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Frustrated quantumXXZ spin chains with the next-nearest-neighbor couplings are typically deterministic
many-body systems exhibiting Gaussian orthogonal ensemble spectral statistics. We investigate energy diffu-
sion for these spin chains in the presence of a periodically oscillating magnetic field. Diffusion coefficients are
found to obey the power law with respect to both the field strength and driving frequency with its power
varying depending on the linear response and nonperturbative regimes. The widths of the linear response and
the nonperturbative regimes depend on the strength of frustrations. We have also elucidated a mechanism for
oscillation of energy diffusion in the case of weakened frustrations.
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I. INTRODUCTION

There exists an accumulation of studies on quantum dy-
namics of classically chaotic systems, e.g., kicked rotators,
kicked spin-tops, hydrogen atoms in time-dependent electric
field, and the standard map model, to mention a few.1 Quan-
tum suppression of energy diffusion, dynamical localization,
and other signatures of quantum chaos are notable in these
dynamics. However, most of the systems treated so far are
confined to those with a few degrees-of-freedom, and little
attention is paid to dynamics of quantum many-body
systems2–4 whose adiabatic energy levels are characterized
by Gaussian orthogonal ensemblesGOEd spectral statistics,
i.e., by a hallmark of quantum chaos. While some important
contributions5–11 are devoted to dynamics of a kind of many-
body systems, those systems are actually described by the
random-matrix models, and not by deterministic quantum
Hamiltonians. It is highly desirable to explore dynamical be-
haviors of deterministic quantum many-body systems exhib-
iting GOE or Gaussian unitary ensemblesGUEd spectral
statistics.

On the other hand, the frustrated quantum spin systems
have been receiving much attention, and we can find their
realization in s= 1

2 antiferromagnetic chains CusampydBr2

sRef. 12d and sN2H5dCuCl3,
13 and in s= 1

2 triangular
antiferromagnets.14 The high-lying states of these quantum
many-body systems deserve being studied in the context of
“quantum chaos.” The advantage of the frustrated quantum
systems is that one can expect quantum chaotic behaviors
appearing already in the low energy region near the ground
state.15,16 From the viewpoint of real physics of condensed
matters, novel features observed in the low-energy region are
very important and welcome. Recalling that in most deter-
ministic Hamiltonian systems quantum chaotic behaviors ap-
pear in high-lying states, the role of frustration is essential in
the study of quantum dynamics from the ground state of
deterministic many-body systems with GOE or GUE level
statistics.

In this paper, we investigate dynamics ofXXZ quantum
spin chains which have antiferromagnetic exchange interac-
tions for the nearest-neighborsNNd and the next-nearest-
neighborsNNNd couplings. The NNN couplings cause the
frustration, i.e., difficulty in achieving the ground state,
thereby attributing a name of frustrated quantum spin chains
to these systems. In fact, the level statistics of the NNN
coupledXXZ spin chains without an applied magnetic field
has been studied intensively in Refs. 17 and 18, and it has
been shown that GOE behavior, which is typical of quantum
chaos, appears already in the low energy region near the
ground state.19,20 The ground-state phase diagram is shown
in Ref. 21 for the NNN coupledXXZ spin chains without a
magnetic field.

A natural extension of the research is to investigate dy-
namics of the frustrated quantum spin chains with an applied
periodically oscillating magnetic field. We calculate a time
evolution of the system starting from their ground state and
analyze the nature of energy diffusion. We shall numerically
exhibit the time dependence of energy variance, and show
how the diffusion coefficients depend on the coupling con-
stants, the anisotropy parameters, the magnetic field, and the
frequency of the field. Furthermore, to compare with the en-
ergy diffusion in the case of weakened frustrations, we also
investigate dynamics of the corresponding energy diffusion
in XXZ spin chains with small NNN couplings.

The organization of the paper is as follows: In Sec. II, we
briefly describe a numerical approach to obtain the time evo-
lution operator. In Sec. III we shall show the time depen-
dence of energy variance starting from the ground state of
the many-body system and explain a way to evaluate diffu-
sion coefficients. Section IV elucidates how diffusion coeffi-
cients depend on field strength and driving frequency. Here
power laws are shown to exist in the linear response and
nonperturbative regions. Section V is devoted to a mecha-
nism of oscillation of energy diffusion. Conclusions are
given in Sec. VI.
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II. NUMERICAL PROCEDURE

We give Hamiltonian for the NN and NNN exchange-
coupled spin chain onL sites with a time-periodic oscillating
magnetic field as

Hstd = H0 + H1std, s1d

where

H0 = J1o
j=1

L

sSj
xSj+1

x + Sj
ySj+1

y + DSj
zSj+1

z d + J2o
j=1

L

sSj
xSj+2

x + Sj
ySj+2

y

+ DSj
zSj+2

z d − o
j=1

L

Bj
zs0dSj

z, s2d

H1std = o
j=1

L

Bj
zs0dSj

z − o
j=1

L

Bj
zstdSj

z. s3d

Here,Sj
a=s1/2ds j

a and ss j
x,s j

y,s j
zd are the Pauli matrices on

the j th site; the periodic boundary conditionssPBCd are im-
posed. The magnetic fieldBj

z on j th site along thez axis is
chosen to form a traveling wave:

Bj
zstd = B0 sinSvt −

2p j

L
D . s4d

The period of Eq.s1d as well as Eq.s4d is T=2p /v.
Because of the coexisting spatial PBC, however, the effective
period of the adiabatic energy spectra is given by
T8=T/L=2p / svLd. In other words, the period of the Hamil-
tonian operator isT, and the spectral flow of the eigenvalues
has the effective periodT8. This periodicity property comes
from the traveling-wave form of Eq.s4d, and is advantageous
for our getting a sufficient number of relevant data in each
periodT.

WhenJ1.0 andJ2.0, the unperturbed HamiltonianH0
without coupling to the magnetic field is translationally in-
variant and corresponds to a frustrated antiferromagnetic
quantum spin model exhibiting GOE level statistics.17,18 If
J2=0 andB0=0, it describes an integrable and nonfrustrated
model. Before calculating energy diffusion, we have to con-
sider the symmetries of the model. We divide the Hamil-
tonian matrix to some sectors which have the same quantum
numbers. In the Hamiltonian Eq.s1d, total Sz sStot

z d is con-
served. The eigenstates with differentStot

z are uncorrelated.
On the other hand, the nonuniform magnetic field breaks the
translational symmetry, and leads to mixing between mani-
folds of different wave-number values.

Before proceeding to consider the time evolution of a
wave function, we should note: If we use the original Hamil-
tonianHstd=H0+H1std as it stands, the mean level spacing
of eigenvalues would change depending onJ2, D, andB0. To
see a universal feature of the energy diffusion, it is essential
to scale the Hamiltonian so that the full range of adiabatic
energy eigenvalues becomes almost free from these param-
eters. Noting that this energy range for the original Hamil-
tonian is of order ofL when J1=J2=D=1, we define the
scaled HamiltonianHstd=H0+H1std so that the full energy
range equalsL at t=0, which will be used throughout in the

text. The Schrödinger equation is then given by

i"
]

]t
ucstdl = Hstducstdl = fH0 + H1stdgucstdl. s5d

The solution of Eq.s5d consists of a sequence of the infini-
tesimal processes as

ucstdl = Ust;t − DtdUst − Dt;t − 2Dtd

¯Us2Dt;DtdUsDt;0ducs0dl. s6d

The initial stateucs0dl is taken to be the ground state, since
our concern lies in the dynamical behaviors starting from the
many-body ground state. To calculate a time evolution op-
erator Ust+Dt ; td for each short time stepDt, we use the
fourth-order decomposition formula for the exponential
operator:22

Ust + Dt;td = Ss− ip5Dt/",t5dSs− ip4Dt/",t4d

¯ Ss− ip2Dt/",t2dSs− ip1Dt/",t1d, s7d

where

Ssx,td = expSxH1std
2

DexpsxH0dexpSxH1std
2

D . s8d

Here,tj’s andpj’s are the following:

tj = t + sp1 + p2 + ¯ + pj−1 + pj/2dDt,

p = p1 = p2 = p4 = p5,
s9d

=0.414 490 771 794 375 7̄ ,

p3 = 1 − 4p.

The numerical procedure based on the above-mentioned de-
compositions is quite effective whenH1std and H0 do not
commute and each time step is very small. Our computation
in the following is concerned mainly with the system of
L=10, whoseStot

z =1 manifold involves 210 levels. To check
the validity of our assertion, some of the results will be com-
pared to those for the system ofL=14 andStot

z =4 whose
manifold involves 364 levels.

III. TIME DEPENDENCE OF ENERGY VARIANCE

We calculate time evolution of the state and evaluate en-
ergy variances at each integer multiple of the effective period
T8=T/L=2p / svLd. As mentioned already, we choose the
ground state as an initial state, following the spirit of real
physics of condensed matters. This viewpoint is in contrast
to that of the random matrix models where initial states are
chosen among high-lying ones.5–10 Consequently, the energy
variance of our primary concern is thevariance around the
ground state energy E0 and is defined by

dEstd2 = kcstdufHstd − E0g2ucstdl. s10d

Time evolution ofdEstd2 is shown in Fig. 1. The parameters
except forv are fixed. The largerv is, the faster the energy
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diffusion grows, which is consistent with our expectations.
The details will be explained in Sec. IV. For wide parameter
values of the NNN couplingJ2 and exchange anisotropyD,
the early stage of quantum dynamics shows the normal dif-
fusion in energy space, i.e., a linear growth ofdEstd2 in time.
While we proceed to investigate this normal diffusion pro-
cess, energy variances will finally saturate because the sys-
tem size we consider is finite. On the other hand, energy
variances can also saturate because of another reason, i.e.,
the dynamical localization effect associated with a periodic
perturbation.

During the first period,dEstd2 shows a linear growth in
time as shown in Fig. 1sad. The range of the linear growth is
not sufficiently wide because the number of levels is not
large enough forL=10. However, if the number of levels as
well as the system size is increased, the length of a linear
region may be elongated. In fact, the linear growth ofdEstd2

during the first period can be recognized more clearly for
L=14 than forL=10 fsee Fig. 1sbdg. The diffusion coeffi-
cient has to be determined much earlier than the time where
saturation begins. We determine the diffusion coefficientD
from the fitting

dEstd2 = Dt + const s11d

to some data points around the largest slope in the first pe-
riod, where the normal diffusion is expected.

IV. DIFFUSION COEFFICIENTS: DEPENDENCE
ON FIELD STRENGTH AND FREQUENCY

Since the time evolution of our system starts from the
ground state, we consider nonadiabatic regions where inter-
level transitions frequently occur. In other words, we sup-
press a near-adiabatic or the so-called Landau–ZenersLZd
region where the driving frequencyv is much smaller than
the mean level spacing divided by Planck constant. Because
of a large energy gap between the ground and first excited
states, the near-adiabatic region cannot result in the notable
energy diffusion and will be left outside the scope of the
present study.

Beyond the LZ region, however, so long as the changing
rate Ẋ of a perturbation parameter is not very large,23 the
diffusion coefficient can be calculated using the Kubo for-
mula. We call such a parameter regime the “linear response”
regime. In the linear response regime,D~ Ẋ2 ssee, e.g., Refs.

6 and 7d. WhenẊ is large, however, the perturbation theory
fails. We call such a parameter regime “nonperturbative” re-
gime. In the nonperturbative regime, the diffusion coefficient
is smaller than that predicted by the Kubo formula.7,9 Ac-

cording to Ref. 7,D~ Ẋg with gø1 in the nonperturbative

regime. We note thatẊ~B0v in this paper since the pertur-
bation is given by Eq.s4d. Both Refs. 7 and 9 are based on
the random matrix models, which are utterly different from
our deterministic one.

Numerical results of diffusion coefficients in Fig. 2 are
almost consistent with the argument of Ref. 7. Diffusion co-
efficients as a function ofv are shown in Fig. 2. In Fig. 2sad,
whereJ2=1.0 si.e., the fully frustrated cased, D is larger as
B0 is larger for a fixed value ofv. In a small-v regime,D
~vb with b=2, thoughb.2 for small B0. The latter is
merely attributed to the fact that the perturbation is too small
to observe a sufficient energy diffusion when bothv andB0
are small. In a large-v regime,b=1. Namely, we observe
that b=2 in the linear response regime andb=1 in the non-
perturbative regime. In fact, for a large-v regime, the in-
crease of energy variances per effective period hardly de-
pends onv by the time whendEstd2 starts to decrease. This
explains the observation thatD~vb with b=1 in both Figs.
2sad and 2sbd. Let us represent the increase of energy vari-
ances per effective period asDsdE2d. From the definition of
D, i.e., Eq. s11d, D~DsdE2d /T8. If DsdE2d is constant,
D~v.

On the other hand, in Fig. 2sbd where J2=0.2 si.e., a
weakly frustrated cased, the region withb=1 is expanding.
For smallB0, b.2 in a small-v regime is the same as in the
case ofJ2=1.0. For smallB0 and aroundv,1, D seems to
rather decrease than increase especially in the case of
J2=0.2. Some kind of localization would have occurred in

FIG. 1. sColor onlined Time evolution of energy diffusion forsad
L=10 and sbd L=14. The parameters are the following:J1=J2

=1.0, D=0.3, B0=1.0.

FIG. 2. Driving frequency dependence of the diffusion coeffi-
cients. The chained line and the solid line are just eye guides for
D~vb with b=1 and 2, respectively. The symbolssLd are the
average of the diffusion coefficients calculated for several values of
D s0.3øDø0.8d. The parameters are the following:L=10,
J1=1.0; sad J2=1.0, sbd J2=0.2.
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the very early stage of energy diffusion for largev and small
B0, leading to the suppression ofD.

It is seen more clearly in Fig. 3 how the behavior ofD
changes between a linear response regime and a nonpertur-
bative regime. The diffusion coefficientD obeys the power
law D~ sB0vdb with its power b being two in the linear
response regime andb=1 in the nonperturbative regime. For
small B0v, the power law seems to fail because of some
finite-size effects. These universal feature is confirmed in
systems of larger size. Actually,D obeys the power law bet-
ter for L=14 fFig. 3sbdg thanL=10 fFig. 3sadg. In addition,
error bars are shorter forL=14 thanL=10. Here, we have
used the data ofvø1. We cannot expect meaningful results
in a large-v regime since, as mentioned earlier, energy dif-
fusion is not normal there.

Figure 3 suggests that the strength of frustration should
affect the range of the linear response regime. The linear
response regime is shorter forJ2=0.2 than forJ2=1.0, while
the nonperturbative regime is larger forJ2=0.2 than for
J2=1.0. In fact, whenJ2=0 si.e., the integrable cased, D
~ sB0vdb with b=1 for almost all the data in the same range
of B0v as that of Fig. 3.

V. OSCILLATION OF ENERGY DIFFUSION IN WEAKLY
FRUSTRATED CASES

We shall now proceed to investigate oscillations of diffu-
sion which occur in the nonperturbative regime of a weakly
frustrated case. Figure 4sad shows an example of oscillatory
diffusion for J2=0.2, which is compared with a nonoscilla-
tory diffusion for J2=1.0. The two examples have the same
set of parameters except forJ2. However, the cases of
J2=1.0 andJ2=0.2 are in the linear response regime and in
the nonperturbative regime, respectively. The variance for
both cases shows normal diffusion at the very early stage of
time evolution. ForJ2=1.0, the energy variance seems to
saturate after a normal diffusion time. On the contrary, the

energy variance forJ2=0.2 shows large-amplitude oscilla-
tions. To investigate more details, we introduce another defi-
nition of energy variance:

dẼstd2 = kcstdufHstd − kcstduHstducstdlg2ucstdl. s12d

This follows a standard definition of the variance and quan-
tifies the degree of energy diffusion around thetime-
dependent expectationof the energy Hamiltonian. The time

evolutions of dẼstd2 corresponding to that ofdEstd2 are
shown in Fig. 4sbd. In the fully frustrated casesJ2=1.0d, the

profile of dẼstd2 is similar to that ofdEstd2. This observation
indicates that an occupation probability spread over the
whole levels after normal diffusion of energy.

On the contrary, in a weakly frustrated casesJ2=0.2d in

Fig. 4, dẼstd2 shows small-amplitude oscillations reflecting

the large-amplitude oscillations ofdEstd2. Most of dẼstd2 for
J2=0.2 is smaller than that forJ2=1.0. Furthermore, minima

of dẼstd2 come just before minima and maxima ofdEstd2.
These observations indicates the following: an occupation
probability, which is diffusing slowly, clustering around the
expectation of energy oscillates together with the expectation
in the energy space. To make the picture of such behavior
clearer, let us consider an occupation probability described
by

PtsEnd = ukfnucstdlu2, s13d

whereufnl is thenth excited eigenstate ofH0:

H0ufnl = Enufnl. s14d

When t=0, PtsEnd is given by the Kronecker delta:P0sEnd
=dEn,E0

, where E0 is the energy of the ground state. Ast

FIG. 3. Dependence of the diffusion coefficients on the product
of field strengthB0 and driving frequencyv for sad L=10 andsbd
L=14. The symbolssLd are the average of the diffusion coefficient
calculated for several values ofD s0.3øDø0.8d. The parameters
areJ1=J2=1.0; for the inset,J1=1.0 andJ2=0.2. The chained line
and the solid line are just eye guides forD~ sB0vdb with b=1 and
2, respectively. Some error bars are too short to see.

FIG. 4. Examples for time evolution of energy variances:sad
dEstd2 and sbd dẼstd2 ssee the textd. Solid lines are forJ2=1.0;
broken lines,J2=0.2. The parameters are the following:L=10,
J1=1.0, D=0.3, B0=1.5, v=0.5.

KAZUE KUDO AND KATSUHIRO NAKAMURA PHYSICAL REVIEW B 71, 144427s2005d

144427-4



increases,PtsEnd forms a wave packet in energy space and
moves to higher levels. When the wave packet reaches some
highest level, it reflects like a soliton and moves back to
lower levels. Such behavior is repeated, although the wave
packet ofPtsEnd broadens slowly. We have actually watched
this soliton-like behavior ofPtsEnd in a form of an animation.

The above-discussed picture is also supported by the adia-
batic energy spectra in Fig. 5. Figures 5sad and 5sbd corre-
spond to fully and weakly frustrated cases, respectively.
Much more sharp avoided crossings appear in Fig. 5sbd than
Fig. 5sad. Some energy levels appear to be crossing, although
they are very close and never crossing in fact. At a sharp-
avoided-crossing point, Landau–Zener formula for two adja-
cent levels is applicable. Then the nonadiabatic transition
leads to one-way transfer of a population from a level to its
partner, failing to result in the energy diffusion. For smallJ2,
therefore, successive sharp avoided crossings can suppress
diffusion of energy.

We believe that large-amplitude oscillations ofdEstd2

should be one of the characteristic features of the nonpertur-
bative regime in this finite frustrated spin system. In fact,
similar oscillations of energy variance are seen for largev
and largeB0 even whenJ2=1.0 though the energy variance
rapidly converges after one or two periods. How long such
oscillations continue should depend mainly onJ2.

It is a notable fact that, common to bothJ2=1.0 and
J2=0.2, the level-spacing distributions in Fig. 6 show GOE
behavior. This GOE behavior in the adiabatic energy spectra
appears for an arbitrary fixed time except for special points
such ast=T=2p /v. This fact suggests that dynamics can
reveal some various generic features of quantum many-body
systems which can never be explained by level statistics. The
level-spacing distributions in Fig. 6 convey another crucial
fact: they have been calculated for low energy levels because
our interest is in the low energy region around the ground
state. We have confirmed that the level-spacing distribution

for all energy levels in the inset is also described by GOE
spectral statistics. It is typical of this frustrated spin system
that GOE level statistics is observed already in the low en-
ergy region.18

VI. CONCLUSIONS

We have explored the energy diffusion from the ground
state in frustrated quantumXXZ spin chains under the ap-
plied oscillating magnetic field. In a wide parameter region
of NNN coupling J2 and exchange anisotropyD, the diffu-
sion is normal in the early stage of diffusion. Diffusion co-
efficientsD obey the power law with respect to both the field
strength and driving frequency with its power being two in
the linear response regime and equal to unity in the nonper-
turbative regime. In the case of weakened frustrations with
small J2 we find oscillation of energy diffusion, which is
attributed to a nondiffusive and ballistic nature of the under-
lying energy diffusion. In this way, the energy diffusion re-
veals generic features of the frustrated quantum spin chains,
which cannot be captured by the analysis of level statistics.
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