characteristic features of the nonpertuffl NNN coupllmg iﬁ and Txcr:ange fag_lfsfotr_opy, I;hf? diffu-
bative regime in this finite frustrated spin system. In fact,S!On IS normal in the early stage or diffusion. Difiusion co-
similar ogcillations of energy variance zgre sgen for laage €fficientsD obey the power law with respect to both the field
and largeB, even whenJ,=1.0 though the energy variance strength and driving frequency with its power being two in
rapidly converges after one or two periods. How long sucHhe linear response regime and equal to unity in the nonper-
oscillations continue should depend mainly bn turbative regime. In the case of weakened frustrations with

It is a notable fact that, common to both=1.0 and small J, we find oscillation of energy diffusion, which is
J,=0.2, the level-spacing distributions in Fig. 6 show GoEgattributed to a nondiffusive and ballistic nature of the under-
behavior. This GOE behavior in the adiabatic energy spectrfing energy diffusion. In this way, the energy diffusion re-
appears for an arbitrary fixed time except for special pointd/€als generic features of the frustrated quantum spin chains,
such ast=T=2m/w. This fact suggests that dynamics canWhich cannot be captured by the analysis of level statistics.
reveal some various generic features of quantum many-body
systems which can never b_e explained by level statistics. '_I'he ACKNOWLEDGMENTS
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