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We have analyzed the symmetry properties and the ground state of an orbital Hubbard model with two
orbital flavors, describing a partly filled spin-polarizedeg band on a cubic lattice, as in ferromagnetic manga-
nites. We demonstrate that the off-diagonal hopping responsible for transitions betweenx2−y2 and 3z2−r2

orbitals, and the absence ofSUs2d invariance in orbital space, have important implications. One finds that
superexchange contributes in all orbital ordered states, the Nagaoka theorem does not apply, and the kinetic
energy is much enhanced as compared with the spin case. Therefore orbital ordered states are harder to
stabilize in the Hartree-Fock approximationsHFAd, and the onset of a uniform ferro-orbital polarization and
antiferro-orbital instability are similar to each other, unlike in the spin case. Next we formulate a cubicsgauged
invariant slave boson approach using the orbitals with complex coefficients. In the mean-field approximation it
leads to the renormalization of the kinetic energy and provides a reliable estimate for the ground state energy
of the disordered state. Using this approach one finds that the HFA fails qualitatively in the regime of large
Coulomb repulsionU→`, where the orbital order is unstable, and instead a strongly correlatedorbital liquid
with disordered orbitals is realized at any electron filling.

DOI: 10.1103/PhysRevB.71.144422 PACS numberssd: 75.10.Lp, 75.47.Lx, 71.30.1h, 75.30.Et

I. INTRODUCTION

In recent years there has been renewed interest in orbital
degrees of freedom in Mott insulators.1 Typically, Mott insu-
lators are stoichiometric, i.e.,undoped, oxidessor sulphidesd
in which the strong on-site interorbital Coulomb repulsionU
on the transition-metal ions dominates over the kinetic en-
ergy driven by the electron hoppingt and eliminates charge
fluctuations. At energies well belowU one is then left with
effective low-energy interactions~t2/U of superexchange
sSEd type. In many cases these are purely magnetic interac-
tions between the spins on the metal ions, leading to the
familiar spin models, such as the Heisenberg model. How-
ever, when the electrons occupy partly filled degenerateeg or
t2g orbitals, such as in the perovskites KCuF3, LaMnO3,
LaTiO3, and LaVO3, the orbital degrees of freedom become
equally important as the spin ones and it is therefore neces-
sary to treat both of them on equal footing. In such cases the
SE is described by so-called spin-orbital models,2,3 and the
SE interactions are typically strongly frustrated, even on a
cubic lattice.4 In spin-orbital models the quantum effects are
particularly strong—the quantum fluctuations are enhanced,
and might even destabilize the long-range magnetic order,
leading to aspin liquid state, possibly realized in LiNiO2.

4

The opposite situation, that ansisotropic or anisotropicd or-
bital liquid sOLd is stabilized and coexists with long-range
spin order, was pointed out recently fort2g Mott-Hubbard
systems.5 By contrast, in undopedeg systems, such as KCuF3
sRef. 2d and LaMnO3 sRef. 6d, the quantum phenomena are
partly quenched and the SE favors alternating orbitalsAOd
order which coexists with antiferromagneticsAFd spin order.

An issue of considerable interest is how such systems,
characterized by the presence of orbital degrees of freedom,

behave under doping, and in particular how this compares
with the more familiar behavior of doped spin systems. In
this paper we address this issue by studying a generic model
of correlatedeg electrons with two orbital flavors, described
by a pseudospinT=1/2 in the orbital Hilbert space, and
consider its relation to the standardsspind Hubbard model for
electrons with spinS=1/2. So weintroduce theeg-orbital
Hubbard modeland investigate:sid in what respect long-
range order in such anorbital systemis different from that in
the analogousspin system, andsii d whether the orbitals may
order whenU is large, or rather form adisorderedOL. These
questions are of fundamental nature and our main aim in
addressing them is to uncover and elucidate thephysical
mechanismswhich operate in theeg band and are typical for
orbital degeneracy, in particular by contrasting them with
those known to operate in spin systems.

The present problem is closely related to the physical
properties of the colossal magnetoresistancesCMRd
manganites,7 where the well-known mechanism of double
exchange introduced by Zener8 is responsible for the metallic
ferromagneticsFMd phase at finite doping, in which the spins
of theeg electrons are fully polarized. The model that we will
investigate here covers only the case of the FM phase, thus
neglecting the competition of the double-exchange mecha-
nism with the spin AF SE, and the resulting dependence of
the hopping amplitude on the actual spin states at two neigh-
boring sites.9 Even when one limits oneself to the FM phase,
a sequence of orbital-ordered phases may be expected,10 and
each of them would break cubic symmetry, contrary to what
is observed in the magnetic properties of the metallic FM
phase. The analysis of the present paper, making extensive
use of the auxiliary particle method in the strongly correlated
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regime,11 provides the basis for a proper treatment of this
problem,12 which enables one to understand the persistence
of cubic symmetry and more in particular why the magnon
stiffness constant increases with hole doping.13

This paper is organized as follows. In Sec. II we introduce
the orbital Hubbard model for spin-polarizedeg electrons at
orbital degeneracy and discuss its symmetry properties. We
show that the cubic symmetry of the hopping may be better
appreciated when a particular basis consisting of two orbitals
with complex coefficients is used. Next we analyze in Sec.
III the possible orbital ordered phases atU=` and compare
their densities of states and total energies derived within the
slave fermion formalism. Such phases follow from the insta-
bilities towards orbital-ordered states obtained within the
Hartree-FocksHFd approximationsSec. IVd, and we show
that such instabilities and the properties of the ordered
phases at finiteU, related to the SE, are here quite different
from those known from the spin Hubbard model. In Sec. V
we introduce the cubic invariant slave boson approach and
use the mean-field approximation to analyze the disordered
orbital liquid state. Within a generalization of the
Kotliar-Ruckenstein14 sKRd approach to the present orbital
problem, we give reasons why the orbital ordered states are
unstable against the OL disordered state when one goes be-
yond the HF approximation. The paper is concluded in Sec.
VI by pointing out the implications of our results for the
physical properties of the CMR manganites.

II. ORBITAL HUBBARD MODEL

A. The Hamiltonian and its symmetry properties

We consider spinlesseg electrons on a cubic lattice with
kinetic energy

Ht = − to
a

o
ki j lia

ciza

† cjza
, s2.1d

where hopping with amplitude −t between sitesi and j oc-
curs only for a pair of directional orbitalsuzal oriented along
the bondki j l direction, i.e.,uzal~3x2−r2, 3y2−r2, and 3z2

−r2, when the bondki j l is along the cubic axisa=a, b, and
c, respectively. We will similarly denote byujal the orbital
which is orthogonal touzal and is oriented perpendicular to
the bondki j l, i.e., ujal~y2−z2, z2−x2, andx2−y2, for a bond
ki j l along the axisa=a, b, andc, respectively. While such a
choice of basis, that depends on the bond direction under
consideration, is convenient for writing down the kinetic en-
ergy, one cannot avoid to choose a particular orthogonal ba-
sis for the two orbital flavors as soon as one wants to intro-
duce a Hubbard term to describe the local electron
interactions. The usual choice is to take

uzl ;
1
Î6

s3z2 − r2d, uxl ;
1
Î2

sx2 − y2d, s2.2d

calledreal orbitals. However, because this basis is the natu-
ral one only for the bonds parallel to thec axis but not for
those in thesa,bd plane, the kinetic energy then takes the
form15,16

Ht = −
1

4
t o
ki j lia,b

f3cix
† cjx + ciz

†cjz 7 Î3scix
† cjz + ciz

†cjxdg

− t o
ki j lic

ciz
†cjz, s2.3d

and although this expression is of course cubic invariant, the
representations2.3d of the hopping does not exhibit this sym-
metry but takes a very different appearance depending on the
bond direction.

We thus prefer to use instead the basis ofcomplex orbitals
at each site17

u + l =
1
Î2

suzl − i uxld, u− l =
1
Î2

suzl + i uxld, s2.4d

corresponding to “up” and “down” pseudospin flavors, with
the local pseudospin operators defined as

Ti
+ = ci+

† ci−, Ti
− = ci−

† ci+,

Ti
z = 1

2sci+
† ci+ − ci−

† ci−d = 1
2sni+ − ni−d. s2.5d

For later reference it is convenient to introduce also electron
creation operatorsci

†sci ,uid which createeg electrons in or-
bital coherent states, defined as

uVil = e−iui/2 cosSci

2
Dui + l + e+iui/2 sinSci

2
Dui − l, s2.6d

in analogy with the well-known spin coherent states.18 The
expectation value of the local pseudospin operator in the
coherent orbitals2.6d behaves like a classical vector,19

kViuTiuVil = 1
2ssinci cosui,sinci sinui,coscid, s2.7d

traversing a sphere, with the “equatorial plane”sci =p /2d
corresponding to real orbitals uVisp /2 ,uidl;uiuil
=cossui /2duizl−sinsui /2duixl, and the “poles”sci =0 andci

=pd to the complex orbitalsui +l and ui −l. The three direc-
tional orbitalsuizal at site i, associated with the three cubic
axessa=a,b,cd are the real orbitals withui being equal to
qa=−4p /3, qb= +4p /3, andqc=0, respectively, i.e.,

uizal =
1
Î2

fe−iqa/2ui + l + e+iqa/2ui − lg

= cossqa/2duizl − sinsqa/2duixl, s2.8d

and thus correspond to the pseudospin lying in the equatorial
plane and pointing in one of the three equilateral “cubic”
directions defined by the anglesqa.

In the complex-orbital representations2.4d the orbital
Hubbard modelfor eg electrons takes the form

H = −
1

2
to

a
o

ki j lia
fsci+

† cj+ + ci−
† cj−d

+ gse−ixaci+
† cj− + e+ixaci−

† cj+dg

+ Uo
i

ni+ni−, s2.9d

with xa= +2p /3, xb=−2p /3, and xc=0, and where the
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newly introduced parameterg, explained below, takes the
valueg=1. The appearance of the phase factorse±ixa is char-
acteristic of the orbital problem—they occur because the or-
bitals have an actual shape in real space so that each hopping
process depends on the bond direction. The form of the in-
terorbital Coulomb interaction~U is invariant under any lo-
cal basis transformation to a pair of orthogonal orbitals; it
gives an energyU either when two real orbitals are simulta-
neously occupied,Uoinixniz, or when two complex orbitals
are occupied, as in Eq.s2.9d.

The representations2.9d has several advantages:sid It dis-
plays manifestly the cubic symmetry, since the transforma-
tion xa→xa−2p /3 fwhich amounts in Eq.s2.9d to the cy-
clic permutation a→b→c→a of the cubic axesg in
conjunction with the corresponding phase shift of the elec-
tron operators ci±

† →ci±
† e±2ip/3 swhich permutes the

uzal-orbitals according to 3x2−r2→3y2−r2→3z2−r2→3x2

−r2d leaves the Hamiltonians2.9d invariant. sii d It exhibits
clearly the difference between the spin case and the orbital
case. In the orbital case there is both pseudospin-conserving
hopping fthe first line in Eq. s2.9dg and pseudospin-
nonconserving hoppingfthe second line in Eq.s2.9dg,
whereas in the corresponding spin case, i.e., in the standard
Hubbard model, there is of course only spin-conserving hop-
ping and the second term is absent. Thus the present
complex-orbital representation allows us to introduce the pa-
rameterg by which one can turn theeg-band orbital Hubbard
model sg=1d into what is formally a spin Hubbard model
with the same hopping amplitudessg=0d, interpreting “1”
and “2” as “spin up” and “spin down.” This device makes it
very easy to recognize the differences in physical behavior
between the orbital case and the spin case: the parameterg
will of course show up in all analytical expressions below,
and one can compare at a glance the result for the orbital
casesg=1d with that for the spin casesg=0d. At the present
stage one can already observe from Eq.s2.9d that there is
morekinetic energy available per electron in the orbital case,
because additional hopping channels are present. We will see
below that this has important consequences for the relative
stability of various states.siii d Finally, it shows explicitly that
rotational SUs2d symmetry for the pseudospins is absent,2

which in the complex-orbital representation is immediately
obvious from the presence of the pseudospin-nonconserving
hopping term~g in Eq. s2.9d. Thus the components of the
total pseudospin operatorT=oiTi are conserved only atg
=0 si.e., fT ,Hg=0d, while the terms~g in H commute in-
stead with the staggered pseudospin operatorT Q

z

=oi expsiQ ·RidT i
z, whereQ=sp ,p ,pd.

B. New features compared with the spin case

It is instructive to follow the changes of the electronic
structure of the uncorrelated bandfi.e., with U=0 in Eq.
s2.9dg with increasingg s0øgø1d. When the hopping is
only diagonal between pairs ofu1l andu2l states atg=0, the
pseudospin bands are degenerate, and the density of states
has the familiar shape obtained for a simple cubic lattice,
with bandwidth 6t, corresponding to the hopping elements of
1
2t fFig. 1sadg. Increasingg removes the degeneracy of the

electron bands and gives increasing spectral weight near the
band edges without modifying the bandwidth. For genuineeg
electronssi.e., at g=1d the density of states does not start
from zero atv= ±3t, as usually for three-dimensionals3Dd
lattices, but is finite there and has a value close to its average
over the entire bandfFig. 1sddg. Not only is the spectral
weight transferred to lower energies, but even the Fermi en-
ergy at fixed electron densityn,1 decreases with increasing
g, as shown in the example ofn=0.7 in Fig. 1. Therefore, for
a given electron density, atU=0 the kinetic energy ofeg
electronssi.e., at g=1d is lower than in the corresponding
spin casesat g=0d.

Finally, some remarks on the physical interpretation of the
orbital Hubbard model are in place here. The first of them
concerns electron spin. As said, the electrons in the model
are spinlessfcf. Eq. s2.1dg, which at first sight may seem
unphysical. However, such a model is entirely appropriate
for real, i.e., spincarryingeg electrons in a FM state, where
the spins are fully polarized. This situation can be realized in
a strong magnetic field, or, as in manganites, when the
double exchange polarizes thet2g core spins which in turn
polarize theeg band by strong Hund’s rule coupling. Then
the spin degrees of freedom are completely frozen out and
only the orbital degrees of freedom remain and can contrib-
ute to the kinetic energy. Actually, Eq.s2.1d fbut with the
additional constraint of no double occupancyg is precisely
the expression for the kinetic energy of theeg band in the
metallic ferromagnetic phase of the doped manganites
La1−xAxMnO3 swith A=Sr, Ca, . . ., andx,0.3d when these
are described by an extendedsorbital-degenerate and large
spind t-J model.12 So theU→` limit of the present orbital
Hubbard models2.9d is directly relevant for the physics of

FIG. 1. Evolution of the density of statesNsvd sin units of t
=1d obtained for the tight-binding models2.9d at U=0 with increas-
ing off-diagonal hoppinggt: sad g=0, sbd g=0.5, scd g=1/Î2, and
sdd g=1; g=0 andg=1 corresponds to the spin and to the orbital
Hubbard model, respectively. Dashed lines show, for the same elec-
tron filling n=0.7 in all cases, the Fermi energy, which decreases
with increasingg for n,1.
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the manganites, and for this reason we will pay extra atten-
tion to this limit.

The second remark concerns the parameterg. As one can
readily verify, the kinetic terms in Eq.s2.9d with arbitraryg
are equivalent to the kinetic energy Hamiltonian

Ĥt = −
1

2
to

a
o

ki j lia
fs1 + gdciza

† cjza
+ s1 − gdcija

† cjja
g, s2.10d

which reduces toHt fEq. s2.1dg for g=1. So, although we
have introduced the parameterg purely as a formal device, it
actually describes the relative strength of hopping between
the ujal orbitals perpendicular to a bond, and one sees that
g=1 corresponds to “z-hopping only,” g=0 to “z-hopping
andj-hopping equally strong”sequivalent to the spin case as
discussed aboved, andg=−1 to “j-hopping only.” Although
suchj-hopping occurs, for instance, in transition metals as a
sdddd element, and is symmetry-allowed in the perovskites,
it cannotoccur by the familiar mechanism of two-step hop-
ping sneithers-type norp-typed via a 2p orbital on the oxy-
gen ion in between two transition metal ions. It is therefore
generally accepted that in physically relevant cases this hop-
ping process is smaller by at least two orders of magnitude
than that betweenuzal orbitals, and thus, to our knowledge,
all work on the manganites has actually been done assuming
purez-hopping, i.e.,g=1. Nevertheless, we will occasionally
let g vary between 0 and 1, not with the intention to suggest
that a significant strength ofj-hopping is actually physically
relevant, but rather with the purpose of demonstrating how
the pseudospin-nonconserving hopping affects the physical
properties of strongly correlated electrons in a partly filled
band.

The third remark concerns the difference between real and
complex orbitals. It is noteworthy that, unlike in the spin
case, already for an individual site there is no spherical sym-
metry in pseudospin space even at the classical level: the
directions available to the pseudospinvector arenot all physi-
cally equivalent. In particular, the real orbitals are spatially
anisotropic and have a nonzero diagonal electric quadrupole
momentsEQMd, kTi

xl2+kTi
yl2Þ0, whereas the complex orbit-

als have a cubic shape, with onlykTi
zlÞ0. This difference is

of course the origin for the hopping Hamiltonian not having
SUs2d symmetry. Moreover, as pointed out by Van den Brink
and Khomskii,20 in a real compound like a perovskite the
EQM couples directly to the lattice, and occupancy of a real
orbital would induce a local Jahn-TellersJTd distortion
whereas occupancy of a complex orbital would not.21

III. ORBITAL ORDERED STATES

A. Uniform and alternating orbital order

Because the electrons interact by the local Coulomb inter-
action U, they are prone to instabilities towardsorbital or-
der, similar to the magnetic instabilities towards spin order
in the spin case,22 to which we will compare them. At half-
filling sn=1d the simplest possibility to reduce the interaction
energy~U would be to polarize the system completely into
ferro-orbital sFOd states,

uFFOl = p
i

ci
†sc,udu0l, s3.1d

with the pseudospin pointing in the same direction at all
sites. As in the spin case, another possibility isalternating
orbital sAOd order,

uFAOl = p
iPA

ci
†scA,uAdp

jPB

cj
†scB,uBdu0l, s3.2d

with orbitals alternating between two sublatticesA and B
which cover a cubic lattice. Depending on whether orbitals
alternate in every direction, or whether there are lines or
planes of ferro-orbital order, these states are classified as
G-type sfor spin called Néel statesd, C-type, or A-type AO
states. Doubly occupied sites are explicitly avoided in all
these states. If the band is partly filledsn,1d, these ordered
states must of course be modified to involve a coherent mix-
ture of orbital-polarized occupied sites and empty sites. Such
fully polarized states are appropriate only in theU→` limit,
where double occupancy is fully suppressed by the Hubbard
term and only the kinetic energy,Ekin=kHtl, remains rel-
evant.

In contrast to the spin case, where because of theSUs2d
symmetry both the FM spin state and the AF spin state are
unique, in the present orbital case withoutSUs2d symmetry
there is already a plethora of physically different ordered
states even if one does not go beyond two sublattices. In
particular, as shown by Takahashi and Shiba,23 Maezono and
Nagaosa,24 Shenet al.,25 and particularly stressed by Van den
Brink and Khomskii,20 it makes a big difference whether one
builds an ordered state completely from complex orbitals
sand empty sitesd fi.e., c, cA, cB=0, pg, leading to what we
shall call complex states, or whether one uses exclusively
real orbitalsfi.e., c, cA, cB=p /2g, thus constructingreal
states. This can be conveniently demonstrated explicitly by
formalizing the description of theU→` limit by means of
the slave fermion formalism, which permits treatment of the
general casesi.e., arbitraryc’s and u’sd. We present such
states here in some detail, since theU→` limit will serve as
a reference in the later discussion.

So we introduce orbital bosonsbih
† swith h= + ,−d to rep-

resent the occupiedeg orbitals, u± li =ci±
† u0l;bi±

† uvacl, and
positively charged slave fermionsf i

† to represent the empty
sites, u0li ; f i

†uvacl. Thus the original electron operators are
replaced according toci±

† =bi±
† f i, and the Hamiltonian takes

the form

HU=` = +
1

2
to

a
o

ki j lia
f i
†f jfsbi+bj+

† + bi−bj−
† d

+ gse+ixabi+bj−
† + e−ixabi−bj+

† dg, s3.3d

with the local constraint

bi+
† bi+ + bi−

† bi− + f i
†f i = 1, s3.4d

implementing the condition of no double occupancy. Orbital
order is then imposed by treating the bosons in mean field
approximation, i.e., by making the replacementsfcompare
Eq. s2.6dg26
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bi+ → cossci/2de−iui/2,

bi− → sinsci/2de+iui/2, s3.5d

upon which the local pseudospin operatorsTi are given by
Eq. s2.7d. We are then left with a Hamiltonian describing
fermionic holes moving in a background of fixed orbitals.

In the case of FO order the result is explicitly

HU=`
FO = +

1

2
to

a
o

ki j lia
f1 + g sinc cossu − xadgf i

†f j .

s3.6d

Upon Fourier transformation one obtains, reverting to the
electron description, a single band with dispersion depending
on the orbital angleshc ,uj,

«U=`
FO skd = − tfAk + g sincscosuCk + sinuDkdg, s3.7d

where

Ak = coska + coskb + coskc, s3.8d

Ck = 1
2s2 coskc − coska − coskbd, s3.9d

Dk = 1
2
Î3scoska − coskbd. s3.10d

One notes thatCk andDk transform as theu and« compo-
nents of anE doublet, which makes Eq.s3.7d a cubic invari-
ant si.e., it does not change under the transformationu→u
−2p /3 and the simultaneous permutationka→kb→kc→kad.
It will be useful to introduce also

Pk = o
a

e+ixa coska = Ck + iDk , s3.11d

which gets multiplied by the phasefactore−i2p/3 under the
permutationka→kb→kc→ka, as well as the associated am-
plitude,

Bk = uPku = hCk
2 + Dk

2j1/2

= hcos2 ka + cos2 kb + cos2 kc

− scoska coskb + coskb coskc

+ coskc coskadj1/2, s3.12d

which transforms asA1, i.e., has cubic symmetry.27

Amongst the various phases with AO order let us consider
first those ofG-type sNéel-typed, denoted byG-AO. One
obtains from Eq.s3.3d the two-sublattice Hamiltoniansi
PA, j PBd,

HU=`
G-AO =

1

2
to

a
o

ki j lia
hfcosc− cosu− − i cosc+ sinu−g

+ gfsinc+ cossu+ − xad + i sinc− sinsu+ − xadgjf i
†f j ,

s3.13d

depending on the orbital angleshcA,cB,uA,uBj, for which
we introduce the shorthand notation forhalf the intersublat-
tice angles,

c± = 1
2scA ± cBd, u± = 1

2suA ± uBd. s3.14d

Upon Fourier transformation and diagonalization of the re-
sulting 232 matrix this yields two electron bandssin the
reduced Brillouin zoned,

«U=`,±
G-AO skd = ± thfcosc− cosu−Ak + g sinc+scosu+Ck

+ sinu+Dkdg2 + fcosc+ sinu−Ak

− g sinc−ssinu+Ck − cosu+Dkdg2j1/2. s3.15d

By a similar derivation one may obtain the electronic struc-
ture for theA-type andC-type AO phases. Using the same
notation as above one finds

«U=`,±
A-AO skd = t o

a=a,b
H1 +

1

2
gfsincA cossuA − xad + sincB cossuB − xadgJcoska ± tHSg

2 o
a=a,b

fsincA cossuA − xad

− sincB cossuB − xadgcoskaD2

+ fscosc− cosu− + g sinc+ cosu+d2 + scosc+ sinu− − g sinc− sinu+d2gcos2 kcJ1/2

,

s3.16d

«U=`,±
C-AO skd = tHS1 +

1

2
gfsincA cosuA + sincB cosuBgDcoskc ± FHg

2
ssincA cosuA − sincB cosuBdcoskcJ2

+ Hcosc− cosu−scoska + coskbd + g sinc+FcosSu+ −
2p

3
Dcoska + cosSu+ +

2p

3
DcoskbGJ2

+ Hcosc+ sinu−scoska + coskbd − g sinc−FsinSu+ −
2p

3
Dcoska + sinSu+ +

2p

3
DcoskbGJ2G1/2J . s3.17d
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It is now straightforward to derive from Eqs.s3.7d and
s3.15d–s3.17d the dispersion in any particular orbital-ordered
phase with eithercomplexor real orbitals.

For the FOr fc=p /2g and the various AOr fcA=cB

=p /2g real statesthe dispersions are

«U=`
FOr skd = − tfAk + gscosuCk + sinuDkdg, s3.18d

«U=`,±
G-AOrskd = ± tfcosu−Ak + gscosu+Ck + sinu+Dkdg,

s3.19d

«U=`,±
A-AOrskd =

1

3
ths2 − g cosu+ cosu−dsAk − Ckd

+ 3g sinu+ cosu−Dk ± f„g sinu+ sinu−sAk − Ckd

+ 3g cosu+ sinu−Dk…
2 + „scosu− + g cosu+d

3sAk + 2Ckd…2g1/2j, s3.20d

«U=`,±
C-AOrskd =

1

3
ths1 + g cosu+ cosu−dsAk + 2Ckd

± f„g sinu+ sinu−sAk + 2Ckd…2 + „s2 cosu−

− g cosu+dsAk − Ckd + 3g sinu+Dk…
2g1/2j.

s3.21d

In contrast to the complex states discussed below,all real
states, whether FO or AO of any type and whatever the value
of u sor uA and uBd, explicitly break cubic symmetry, i.e.,
their dispersion is anisotropic. This nonequivalence between
real and complex states is a manifestation of the broken
SUs2d symmetry in the orbital Hubbard models2.9d. In ex-
treme cases the dispersion is two-dimensionals2Dd. For in-
stance, the dispersion of the “antiferro”si.e., with TA=−TBd
G-type AO state with alternatinguxl and uzl orbitals sG
-AOxzd fwith uA=0 anduB=pg,

«U=`,±
G-AOxzskd = ± gtDk = ± gt

Î3

2
scoska − coskbd,

s3.22d

is 2D because the hopping along thec axis is fully sup-
pressed whenx2−y2 and 3z2−r2 orbitals alternate. Similarly,
the dispersion of the fullyuxl-polarizedsFOxd statesu=pd,

«U=`
FOx skd = − tfAk − gCkg = − tfs1 + 1

2gdscoska + coskbd

+ s1 − gdcoskcg , s3.23d

becomes 2D in the genuine orbital casesg=1d, because
when onlyx2−y2 orbitals are occupied, the only type of hop-
ping allowed in this case, i.e.,z-hoppingfsee Eq.s2.10dg, is
suppressed along thec axis.

Other states are also anisotropic but typically have disper-
sion with contributions due to all three cubic directions. As
an example, the dispersion of theG-type AO state with al-
ternating 3x2−r2 and 3y2−r2 orbitals suA=−uB=−4p /3d
along thea andb cubic axessG-AOabd,

«U=`,±
G-AOabskd = ± tf− 1

2Ak + gCkg
= 7

1
2tfs1 + gdscoska + coskbd

+ s1 − 2gdcoskcg, s3.24d

is cubic atg=0, but becomes predominantly but not fully 2D
for g=1. By contrast, the dispersion of thesuA=−uB=p /2d
state, with alternation between symmetric and antisymmetric
combinations,suxl+ uzld and suxl− uzld, calledG-AOsa,

«U=`,±
G-AOsaskd = ± gtCk

= ± gtf− 1
2scoska + coskbd + coskcg ,

s3.25d

is quasi-one-dimensionalsquasi-1Dd, qualitatively similar to
that of theuzl-polarizedsFOzd statesu=0d,

«U=`
FOz skd = − tfAk + gCkg = − tfs1 − 1

2gdscoska + coskbd

+ s1 + gdcoskcg , s3.26d

which becomes quasi-1D in the orbital casesg=1d.
The reduced symmetry of the FOx and FOz states is re-

flected in their respective densities of states, shown in Fig.
2sdd, which lead to favorable kinetic energiesfsee Fig. 3sddg,
as discussed in Sec. III B. Obviously, such broken-symmetry
states could be favored either in low dimensional systems, as
the FOx state found for a 2D square lattice,28 and suggested
for bilayer manganites,29 or by a strong JT effect favoring a
particular type of occupiedeg orbitals due to oxygen distor-
tions, as realized, for instance, in bilayer systems.30 The lat-
ter applies also for theG-type AO states, which have typi-
cally smaller bandwidths than the FO states; a few examples
are shown in Figs. 2sbd and 2scd.

As illustrative examples of theA-type andC-type phases
with alternating real orbitalsfeither along thec axis or in the
sa,bd planesg, we give dispersions in each case for:sid uA=
−uB= p/2, i.e., with alternatingsuxl± uzld /Î2 states, andsii d
uA=0, uB=p, with alternatinguxl and uzl states,

«U=`,±
A-AOsaskd =

1

3
th2sAk − Ckd ± gfsAk + 2Ckd2 + 9Dk

2g1/2j

= tHcoska + coskb ± gF3

4
scoska − coskbd2

+ cos2 kcG1/2J , s3.27d

«U=`,±
A-AOxzskd =

1

3
ts2 ± gdsAk − Ckd

= tS1 ±
1

2
gDscoska + coskbd, s3.28d

«U=`,±
C-AOsaskd =

1

3
tfs1 ± gdAk + s2 7 gdCkg

= tFcoskc ±
1

2
gscoska + coskbdG , s3.29d
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«U=`,±
C-AOxzskd =

1

3
thAk + 2Ck ± gfsAk + 2Ckd2 + 9Dk

2g1/2j

= tFcoskc ± gH3

4
scoska − coskbd2 + cos2 kcJ1/2G .

s3.30d

The anisotropy of these phases is quite strong, and theA
-AOxz phase has even a 2D dispersion.

Finally we consider the orbital ordered states withcom-
plex orbitals. For two of these complex states, namely the
ferro u1l-polarized orbital ordersFO+d fc=0g and the
G-type alternating orbital ordersAO± d with u+l / u−l stag-
gered orbitalsfwith cA=0 andcB=pg, all cubic directions
are equivalent, and one finds the dispersions

«U=`
FO+skd = − tAk s3.31d

and

«U=`,±
G-AO±skd = ± gtBk , s3.32d

respectively. Thus one finds that the dispersion of the FO+
state and its density of states, shown in Fig. 2sad, is that of a
simple cubic lattice, as it originates entirely from the
pseudospin-conserving hopping~ci±

† cj±, because atU→`
the alternating, pseudospin-nonconserving, hopping is fully
suppressed by the imposed FO+ order. The reverse is true in
the G-AO± state: here the dispersion~±Bk comes entirely
from the alternating hopping~ci±

† cj7, as the pseudospin-
conserving hopping is fully suppressed by the AO± order. It
is an important feature of both these complex states, built
from cubic orbitals, that theyretain cubic symmetry. Pre-
cisely for that reason these complex orbital ordered states
were proposed as candidates for the ground state of the FM

FIG. 2. sColor onlined Density of statesNsvd at g=1 sin units of
t=1d for different orbital ordered phases:sad complex orbital order:
uniform FO+ fdegenerate withA-AO±g ssolid lined, G-AO± sfilled
circlesd, andC-AO± sdashed lined; sbd alternating real orbital order
in G-type phases:G-AOsa ssolid lined fthe same density of states is
obtained forC-AOsa phaseg, G-AOxz sdashed lined, andG-AOab
scirclesd; scd alternating real orbital order in selectedC- andA-type
phases:C-AOxz ssolid lined, A-AOxz sdashed lined, and A-AOsa
ssquaresd; and sdd real uniform orbital order FOx ssolid lined and
FOz sdashed lined.

FIG. 3. sColor onlined Kinetic energy gainslossd DE/ t with
respect to FO+ phasefreference zero energy given by horizontal
dotted linesg, as a function of electron fillingn for various orbital
ordered phasessat U=`d: sad complex orbital order:G-AO± sfilled
circlesd, andC-AO± sdashed lined; sbd alternating real orbital order
in G-type phases:G-AOsa ssolid lined fdegenerate withC-AOsa
phaseg, G-AOxz sdashed lined, andG-AOab scirclesd; scd alternat-
ing real orbital order in selectedC- and A-type phases:C-AOxz
ssolid lined, A-AOxz sdashed lined, andA-AOsa ssquaresd; and sdd
uniform real orbital order FOx ssolid lined and FOz sdashed lined.
The long-dashed line insdd shows the kinetic energy for noninter-
acting electrons in theeg bandsdisordered phase atU=0d.
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metallic phase of the manganites20,23 to explain the observed
cubic symmetry of the magnon spectra.31,32

The other two orbital-ordered complex states break ex-
plicitly cubic symmetry: theA-type andC-type AO± states.
In theA-AO± state layers ofu1l andu2l orbitals alternate in
the c direction, resulting in the dispersion

«U=`,±
A-AO±skd =

1

3
tfs2 ± gdAk − 2s1 7 gdCkg

= tscoska + coskb ± g coskcd. s3.33d

This dispersion is qualitatively equivalent to that of the
FO+ state, and thus the densities of states of the FO+ and
A-AO± phases are the same. The reason is that replacing in
thec-direction every secondu1l orbital by au2l orbital does
not affect the hopping parameter alongc, and so the resulting
doubling of the unit cell only halves the Brillouin zone with-
out changing the dispersion. In theC-AO± state instead col-
umns of u1l and u2l orbitals alternate in thesa,bd planes,
and one finds

«U=`,±
C-AO±skd =

1

3
thAk + 2Ck ± gf9Dk

2 + sAk − Ckd2gj

= tfcoskc ± gscos2 ka + cos2 kb − coska coskbd1/2g.

s3.34d

In contrast to the FO+,G-AO±, and A-AO± phases, the
C-AO± phase is not cubic symmetric.

The densities of states of the complex states show a
gradual crossover with increasing alternating orbital charac-
ter from the full bandwidth of 6t for the FO+ andA-AO±
phases, obtained also atU=0 both for the spin problem and
for the eg band sFig. 1d, to a narrower bandwidth of 2s1
+Î3dt for theC-AO± phase, and finally to a bandwidth of 4t
for theG-AO± phase. It is remarkable that, upon going from
the FO+ phase to theA-AO± phase, the change from uni-
form to alternating orbital order along only one cubic direc-
tion does not modify the density of states, while the density
of states changes its shape completely upon going to the
G-AO± phase, with a large spectral weight accumulated now
close to the band edges, resulting in a quite peculiar density
of states with large maxima close touvu.2gt, separated by a
minimum with Ns0d=0 at v=0 fFig. 2sadg. The density of
states for theC-AO± phase has a width of 2s1+Î3dt, and
represents an intermediate case, having some features in
common with that of theG-AO± phase.

B. Densities of states and kinetic energies in orbital ordered
states

It is worthwhile to consider next the densities of states of
various orbital ordered states in a little more detailssee Fig.
2d, and investigate their consequences for the kinetic energy
sFig. 3d. Focusing first on the bandwidth, we note that for
any FO state this takes the maximum attainable value 6t.
This result is not limited to the FO states considered explic-
itly above, i.e., the complex FO+ and the real FOz and FOx
states, for which it was already pointed out by Van den Brink
and Khomskii,20 but holds in general, i.e., for arbitraryc and

u, as readily shown from Eq.s3.7d. Moreover, the result is
independent ofg and so holds both in the orbital case and in
the spin case.

By contrast, in anyG-type AO state the bandwidth is
smallerthan 6t fsee Fig. 2sbdg, and depends ong. In particu-
lar, in any G-type “antiferro” stateswith TA=−TB, so cB
=p−cA and uB=uA−pd, such as the complexG-AO± state
or the realG-AOxzandG-AOsastates considered above, the
width is proportional tog sviz. 4gt, 2Î3gt, and 4gt, respec-
tively, for those threed as follows from Eq.s3.15d. In such a
state the bandwidth therefore, correctly, collapses to zero in
the spin casesg=0d where hopping is completely suppressed
by the AF spin order.33 The important point to note here is
that at finiteg, and so in particular in the genuine orbital
case, the bandwidth even of an “antiferro” state isfinite
though smaller than that of the FO states. Thus, while in the
spin case the kinetic energy of carriers is fully lost when
going from FM to Néel-type AF order, this is not so for the
analogous FO toG-type AO transition in the orbital case.

One might still be tempted to believe that, as familiar
from the spin case, also in the orbital case FO order is most
favorable for lowering the kinetic energy of charge carriers,
simply because this gives the largest bandwidth. However,
the situation is not that simple, not only because there are
several inequivalent FO states with different densities of
states which have nevertheless the same bandwidth, but also
because someA-AO andC-AO phases have again the same
bandwidth, and so one really has to consider the details of
the density of states in each case. This is demonstrated in
Fig. 3, which shows the kinetic energy gainDE with respect
to the complex FO+ state as a function of electron fillingn
for various FO and AO states withscomplex or reald orbital
order, obtained by straightforward integration of the respec-
tive density of states. Indeed, at small electron fillingn, and
also at small dopingx=1−n, DE is lower for the sFO,
A-AO, andC-AOd states with full bandwidth 6t than for any
state with a narrower density of states, in particular for the
G-type AO states of Fig. 3sbd, because the first doped holes
enter in the former case with an energy,−3t close to the
band edge, while the lowest accessible energy is higher in all
G-AO states. Note that the orbital order observed in LaMnO3
is close to that of theC-AOsaphase,34 and this phase has the
same density of states as theG-AOsa phasefsee Fig. 2sbdg,
and thus has a rather unfavorable kinetic energyfFig. 3sbdg.
This demonstrates that both an interplay between spin and
orbital order due to the SE interactions at finiteU, and the JT
interactions between orbitals on neighboring sites, induced
by the coupling to the lattice, play an important role in real
materials and stabilize the orbital order observed in undoped
LaMnO3.

6,35

Among the states with AO order of real orbitals, but FO
order along one or two cubic directions, we identified three
phases,C-AOxz, A-AOxz, and A-AOsa, which have lower
energies than the FO+ phase close ton=0 and n=1 fFig.
3scdg. All of them have the full bandwidth 6t fFig. 2scdg, but
a finite density of states atv=−3t gives theA-AOxz phase
the lowest energy of these phases at very lown or x. At
somewhat higher fillingn,0.07 sdopingx,0.07d the other
two phases take over, and are in fact more stable than the
FO+ phase in the entire regime ofn. This follows from the
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large densities of states of these phases atuvu.2t. In con-
trast, theA-AOxz phase with a large spectral weight close to
v=0 has a higher energy than the FO+ phase in a broad
range of electron filling 0.11,n,0.89.

The above discussion shows that at finite but still rather
modest electron filling or doping, the overall shape of the
density of states becomes more important, and the states with
large density of states near the band edges could be favored
a priori, even in cases when the bandwidth is smaller that 6t.
An interesting example here is the complex “antiferro”
G-AO± state, with its energy falling below that of the com-
plex FO+ state forn.0.27 orx.0.27fFig. 3sadg, because of
the large number of states available in theG-AO± state just
close to the band edges atuvu=2t, whereas in the FO+ state
the energy of available electron states, though initially −3t,
rises rapidly with increasing dopingfFig. 2sadg. However, in
reality the transition from an FO+ toG-AO± state does not
happen, as the real FOsFOz and FOxd states have even lower
kinetic energy throughout than both complex states. This can
be ascribed to the lower-dimensional nature of their disper-
sion and the resulting different location of the Van Hove
singularities, whichfcompare Fig. 2sddg enhances the density
of states near the band edges at ±3t and at the band center for
the 2D FOx state, and in the intermediate ranget& uvu&2t
for the quasi-1D FOz state. As a result, at small fillingsdop-
ingd the kinetic energy gainDE is the lowest one for the FOx
state, while at larger fillingn*0.30 sdoping x*0.30d, the
FOz state takes over. However, in this regime of electron
filling the energy gainDE for theA-AOsa phase is lower by
a few percent, and the two phases may be considered as
practically degenerate.

For comparison and later reference we have included in
Fig. 3 also the kinetic energy for the uncorrelatedeg band
sthe correlated OL phase is analyzed in Sec. Vd. Of course, at
U=0 any kind of orbital order is absent and one finds by far
the lowest kinetic energy for the disorderedeg orbitals. The
eg bands have then the dispersion given by

«U=0,±skd = − tsAk ± gBkd. s3.35d

Remarkably, these bands atU=0 represent formally a super-
position of the FO+ andG-AO± bands atU=`,

«U=0,±skd = «U=`
FO+skd + «U=`,±

G-AO±skd, s3.36d

and so naturally also show full cubic symmetry and a band-
width equal to 6t fFig. 1sddg. One notes that, because both
pseudospin-conserving and pseudospin-nonconserving hop-
ping channels fully contribute here, considerably more ki-
netic energy can be gained than in any of the orbital-ordered
states. In particular, as Fig. 1sdd shows, there is a large den-
sity of states at and near the band edges, and thusDE is the
lowest in this disordered state already at small electron filling
n, and then remains so throughout. Of course, this large ki-
netic energy gain will be partly lost for largeU nearn=1,
where at least one hopping channel gets partially suppressed
by electron correlations. However, the result here indicates
that the tendency towards the OL state with disorderedeg
orbitals is particularly pronounced. We shall come back to
this point, presenting more evidence in favor of the corre-
lated OL phase, in Sec. V.

IV. HARTREE-FOCK APPROXIMATION

A. Instabilities towards orbital order

We turn now to the orbital Hubbard models2.9d with
finite U, where it is to be expected that polarization, when it
occurs, need not be complete but can be partial, as in the spin
case. Also, the existence of orbital ordered states will in gen-
eral require a sufficiently largeU / t. Which instabilities to-
wards orbital ordering occur and at what value ofU / t can be
investigated either by considering the corresponding suscep-
tibilities, e.g., in random phase approximation,23 or by com-
paring the energies determined in the HF approximation.20 If
various ordered states are possible, one needs to calculate
their energysor free energy at finite temperatured to deter-
mine which one is actually realized.

In the absence ofSUs2d symmetry it is not sufficient to
decouple the interaction term in Eq.s2.9d in the familiar
mean-field way,ni+ni−.skni+lni−+ni+kni−l−kni+lkni−ld, but
one needs instead the general HF decoupling,

ni+ni− . skni+lni− + ni+kni−l − kni+lkni−ld

− skTi
+lci−

† ci+ + ci+
† ci−kTi

−l − kTi
+lkTi

−ld. s4.1d

In the FO case, i.e., when one assumes a single three-
component order parameter,Tz=kTi

zl, T+=kTi
+l, T−=kTi

−l, one
obtains upon Fourier transformation the HF Hamiltonian

HHF
FO = o

k
sck+

† ck−
† dS 1

2Un − UTz − tAk − UT− − gtPk
*

− UT+ − gtPk
1
2Un + UTz − tAk

D
3Sck+

ck−
D − 1

4Un2 + UsTz
2 + T+T−d, s4.2d

with Pk given by Eq.s3.11d. The eigenvalues areswith T+
=Teiu, T−=Te−iu, so thatT+T−=T2=Tx

2+Ty
2d

«±
FOskd = − tAk + Us 1

2n ± Êkd , s4.3d

where

Êk = FT2 + Tz
2 + 2

gt

U
TscosuCk + sinuDkd + Sgt

U
D2

Bk
2G1/2

,

s4.4d

and the HF groundstate energy per site is then given by

EHF
FO =

1

N
o
k

fn−skd«−
FOskd + n+skd«+

FOskdg

−
1

4
Un2 + UsT2 + Tz

2d, s4.5d

wheren−skd fn+skdg is the occupation number of the lower
supperd band. For largeU s*6td a gap opens, and so for less
than half-filling only the lower band is occupied. Setting the
derivatives ofEHF

FO with respect ton, Tz, T, and u equal to
zero then yields the self-consistency equations

n =
1

N
o
k

n−skd, s4.6d
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Tz =
1

2

1

N
o
k

n−skd
Tz

Êk

, s4.7d

T =
1

2

1

N
o
k

n−skd
T +

gt

U
scosuCk + sinuDkd

Êk

, s4.8d

0 =
1

2N
o
k

n−skd
TssinuCk − cosuDkd

Êk

. s4.9d

While Eq.s4.6d is trivially satisfied in the sense that it simply
fixes the Fermi level for given fillingn, two general conclu-
sions can be proven from the remaining three equations.
Firstly, it follows from Eq.s4.9d, because of the dependence

of Êk on Ck andDk fsee Eq.s4.4dg and the explicit form of

the latter two functionsfsee Eqs.s3.9d and s3.10dg, that for
nonzeroT the azimuthu must equal either 0sor equivalently
+2p /3 or −2p /3d or p sor equivalently −p /3 or +p /3d, i.e.,
the projection of the order parameter on the “real” equatorial
plane has to be along one of the cubic directions. Secondly, it
follows that both a purely complex statesi.e., T=0, TzÞ0d
and a purely real statesi.e., Tz=0, TÞ0d are permissible
states, in the sense thatTz=0 is a self-consistent solution of
Eq. s4.7d and alternativelyT=0 is one of Eq.s4.8d. We re-
mark that both these properties of the possible states need
not be postulated or assumed but are proven here from the
HF self-consistency equations.

As C-type andA-type AO phases would give qualitatively
similar results, we will consider from now on onlyG-type
AO phases, and denote them for brevity by “AO” instead of
by “G-AO.” So we assume independent three-component or-
der parameters on interlacing sublattices A and B,Tz

A

=kTi
zlA, Tz

B=kTi
zlB, etc. Then the HF Hamiltonian is

HHF
AO = o

k 1
cA,k+

†

cA,k−
†

cB,k+
†

cB,k−
†
2

T

1
1
2Un − UTz

A − UT−
A − tAk − gtPk

*

− UT+
A 1

2Un + UTz
A − gtPk − tAk

− tAk − gtPk
* 1

2Un − UTz
B − UT−

B

− gtPk − tAk − UT+
B 1

2Un + UTz
B
21cA,k+

cA,k−

cB,k+

cB,k−

2
− 1

4Un2 + 1
2UfsTz

Ad2 + T+
AT−

A + sTz
Bd2 + T+

BT−
Bg. s4.10d

Like above, the HF groundstate energy per site is then for-
mally given swith T+

A =TAeiuA, etc.d by

EHF
AO =

1

N
o
b=1

4

o
k

nbskd«b
AOskd −

1

4
Un2

+
1

2
UfsTAd2 + sTz

Ad2 + sTBd2 + sTz
Bd2g, s4.11d

where the sum onb is over the four bands and that onk is
over the reduced Brillouin zone. However, as the 434 ma-
trix in Eq. s4.11d cannot be diagonalized analytically in the
general casesi.e., for arbitrary order parametersd, no further
progress can be made like in the FO case. In particular one
cannot strictly prove that purely real or purely complex states
are permissible solutions.

Yet this still seems likely, and if one makes this assump-
tion, then for the case of the complexsAOcd state, i.e., with
TA =TB=0, the 434 matrix simplifies enough to obtain ex-
plicit expressions for the band dispersions,

«b
AOcskd = + Us 1

2n ± F̂1,k ± F̂2,kd , s4.12d

where

F̂1,k = FSTz
A + Tz

B

2
D2

+ Sgt

U
D2

Bk
2G1/2

, s4.13d

F̂2,k = FSTz
A − Tz

B

2
D2

+ S t

U
D2

Ak
2G1/2

. s4.14d

Setting the derivatives ofEHF
AOc with respect ton, Tz

A andTz
B

to zero yields again HF self-consistency equations. From
these one easily proves thatTz

A =−Tz
B, i.e., that the stable

complex state is actually the AO± state.
For the case of a realsAOrd state, i.e., withTz

A =Tz
B=0, an

analytic solution is also possible, but this is so unwieldy as to
be impractical. However, if one further assumes thatTA

=TB;T one can derive the approximate expressions

«b
AOrskd = ± tfAk cosu− + gsCk cosu+ + Dk sinu+dg

+ Us 1
2n ± Ĝkd , s4.15d

where

Ĝk = FT2 + S t

U
D2

hAk
2 sin2 u−

+ g2sCk sinu+ − Dk cosu+d2jG1/2

, s4.16d

valid in the largeU limit sU / t@1d, and again obtain analytic
self-consistency equations by taking the derivatives ofEAOr

with respect ton, T, u+, andu−. From the latter two one can
now prove the following. First, thatu+=0, i.e.,uA =−uB, so
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the pseudospin vectors on the two sublattices are mirror im-
ages of one another with respect to the cubic directionu=0
sor the equivalent onesu= ±2p /3d. Second, that cosu−
.−sU /3tdx for x! t /U, i.e., uA .p /2+sU /3tdx, so that at
zero doping the stable solution is the AOsa state, and with
increasing doping the pseudospin vectors tilt slightly away
from the cubic direction, making the solution gradually re-
semble more the AOab state.36

As an example of the HF instability at intermediateU we
have investigated how the complex FO+sor the equivalent
FO−d state develops whenU increases, using Eqs.s4.2d and
s4.5d. First, at g=0 one recovers the Stoner criterion
UoNsEFd=1 for the onset of the FM order with increasingU,
with the FM saturated states becoming stable at a still larger
but finite value ofU sFig. 4d. By contrast, in the orbital
model atg=1 the instability is qualitatively different, and the
FO+ sFO−d state appears as aglobal propertyof the band
rather than as an instability at the Fermi surface. The insta-
bility occurs at higher values ofU for any filling than in the
spin case—actually the value of the criticalU is very close to
that giving full magnetic polarization in the spin case.

Here, unlike in the spin case, the FO order implies that the
electronic bands are changed—they develop an additional
splitting above a critical value ofU, which modifies the
shape of the bands and leads to a finite order parameterTz
=kT i

zlÞ0. This mechanism of the instability resembles that
known in the spin case for the onset of antiferromagnetism.
The critical value ofU above which weak order appears has
therefore no relation to the actual shape of the density of
statesssee Fig. 4d.

We decided not to investigate the phase diagram of the
orbital Hubbard model in the HF approximation in detail.
Instead, we concentrate first on the qualitatively novel as-
pects of various possible ordered states in the regime of large
U, where, as we will see, the contrast with the spin case
manifests itself in the most transparent way. Using these re-
sults, we will then comment of the HF phase diagrams ana-
lyzed in detail by several groups,20,23,24in Sec. IV D.

B. Superexchange in the complex orbital states

We have already seen that the analysis of the orbital-
ordered states simplifies when the splitting of the quasiparti-
cle bands~UTz or ~UT is sufficiently large that it opens up
a gap and only the lower bandslowest two bands for AO
orderd is sared partly occupied whennø1. It is then straight-
forward to calculate the energy and the order parameter by
summing over the occupied states.

Consider first the ordered states with complex orbitals. In
the case of the FO+ state the equation for the order param-
eter, from Eqs.s4.8d and s4.4d, takes the simple formsbe-
cause onlyTzÞ0, while T=0d:

Tz =
1

2

1

N
o
k

n−skd
Ek

, s4.17d

Ek = F1 +S gt

UTz
D2

Bk
2G1/2

. s4.18d

Equations4.18d shows explicitly that, unlike in the spin case,
Tz=n/2 only at U=`, basically because the saturated FO+
stateis not an eigenstateof the orbital Hubbard model given
by Eq. s2.9d. Thus the FO+ state is again seen to resemble
the AF phase in the spin model.

Similarly, in the AO± phase for large enoughU the order
parameter is given by

Tz =
1

2

1

N
o
k

n1skd + n2skd
Fk

, s4.19d

Fk = F1 +S t

UTz
D2

Ak
2G1/2

, s4.20d

rather similar to the FO+ cases4.18d, but with the inter-
changeAk ↔gBk. The reason is readily recognized from Eq.
s2.9d: for FO+ order, the diagonal hopping~ci±

† cj± that gives
Ak is order-preserving, while the off-diagonal terms~ci±

† cj7
that produceBk are order-perturbing and reduceTz. For AO±
order this is reversed: the off-diagonal hopping~g that gives
Bk is compatible with the order, while the diagonal one that
givesAk disturbs it.

The similarity between the FO+ and AO± states atg.1
becomes even more transparent at largeU si.e., @td, where
near half-fillingsi.e., for smallx=1−n.0d, upon expansion
up to first order int /U,

Tz
FO+ =

1

2
Hs1 − xd −

3g2

s1 − xd2S t

U
D2J , s4.21d

Tz
AO± =

1

2
Hs1 − xd −

3 − 2x

s1 − xd2S t

U
D2J . s4.22d

Note that a SE contribution~sgtd2/U appears also in the
FO+ state because the off-diagonal hopping permits virtual
charge fluctuations. This result is again qualitatively different
from the spin case, where the SE contributes only in the AF
states, and so destabilizes uniform FM spin order. In the
genuine orbital casesg=1d the reduction of the order param-
eter by SE is the same for FO+ and AO± atx=0, but atx

FIG. 4. sColor onlined Stoner instability towards FO+ partly
polarized statessfull lined as a function of band fillingn in the
orbital Hubbard modelsg=1d, and the inverse of theeg density of
states of Fig. 1sdd sdotted lined; full polarization occurs only in the
limit U=`. For the spin modelsg=0d, the corresponding Stoner
instability sdashed-dotted lined is given by the inverse of the density
of states shown in Fig. 1sad, while saturated FM states occur above
the dashed line.
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*0 it is slightly larger for the FO+ phase. The corresponding
expressions for the energy, up to second order int /U, be-
come

EFO+ = − t
1

No
k

n−skdAk −
3g2

2s1 − xd
t2

U
, s4.23d

EAO± = − gt
1

No
k

fn1skd − n2skdgBk −
3 − 2x

2s1 − xd
t2

U
.

s4.24d

Both are seen to be composed of theU=` kinetic energy
fcompare Eqs.s3.31d and s3.32d for the dispersionsg and a
snegatived SE energy. Surprisingly, near half-filling the en-
ergy per site of the FO phase islower than that of the AO
phase at any value ofU, not only because the FO phase gains
more kinetic energy~−3tx than the AO phase~−2tx, but
also because it has lower SE energy. Instead, AO± order
yields lower energy at larger dopingx*0.27 as a conse-
quence of its peculiar density of statesfFig. 2sadg.23,24 Note
that this isoppositeto the spin casesg=0d, where the Néel
sAFd state has lower energy nearn=1 and the FM state takes
over only above a critical dopingxc. t /2U.

We emphasize that we have compared as yet only the two
complex states with one another, with the express purpose of
contrasting the behavior of these orbital states with that of
the corresponding spin states. To establish what the most
stable orbital-ordered state is, we still have to consider the
real states.

C. Superexchange in the real orbital states

The results obtained for the ordered phases with real or-
bitals are qualitatively similar. We focus here on the repre-
sentative cases of the FOx, the FOz, and thesG-typed AOsa
states, which we have shown in Sec. IV to be solutions of the
HF equations. Note that the AOsaphase is representative for
G-type AO order. For simplicity we ignore here the small
higher order correction to the equations below,37 which occur
when the actual occupied orbitals deviate from those of the
AOsa state towards those pertaining to the AOab state as
discussed above.

At large U / t one finds near half-filling for the order pa-
rameters

TFOxszd =
1

2
Hs1 − xd −

3g2

2s1 − xd2S t

U
D2J , s4.25d

TAOsa=
1

2
Hs1 − xd −

6 − 4x + 3g2

2s1 − xd2 S t

U
D2J . s4.26d

The corresponding energies in these ordered phases are

EFOx = − t
1

No
k

n−skdsAk − gCkd −
3g2

4s1 − xd
t2

U
, s4.27d

EFOz = − t
1

No
k

n−skdsAk + gCkd −
3g2

4s1 − xd
t2

U
, s4.28d

EAOsa= − t
1

No
k

fsn1skd − n2skddggCk −
6 − 4x + 3g2

4s1 − xd
t2

U
.

s4.29d

Unlike the complex states, the real states are seen not to be
degenerate in the undoped casex=0. The AOsastate has the
lowest energy here, even though the SE contributes also in
the FO states. However, we find the same qualitative differ-
ence with the familiar AF and FM states for spin order as we
found for the complex orbital states—again the SE contrib-
utes both in FO and in AO states.

Finally, we remark that the SE contributes also in any
other phase, either with mixed FO and AO orderse.g., in the
C-AO andA-AO phases of Sec. IIId, or in a disordered OL
state. Depending on whether the occupied orbitals on a given
bond are identical or not, virtual processes due to
pseudospin-nonconserving or pseudospin-conserving hop-
ping contribute, and we have verified that qualitatively simi-
lar results are then obtained to those presented in Eqs.
s4.25d–s4.29d above. Such terms would play a role in the
low-doping regime and would deserve a separate study in
order to establish the phase diagram of weakly doped man-
ganites. Note that in that regime also the spin-dependent SE
plays a prominent role, and the present orbital Hubbard
model s2.9d, which implicitly assumes FM order, becomes
insufficient to describe the physical properties of the real
materials. On the other hand, the SE terms, being all~t2/U,
vanish in the limit of largeU which we consider in Sec. V,
and hence they have no consequences for the stability of the
OL phase atU=`.

D. Qualitative understanding of the Hartree-Fock phase
diagram

Finally, let us analyze the possible instabilities of the or-
bital Hubbard models2.9d in the HF approximation. In the
largeU limit relevant for such instabilities, the total energy
consists of the kinetic energy atU=`, discussed in Sec.
III A, and a negative SE energy. While we do not intend to
make a quantitative comparison between the various phases
stable in the HF approximation, knowing that they are any-
way destabilized by the correlation effectsssee Sec. Vd, this
now enables us to get a simple interpretation of the HF phase
diagram of the genuineeg orbital modelsg=1d,20,23–25using
the largeU expansion. These earlier HF studies have shown
that at half-filling, and in the regime of small doping, for
U.6t the most stable state is the real “antiferro” orbital
state, with the orbitals close to those found in the AOsa
phase. In this regime the SE energy dominates, and indeed
the largest energy gain is then given by Eq.s4.29d. At in-
creasing hole doping, however, the kinetic energy of holes
moving in the FOx background is much lower than that in
the AOsaphasessee Fig. 3d, leading to a transition to “ferro”
orbital states when the difference between the SE terms
~t2/U is overcome by the difference between the kinetic
energies of these two phases. The region of the AOsa phase
in the phase diagram decreases when the SE gradually looses
its importance with increasingU, as shown by the numerical
result of Van den Brink and Khomskii.20
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At U=` the FOr order is found in the HF approximation
at any dopingx.0. However, at large but finiteU the SE is
larger in the FO+ than in either FOx or FOz phase, while the
difference in the kinetic energy is smallfFig. 3sddg, and thus
the FO1 state is the first stable “ferro” state at intermediate
values of 8,U / t,12 andx.0.15. However, whenx in-
creases further, the kinetic energy difference between the
FOx and FO1 phase dominates, and the orbital order
changes to FOx. As the SE energy of the two real FOx and
FOz statesfsee Eqs.s4.27d and s4.28dg is the same, the dif-
ference in the kinetic energy gives a second transition from
the FOx to the FOz phase with increasingx. At small and
intermediateU / t,12 one finds eventually atx,0.5 the
AO± phase,20 which is stabilized in this regime by a com-
bined effect of large SE energy gain and low kinetic energy
ssee Fig. 3d which follows from the peculiar density of states
of this phase.

In a 2D model the phase diagram is quite different38 and
is dominated by the generic tendency towardsx2−y2 polar-
ization within ansa,bd plane.28 The AO order is then fol-
lowed by the FOx phase above a critical doping, which de-
creases with increasingU / t. We note that the region of the
FOx phase is enlarged by the offdiagonal hopping terms
~gt,38 in agreement with the above observation that these
terms stabilize the FO phases at finiteU due to the respective
SE energy contributions.

V. ORBITAL LIQUID STATE

A. Kotliar-Ruckenstein slave boson representation

To understand further the essential differences between
orbital and spin physics, we develop now an approximate
description of the correlated OL disordered state. This is of
crucial importance as the HF approximation permits only a
comparison of ordered states with one another, and therefore
does not allow one to draw any conclusions concerning the
stability of the orbital-ordered states with respect to disor-
dered states. This is well-known from spin models—for in-
stance, the FM states in the 2D Hubbard model are stable
only in a narrow range of dopingx,0.29 near half-filling,39

while the HF approximation predicts FM to be stable at any
electron fillingn.

We will argue below that indeed orbitalsFO or AOd order
is not robust atg=1 and gets replaced by a disorderedsOLd
phase, if one goesbeyond the HF approximation and in-
cludes electron correlation effects. As we have already seen,
the orbital problem is richer than the spin case, as various
ordered states are nonequivalent when theSUs2d symmetry
is absent. Therefore we shall consider only the limit of very
strong correlations and investigate the stability of orbital or-
der specifically in theU=` limit, where the OL competes
with fully saturated FOfsee Eqs.s4.21d and s4.25dg and AO
fsee Eqs.s4.22d and s4.26dg states.

In order to obtain a reliable variational method to calcu-
late the correlation energy, we have followed the slave boson
approach introduced by Kotliar and Ruckenstein14 for the
spin Hubbard model and have adapted it to the orbital case.
In this approach the Fock space is enlarged by the introduc-
tion of three auxiliary bosons at each site, one for each local

configuration, viz.bi+ and bi− associated with the single-
occupancy configurationsui +l and ui −l, and ei with the
empty configurationui0l sdouble occupancy is excluded at
U=`d. Then a physical fermionselectrond c is represented
by a pseudofermionf and two accompanying bosons accord-
ing to an expression likecib

† = f ib8
† bib

† ei, where the two bosons
keep track of the change of the local configuration when an
electron is added.14 This construction, however, must pre-
serve the cubic symmetry of the Hamiltonians2.9d, implying
that it has to be gauge invariant with respect to thoseUs1d
rotations in orbital space that correspond to a permutation of
the cubic axes. The relevant rotation operator is, for arbitrary
rotation angleu,

Ûisud = exps− iuT i
zd. s5.1d

The complex orbitals pick up just a phase factor under any
rotation of this form, and the operatorshci+

† ,ci−
† j transform as

Ûisudci+
† Ûi

†sud = e−iu/2ci+
† ,

Ûisudci−
† Ûi

†sud = e+iu/2ci−
† . s5.2d

As already indicated in Sec. II, the orbital Hubbard Hamil-
tonians2.9d is invariant under a uniform rotation at all sites,
if the common rotation angleu is one of the three cubic
angles −4p /3, +4p /3, 0, and if this is accompanied by a
corresponding shift of the “gauge angles”xa by −2p /3,
+2p /3, 0, respectively. Actually the diagonal hopping terms
in Eq. s2.9d are invariant under theUs1d transformations5.1d
even for arbitraryu, as a consequence of theSUs2d symme-
try of the spin Hubbard model, while the off-diagonal hop-
ping terms pick up phase factors,

ci+
† cj− ° e−iuci+

† cj−,

ci−
† cj+ ° e+iuci−

† cj+, s5.3d

which get compensated by the shift of thexa if u is a cubic
angle. As the three cubic-angle transformations amount to a
forward and to a backward simultaneous cyclic permutation
of axes and orbitals and to the identity, respectively, the in-
variance expresses the cubic symmetry of the Hamiltonian.

Therefore we take the slave boson representation as

ci±
† = bi±

† f i7
† ei , s5.4d

corresponding to a representation of the local states by

ui0l = ei
†uvacl,

ui + l = ci+
† ui0l = bi+

† f i−
† uvacl,

ui − l = ci−
† ui0l = bi−

† f i+
† uvacl, s5.5d

and weimposethat the boson and pseudofermion operators
transform underUs1d rotations40 as

Ûisudei
†Ûi

†sud = ei
†,

Ûisudbi±
† Ûi

†sud = e7iubi±
† ,
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Ûisudf i±
† Ûi

†sud = e7iu/2f i±
† . s5.6d

Note that the phase of the boson operatorsbi±
† changes twice

as fast as the phase of the pseudofermion operatorsf i±
† , i.e.,

the bosons have pseudospinT=1, while thespseudodfermi-
ons belong toT=1/2.This property guarantees that theUs1d
rotation behavior of the electron operators, as given in Eqs.
s5.2d, is correctly reproduced by the transformations5.4d.
Thus the present formulation is indeed gauge invariant and
preserves the cubic symmetry of the orbital problem, like the
SUs2d-invariant formulation introduced by Frésard and
Wölfle preserves the full rotational symmetry for the spin
system.41 Clearly, the construction of a gauge invariant for-
mulation is greatly facilitated by our use of the complex-
orbital representation, but a similarly gauge invariant repre-
sentation in terms of real operators can also be constructed,
and is given in the Appendix.

The enlarged Fock space contains also unphysical states
which must be eliminated by imposing constraints as in the
original formulation by Kotliar and Ruckenstein,14

bi+
† bi+ + bi−

† bi− + ei
†ei = 1,

bi+
† bi+ = f i−

† f i−, bi−
† bi− = f i+

† f i+, s5.7d

and implemented by means of Lagrange multiplyers
hli ,mi+,mi−j. The first constraint excludes double occupancy,
the other two eliminate the unphysical singly occupied states
bi+

† f i+
† uvacl and bi−

† f i−
† uvacl. The electron density and the

z-component of the pseudospin can then be described at each
site either by slave boson or by pseudofermion operators,

ni ; ci+
† ci+ + ci−

† ci− = bi+
† bi+ + bi−

† bi− = f i+
† f i+ + f i−

† f i−,

s5.8d

Ti
z = 1

2sbi+
† bi+ − bi−

† bi−d = 1
2sf i−

† f i− − f i+
† f i+d. s5.9d

The other two components of the pseudospin operator can
only be represented as

Ti
+ = bi+

† bi−f i−
† f i+, s5.10d

Ti
− = bi−

† bi+f i+
† f i−, s5.11d

and cannot be reduced to expressions in terms of either slave
bosons or pseudofermions alone.42

As in the spin case one further has to renormalize the
bosonic factor in Eq.s5.4d in order to recover, when a mean-
field approximation is going to be made and the constraints
are no longer rigorously obeyed, the correct unrenormalized
hopping for the pseudofermions in the uncorrelatedsU=0d
limit. The renormalized boson factors take the form

zi±
† =

bi±
† ei

Îs1 − ei
†ei − bi7

† bi7ds1 − bi±
† bi±d

, s5.12d

where it is important that the operator expression under the
square root in the denominator isUs1d invariant, so thatzi+

†

szi−
† d transforms under Eqs.s5.6d exactly asbi+

† sbi−
† d. Then

the Hamiltonian in the slave boson representation atU=`
becomes

HU=` = −
1

2
to

a
o

ki j lia
fzi+

† f i−
† f j−zj+ + zi−

† f i+
† f j+zj−

+ gse−ixazi+
† f i−

† f j+zj− + e+ixazi−
† f i+

† f j−zj+dg

− o
i

lisbi+
† bi+ + bi−

† bi− + ei
†ei − 1d

− mo
il

f il
† f il + o

il

milsbil
† bil − f

il̄

†
f il̄d, s5.13d

with l=± and l̄=−l. The Hamiltonian commutes with the
constraints and thus does not connect the physical and the
unphysical subspaces of Fock space.

In the mean-field approximation we replace the boson op-
erators by their averages. In order not to spoil the cubic
invariance only their amplitudes are replaced byc-numbers,
while their phases are prescribed to behave still according to
Eqs.s5.6d.43 So we set for the boson invariants

kbi+
† bi+l ; b̄i+

2 ,

kbi−
† bi−l ; b̄i−

2 ,

kei
†eil ; ēi

2, s5.14d

where b̄i+, b̄i−, and ēi are real quantities, i.e., they do not
contain any nontrivial phase.41 For the offdiagonal, nonin-
variant, two-boson products we set

kbi+
† eil ; b̄i+ēie

−iq̂i, kei
†bi+l ; b̄i+ēie

+iq̂i ,

kbi−
† eil ; b̄i−ēie

+iq̂i, kei
†bi−l ; b̄i−ēie

−iq̂i , s5.15d

where the phase operatorq̂i is understood to transform as

Ûisudq̂iÛi
†sud = q̂i + u, s5.16d

and in particular assumes the cubic valuesqa, qb, and qc
when the two-boson operator product occurs in an expres-
sion taken along thea axis, b axis, or c axis, respectively.
The last average of Eqs.s5.14d controls the number of holes
in the eg band,ēi

2=x, for a phase with uniform charge den-
sity. The constraints give then the following self-consistency
conditions,

b̄i+
2 = kf i−

† f i−l, b̄i−
2 = kf i+

† f i+l,

b̄i+
2 + b̄i−

2 = 1 −x, s5.17d

while the renormalization factors become

kzi±
† l ; Îqi±e7iq̂i, kzi±l ; Îqi±e±iq̂i , s5.18d

with

qi± =
x

1 − kf i7
† f i7l

=
x

1 − kni±l
. s5.19d

The exponentials containingq̂i can be eliminated from the
Hamiltonian by absorbing them in the pseudofermions, ac-
cording to
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f̂ i±
† = e7iq̂i f i7

† . s5.20d

Note that this definition ensures that thef̂ i±
† transform prop-

erly underUs1d in accordance with Eqs.s5.6d.
Within the slave boson mean-field approximation one thus

finds an effective Hamiltonian for pseudofermions subject to
local constraints, and with renormalized hopping. In the case
of orbital-ordered phases its precise form depends on the
assumed type of state, with the hopping renormalization fac-
torsqi± either uniform or alternating between two sublattices.
Here we present only its simpler form, adequate for uniform
phases, such as FO and OL states, in which the renormaliza-
tion factors and Lagrange parameters can be taken site inde-
pendent,

HU=`
MF = −

1

2
to

a
o

ki j lia
fq+ f̂ i+

† f̂ j+ + q− f̂ i−
† f̂ j− + gÎq+q−se−ixa f̂ i+

† f̂ j−

+ e+ixa f̂ i−
† f̂ j+dg − o

il

mln̂il, s5.21d

with n̂il= f̂ il
† f̂ il. The present formalism reproduces the results

of Kotliar and Ruckenstein for the spin modelsg=0d with
hopping 1

2t and gives the same results as the Gutzwiller
approximation,44 and so q+ and q− will be called also
Gutzwiller factors.

The ordered states can be obtained within the present KR
slave boson approach by a proper choice of the Lagrange
multipliers. For instance, the FO+ state is now obtained from
Eq. s5.21d by imposingkn̂i−l=0 by means of the condition
m−=−` swhile m+=0d. Such states do not experience any
band narrowing, as double occupancy is rigorously elimi-
nated atU=`, and the correlation energy vanishes.45 As a
result, only the«U=`

FO skd=−tAk band is partly filled in the
FO+ state, while the«U=`,±

AO skd= ±gtBk bands are filled in the
AO± state. Real orbital-ordered states can also be obtained,
using the formalism described in the Appendix. Therefore in
theU=` limit one reproduces the results of the HF approxi-
mation described for these states in Sec. IV.

B. Nature of the orbital liquid state

A qualitatively new solution, however, is obtained within
the present approximation for thedisorderedstate, where
double occupancies are on average eliminated by the slave
bosons, and this correlation effect leads to an increase of the
kinetic energy. The minimum energy is obtained when the
pseudofermion densities are equal,kn̂i+l=kn̂i−l= 1

2s1−xd, and
the Gutzwiller renormalization factors take the simple form,

qsxd = q±sxd =
2x

1 + x
. s5.22d

Then the pseudofermion bands,

«U=`,±
OL skd = qsxd«U=0,±skd

= − tqsxdfAk ± gBkg, s5.23d

represent formally the superposition of the FO+ and AO±
bands given by Eq.s3.36d, typical for uncorrelatedeg elec-

trons, but nowrenormalized by correlations. They interpo-
late correctly between the case of uncorrelated electrons in
an empty bandsx.1d and a Mott insulator at half-filling
sx=0d where the dispersion is fully suppressed, as illustrated
in Fig. 5. Owing to the Gutzwiller factors the kinetic energy
has a minimum at fillingn=0.5, and approaches zero atn
=1. Thus the kinetic energy has a similar doping dependence
to that found in a spinless fermion model, i.e., for fermions
with a single orbital flavor. As in the spin case,46 one can
argue that atx,0 strong correlations lead to an effective
exclusion principle between the two degrees of freedom also
in k space, i.e., for each momentumk only one orbital flavor
may be occupied.

This OL state is fully isotropic in the sense that the mean-
field values of the pseudospin operators vanish, i.e.,

kTi
xl = kTi

yl = kTi
zl = 0. s5.24d

For thez-component this follows immediately from Eq.s5.9d
onceb̄i+

2 = b̄i−
2 . For the other components we apply Eqs.s5.15d

and s5.20d to Eq. s5.10d and obtain

kTi
+l = b̄i+b̄i−e−2iq̂ikf i−

† f i+l = 1
2s1 − xdk f̂ i+

† f̂ i−l, s5.25d

and similarly for kTi
−l. The pseudofermion averages can be

determined by making use of Fourier transformation: since
the Fourier-transformed Hamiltonians5.21d can be diagonal-
ized analytically, the Fourier-transformed pseudofermion op-
erators can be expressed in terms of the eigenvectors
hek+,ek−j, with the result

k f̂k+
† f̂k−l + k f̂k−

† f̂k+l =
Ck

Bk
skek+

† ek+l − kek−
† ek−ld,

k f̂k+
† f̂k−l − k f̂k−

† f̂k+l = i
Dk

Bk
skek+

† ek+l + kek−
† ek−ld. s5.26d

Since the eigenvalues«U=`,±
OL skd are cubic invariantfsee Eq.

s5.23dg in each of the two bands the three states with the
components ofk cyclically permuted are either all occupied
or all unoccupied, and thus

FIG. 5. Kinetic energiesE/ t of the OL state for uncorrelated
sU=0, dashed lined and correlatedsU=`, full lined eg electronssat
g=1d, as functions of the electron densityn.
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C+ = o
k

coska

Bk
kek+

† ek+l s5.27d

is independent ofa, and similarly for C−. It then follows
from the form ofCk andDk fsee Eqs.s3.9d and s3.10dg that

the expressionsk f̂k±
† f̂k7l, given by Eqs.s5.26d, both give zero

when summed over the Brillouin zone, and so

k f̂ i+
† f̂ i−l = k f̂ i−

† f̂ i+l = 0, s5.28d

and Eq.s5.24d follows.
The absence of a preferred orientation of the pseudospin

implies that there is no orbital preferentially occupied. In
particular,kTi

xl=0 andkTi
yl=0 imply fsee Eq.s2.4dg that

kciz
†ciz − cix

† cixl = 0,

kciz
†cix + cix

† cizl = 0, s5.29d

from which it follows that the same relations hold for the

operatorshciz8
8†,cix8

†j obtained after an arbitraryUs1d rotation,
as is easily verified explicitly or by observing thatTi

x andTi
y

rotate as anE doubletfcompare the Appendixg. Thus, the OL
is SUs2d symmetric—random complex or random real orbit-
als are equivalent, and indeed theidentical OL state is ob-
tained using real orbitals, as shown in the Appendix. This
correlated disorderedOL state with completely randomly oc-
cupied orbitals is apparently different from that proposed by
Ishihara, Yamanaka, and Nagaosa,47 in which the planar or-
bitals hx2−y2, y2−z2, z2−x2j play a prominent role.

C. Absence of the Nagaoka theorem

Before investigating the stability of the OL state in Sec.
V D, let us consider the special case of a single hole in a
half-filled system. In the spin casesg=0d the celebrated Na-
gaoka theorem,48 one of the very few exact results in the
theory of itinerant magnetism, then applies: Nagaoka has
shown that the ground state is FM when a single hole/
electron is added to a half-filled system, described by the
spin Hubbard model atU=`. A central assumption of this
theorem is that the kinetic energy conserves the spin flavor
ssee, e.g., the proof in Ref. 48d, precisely the feature not
obeyed by the orbital flavor ofeg electrons. Thus atgÞ0 no
exact statement can be made for the orbital Hubbard model
s2.9d and, a priori, one expects that polarized states are
harder to stabilize in this case.

We have investigated the consequences of theSUs2d sym-
metry breaking, i.e., of the pseudospin nonconservation, by
analyzing the exact solution for a plaquettesfour-site clusterd
filled by three electrons, as a function ofg. In the spin
model, at g=0, the ground state, with kinetic energy
Eh=−0.25t per site, is fourfold degenerate, corresponding to
maximum spinS= 3

2 as required by the Nagaoka theorem. At
g.0 it splits into four nondegenerate states: the ground state
and three excited statessthe lowest of them is shown in Fig.
6d. The first excited state in the spin modelsg=0d is doubly
degenerate, and this degeneracy is not removed atg.0, and
the two states lower their energy wheng increases towards

g=1. Forgù0.4 this degenerate excited state has already a
lower energy than any other excited statesthe level crossing
is shown in Fig. 6d. None of these states can be classified by
a pseudospin quantum number. In the genuine orbital case
sg=1d the kinetic energy per site in the ground state,
Eh.−0.44t, is much lower than in the spin casesat g=0d,
showing that a considerable amount of kinetic energy is
gained when the orbitals get disordered and full advantage is
taken of the pseudospin-nonconserving hopping. This result
suggests that a similar tendency towards disorder should be
present in the thermodynamic limit.

D. Stability of the orbital liquid phase

Also for the full 3D model it is instructive to consider, at
fixed density, the variation withg of the total energyE of
possible ordered and disordered states. We do so in Fig. 6 at
the same fillingn=0.75 as one has in the plaquette filled by
three electrons, in order to enable a comparison with the
exact results for that finite system. The energy of the polar-
ized FO+ state does not depend ong fsee Eq.s3.31dg, while
that of the AO± state follows from the dispersion given by
Eq. s3.32d, and decreases linearly withg. At g=1 it comes
very close to that of the FO+ state, but remains still a little
bit higher. At g=0 the polarized FO+ phase has a lower
energy than the OL state, which confirms that FM states are
stable in a range of filling close ton=1 in the 3D Hubbard
model.49 The energy of the OL phase decreases gradually
with increasingg and becomes lower than that of the FO+
phaseswhich stays constantd at g.0.25. It is remarkable that
the energy decrease in the OL phase, when going from
g=0 tog=1, is quite large, and actually of similar magnitude
as the exact result in the finite system. Hence one finds that
in spite of the renormalization of the hopping byqs1/4d
=0.4, the skineticd energy in the OL state is substantially
lower than in the AO± state.

Next we consider the variation of the total energyE of

FIG. 6. sColor onlined Kinetic energiesE per site at electron
densityn=0.75 andU=` for increasing off-diagonal hopping~g in
Eq. s2.9d, as obtained in the KR approach for: the OL ground state
ssolid lined, FO+ sdashed lined, AO± statesAO, long-dashed lined,
and energyEh sfilled squaresd for the ground state of a four-site
plaquettesPd. Also shown are the energies of the lowest two excited
states for the plaquette: a nondegenerate state which splits off the
degenerate ground state atg=0 sempty squaresd, and a doubly de-
generate state with finite excitation energy atg=0 sdiamondsd.
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ordered and disorderedcomplexorbital states with electron
filling n sFig. 7d. In the spin modelsg=0d the FM phase has
somewhat lower energy than the disordered OL state close to
half-filling, in the rangen.2/3.50 Our approach reproduces
in this limit the known result of the slave boson approach,
which gives a FM ground state for any bipartite lattice with
the density of states being an even function of energy.49

When g is increased,EFO+ does not change, whereasEAO±,
initially at zero forg=0, decreases~g, and atg=1 surpasses
the FO+ state atx=0.27. Hence the slave boson approach
reproduces here the result of the HF approximation for these
states.15 However, in spite of the band narrowing~qsxd,
which is appreciable at these electron densities near half-
filling, considerablymore (kinetic) energy is gained in the
OL state. This is basically due to the fact that both hopping
channels contribute, which gives rise to the large density of
states over the full frequency range, and at small doping in
particularfcompare Fig. 1sdd with Fig. 2g. We may conclude
that the presence of the additional pseudospin-nonconserving
hopping channel, associated with the absence ofSUs2d sym-
metry, implies that more kinetic energy can be gained by
paying correlation energy than in the spin case, and that this
favors the disordered OL state sufficiently to make its energy
lower than those of the complex orbital-ordered states at any
value ofn.

Finally we compare atU=` the energies ofall states,
both with complex and real orbitals, varyingn and g. One
finds that AO states are never stable in this limit of strong
correlation, while FO states are stable only at smallg sFig.
8d. At g=0 sthe spin cased the FO+ and FOx sFOzd states are
necessarily degenerate, but at anyg.0 the phases with or-
dered real orbitals have lower energy, with FOz sFOxd being
more stable atn,0.71 sn.0.71d. The range of FO order
shrinks gradually with increasingg, and aboveg.0.94 the
OL phase is stable in the entire range of n. We argue that at
finite U the kinetic energy will become even more dominant

and thus will strongly favor disorder, except nearn.1
where SE stabilizes real-orbital AO order.2–4,6,24 We thus
conclude that for theeg orbital Hubbard modelsg=1d doping
triggers a crossover to the OL stateat any U, supporting
earlier conjectures that such a disordered state is realized.47,51

E. Brinkman-Rice transition at n=1

At half-filling sn=1d it is straightforward to apply the
finite-U version of the KR formalism,14 and investigate the
generic metal-insulator transition in the orbital disordered
phase, ignoring the AO order promoted by the SE. Here one
introduces as a counterpart to the bosonsei which control the
empty configurationsu0l=ei

†uvacl, also bosonsdi which con-
trol the double occupanciesci↑

† ci↓
† u0l=di

†f i↑
† f i↓

† uvacl. The
mean-field approximation gives then the renormalization fac-
tor sat n=1d,14

hsdd = 8d2s1 − 2d2d, s5.30d

whered=kdil is the average amplitude of a doubly occupied
configuration in the ground state. The bands are then given
by the dispersion for free electronss3.35d renormalized by
hsdd,

«U,±
OL skd = hsdd«U=0,±skd = − hsddtfAk ± gBkg. s5.31d

So the kinetic energy ishsddē0sgd, whereē0sgd is the kinetic
energy of the uncorrelated OL, obtained by integrating the
two bands«U=0,±skd fEq. s3.35dg up to half-filling, while the
Coulomb repulsion gives an energyUd2 per site.

For the spin modelsg=0d this problem was solved by
Brinkman and Rice,52 who showed that an “insulating” state
swith d=0d sets in aboveUc.8t sin the present unitsd. It is
well understood by nowssee Ref. 22d that this mean-field
theory does not give an accurate description of the metal-
insulator transitionsin particular it ignores all charge fluctua-
tions in the insulating phase, where in realitydÞ0d.53 By
analogy, one expects that also in the present casedÞ0 at any
finite U, and in fact this follows from the large-U expansion
analyzed for the ordered phases in Secs. IV B and IV Csfor
a disordered phase a similar analysis could also be maded.
Nevertheless, the Brinkman-Rice transition from a “metallic”
to an “insulating” state atn=1 illustrates nicely the compe-
tition between kinetic energy and Coulomb repulsion
energy,54 and so it is worthwhile to consider the general case,

FIG. 7. sColor onlined Kinetic energyE in the KR mean-field
approximation as functions ofn for: AO± slong-dashed linesd and
OL statesfull linesd for increasingg=0, 0.5, 0.707, and 1 from top
to bottom; the dashed line shows the kinetic energy of the FO+ state
which is independent ofg.

FIG. 8. Region of stability of the FO states atU=` as a function
of g; the transition to the OL state from the FOxszd and complex
FO+ state are shown by the full and dashed line, respectively.
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i.e., with arbitraryg. Then, completely analogously to the
spin case, an “insulating” state is found above
Ucsgd=8uē0sgdu. Similar to what happens upon dopingsi.e.,
at finite xd in the U=` limit considered above, here upon
allowing double occupancysi.e., finite dd at n=1, the “me-
tallic” phase gains additional kinetic energy~g due to
pseudospin-nonconserving hopping which lowers the kinetic
energy below the value due to pseudospin-conserving hop-
ping alonesthe only one present in the spin cased. Therefore
the “metallic” phase survives up to a higher value ofU than
at g=0, as shown in Fig. 9.

VI. SUMMARY AND CONCLUSIONS

In this paper we have made a detailed analysis of the
eg-orbital Hubbard model on a cubic lattice, exploring the
consequences of the absence ofSUs2d symmetry and high-
lighting them by making a comparison with the familiar
SUs2d-symmetric spin Hubbard model. In the first part we
studied the orbital-ordered phases, of which there is a great
variety, precisely because of the lower symmetry, emphasiz-
ing the difference between the complex-orbital states which
retain cubic symmetry, and the real-orbital states in which
cubic symmetry is broken. Analytical results for the order
parameter and the energy of each of these phases in the HF
approximation at largeU / t were presented, demonstrating
that the total energy can be conveniently divided into two
contributions: a kinetic energy~t given by theU=` limit,
and a SE contribution~t2/U. The SE decides about the rela-
tive stability of the various phases at half-filling, while the
kinetic energy contributes and finally becomes dominant
upon doping. This analytical treatment allowed us:sid to
demonstrate explicitly that SE contributes in both AO and
FO states,sii d to demonstrate that the real-orbital states have
their orbitals aligned with the cubic axes, as well assiii d to
elucidate the structure of the HF phase diagram for the or-
dered phases obtained numerically.20,23,24We emphasize that
these properties ofeg orbital degrees of freedom are essen-
tially different from those oft2g ones because the latter sat-
isfy certain symmetries and are thus conserved in the hop-
ping processes.5,55

In the second part we investigated the disordered orbital-
liquid state. We have demonstrated that in the strong-

correlation limit sU@ td indeed orbitalsFO or AOd order is
not robust foreg orbitals, and gets replaced by a disordered
sOLd phase, if one goesbeyondthe HF approximation and
includes electron correlation effects in the disordered phase
as well. This leads us to the conclusion that the HF
results,20,23,24 suggesting that either the FO+ or the AO±
state is realized in a broad range of doping, are particularly
misleading for the orbital Hubbard model. Here the present
findings agree qualitatively with the results of the self-
consistent second-order perturbation theory obtained by
Kubo and Hirashima.56 The situation could be somewhat dif-
ferent in the 2D case, however, where a tendency towards
particular orbital orderings with larger amplitude ofx2−y2

orbitals is favored by geometry.28,38

We considered specifically theU=` limit, where the OL
competes with fully polarized ordered phases and we have
shown that it is more stable than any of either uniform FO
fEq. s4.21dg or staggered AOfEq. s4.22dg states. However, at
finite U and for sufficiently low dopingx, real-orbitalC-AO
order is stabilized by a superposition of the SE and the JT
effect. Particularly in the regime of low doping the JT inter-
actions might be stronger than the electronic interactions of
double-exchange type, and the induced orbital order dictates
then the type of magnetic order.35,57 This regime is particu-
larly difficult in realistic models for manganites, as the or-
bital interactions induced by oxygen distortions,6 and the or-
bital polarization around doped holes,58 give additional
important contributions and support particular types of or-
bital order. Furthermore, the overall stability of ordered ver-
sus disorderedsOLd phases changes when a realistic Hund’s
coupling is included.59 It has been shown that the FM phase
shrinks then to a range of doping 0.2&x&0.5, theA-type AF
phase is stable nearx=0.5, while theC-AF phase takes over
at higher hole doping.

Summarizing, the absence ofSUs2d symmetry in the
eg-orbital Hubbard model has severe consequences for the
properties of the model itself and for the stability of orbital-
ordered states. The Nagaoka theorem does not apply to the
model of correlatedeg electrons atU=`, ordered states are
harder to realize than in the spin case, and the Brinkman-
Rice transition occurs at a higher value ofU. The qualita-
tively different properties of the ordered phases show up
most clearly in theinverted stabilityswith respect to the spin
cased of the ordered phases with complex orbitals, with ferro
sstaggeredd orbital order favored at smallslarged doping.
Most importantly, the exciting suggestion that such complex-
orbital ordered states could be stable at finite doping20,23,24

has been disproved because of theinherent tendency of eg
systems towards orbital disorderdue to the enhancement of
the kinetic energy whenSUs2d symmetry is absent. All these
features show that several properties of spin systems which
are usually taken for granted, such as:sid the very fact that a
ferromagnetic state is an eigenstate of either an itinerant or
the Heisenberg Hamiltonian, andsii d the absence of superex-
change in ferromagnetic states—are in fact the consequences
of the SUs2d symmetry of the respective spin models.
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APPENDIX: SLAVE BOSON REPRESENTATION FOR
REAL ORBITALS

The real-orbital version of the transformation of the elec-
tron operators to slave boson and pseudofermion operators
may be derived by making repeated use of the relation be-
tween the real and complex orbitals, as given by Eqs.s2.4d.
Thus with the real-orbital electron operators given by

ciz
† =

1
Î2

sci+
† + ci−

† d,

cix
† =

i
Î2

sci+
† − ci−

† d, sA1d

we similarly define the real-orbital pseudofermion operators
by

f iz
† =

1
Î2

sf i+
† + f i−

† d,

f ix
† =

i
Î2

sf i+
† − f i−

† d, sA2d

while for the slave boson operators we set

biz
† =

1
Î2

sbi+
† + bi−

† d,

bix
† =

− i
Î2

sbi+
† − bi−

† d. sA3d

Then the fermionsselectronsd transform underUs1d rotations
as

Ûisudciz
†Ûi

†sud = cossu/2dciz
† − sinsu/2dcix

† ,

Ûisudcix
† Ûi

†sud = sinsu/2dciz
† + cossu/2dcix

† , sA4d

and similarly for the pseudofermions, while the slave bosons
transform as

Ûisudbiz
†Ûi

†sud = cosubiz
† + sinubix

† ,

Ûisudbix
† Ûi

†sud = − sinubiz
† + cosubix

† . sA5d

The different sign choice in Eq.sA3d as compared to Eqs.
sA1d andsA2d makes the slave bosons rotate in the opposite
direction as thespseudodfermions. This compensates for the
doubled rotation angle in the sense that the transformations
are identical for slave bosons andspseudodfermions whenu
is a cubic angle, and so the pairshciz

† ,cix
† j, hf iz

† , f ix
† j, and

hbiz
† ,bix

† j all transform as theu ande component of a cubicE
doublet.

Substituting the complex-orbital slave boson representa-
tion s5.4d into Eq. sA1d and applying the transformations
inverse to Eqs.sA2d and sA3d, one obtains the slave boson
representation for the real-orbital fermionic operators
hciz

† ,cix
† j analogous to Eq.s5.4d. The result is

ciz
† = +

1
Î2

sbiz
† f iz

† − bix
† f ix

† dei ,

cix
† = −

1
Î2

sbix
† f iz

† + biz
† f ix

† dei , sA6d

corresponding to a representation of the local states by

ui0l = ei
†uvacl,

uizl = ciz
† ui0l = +

1
Î2

sbiz
† f iz

† − bix
† f ix

† duvacl,

uixl = cix
† ui0l = −

1
Î2

sbix
† f iz

† + biz
† f ix

† duvacl. sA7d

One recognizes that Eqs.sA6d are indeed the proper expres-
sions for theE doublet resulting from the product represen-
tation E^ E^ A1.

60 The expressionssA6d are actually even
Us1d-invariant, i.e., after a rotation in orbital space by an
arbitrary angleu, they also hold between the fermion opera-

tors hciz8
†,cix8

†j=hÛisudciz
†Ûi

†sud ,Ûisudcix
† Ûi

†sudj, transformed
according to Eq.sA4d, and the slave boson and pseudofer-
mion operatorshbiz8

†,bix8
†j and hf iz8

†, f ix8
†j, transformed accord-

ing to Eqs.sA5d andsA4d, respectively. Consequently, since
the hopping Hamiltonians2.3d is invariant under a transfor-
mation sA4d of the fermionselectrond operators whenu is
one of the cubic angles 0, ±4p /3 and is accompanied by the
corresponding permutation of the cubic axes, this cubic in-
variance is retained when the Hamiltonian is expressed in
terms of the slave boson and pseudofermion operators by
means of Eq.sA6d.

The constraints given by Eqs.s5.7d are now replaced by

biz
†biz + bix

† bix + ei
†ei = 1,

biz
†biz + bix

† bix = f iz
† f iz + f ix

† f ix,

biz
†bix − bix

† biz = f iz
† f ix − f ix

† f iz. sA8d

Again the first constraint excludes double-occupancy, as re-
quired in the limitU=`, while the last constraint is readily
verified to eliminate the unphysical singly occupied states,

uiA1l =
1
Î2

sbiz
† f iz

† + bix
† f ix

† duvacl,

uiA2l =
1
Î2

sbix
† f iz

† − biz
† f ix

† duvacl. sA9d

When the constraints are obeyed rigorously and the unphysi-
cal states strictly projected out, operators connecting the
physical and unphysical subspaces necessarily vanish identi-
cally. Specifically one finds

ORBITAL LIQUID IN FERROMAGNETIC… PHYSICAL REVIEW B 71, 144422s2005d

144422-19



biz
†biz − bix

† bix = f iz
† f iz − f ix

† f ix = 0,

biz
†bix + bix

† biz = f iz
† f ix + f ix

† f iz = 0. sA10d

It is obvious from the above that the earlier attempt made
in Ref. 61 to construct a real-orbital slave boson representa-
tion by means ofciz

† =biz
† f iz

†ei and cix
† =bix

† f ix
† ei, followed by

renormalization of the slave boson factors by

ziz
† =

biz
†ei

Îs1 − ei
†ei − bix

† bixds1 − biz
†bizd

,

zix
† =

bix
† ei

Îs1 − ei
†ei − biz

†bizds1 − bix
† bixd

, sA11d

was misguided because it does not conserve the cubic sym-
metry and is thus bound to lead to spurious results. However,
also the present real-orbital representation, though invariant
in itself, leaves us with the problem to construct a proper
cubic-invariant renormalization. This is not straighforward
because the hopping Hamiltonian, when expressed com-
pletely in terms of slave boson and pseudofermion operators
referring to “z” and “x,” takes a different appearance for each
cubic axis, like in Eq.s2.3d. Moreover, the apparently plau-
sible renormalization by means of Eqs.sA11d is not allowed
even in combination with the representationsA6d, becauseziz

†

andzix
† as defined by Eqs.sA11d do not constitute a cubicE

doublet as their denominators are not cubic invariants. Hav-
ing them replacebiz

†ei andbix
† ei in Eqs.sA6d would spoil also

the cubicE doublet nature of the thus renormalizedciz
† and

cix
† , and so destroy the cubic symmetry of the Hamiltonian.

Equally seriously, it would also cause the Hamiltonian to
commute no longer with the constraints.

A renormalization not suffering from the above problems
and still in the spirit of the Kotliar-Ruckenstein Ansatz14 is
given by

ziz
† =

biz
†ei

Îs1 − ei
†ei − 1

2ni
sbdds1 − 1

2ni
sbdd

,

zix
† =

bix
† ei

Îs1 − ei
†ei − 1

2ni
sbdds1 − 1

2ni
sbdd

, sA12d

where ni
sbd=biz

†biz+bix
† bix. The mean-field approximation is

now made, as in Sec. V A, by replacing only the amplitudes
but not the phases byc-numbers. So, for the off-diagonal
two-boson products we set, similarly to what was done in
Eqs.s5.15d,

kbiz
†eil ; kei

†bizl ; b̄iēi cossai − q̂id,

kbix
† eil ; kei

†bixl ; b̄iēi sinsai − q̂id. sA13d

where b̄i and ēi are again real quantities. For the diagonal
two-boson products we set

kbiz
†bizl ; kbix

† bixl ; 1
2b̄i

2

kei
†eil ; ēi

2. sA14d

Actually, the real-orbital boson occupation numbers
niz

sbd=biz
†biz and nix

sbd=bix
† bix are not invariants with respect to

Us1d rotations, and so one would prefer to set, in accordance
with Eqs.sA13d, the corresponding diagonal averages equal
to

kbiz
†bizl ; b̄i

2 cos2sai − q̂id,

kbix
† bixl ; b̄i

2 sin2sai − q̂id, sA15d

in order to make them transform in the same way as the
occupation numbers, by setting also

kbiz
†bixl ; kbix

† bizl ;
1

2
b̄i

2 sins2ai − 2q̂id. sA16d

However, the expressionssA15d and sA16d do not satisfy
Eqs. sA10d, and so it appears to be impossible to assign a

nontrivial dependence on the phase operatorq̂i to kbiz
†bizl and

kbix
† bixl and yet simultaneously respect Eqs.sA10d.
The issue is immaterial for carrying out the KR proce-

dure, since in a state with uniform density, i.e., withēi
2=x for

all i, it follows from the constraintssA8d that both for Eqs.

sA14d and for Eqs.sA15d the amplitude satisfiesb̄i
2=1−x, so

that

kziz
† l ; kzizl ; Î2qsxd cossai − q̂id,

kzix
† l ; kzixl ; Î2qsxd sinsai − q̂id. sA17d

Inserting this into Eqs.sA6d and defining new pseudofermi-
ons by

f̂
ˆ
iz
† = cosai f̂ iz

† + sinai f̂ ix
† = cossq̂i − aidf iz

† + sinsq̂i − aidf ix
† ,

f̂
ˆ
ix
† = − sinai f̂ iz

† + cosai f̂ ix
† = sinsq̂i − aidf iz

† − cossq̂i − aidf ix
† ,

sA18d

whereh f̂ iz
† , f̂ ix

† j are related toh f̂ i+
† , f̂ i−

† j fsee Eq.s5.20dg by Eqs.
sA2d, one finds that the mean-field approximation effectively
leads to the replacements

ciz
† ; Îqsxd f̂

ˆ
iz
† , cix

† ; Îqsxd f̂
ˆ
ix
† . sA19d

The kinetic part of the Hamiltonian is thus simply renormal-
ized by the Gutzwiller factorqsxd, exactly the same result
as,. obtained in the complex-orbital approach. As the
Hamiltonian is therefore again cubic, it follows that the re-
sulting real-orbital OL is isotropicfi.e., ai =p /4 at all sites,
and kbiz

†bizl=kbix
† bixl=s1−xd /2g, and identical to the OL ob-

tained in the complex-orbital approach.
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