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We have analyzed the symmetry properties and the ground state of an orbital Hubbard model with two
orbital flavors, describing a partly filled spin-polarizegband on a cubic lattice, as in ferromagnetic manga-
nites. We demonstrate that the off-diagonal hopping responsible for transitions betivegnand 2-r?2
orbitals, and the absence 8{U(2) invariance in orbital space, have important implications. One finds that
superexchange contributes in all orbital ordered states, the Nagaoka theorem does not apply, and the kinetic
energy is much enhanced as compared with the spin case. Therefore orbital ordered states are harder to
stabilize in the Hartree-Fock approximatiéiiFA), and the onset of a uniform ferro-orbital polarization and
antiferro-orbital instability are similar to each other, unlike in the spin case. Next we formulate o gabiz
invariant slave boson approach using the orbitals with complex coefficients. In the mean-field approximation it
leads to the renormalization of the kinetic energy and provides a reliable estimate for the ground state energy
of the disordered state. Using this approach one finds that the HFA fails qualitatively in the regime of large
Coulomb repulsiord — oo, where the orbital order is unstable, and instead a strongly corredabédl liquid
with disordered orbitals is realized at any electron filling.
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I. INTRODUCTION behave under doping, and in particular how this compares

In recent years there has been renewed interest in orbit%gi.th the more familiar behavior of doped spin systems. In
degrees of freedom in Mott insulatcrdypically, Mott insu-  UiS Paper we address this issue by studying a generic model
lators are stoichiometric, i.eundoped oxides(or sulphideg ~ Of correlatedg, electrons with two orbital flavors, described

in which the strong on-site interorbital Coulomb repulsign 0¥ @ pseudospif=1/2 in the orbital Hilbert space, and

on the transition-metal ions dominates over the kinetic enSonsider its .relatlo'n to the standa(E_dJm) Hubbard mode] for
ergy driven by the electron hoppirigand eliminates charge ©/€ctrons with spirS=1/2. So weintroduce thee,-orbital
fluctuations. At energies well below one is then left with ~Hubbard modeland investigatei) in what respect long-
effective low-energy interactionst?/U of superexchange [ange order in such aorbital systemis different from that in
(SE) type. In many cases these are purely magnetic interadhe analogouspln systemand(ii) whet_her the orbitals may
tions between the spins on the metal ions, leading to th@'der wherlU is large, or rather form disorderedOL. These
familiar spin models, such as the Heisenberg model. Howduestions are of fundamental nature and our main aim in
ever, when the electrons occupy partly filled degenesate addressing them is to uncover and elucidate phgsical

ty, orbitals, such as in the perovskites KGuEamnOs, mechanismsvhich operate in they band and are typical for
LaTiO,, and LavQ, the orbital degrees of freedom become OrPital degeneracy, in particular by contrasting them with
equally important as the spin ones and it is therefore neced10S€ known to operate in spin systems. .
sary to treat both of them on equal footing. In such cases the 1N€ Present problem is closely related to the physical
SE is described by so-called spin-orbital modelgnd the Properties of the colossal magnetoresistan@MR)

SE interactions are typically strongly frustrated, even on dnanganites, where the well-known mechanism of double
cubic lattice? In spin-orbital models the quantum effects are £Xchange introduced by Zefiés responsible for the metallic

particularly strong—the quantum fluctuations are enhanced€omagnetidFM) phase at finite doping, in which the spins
and might even destabilize the long-range magnetic ordeP,f the.eg electrons are fully polarized. The model that we will
leading to aspin liquid state, possibly realized in LiNiy*  investigate here covers only the case of the FM phase, thus
The opposite situation, that disotropic or anisotropicor- ~ neglecting the competition of the double-exchange mecha-
bital liquid (OL) is stabilized and coexists with long-range Nism with the spin AF SE, and the resulting dependence of
spin order, was pointed out recently fog, Mott-Hubbard  the hopping amplitude on the actual spin states at two neigh-
systems. By contrast, in undopee, systems, such as KCyF  boring sites’ Even when one limits oneself to the FM phase,
(Ref. 2 and LaMnQ (Ref. 6, the quantum phenomena are a sequence of orbital-ordered phases may be exp&tsa)
partly quenched and the SE favors alternating orkiitdD) each of them would break cubic symmetry, contrary to what
order which coexists with antiferromagne(&F) spin order. is observed in the magnetic properties of the metallic FM
An issue of considerable interest is how such systemsphase. The analysis of the present paper, making extensive
characterized by the presence of orbital degrees of freedomise of the auxiliary particle method in the strongly correlated
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regime!! provides the basis for a proper treatment of this 1 + v Et +
problem?? which enables one to understand the persistence  Hi=—7t 2 [3CiCix + CiCjz + V3(CyyCiz + CizCi) ]

of cubic symmetry and more in particular why the magnon (iiab

stiffness constant increases with hole dopliihg. -t> o Cios (2.3

This paper is organized as follows. In Sec. Il we introduce
the orbital Hubbard model for spin-polarizeg electrons at
orbital degeneracy and discuss its symmetry properties.
show that the cubic symmetry of the hopping may be bette
appreciated when a particular basis consisting of two orbital
with complex coefficients is used. Next we analyze in Sec.
[l the possible orbital ordered phaseslto and compare
their densities of states and total energies derived within th
slave fermion formalism. Such phases follow from the insta-
bilities towards orbital-ordered states obtained within the
Hartree-Fock(HF) approximation(Sec. I\V), and we show
that such instabilities and the properties of the ordere&orresponding to “up” and “down” pseudospin flavors, with
phases at finitd&J, related to the SE, are here quite differentthe local pseudospin operators defined as
from those known from the spin Hubbard model. In Sec. V
we introduce the cubic invariant slave boson approach and
use the mean-field approximation to analyze the disordered
orbital liquid state. Within a generalization of the )= %(ni+ -n).
Kotliar-Ruckensteitf (KR) approach to the present orbital - _ .

IJ(:aor later reference it is convenient to introduce also electron

problem, we give reasons why the orbital ordered states a i tors (¢ ) which i lect .
unstable against the OL disordered state when one goes pg-eation operators; (¢4, 6) which createe, electrons in or-

yond the HF approximation. The paper is concluded in SecPital coherent states, defined as
VI by pointing out the implications of our results for the _ o
|Q) =e %2 cog =

physical properties of the CMR manganites. -
in analogy with the well-known spin coherent staté3he

(ij)lic

Wgnd although this expression is of course cubic invariant, the
Fepresentatio(lz.B) of the hopping does not exhibit this sym-
etry but takes a very different appearance depending on the
ond direction.

We thus prefer to use instead the basis@hplex orbitals
at each sité/

1 R
[+)=5(2=ik). )=+, @4

—f —f
T =cic, T =¢lCp,

+

T?=2(cl.c. — e (2.5

) )|i +) +ethil2 sin(%)h -, (2.6

Il. ORBITAL HUBBARD MODEL
A. The Hamiltonian and its symmetry properties

We consider spinless; electrons on a cubic lattice with
kinetic energy

H=-t> > CiTg Ciz,,

a (jpla @

(2.1

where hopping with amplitudet-between sites and j oc-
curs only for a pair of directional orbita|g,) oriented along
the bond(ij) direction, i.e.,|{,)>3x?—r?, 3y>-r?, and ¥°
-r2, when the bondij) is along the cubic axis=a, b, and
c, respectively. We will similarly denote bj¢,) the orbital
which is orthogonal tdZ,) and is oriented perpendicular to
the bond(ij), i.e.,|£,) = y?— 272, 22—x?, andx?-y?, for a bond
(ij) along the axisx=a, b, andc, respectively. While such a

expectation value of the local pseudospin operator in the
coherent orbita(2.6) behaves like a classical vectSr,

([T Q) = £(sin ¢ cosé,sin g sin 6,cosyy), (2.7)

traversing a sphere, with the “equatorial planei=m/2)
corresponding to real orbitals |Qi(7/2,6))=]i6)
=cog6,/2)|iz)-sin(6,/2)]ix), and the “poles(;=0 and ¢4
=) to the complex orbital$i+) and|i-). The three direc-
tional orbitals|i¢,) at sitei, associated with the three cubic
axes(a=a,b,c) are the real orbitals witl#, being equal to
V,=—4wl3, O,=+4mw/3, and9.=0, respectively, i.e.,

1 : .
[i{a)= ,—E[e"““’“/zli +)+ e )]
\

= cog9,/2)iz) - sin(9,/2)|ix), (2.9

choice of basis, that depends on the bond direction undeand thus correspond to the pseudospin lying in the equatorial
consideration, is convenient for writing down the kinetic en-plane and pointing in one of the three equilateral “cubic”
ergy, one cannot avoid to choose a particular orthogonal badirections defined by the anglék,.
sis for the two orbital flavors as soon as one wants to intro- In the complex-orbital representatiof2.4) the orbital
duce a Hubbard term to describe the local electrorHubbard modefor g4 electrons takes the form
interactions. The usual choice is to take 1

~t2 > [(cle.+cleo)

270 (il

+ y(e g,

+UX i,
i

1 1 H=-
l2="7=3B2-r), [h==6-y), (22
\6 V2 c- + e”XaciT_ch,)]
calledreal orbitals However, because this basis is the natu-
ral one only for the bonds parallel to tleaxis but not for
those in the(a,b) plane, the kinetic energy then takes the

form?1>:16

(2.9

with y,=+27/3, x,=—2m/3, and y,=0, and where the
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newly introduced parametey, explained below, takes the 0.6 T . e
valuey=1. The appearance of the phase fac&#bs: is char- _ o4} ' ]
acteristic of the orbital problem—they occur because the or- ) !
bitals have an actual shape in real space so that each hopping zo02f i ]
process depends on the bond direction. The form of the in- 0.0 e}
terorbital Coulomb interactiorrU is invariant under any lo- _oalb (b)_
cal basis transformation to a pair of orthogonal orbitals; it e E
gives an energy) either when two real orbitals are simulta- <02} ! .
neously occupiedUJZ;n;yn;,, or when two complex orbitals 0.0 P T
are occupied, as in Eq2.9). (©)
The representatio(2.9) has several advantagés: It dis- T 04r ! ]
plays manifestly the cubic symmetry, since the transforma- Zo2f i ]
tion x,— x.—2m/3 [which amounts in Eq(2.9 to the cy- 00 L
clic permutation a—b—c—a of the cubic axef in ' T @)
conjunction with the corresponding phase shift of the elec- ~ 04 _/\\_/\
tron operators ¢, —cle?™ (which permutes the = oz b E 1
|¢,y-orbitals according to &-r2— 3y?—r?— 3z22—r?— 3x? '
-r?) leaves the Hamiltoniari2.9) invariant. (i) It exhibits 0 T 1 2 3
clearly the difference between the spin case and the orbital oht
case. In the orbital case there is both pseudospin-conserving
hopp|ng [the first line in Eq (29)] and pseudospin_ FIG. 1. Evolution of the density of statdd(w) (in units of t

whereas in the corresponding spin case, i.e., in the standal®@ Oif'd_'ag_ona' h°pf"“97t: @ =0, (b) y=0.5,(c) y=1/\2, and
Hubbard model, there is of course only spin-conserving hop!d ¥=1; ¥=0 andy=1 corresponds to the spin and to the orbital

ping and the second term is absent. Thus the preseIl]-{ubbard model, respectively. Dashed lines show, for the same elec-

complex-orbital representation allows us to introduce the pat®" fling n=0.7 in all cases, the Fermi energy, which decreases

rametery by which one can turn the,-band orbital Hubbard with increasingy for n<1,

model (y=1) into what is formally a spin Hubbard model g|ectron bands and gives increasing spectral weight near the
with the same hopping amplitudéy=0), interpreting *+”  pand edges without modifying the bandwidth. For geneine
and “=" as “spin up” and “spin down.” This device makes it electrons(i.e., at y=1) the density of states does not start
very easy to recognize the differences in physical behaviofrom zero atw=+3t, as usually for three-dimensionéD)
between the orbital case and the spin case: the parametenattices, but is finite there and has a value close to its average
will of course show up in all analytical expressions below,over the entire bandFig. 1(d)]. Not only is the spectral
and one can compare at a glance the result for the orbitaieight transferred to lower energies, but even the Fermi en-
case(y=1) with that for the spin casey=0). At the present  ergy at fixed electron density< 1 decreases with increasing
stage one can already observe from E29) that there is 4, as shown in the example of 0.7 in Fig. 1. Therefore, for
morekinetic energy available per electron in the orbital casea given electron density, a#=0 the kinetic energy ok,
because additional hopping channels are present. We will segectrons(i.e., at y=1) is lower than in the corresponding
below that this has important consequences for the relativepin casgat y=0).
stability of various statesiii ) Finally, it shows explicitly that Finally, some remarks on the physical interpretation of the
rotational SU2) symmetry for the pseudospins is absént, orbital Hubbard model are in place here. The first of them
which in the complex-orbital representation is immediatelyconcerns electron spin. As said, the electrons in the model
obvious from the presence of the pseudospin-nonconservingre spinlesgcf. Eq. (2.1)], which at first sight may seem
hopping termey in Eq. (2.9). Thus the components of the unphysical. However, such a model is entirely appropriate
total pseudospin operataf=x;T; are conserved only ag  for real, i.e., spincarrying, electrons in a FM state, where
=0 (i.e., [7T,H]=0), while the termsxy in H commute in-  the spins are fully polarized. This situation can be realized in
stead with the staggered pseudospin operatﬁf3 a strong magnetic field, or, as in manganites, when the
=3, expiQ-R))T?, whereQ=(m,m,m). double exchange polarizes thg core spins which in turn
polarize thegy band by strong Hund’s rule coupling. Then
the spin degrees of freedom are completely frozen out and
only the orbital degrees of freedom remain and can contrib-
It is instructive to follow the changes of the electronic ute to the kinetic energy. Actually, E¢2.1) [but with the
structure of the uncorrelated barie., with U=0 in Eq.  additional constraint of no double occupahdy precisely
(2.9] with increasingy (0=<y=1). When the hopping is the expression for the kinetic energy of tegband in the
only diagonal between pairs pf) and|—) states aty=0,the  metallic ferromagnetic phase of the doped manganites
pseudospin bands are degenerate, and the density of states_ A ,MnO; (with A=Sr, Ca,..., andx~0.3) when these
has the familiar shape obtained for a simple cubic latticeare described by an extendéarbital-degenerate and large
with bandwidth &, corresponding to the hopping elements of spin) t-J model!? So theU — < limit of the present orbital
%t [Fig. 1(@]. Increasingy removes the degeneracy of the Hubbard model2.9) is directly relevant for the physics of

B. New features compared with the spin case
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the manganites, and for this reason we will pay extra atten- oy =TT w010 3.1

tion to this limit. |Pro) H [(1,0)[0), (3.
The second remark concerns the parameteéks one can ) _ o o

readily verify, the kinetic terms in Eq2.9) with arbitraryy ~ With the pseudospin pointing in the same direction at all

are equivalent to the kinetic energy Hamiltonian sites. As in the spin case, another possibilityaigernating
orbital (AO) order,
~ 1
Hi=- _tE <§ [(1+ Y)CiTganga +(1- V)C;rgacjga], (2.10 |Ppo) = H CiT(l/fA, Op) H C,‘T(l/fsa 68)|0), (3.2
a (ij)la ieA jeB

which reduces td, [Eq. (2.1)] for y=1. So, although we With orbitals alternating between two sublatticdsand B
have introduced the parametgpurely as a formal device, it Which cover a cubic lattice. Depending on whether orbitals
actually describes the relative strength of hopping betweedlternate in every direction, or whether there are lines or
the |£,) orbitals perpendicular to a bond, and one sees thatlanes of ferro-orbital order, these states are classified as
y=1 corresponds to:hopping only,” y=0 to “Z-hopping  G-type (for spin called Néel statgsC-type, orA-type AO
andg_hopping equa"y Strong(’equiva|ent to the Spin case as states. DOUbly OCCUpiEd sites are exp|ICItIy avoided in all
discussed aboyeand y=-1 to “&-hopping only.” Although  these states. If the band is partly filléi<1), these ordered
suché-hopping occurs, for instance, in transition metals as States must of course be modified to involve a coherent mix-
(ddé) element, and is symmetry-allowed in the perovskitesfure of orbital-polarized occupied sites and empty sites. Such
it cannotoccur by the familiar mechanism of two-step hop- fully polarized states are appropriate only in the- o limit,
ping (neithero-type nora-type) via a 2p orbital on the oxy- where double occupancy is fully suppressed by the Hubbard
gen ion in between two transition metal ions. It is thereforeterm and only the kinetic energf,=(Hy, remains rel-
generally accepted that in physically relevant cases this hoggvant.
ping process is smaller by at least two orders of magnitude In contrast to the spin case, where because ofSte?)
than that betweely,) orbitals, and thus, to our knowledge, symmetry both the FM spin state and the AF spin state are
all work on the manganites has actually been done assumirignique, in the present orbital case with@It(2) symmetry
pureZ-hopping, i.e.;y=1. Nevertheless, we will occasionally there is already a plethora of physically different ordered
let y vary between 0 and 1, not with the intention to suggesttates even if one does not go beyond two sublattices. In
that a significant strength @thopping is actually physically particular, as shown by Takahashi and SHibllaezono and
relevant, but rather with the purpose of demonstrating howNagaos&: Shenet al.?® and particularly stressed by Van den
the pseudospin-nonconserving hopping affects the physicrink and Khomskii® it makes a big difference whether one
properties of strongly correlated electrons in a partly filledbuilds an ordered state completely from complex orbitals
band. (and empty sitedi.e., &, ¥, ¥g=0, 7], leading to what we
The third remark concerns the difference between real andhall call complex statgesor whether one uses exclusively
complex orbitals. It is noteworthy that, unlike in the spin real orbitals[i.e., ¢, ¥a, ¥g=7/2], thus constructingeal
case, already for an individual site there is no spherical symstates This can be conveniently demonstrated explicitly by
metry in pseudospin space even at the classical level: thi@rmalizing the description of th&) — limit by means of
directions available to the pseudospinvectorravtall physi-  the slave fermion formalism, which permits treatment of the
cally equivalent. In particular, the real orbitals are spatiallygeneral casdi.e., arbitraryy’s and d's). We present such
anisotropic and have a nonzero diagonal electric quadrupolgtates here in some detail, since the- <« limit will serve as
moment(EQM), (TX)?+(T¥)?+ 0, whereas the complex orbit- a reference in the later discussion.
als have a cubic shape, with orj?) # 0. This difference is S0 we introduce orbital bosotts,, (with 7=+, -) to rep-
of course the origin for the hopping Hamiltonian not havingresent the occupieé, orbitals, |+)=cl,|0)=blvac, and
SU(2) symmetry. Moreover, as pointed out by Van den Brink Positively charged slave fermi(_)n_% to represent the empty
and Khomski° in a real compound like a perovskite the S|tes,|0>iEfiT|vac}. Thus the original electron operators are
EQM couples directly to the lattice, and occupancy of a reafePlaced according te],=bl.f;, and the Hamiltonian takes
orbital would induce a local Jahn-TellgdT) distortion ~ the form
whereas occupancy of a complex orbital would Hot. 1
-, rh b oah b
Hy== + -t 2 ff[(bbf, +bibl)
IIl. ORBITAL ORDERED STATES o (e
" _
A. Uniform and alternating orbital order + (e IXabi"‘biT- +e Ixabi—b;r+)]’ 3.3
Because the electrons interact by the local Coulomb inter¥ith the local constraint
action U, they are prone to instabilities towardsbital or- t t te _
der, similar to the magnetic instabilities towards spin order bi by + bi_bi+ fifi=1, (3.9
in the spin casé? to which we will compare them. At half- implementing the condition of no double occupancy. Orbital
filling (n=1) the simplest possibility to reduce the interaction order is then imposed by treating the bosons in mean field
energy>U would be to polarize the system completely into approximation, i.e., by making the replacemeftempare
ferro-orbital (FO) states, Eq. (2.6)]%
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by, — cog(yx/2)e ',

bi- — sin(¢/2)et%7?, (3.5

upon which the local pseudospin operat@tsare given by

Eq. (2.7). We are then left with a Hamiltonian describing

fermionic holes moving in a background of fixed orbitals.
In the case of FO order the result is explicitly

1
M2, = + -t > [1+ysingcod - x,)ff).
a (ijle

(3.6)

Upon Fourier transformation one obtains, reverting to theHG-AO_
electron description, a single band with dispersion depending Y=

on the orbital angles$y, 6},
g1 (k) = —t[A, + ysin(cosOC, + sinD,)], (3.7)

where
A = cosk, + cosk, + cosk,, (3.9
Cy = 3(2 cosk, — cosk, — cosk), (3.9
D, = %\E(coska - cosk). (3.10

One notes tha€, andD, transform as th& ande compo-
nents of arE doublet, which makes E¢3.7) a cubic invari-
ant (i.e., it does not change under the transformatin 6
—-2m/3 and the simultaneous permutati— k, — k.— kj).
It will be useful to introduce also

P, = >, e'Xe cosk, = C, +iDy, (3.11)

which gets multiplied by the phasefacter'?™® under the

PHYSICAL REVIEW B 71, 144422(2005

By = |Py| = {Cf + DE}?
={cog k, + cog k;, + cog k.
- (cosk, cosky, + cosk,, cosk,

+ cosk, cosk,)}*/?,

(3.12

which transforms ag, i.e., has cubic symmetd/.

Amongst the various phases with AO order let us consider
first those ofG-type (Néel-type, denoted byG-AO. One
obtains from Eq.(3.3 the two-sublattice Hamiltoniarii
eA jeB),

1
= EtE > {[cosy. cosb_ —i cosy, sin 6_]
a (ijle

+9sin ¢, cod6: = x,) +i sin g sin(6, - Xa)]}fi-rfj'
(3.13
depending on the orbital anglég, ¥, 64, 0}, for which

we introduce the shorthand notation foalf the intersublat-
tice angles,

Y =3t ), 0= 3(0a% Op). (3.14

Upon Fourier transformation and diagonalization of the re-
sulting 2X 2 matrix this yields two electron bands the
reduced Brillouin zong
ega(K) = 2 t{[cosy cosO-A + v Sin ¢,(cos6,Cy
+sin 6,D,) %+ [cos, sin 60_A,
- ysiny.(sin 6,Cy — cos,D,) 132, (3.15

By a similar derivation one may obtain the electronic struc-

permutationk, — k,— k. —k,, as well as the associated am- ture for theA-type andC-type AO phases. Using the same

plitude,

020k =t 2

a=a,b

2
- Sin ¢ cog g — Xa)]coska> +[(cosy_ cosh_ + y sin s, cos6,)? + (Cosy, sin O — y sin ¢ sin 6,)?]cog kc} ,

notation as above one finds

{1 + %7’[5"1 a CO O — X,) + SiN ifig CO O — Xa)]}COSka * t{ <%’ > [Sinyn cog0a— x,)

a=a,b

1/2

(3.1

1 2
ega (k) = t{ (1 + éy[sin p COS O + SiN cosﬁB])coskC + H %/(sin Yip COS O — SiN g cosﬂB)coskc}
. 2 2 2
+ cosy_ cosf_(cosk, + cosk,) + y sin | coq 6, — 3 cosk, + cog 6, + 3 cosk,

2T 2 2(1/2
+9 cosy, sin 6_(cosk, + cosk,) — y sin z//_{sin( 0, — ?>coska+ sin( 0, + ?>coskb] } . (3.17
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It is now straightforward to derive from Eq$3.7) and G_ﬁcofb(k): [- %Ak‘*?’Ck]
(3.195—3.17) the dispersion in any particular orbital-ordered .
phase with eithecomplexor real orbitals. = F 3t[(1 + y)(cosk, + cosky)

) For the FO [y= 17{2] and the various AO® [Yn=ig +(1 - 2y)cosk,], (3.24
=1/2] real statesthe dispersions are
is cubic aty=0, but becomes predominantly but not fully 2D
e (K) = —t[A + y(cosOC, +sinD,)], (3.18  for y=1. By contrast, the dispersion of tliéy=—6g=m/2)
state, with alternation between symmetric and antisymmetric

G_ﬁol(k) = +t{cOSO.A, + ¥(cos6,C, +sin 6,D,)], combinations(|x)+|z)) and(|x)—|2)), called G-AOsa,
(3.19 e5205k) = + AC,
=+ 7t[— %(coska + cosky) + coskc],
ehoi(k) = —t{(2 y cos b, cos6_) (A, - C) (3.25
+3ysin 6, cos6_D + [(ysin 6, sin 6_(A, - C,) is quasi-one-dimensionéjuasi-1D, qualitatively similar to

_ that of the|z)-polarized(FOz) state(6=0),
+ 3y cosé, sin 0_D,)?+ ((cosé_ + y cosb,)

X(Ak + zck))Z]lIZ}, (320) SU_x(k) =- t[Ak + ’)’Ck] == t[(l - E’)’)(COSk + COSkb)
+ (1 + y)cosk], (3.26)
egai(k) = t{ (1 + ycos#, cosd_)(A, +2Cy) which becomes quasi-1D in the orbital cdse=1).
The reduced symmetry of the k@nd FQ states is re-
+[(ysin 6, sin 6_(A, + 2C,))? + ((2 cosh_ flected in their respective densities of states, shown in Fig.

. 2(d), which lead to favorable kinetic energigsee Fig. &)],
— - 271/
¥ €050.) (A = Cy) + 3y sin 0,04)°] % as discussed in Sec. Ill B. Obviously, such broken-symmetry
(3.2 states could be favored either in low dimensional systems, as

the FOx state found for a 2D square lattié®and suggested

staltr; C\?\/Té?ﬁ;:%g‘%fﬁgF:)If;nsm,:teseﬂﬁguv‘f‘/iz(:esmgilaluefor bilayer manganite$’ or by a strong JT effect favoring a
> yyp particular type of occupied, orbitals due to oxygen distor-

of 6 (or f, and 6g), explicitly break cubic symmetry.e., tions, as realized, for instance, in bilayer systéfighe lat-

their dispersion is anisotropic. This nonequivalence betweeper applies also for th&-type AO states, which have typi-

real and complex states is a manifestation of the broke . )
SU(2) symmetry in the orbital Hubbard mod€2.9). In ex- E?(Ielysﬁrc?vﬂei:]blfli;gm(gtgi éh;g)the FO states; a few examples

treme caﬁes d.the dlspers]:oE 'S“ tW‘?fd'm.f-‘”S"‘;ﬁﬁ‘)T lio_rTln— As illustrative examples of thé&-type andC-type phases

stance, the dispersion of the “anti errle., wit A~ 5) with alternating real orbitalgeither along the axis or in the

G-type AO state with alternatingx) and |z) orbitals (G (a,b) planed, we give dispersions in each case f6y: =

-AOX2) [with §,=0 and =], -0g=7/2, i.e., with alternating|x)+|2))/2 states, andii)
3 0,=0, 6=, with alternating|x) and|z) states,

G_éOOJ:(Z(k) = +4D = ¢ yt—(cosk - cosky), 86—:%%%('() - ét{z(Ak -C) £ (A +2C,)%+ 9D§]1/2}

(3.22

3
. . . =1j cosk, + cosk, + y[—(coska— cosk)?
is 2D because the hopping along theaxis is fully sup- 4

pressed wher?-y? and 3?-r? orbitals alternate. Similarly, 12
the dispersion of the fullyx)-polarized(FOx) state(6=), +cog kc] , (3.29
en (k) = =t[A = ¥C ] = =t[ (1 + 3 ) (cosk, + cosks,)

+(1-y)coske], (3.23 e0r (k) = —t(z £ (A-Co)

becomes 2D in the genuine orbital cakg=1), because 1

when onlyx?-y? orbitals are occupied, the only type of hop- = t<1 + —y)(coska+ cosk,), (3.28
ping allowed in this case, i.effhopping[see Eq(2.10], is 2

suppressed along treaxis.

Other states are also anisotropic but typically have disper- 4CA0
sion with contributions due to all three cubic directions. As fu= wfa(k) - t[(l A2 G
an example, the dispersion of ti&type AO state with al- 1
ternating %®-r? and 3/2-r? orbitals (Iy=—6g=—47/3) :t{cos + = (cosk. + cosk } 3.29
along thea andb cubic axesG-AOab), ket 27( a o) |- (329
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FIG. 3. (Color online Kinetic energy gain(loss AE/t with

t=1) for different orbital ordered phase&) complex orbital order:  respect to FO+ phasgeference zero energy given by horizontal
uniform FO+[degenerate witiA-AO=] (solid line), G-AO+ (filled dotted line3, as a function of electron fillingy for various orbital
circles, andC-AO+ (dashed ling (b) alternating real orbital order ordered phase@t U=~): (a) complex orbital orderG-AO= (filled
in G-type phasesG-AOsa (solid line) [the same density of states is circles, andC-AO+ (dashed ling (b) alternating real orbital order
obtained forC-AOsa phasé, G-AOxz (dashed ling and G-AOab in G-type phasesG-AOsa (solid line) [degenerate witlC-AOsa
(circles; (c) alternating real orbital order in select€d and A-type phasé, G-AOxz (dashed ling and G-AOab (circles; (c) alternat-
phases:C-AOxz (solid ling), A-AOxz (dashed ling and A-AOsa ing real orbital order in selecte@- and A-type phasesC-AOxz
(squares and (d) real uniform orbital order F® (solid line) and (solid ling), A-AOxz (dashed ling andA-AOsa (squarey and (d)
FOz (dashed ling uniform real orbital order F® (solid line) and FQ (dashed ling
The long-dashed line ifd) shows the kinetic energy for noninter-

egArAk) = t{Ak+2ck (A +2C, )%+ 9DEIV2

3 1/2
= t{coskc t oy Z(coska— cosk,)? + cos k, } .

acting electrons in the, band(disordered phase &t=0).

e0r (k) = + 7B, (3.32

(3.30 respectively. Thus one finds that the dispersion of the FO+
_ . ' state and its density of states, shown in Fi@)2is that of a
The anisotropy of these phases is quite strong, andAthe simple cubic lattice, as it originates entirely from the

-AOxz phase has even a 2D dispersion.

pseudospin-conserving hoppin:g:;;cji, because at) —x

Finally we consider the orbital ordered states withm-  the alternating, pseudospin-nonconserving, hopping is fully
plex orbitals For two of these complex states, namely thesuppressed by the imposed FO+ order. The reverse is true in
ferro |+)-polarized orbital order(FO+) [4=0] and the the G-AO+ state: here the dispersiontB, comes entirely
G-type alternating orbital ordefAO+) with [+)/|-) stag-  from the alternating hopping:c|,c;z, as the pseudospin-
gered orbitaldwith y,=0 and¢z=], all cubic directions conserving hopping is fully suppressed by the AO+ order. It

are equivalent, and one finds the dispersions is an important feature of both these complex states, built
FO+(k) = —tA, (3.31) fr.om cubic orbitals, that theyetain cubic '_symmetryPre—

' cisely for that reason these complex orbital ordered states

and were proposed as candidates for the ground state of the FM

144422-7
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metallic phase of the manganit®$®to explain the observed 6, as readily shown from Ed3.7). Moreover, the result is

cubic symmetry of the magnon spectte? independent ofy and so holds both in the orbital case and in
The other two orbital-ordered complex states break exthe spin case.

plicitly cubic symmetry: theA-type andC-type AO+ states. By contrast, in anyG-type AO state the bandwidth is

In the A-AO+# state layers of+) and|—) orbitals alternate in  smallerthan & [see Fig. 20)], and depends om. In particu-

the c direction, resulting in the dispersion lar, in any G-type “antiferro” state(with To=~Tg, SO ¢
=m—, and fg=6,— ), such as the comple®-AO+ state

or the realG-AOxzandG-AOsastates considered above, the
width is proportional toy (viz. 4yt, 23, and 4, respec-
tively, for those threpas follows from Eq(3.15. In such a
=t(cosk, + cosk, = ycosk).  (3.33  state the bandwidth therefore, correctly, collapses to zero in
This dispersion is qualitatively equivalent to that of thethe spin caséy=0) where hopping is completely suppressed

FO+ state, and thus the densities of states of the FO+ ar%/ the AF spin ordef’ The important point to note here is

A-AO# phases are the same. The reason is that replacing et at finite v, and so in particular in the genuine orbital
L - . case, the bandwidth even of an “antiferro” statefiiste
the c-direction every second-) orbital by a|—) orbital does

t affect the hoop: ter al dso th i though smaller than that of the FO states. Thus, while in the
not aftect th€ hopping parameter alongnd so e resuiing spin case the kinetic energy of carriers is fully lost when
doubling of the unit cell only halves the Brillouin zone with- going from FM to Néel-type AF order, this is not so for the

out changing the dispersion. In ti2AO= state instead col- analogous FO t&-type AO transition in the orbital case.

1
0ot (k) = SR YA-21F »C

umns of|+) and|~-) orbitals alternate in théa,b) planes, One might still be tempted to believe that, as familiar
and one finds from the spin case, also in the orbital case FO order is most
1 favorable for lowering the kinetic energy of charge carriers,
egtr(K) = Zt{A + 2C, £ 1IDE + (A - C)?T} simply because this gives the largest bandwidth. However,
3 the situation is not that simple, not only because there are
=t[cosk, = y(cos k, + cog k;, — cosk, cosk,)?]. several inequivalent FO states with different densities of

(3.34 states which have nevertheless the same bandwidth, but also
' because somA-AO andC-AO phases have again the same
In contrast to the FO+G-AO+, and A-AO+ phases, the bandwidth, and so one really has to consider the details of
C-AO= phase is not cubic symmetric. the density of states in each case. This is demonstrated in
The densities of states of the complex states show &ig. 3, which shows the kinetic energy gaif with respect
gradual crossover with increasing alternating orbital characto the complex FO+ state as a function of electron fillimg
ter from the full bandwidth of 6for the FO+ andA-AOz* for various FO and AO states wiiltcomplex or regl orbital
phases, obtained also dt=0 both for the spin problem and order, obtained by straightforward integration of the respec-
for_the e; band (Fig. 1), to a narrower bandwidth of (2  tive density of states. Indeed, at small electron fillmgand
+13)t for the C-AO+ phase, and finally to a bandwidth of 4 also at small dopingk=1-n, AE is lower for the (FO,
for the G-AO+ phase. It is remarkable that, upon going from A-AO, andC-AO) states with full bandwidth tthan for any
the FO+ phase to thA&-AO=+ phase, the change from uni- State with a narrower density of states, in particular for the
form to alternating orbital order along only one cubic direc-G-type AO states of Fig. ), because the first doped holes
tion does not modify the density of states, while the densityenter in the former case with an energy-3t close to the
of states changes its shape completely upon going to theand edge, while the lowest accessible energy is higher in all
G-AO+ phase, with a large spectral weight accumulated nows-AO states. Note that the orbital order observed in LaMnO
close to the band edges, resulting in a quite peculiar densitg close to that of th€-AOsaphase’ and this phase has the
of states with large maxima close || = 2+, separated by a Same density of states as tBeAOsa phase[see Fig. )],
minimum with N(0)=0 at w=0 [Fig. 2@)]. The density of and thus has a rather unfavorable kinetic en¢fgg. 3(b)].
states for theC-AO+ phase has a width of(2+y3)t, and ~ This demonstrates that both an interplay between spin and

represents an intermediate case, having some features @pital order due to the SE interactions at fiiteand the JT
common with that of the5-AO+ phase. interactions between orbitals on neighboring sites, induced

by the coupling to the lattice, play an important role in real

.y - o ) materials and stabilize the orbital order observed in undoped
B. Densities of states and kinetic energies in orbital ordered LaMnOs, 635

states Among the states with AO order of real orbitals, but FO

It is worthwhile to consider next the densities of states oforder along one or two cubic directions, we identified three

various orbital ordered states in a little more detaée Fig. phasesC-AOxz, A-AOxz, and A-AOsa, which have lower

2), and investigate their consequences for the kinetic energgnergies than the FO+ phase closento0 andn=1 [Fig.

(Fig. 3). Focusing first on the bandwidth, we note that for 3(c)]. All of them have the full bandwidthtd Fig. 2(c)], but

any FO state this takes the maximum attainable value 6a finite density of states at=-3t gives theA-AOxz phase
This result is not limited to the FO states considered explicthe lowest energy of these phases at very lowr x. At

itly above, i.e., the complex FO+ and the real#/&hd F&  somewhat higher fillingr~ 0.07 (dopingx~ 0.07) the other
states, for which it was already pointed out by Van den Brinktwo phases take over, and are in fact more stable than the
and Khomskik® but holds in general, i.e., for arbitrasyand ~ FO+ phase in the entire regime of This follows from the
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large densities of states of these phaselopt2t. In con- IV. HARTREE-FOCK APPROXIMATION
trast, theA-AOxz phase with a large spectral weight close to
=0 has a higher energy than the FO+ phase in a broad
range of electron filling 0.1&n<0.89. We turn now to the orbital Hubbard modé2.9) with

The above discussion shows that at finite but still rathefinite U, where it is to be expected that polarization, when it
modest electron filling or doping, the overall shape of theoccurs, need not be complete but can be partial, as in the spin
density of states becomes more important, and the states wigiase. Also, the existence of orbital ordered states will in gen-
large density of states near the band edges could be favoré&dal require a sufficiently largeJ/t. Which instabilities to-
a priori, even in cases when the bandwidth is smaller that 6 wards orbital ordering occur and at what value ot can be
An interesting example here is the complex “antiferro” investigated either by considering the corresponding suscep-
G-AO+ state, with its energy falling below that of the com- tibilities, e.g., in random phase approximat#ror by com-
plex FO+ state fon>0.27 orx>0.27[Fig. 3@], because of paring the energies determined in the HF approximattdh.
the large number of states available in tBeAO+ state just Vvarious ordered states are possible, one needs to calculate
close to the band edges [af =2t, whereas in the FO+ state their energy(or free energy at finite temperatire deter-
the energy of available electron states, though initiallg, ~3 mine which one is actually realized.
rises rapidly with increasing dopirgrig. 2(a)]. However, in In the absence oBU(2) symmetry it is not sufficient to
reality the transition from an FO+ tG-AO= state does not decouple the interaction term in E(.9) in the familiar
happen, as the real FEOz and F(X) states have even lower mean-field way,n;, n,_= ((m)ni-+ni, (i) =(ni.)X(ni-)), but
kinetic energy throughout than both complex states. This canne needs instead the general HF decoupling,
be ascribed to the lower-dimensional nature of their disper-
sion and the resulting different location of the Van Hove M- = ()i + Mnio) = (n(ni-))
singularities, whiccompare Fig. @l)] enhances the density ~ (THel ey + ¢l (T) = (TINT).  (4.2)
of states near the band edges at aBd at the band center for
the 2D F(x state, and in the intermediate range|w|<2t In the FO case, i.e., when one assumes a single three-
for the quasi-1D F@state. As a result, at small fillinglop- ~ component order paramet&;,=(T;), T.=(T}"), T_=(T;), one
ing) the kinetic energy gaiiE is the lowest one for the BO  obtains upon Fourier transformation the HF Hamiltonian
state, while at larger fillingr=0.30 (doping x=0.30), the 1 .
FOz state takes over. However, in this regime of electron Ho=S (ch.ct )(EUH—UTZ—tAk - UT_ - y1P, )
filling the energy gaimE for the A-AOsaphase is lower by HE e PRI\ S UT, - 9Py 1Un+UT,-tA,
a few percent, and the two phases may be considered as
practically degenerate. Ckr ) 1y, 2 2

For comparison and later reference we have included in X<ck_> dUn"+ UM+ T.T), (4.2
Fig. 3 also the kinetic energy for the uncorrelatggdband
(the correlated OL phase is analyzed in Sec.®f course, at
U=0 any kind of orbital order is absent and one finds by fa
the lowest kinetic energy for the disordereglorbitals. The
g, bands have then the dispersion given by

ey=0,+(K) = —t(A = ¥By). (3.35  Where

A. Instabilities towards orbital order

with P, given by Eq.(3.11). The eigenvalues ar@vith T,
~Te% T_=Te'’, so thatT, T_=T?=T;+T)

e70k) = —tA + U(En+ E), 4.3

Remarkably, these bandslat0 represent formally a super-
position of the FO+ an@-AO+ bands atU=co,

eu=0,4(K) = e[ 25(K) + 5 L% (K), (3.3 (4.4

and so naturally also show full cubic symmetry and a bandand the HF groundstate energy per site is then given by
width equal to 6 [Fig. 1(d)]. One notes that, because both .
pseudospin-conserving and pseudospin-nonconserving hop- FO_ = FO(K) + FO
ping channels fully contribute here, considerably more ki- Eve N%[n_(k)a_ () + nu(k)e (k)]
netic energy can be gained than in any of the orbital-ordered

. . . _ 1
states. In particular, as Fig(d) shows, there is a large den —ZUR?+U(T2+T?) (4.5)
sity of states at and near the band edges, andAliLis the 4 2 '
lowest in this disordered state already at small electron filling

n, and then remains so throughout. Of course, this large kiWheren-(k) [n.(k)] is the occupation number of the lower

netic energy gain will be partly lost for large nearn=1,  (UpPpe) band. For largeJ (=6t) a gap opens, and so for less
where at least one hopping channel gets partially suppressé@n halt-filling only the lower band is occupied. Setting the
by electron correlations. However, the result here indicate§erivatives ofE,c with respect ton, T, T, and ¢ equal to
that the tendency towards the OL state with disordezgd Z€ro then yields the self-consistency equations
orbitals is particularly pronounced. We shall come back to 1
this point, presenting more evidence in favor of the corre- n=

lated OL phase, in Sec. V. N

- 2, T2 7" . 7" 2 2 v
E.=|T +TZ+ZUT(cos¢9Ck+sm0Dk)+ U Byl |

% n_(k), (4.6)
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> n(k)-2,

11
T,=25 (4.7)
2N k Ek
yt .
T+ —(cosOCy + sin 6Dy )
11 U
T===>n_(k) - . (4.9
2N k Ek
1 T(sin 6C, — cosdD
0=—2>n.(k) ( S o (4.9

ZN Kk Ek

While Eqg.(4.6) is trivially satisfied in the sense that it simply
fixes the Fermi level for given filling, two general conclu-

PHYSICAL REVIEW B 71, 144422(2005

the latter two functiongsee Eqs(3.9) and(3.10], that for
nonzeroT the azimuthg? must equal either Qor equivalently
+27r/3 or =21/ 3) or 7 (or equivalently -w/3 or +7/3), i.e.,
the projection of the order parameter on the “real” equatorial
plane has to be along one of the cubic directions. Secondly, it
follows that both a purely complex statee., T=0, T,#0)
and a purely real staté.e., T,=0, T#0) are permissible
states, in the sense thaj=0 is a self-consistent solution of
Eqg. (4.7) and alternativelyT=0 is one of Eq.(4.8). We re-
mark that both these properties of the possible states need
not be postulated or assumed but are proven here from the
HF self-consistency equations.

As C-type andA-type AO phases would give qualitatively
similar results, we will consider from now on on{g-type
AO phases, and denote them for brevity by “AO” instead of

sions can be proven from the remaining three equationgy «G-AQ.” So we assume independent three-component or-

Firstly, it follows from Eq.(4.9), because of the dependence
of E, on C, andD, [see Eq.(4.4)] and the explicit form of

der parameters on interlacing sublattices A and 'B
=(THa, TE=(THg, etc. Then the HF Hamiltonian is

1 *

Che | [ 2Un- Uty -uT? —tA, - %P, Ca

HAO =S Ch k- —UT}  JUn+UT, - otPg - tA¢ Ca k-

Sl I ~ tA -yP,  lun-ut® -UT® Coxs

Cg,k— - MPy — A -uT?  ZUn+UTS | \Cax-
= 3UN?+ JULT)? + T2+ (T5)% + T9T2). (4.10

[
Like above, the HF groundstate energy per site is then for- R TH-T8\2 [t)2 ) 12

mally given (with T} =TA€%, etc) by Fok= > *\u Al - (4.149

4
9 =<3 S nK)ef0(k) - JU
B=1 k
#JULTA (T2 (197 + (197, (@10

where the sum oiB is over the four bands and that @nis
over the reduced Brillouin zone. However, as the 41 ma-
trix in Eq. (4.11) cannot be diagonalized analytically in the
general casé.e., for arbitrary order parametgrso further

progress can be made like in the FO case. In particular one
cannot strictly prove that purely real or purely complex states

are permissible solutions.

Yet this still seems likely, and if one makes this assump-

tion, then for the case of the compléXOc) state, i.e., with
TA=TB=0, the 4X 4 matrix simplifies enough to obtain ex-
plicit expressions for the band dispersions,

A0 = +U(2nt By £ Fyp), (4.12
where

R TA +TB\2 t\2 |12

Flyk:[< = Z) +<% B2| (4.13

Setting the derivatives dEA2° with respect tan, T, and T2

to zero yields again HF self-consistency equations. From
these one easily proves thaf=-TZ, i.e., that the stable
complex state is actually the AO+ state.

For the case of a reghOr) state, i.e., withl; =T>=0, an
analytic solution is also possible, but this is so unwieldy as to
be impractical. However, if one further assumes tfiat
=TB=T one can derive the approximate expressions

57" (k) = 1[A, cosf_+ y(Cy cos, + Dy sin6,)]
+U(3n£Gy), (4.15

where
- t)\2
G=| T+ (U) {AZ sir? 0.
1/2
+ 7%(C, sin 6, — D cos¢9+)2}] . (4.19
valid in the largeU limit (U/t> 1), and again obtain analytic
self-consistency equations by taking the derivative&¥i"

with respect tan, T, 6,, and 6_. From the latter two one can
now prove the following. First, tha#, =0, i.e., 0,=—0g, SO
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B. Superexchange in the complex orbital states

We have already seen that the analysis of the orbital-
ordered states simplifies when the splitting of the quasiparti-
cle bands<UT, or «UT is sulfficiently large that it opens up
a gap and only the lower bantbwest two bands for AO
ordey is (are partly occupied whem=<1. It is then straight-
forward to calculate the energy and the order parameter by
summing over the occupied states.

I 1 Consider first the ordered states with complex orbitals. In
O the case of the FO+ state the equation for the order param-
eter, from Eqgs(4.8) and (4.4), takes the simple forntbe-
cause onlyT,# 0, while T=0):

FIG. 4. (Color online Stoner instability towards FO+ partly

polarized stategfull line) as a function of band fillingn in the T,= }12 w 4.17

orbital Hubbard mode{y=1), and the inverse of they density of 2N B

states of Fig. i) (dotted ling; full polarization occurs only in the

limit U=, For the spin mode(y=0), the corresponding Stoner M 2 |12

instability (dashed-dotted linds given by the inverse of the density Ex=[1+ (ﬁ) BE . (4.189
z

of states shown in Fig.(&), while saturated FM states occur above

the dashed line. Equation(4.18 shows explicitly that, unlike in the spin case,

) i i . T,=n/2 only atU=~, basically because the saturated FO+
the pseudospin vectors on the two sublattices are mirror iMsgateis not an eigenstatef the orbital Hubbard model given
ages of one another with respect to the cubic direcde® by Eq. (2.9). Thus the FO+ state is again seen to resemble
(or the equivalent one9=+2#/3). Second, that co& the AF phase in the spin model.
=-(U/3)x for x<t/U, i.e., fp=m/2+(U/3D)x, so that at Similarly, in the AOz phase for large enoughthe order
zero doping the stable solution is the A®state, and with parameter is given by
increasing doping the pseudospin vectors tilt slightly away

from the cubic direction, making the solution gradually re- T.= }12 Ny (k) + ny(k) 419

semble more the Aab state3® 2T 2N% Fe : (4.19
As an example of the HF instability at intermedi&teve

have investigated how the complex FQ@er the equivalent £ \2 ]2

FO-) state develops whed increases, using Eq&4.2) and Fy = {1 + (—) Aﬁ} , (4.20

(4.5. First, at y=0 one recovers the Stoner criterion uT,

UoN(Eg)=1 for the onset of the FM order with increasitg  ather similar to the FO+ cas@t.18, but with the inter-
with the FM saturated states becoming stable at a still Iarge(ghangeAkH yB,.. The reason is readily recognized from Eq.
but finite value ofU (Fig. 4). By contrast, in the orbital (2.9): for FO+ order, the diagonal hoppiwg:;r+cj+ that gives
model aty=1 the instability is qualitatively different, and the A is order-preserving, while the off-diagonal _termsitcj;
FO+ (FO-) state appears asgiobal propertyof the band  nat produces, are order-perturbing and redu€e For AO+
rather than as an instability at the Fermi surface. The instagrder this is reversed: the off-diagonal hopping that gives
bility occurs at higher values af for any filling than inthe B, js compatible with the order, while the diagonal one that
spin case—actually the value of the crititals very close to givesA, disturbs it.

that giving full magnetic polarization in the spin case. The similarity between the FO+ and AO+ statesyat 1

electronic bands are changed—they develop an additionglear half-filling(i.e., for smallx=1-n>0), upon expansion
splitting above a critical value obJ, which modifies the yp to first order int/U,

shape of the bands and leads to a finite order pararfieter 5
=(T{)# 0. This mechanism of the instability resembles that TFO+ = }{(1 —x) - 3y (l) } (4.21)
2 2 u/ )’ '

known in the spin case for the onset of antiferromagnetism. (1-x)?
The critical value ofU above which weak order appears has
therefore no relation to the actual shape of the density of pos_ 1 3-x(t 2
states(see Fig. 4. =5 (1-x)- 1-w2\u/ [ (4.22

We decided not to investigate the phase diagram of the
orbital Hubbard model in the HF approximation in detail. Note that a SE contribution:(yt)?/U appears also in the
Instead, we concentrate first on the qualitatively novel asFO+ state because the off-diagonal hopping permits virtual
pects of various possible ordered states in the regime of largeharge fluctuations. This result is again qualitatively different
U, where, as we will see, the contrast with the spin casdrom the spin case, where the SE contributes only in the AF
manifests itself in the most transparent way. Using these restates, and so destabilizes uniform FM spin order. In the
sults, we will then comment of the HF phase diagrams anagenuine orbital casey=1) the reduction of the order param-
lyzed in detail by several groupg2324in Sec. IV D. eter by SE is the same for FO+ and AO+xat0, but atx
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=0 itis slightly larger for the FO+ phase. The corresponding 1 6 — 4x+ 32 t?
expressions for the energy, up to second ordet/, be- EACsa= —tNE [(ny(k) = a(K))]yCy = “a1-x U
come k
4.29
FO+ 1 372 t2 (
E™'= —tﬁz n_(K)A, = 20-0U" (4.23  Unlike the complex states, the real states are seen not to be
K degenerate in the undoped case). The AGsastate has the
3o 12 lowest energy here, even though the SE contributes also in
1 Xt the FO states. However, we find the same qualitative differ-
A0+ — _ 1+ — - — !
B = ytN% [Ma(k) = nz(l) 1By 2(1-x)U" ence with the familiar AF and FM states for spin order as we

found for the complex orbital states—again the SE contrib-
(4.24) utes both in FO and in AO states.

Both are seen to be composed of theo kinetic energy Finally, we remark that the SE contributes also in any
[compare Eqgs(3.31) and (3.32 for the dispersionsand a  other phase, either with mixed FO and AO ordem., in the
(negativé SE energy. Surprisingly, near half-filling the en- C-AO and A-AO phases of Sec. llj or in a disordered OL
ergy per site of the FO phase lswer than that of the AO  state. Depending on whether the occupied orbitals on a given
phase at any value &f, not only because the FO phase gainsbond are identical or not, virtual processes due to
more kinetic energy<—3tx than the AO phase«—2tx, but ~ pseudospin-nonconserving or pseudospin-conserving hop-
also because it has lower SE energy. Instead, AO+ orddping contribute, and we have verified that qualitatively simi-
yields lower energy at larger doping=0.27 as a conse- lar results are then obtained to those presented in Egs.
quence of its peculiar density of stafgdg. 2a)].2324Note  (4.25—4.29 above. Such terms would play a role in the
that this isoppositeto the spin caséy=0), where the Néel low-doping regime and would deserve a separate study in
(AF) state has lower energy near 1 and the FM state takes Order to establish the phase diagram of weakly doped man-
over only above a critical doping.=t/2U. ganites. Note that in that regime also the spin-dependent SE

We emphasize that we have compared as yet only the twBlays @ prominent role, and the present orbital Hubbard
complex states with one another, with the express purpose #fodel (2.9), which implicitly assumes FM order, becomes
contrasting the behavior of these orbital states with that ofnsufficient to describe the physical properties of the real
the corresponding spin states. To establish what the mo&paterials. On the other hand, the SE terms, being-&U,

stable orbital-ordered state is, we still have to consider th¥anish in the limit of largelJ which we consider in Sec. V,
real states. and hence they have no consequences for the stability of the

OL phase atJ=o.

C. Superexchange in the real orbital states o )
D. Qualitative understanding of the Hartree-Fock phase

The results obtained for the ordered phases with real or- diagram
bitals are qualitatively similar. We focus here on the repre- D -
sentative cases of the kKQthe FQ, and the(G-type) AOsa Finally, let us analyze the possible instabilities of the or-

states, which we have shown in Sec. IV to be solutions of th@ita! Hubbard mode(2.9) in the HF approximation. In the

HF equations. Note that the A@phase is representative for 'argeU limit relevant for such instabilities, the total energy
G-type AO order. For simplicity we ignore here the small CONSiSts of the kinetic energy al=c, discussed in Sec.
higher order correction to the equations befwshich occur ! A, and a negative SE energy. While we do not intend to
when the actual occupied orbitals deviate from those of th&ake a quantitative comparison between the various phases

AOsa state towards those pertaining to the @éDstate as stable in the HF approximation, knowing that they are any-
discussed above. way destabilized by the correlation effectee Sec. Y, this

: i _ now enables us to get a simple interpretation of the HF phase
r(’m,?étlearrsge U/t one finds near half-filling for the order pa diagram of the genuineg orbital mpdel(y: 1),2.0123‘25using
the largeU expansion. These earlier HF studies have shown
TFQ‘(Z)—} (1-x) - 3y (l)z 4.25 that at half-filling, and in the regime of small doping, for
) 2(1-x2\u/ |’ : U>6t the most stable state is the real “antiferro” orbital
state, with the orbitals close to those found in the s&O
1{ 6—ax+372( t )2 phase. In this regime the SE energy dominates, and indeed
TAOsa= — (1—x)——2<—> (4.26)  the largest energy gain is then given by E4.29. At in-
2 2(1-x) U creasing hole doping, however, the kinetic energy of holes
The corresponding energies in these ordered phases are Moving in the F& background is much lower than that in
the AGsaphase(see Fig. 3, leading to a transition to “ferro”
3y orbital states when the difference between the SE terms

1
FOx — _+— _ _ =
E __tN% n-(k)(Ac = 7C) 41-xU’ (4.27) «t?/U is overcome by the difference between the kinetic
energies of these two phases. The region of the#@ghase
1 32 2 in the phase diagram decreases when the SE gradually looses
EFOz=—t=> n_(K)(A, + yC,) — —, (4.28 its importance with increasing, as shown by the numerical
N7y 41-xU result of Van den Brink and KhomsIé?.
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At U= the FQ order is found in the HF approximation configuration, viz.b;, and b,_ associated with the single-
at any doping<>0. However, at large but finite) the SE is  occupancy configuration§+) and |i-), and g with the
larger in the FO+ than in either K®r FOz phase, while the empty configuration(iO) (double occupancy is excluded at
difference in the kinetic energy is smakig. 3(d)], and thus U=«). Then a physical fermioielectron c is represented
the FO+ state is the first stable “ferro” state at intermediateby a pseudofermiof and two accompanying bosons accord-
values of 8<U/t<12 andx==0.15. However, wherx in-  ing to an expression IiquB:fiTB,bFBq, where the two bosons
creases further, the kinetic energy difference between thReep track of the change of the local configuration when an
FOx and FOr phase dominates, and the orbital orderelectron is added This construction, however, must pre-
changes to Ff As the SE energy of the two real K@nd  serve the cubic symmetry of the Hamiltoniéh9), implying
FOz stategsee Eqs(4.27) and(4.28] is the same, the dif- that it has to be gauge invariant with respect to tho$e)
ference in the kinetic energy gives a second transition fromgtations in orbital space that correspond to a permutation of

the F(x to the FQG phase with increasing. At small and  the cubic axes. The relevant rotation operator is, for arbitrary
intermediateU/t<12 one finds eventually ax~0.5 the (qtation angles,

AO+ phasé® which is stabilized in this regime by a com-

bined effect of large SE energy gain and low kinetic energy Oi(a) =exp—ifT)). (5.1
(see Fig. 3which follows from the peculiar density of states ) ) )
of this phase. The complex orbitals pick up just a phase factor under any

In a 2D model the phase diagram is quite diffefBand  rotation of this form, and the operatdis, ,c } transform as
is dominated by the generic tendency towaxdsy? polar- - FAE o gt
ization within an(a,b) plane?® The AO order is then fol- Ui(0)ci.Ui(0) ="y,
lowed by the FQ phase above a critical doping, which de- R R .
creases with increasing/t. We note that the region of the Ui(0)cl Ul () =% . (5.2
FOx phase is enlarged by the offdiagonal hopping terms - . . .
ocytyggin agreementgwith t¥1e above o%servatiolr)]pthgt thes%qs already indicated in Sec. Il, the orbital Hubbard Hamil-

terms stabilize the FO phases at firlitelue to the respective onian(2.9) is invariant under a uniform rotation at all sites,
SE energy contributions if the common rotation angl# is one of the three cubic

angles —4r/3, +4x/3, 0, and if this is accompanied by a
corresponding shift of the “gauge angleg), by —2#/3,

V. ORBITAL LIQUID STATE +27/3, 0, respectively. Actually the diagonal hopping terms
A. Kotliar-Ruckenstein slave boson representation in Eq. (2.9) are invariant under thel(1) transformatior(5.1)
even for arbitraryd, as a consequence of t4)2) symme-
ry of the spin Hubbard model, while the off-diagonal hop-
Ping terms pick up phase factors,

To understand further the essential differences betwee
orbital and spin physics, we develop now an approximat
description of the correlated OL disordered state. This is o
crucial importance as the HF approximation permits only a cit,cj_e e““cit,cj_,
comparison of ordered states with one another, and therefore
does_ not allow one to draw any conclu_sions concerning the CiT—Cj+H e+ieci“r_cl_+' (5.3
stability of the orbital-ordered states with respect to disor-
dered states. This is well-known from spin models—for in-which get compensated by the shift of thgif 6 is a cubic
stance, the FM states in the 2D Hubbard model are stablangle. As the three cubic-angle transformations amount to a
only in a narrow range of doping<<0.29 near half-filling®®  forward and to a backward simultaneous cyclic permutation
while the HF approximation predicts FM to be stable at anyof axes and orbitals and to the identity, respectively, the in-
electron fillingn. variance expresses the cubic symmetry of the Hamiltonian.

We will argue below that indeed orbitéFO or AO) order Therefore we take the slave boson representation as
is not robust aty=1 and gets replaced by a disorde(€xl.) t ot gt 54
phase, if one goebeyondthe HF approximation and in- Ciz = Disli=®, (5.4
cludes electron correlation effects. As we have already seegorresponding to a representation of the local states by
the orbital problem is richer than the spin case, as various

ordered states are nonequivalent when $t€2) symmetry [i0) :e{f|vac>,

is absent. Therefore we shall consider only the limit of very

strong correlations and investigate the stability of orbital or- li +)=cl[ioy=b.fl jvao,

der specifically in thdd=<« limit, where the OL competes

with fully saturated FQsee Egs(4.21) and(4.25] and AO li-)y=cl]ioy=blf|vao, (5.5

[see Eqs(4.22 and(4.26)] states.

In order to obtain a reliable variational method to calcu- iondo
late the correlation energy, we have followed the slave bosoHansform undet)(1) rotations” as
approach introduced by Kotliar and Ruckenstéifor the 0_(0)8T0_1'(0):e‘r
spin Hubbard model and have adapted it to the orbital case. nemE '
In this approach the Fock space is enlarged by the introduc- - «
tion of three auxiliary bosons at each site, one for each local Ui(0)bUf(0) =e

and weimposethat the boson and pseudofermion operators

Ii(}b_T

[E)
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3 0T ) = aFioi2et 1
Ui(O)fiL Ui (0) = e "4, (5.6) Hiymo = — Etz 2 (211 f, 2. + 2 fl.5,.2-
Note that the phase of the boson operatﬁ;s:hanges twice a (Dl
as fast as the phase of the pseudofermion operéforse., + Y€ ez ] 11,7+ €%zl flL1,2,)]
the bosons have pseudosfir 1, while the(pseudgfermi- : . .
ons belong tar'=1/2.This property guarantees that tbi¢1) - E Ni(bj by, + b +e/e - 1)
rotation behavior of the electron operators, as given in Egs. :
(5.2, is correctly reproduc;ed_by the transformati®4). —ME fi&fix"'z Mix(biT)\biA_ f-T_fiD7 (5.13
Thus the present formulation is indeed gauge invariant and i i i

preserves the cubic symmetry of the orbital problem, like the _

SU(2)-invariant formulation introduced by Frésard andwith A== and\=-\. The Hamiltonian commutes with the

Wolfle preserves the full rotational symmetry for the spinconstraints and thus does not connect the physical and the

systent'! Clearly, the construction of a gauge invariant for- unphysical subspaces of Fock space.

mulation is greatly facilitated by our use of the complex- In the mean-field approximation we replace the boson op-

orbital representation, but a similarly gauge invariant repreerators by their averages. In order not to spoil the cubic

sentation in terms of real operators can also be constructedvariance only their amplitudes are replaceddayumbers,

and is given in the Appendix. while their phases are prescribed to behave still according to
The enlarged Fock space contains also unphysical statés. (5.6).* So we set for the boson invariants

which must be eliminated by imposing constraints as in the t —

original formulation by Kotliar and Ruckenstelf, (bisbi) = by,

blbi +blb_+eg=1, (bl bi_) = b?
(i i=

blb.=flfi, bl =flf, (5.7)

and implemented by means of Lagrange multiplyers — — _ N ]

{\i, tis, pi_}. The first constraint excludes double occupancyWhereb;., bi, ande are real quantities, i.e., they do not
the other two eliminate the unphysical singly occupied state§ontain any nontrivial phase. For the offdiagonal, nonin-
bf.fl.lvad and bl f!|vag. The electron density and the Variant, two-boson products we set

z-component of the pseudospin can then be described at each FoN T e o\ ot O

site either by slave boson or by pseudofermion operators, (b.e) =b.ee™, (gb.) =b.qe™,

(ele)=7¢, (5.14

n = CiT+Ci+ + CiT_Ci_ = biT+bi+ + biT—bi— = fiT+fi+ + fiT_fi_, <b|T—ei> = E—Ee+i15ia <e|Tbi_> = E_Ee—i;9i’ (515)

(5.9 -
where the phase operatdy is understood to transform as

Ti=3(blb, ~blb) =3(f_fi ~fLf). (5.9 009010 = 9+ o, (5.16

The other two components of the pseudospin operator cand in particular assumes the cubic valuis 9, and 9,
only be represented as when the two-boson operator product occurs in an expres-

T = bitbi_fiT_fH, (5.10  sion taken along the axis, b axis, orc axis, respectively.
The last average of Eq&s.14) controls the number of holes
T =blb,ff (5.11) in the gy band,e?=x, for a phase with uniform charge den-
I 1=~ 1+'1= "

sity. The constraints give then the following self-consistency
and cannot be reduced to expressions in terms of either slawenditions,
bosons or pseudofermions aloffe.

As in the spin case one further has to renormalize the b =(flfi), b2 =(flfi.),
bosonic factor in Eq(5.4) in order to recover, when a mean- L
field approximation is going to be made and the constraints b +b% =1-x, (5.17)

are no longer rigorously obeyed, the correct unrenormalized o
hopping for the pseudofermions in the uncorrelatg=0) ~ While the renormalization factors become

limit. The renormalized boson factors take the form i [ty
imi renormaliz s T actors r <Z|‘T¢> — \"Ee D (7. = \gLet?, (5.18
b.e .
ZiTi: ; - T'— ! - , (5.12  with
V(1- €6~ bi:bii)(l - biibii) X X
where it is important that the operator expression under the iz = 1 ‘<fiT:fi:> = 1—(ny)’ (5.19

square root in the denominator i§1) invariant, so that;-T+ )
(z") transforms under Eqg5.6) exactly ash!, (bl). Then  The exponentials containing; can be eliminated from the
the Hamiltonian in the slave boson representatiot ate Hamiltonian by absorbing them in the pseudofermions, ac-
becomes cording to
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f, = eFiifl | (5.20 R

Note that this definition ensures that tfg transform prop- A SN ]
erly underU(1) in accordance with Eqg5.6). - [

Within the slave boson mean-field approximation one thus w08 ]
finds an effective Hamiltonian for pseudofermions subject to [ RN
local constraints, and with renormalized hopping. In the case -2r e ]
of orbital-ordered phases its precise form depends on the [ . . . \;\_.3
assumed type of state, with the hopping renormalization fac- 80 02 o4 06 08 1.0
torsq;. either uniform or alternating between two sublattices. n

Here we present only its simpler form, adequate for uniform

h h FO and OL . hich th i FIG. 5. Kinetic energie€/t of the OL state for uncorrelated
phases, such as an states, in which the renorma IZ%\'J=O, dashed lingand correlatedU =<, full line) g, electrong(at

tion factors and Lagrange parameters can be taken site ind;;-: 1), as functions of the electron density
pendent, '

ve L TN a2 i it 3 trons, but nowrenormalized by correlationsThey interpo-
Hye, == St 2 [ fiu i + a-fifi- + yVaLg-(e7Xefi, late correctly between the case of uncorrelated electrons in
o {ipla an empty bandx=1) and a Mott insulator at half-filling
+ e+ixafi’r_fj+)] - wbi, (5.22) _(x:(_)) where _the dispersion is_fully suppressed_, as illustrated
ix in Fig. 5. Owing to the Gutzwiller factors the kinetic energy

A _ has a minimum at fillingh=0.5, and approaches zero rat
with fi, =f]\;,. The present formalism reproduces the results=1_ Thus the kinetic energy has a similar doping dependence
of Kotliar and Ruckenstein for the spin modef=0) with  to that found in a spinless fermion model, i.e., for fermions
hopping 5t and gives the same results as the Gutzwillerwith a single orbital flavor. As in the spin caé,one can
approximatiorf* and soq. and g- will be called also argue that ax~0 strong correlations lead to an effective
Gutzwiller factors. exclusion principle between the two degrees of freedom also

The ordered states can be obtained within the present Kig k space, i.e., for each momentunonly one orbital flavor
slave boson approach by a proper choice of the Lagrangsay be occupied.
multipliers. For instance, the FO+ state is now obtained from  This OL state is fully isotropic in the sense that the mean-
Eq. (5.21) by imposing(f;-)=0 by means of the condition field values of the pseudospin operators vanish, i.e.,
u_=-o (while u,=0). Such states do not experience any
band narrowing, as double occupancy is rigorously elimi- (TH=(TV)=(TH=0. (5.2
nated atU=, and the correlation energy vanisHeéss a ' ' '
result, only th_esFm(Ako):_tAk band is partly filled in the g5 yhe7 component this follows immediately from E¢.9)
FO+ state, while the(,, (k)= =By bands are filled in the )
AO* state. Real orbital-ordered states can also be obtainegncebi‘f_bi" For the other comp_onents we apply E@s15

X . . ; . ~and(5.20 to Eqg.(5.10 and obtain
using the formalism described in the Appendix. Therefore in
the U=q0 limit one reproduces the results of the HF approxi- . .
mation described for these states in Sec. IV. (TH=b,bi_e 2% fi,) =21 -x(fLf), (5.29

B. Nature of the orbital liquid state and similarly for(T;). The pseudofermion averages can be
determined by making use of Fourier transformation: since
the Fourier-transformed Hamiltonidh.21) can be diagonal-
\i,éed analytically, the Fourier-transformed pseudofermion op-
ators can be expressed in terms of the eigenvectors
€+,6}, with the result

A qualitatively new solution, however, is obtained within
the present approximation for th#isorderedstate, where
double occupancies are on average eliminated by the sla
bosons, and this correlation effect leads to an increase of t
kinetic energy. The minimum energy is obtained when th
pseudofermion densities are eqt(ﬁ,+>=<ﬁi_>=%(1—x), and

: ot ; At on TR C
the Gutzwiller renormalization factors take the simple form, <fl+fk_> + <fl_fk+> = B_:(<QI+Q<+> - (el_ek_»,
2X
=g.(x)=—. 5.2
90 = (0= T~ (5.22
ny n ap oA D
Then the pseudofermion bands, (Fefioy = (Fifien) = |B—k(<el+ek+> +(el_a.)). (5.26
k
€05 +(K) = d(X0)£y=0,4(K)
= —1q([A £ By]. (5.23 Since the eigenvalueﬁkm’i(k) are cubic invarianfsee Eg.

(5.23] in each of the two bands the three states with the
represent formally the superposition of the FO+ and AO+components ok cyclically permuted are either all occupied
bands given by Eq(3.36), typical for uncorrelated, elec-  or all unoccupied, and thus
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cosk,,
C.= 2 <el+ek+> (527)
k Bk

is independent ofx, and similarly forC_. It then follows
from the form ofC, andD, [see Eqs(3.9) and(3.10] that

the expressionéljkﬁ, given by Eqgs(5.26), both give zero w

when summed over the Brillouin zone, and so
(fhfio=(lfi)=0, (5.28

and Eq.(5.29 follows.

The absence of a preferred orientation of the pseudospin
implies that there is no orbital preferentially occupied. In ] o ) )
particular,(Ty=0 and(T")=0 imply [see Eq(2.4)] that FIG. 6. (Color onling Kinetic energiesk per site at electron
o : densityn=0.75 andJ =< for increasing off-diagonal hoppingy in

(che, - el =0, Eg. (2.9), as obtained in the KR approach for: the OL ground state

(solid ling), FO+ (dashed ling AOz+ state(AO, long-dashed ling
to foy_ and energyEq (filled squares for the ground state of a four-site
(CizCix * CxCiz) = 0, (5.29 plaquette(P). Also shown are the energies of the lowest two excited
from which it follows that the same relations hold for the States for the plaquette: a nondegenerate state which splits off the

operators’,tc-’“r ¢/ obtained after an arbitrafy(1) rotation, degenerate ground state 0 (empty squarésand a doubly de-

. Lz o vix e i enerate state with finite excitation ener 0 (diamonds.
as is easily verified explicitly or by observing thEtand T’ g Wit finite exciiat gyyat0 (d >

rotate as arc doubletcompare the Append]xThus, the OL . )

is SU(2) symmetric—random complex or random real orbit- v=1. For y=0.4 this degenerate_ excited state has alrt_aady a
als are equivalent, and indeed tlientical OL state is ob- !ower energy 'than any other excited stéfes level crossing
tained using real orbitals, as shown in the Appendix. ThidS Shown in Fig. & None of these states can be classified by

correlated disordere®L state with completely randomly oc- a F_Jseudospir_l quantum number. I_n th_e genuine orbital case
cupied orbitals is apparently different from that proposed by.¥=1) the kinetic energy per site in the ground state,

Ishihara, Yamanaka, and Nagad&an which the planar or- Eo=70.44, is much lower than in the spin casat y=0),
bitals {x2-y?, y?— 22, 2-x?} play a prominent role. showing that a considerable amount of kinetic energy is

gained when the orbitals get disordered and full advantage is
taken of the pseudospin-nonconserving hopping. This result
C. Absence of the Nagaoka theorem suggests that a similar tendency towards disorder should be

Before investigating the stability of the OL state in Sec.present in the thermodynarmic limit.

V D, let us consider the special case of a single hole in a N o
half-filled system. In the spin cage=0) the celebrated Na- D. Stability of the orbital liquid phase
gaoka theorerf® one of the very few exact results in the  Also for the full 3D model it is instructive to consider, at
theory of itinerant magnetism, then applies: Nagaoka hafixed density, the variation withy of the total energyE of
shown that the ground state is FM when a single holepossible ordered and disordered states. We do so in Fig. 6 at
electron is added to a half-filled system, described by thehe same fillingh=0.75 as one has in the plaquette filled by
spin Hubbard model at/=. A central assumption of this three electrons, in order to enable a comparison with the
theorem is that the kinetic energy conserves the spin flavogxact results for that finite system. The energy of the polar-
(see, e.g., the proof in Ref. #A8precisely the feature not ized FO+ state does not depend phisee Eq(3.31)], while
obeyed by the orbital flavor af; electrons. Thus ay#0 no  that of the AO+ state follows from the dispersion given by
exact statement can be made for the orbital Hubbard mod@&q. (3.32, and decreases linearly with At y=1 it comes
(2.9 and, a priori, one expects that polarized states arevery close to that of the FO+ state, but remains still a little
harder to stabilize in this case. bit higher. At y=0 the polarized FO+ phase has a lower
We have investigated the consequences oBtt2) sym-  energy than the OL state, which confirms that FM states are
metry breaking, i.e., of the pseudospin nonconservation, bgtable in a range of filling close to=1 in the 3D Hubbard
analyzing the exact solution for a plaqueffteur-site cluster ~ model*® The energy of the OL phase decreases gradually
filled by three electrons, as a function of In the spin  with increasingy and becomes lower than that of the FO+
model, at y=0, the ground state, with kinetic energy phasewhich stays constahat y=0.25. It is remarkable that
E;=-0.25 per site, is fourfold degenerate, corresponding tothe energy decrease in the OL phase, when going from
maximum spinszg as required by the Nagaoka theorem. At y=0 to y=1, is quite large, and actually of similar magnitude
v>0 it splits into four nondegenerate states: the ground statas the exact result in the finite system. Hence one finds that
and three excited statéthe lowest of them is shown in Fig. in spite of the renormalization of the hopping loyl1/4)
6). The first excited state in the spin mode/=0) is doubly = =0.4, the (kinetic) energy in the OL state is substantially
degenerate, and this degeneracy is not removed>dl, and lower than in the AOz state.
the two states lower their energy wherincreases towards Next we consider the variation of the total enerfgyof
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FIG. 8. Region of stability of the FO stateslat~ as a function
of y; the transition to the OL state from the K@) and complex
FO+ state are shown by the full and dashed line, respectively.

and thus will strongly favor disorder, except neas=1
where SE stabilizes real-orbital AO ordef:52* We thus
conclude that for the orbital Hubbard modely=1) doping
FIG. 7. (Color onling Kinetic energyE in the KR mean-field triggers a crossover to the OL staa any U, supporting

approximation as functions of for: AO+ (long-dashed lingsand  gayjier conjectures that such a disordered state is redif#d.
OL state(full lines) for increasingy=0, 0.5, 0.707, and 1 from top

to bottom; the dashed line shows the kinetic energy of the FO+ state
which is independent of.

E. Brinkman-Rice transition at n=1

. ) . At half-filling (n=1) it is straightforward to apply the
ordered and disorderezbmplexorbital states with electron finite-U version of the KR formalism? and investigate the

filing n (Fig. 7). In the spin mode(y=0) the FM phase has yeneric metal-insulator transition in the orbital disordered
somewhat lower energy than the disordered OL state close T[Shase ignoring the AO order promoted by the SE. Here one
half-filling, in the rangen>2/3°% Our approach reproduces i odices as a counterpart to the bosanshich control the

in this limit the known result of the slave boson approach, : : _af :
; ; - OO . - 'empty configuration$0)=g'|vac), also bosonsl; which con-
which gives a FM ground state for any bipartite lattice with trol the double occupanciesﬁcmO):dini‘}filrllvac). The

the denslty of states being an even function of enétgy. mean-field approximation gives then the renormalization fac-
When y is increasedEgq, does not change, whereBsg., tor (at n=1) 14

initially at zero fory=0, decreasesy, and aty=1 surpasses
the FO+ state ak=0.27. Hence the slave boson approach 7(d) = 8d%(1 - 2d?), (5.30

reproduces here the result of the HF approximation for these . . )
states’® However, in spite of the band narrowirgg(x), whered=(d;) is the average amplitude of a doubly occupied

which is appreciable at these electron densities near halonfiguration in the ground state. The bands are then given
filling, considerablymore (kinetic) energy is gained in the Py the dispersion for free electror8.35 renormalized by
OL state This is basically due to the fact that both hopping 7(d),
channels contribute, which gives rise to the large density of OL (1 — __
states over the full frequency range, and at small doping in ey,+(K) = n(d)ey=o +(K) = = p(At[A = ¥B(]. (5.3D
particular[compare Fig. d) with Fig. 2]. We may conclude So the kinetic energy ig(d)ey(y), whereey(y) is the kinetic
that the presence of the additional pseudospin-nonconservirghergy of the uncorrelated OL, obtained by integrating the
hopping channel, associated with the absenc8W®) sym-  two bandse-o (k) [Eq. (3.39] up to half-filling, while the
metry, implies that more kinetic energy can be gained byCoulomb repulsion gives an enertd? per site.
paying correlation energy than in the spin case, and that this For the spin modely=0) this problem was solved by
favors the disordered OL state sufficiently to make its energBrinkman and Ric€2 who showed that an “insulating” state
lower than those of the complex orbital-ordered states at angivith d=0) sets in aboveJ.=8t (in the present unijs It is
value ofn. well understood by nowsee Ref. 2P that this mean-field
Finally we compare atJ=« the energies ofill states, theory does not give an accurate description of the metal-
both with complex and real orbitals, varyingand y. One insulator transitior(in particular it ignores all charge fluctua-
finds that AO states are never stable in this limit of strongtions in the insulating phase, where in reality: 0).>3 By
correlation, while FO states are stable only at smalFig.  analogy, one expects that also in the present dase at any
8). At y=0 (the spin casethe FO+ and F® (FOz) states are finite U, and in fact this follows from the largg-expansion
necessarily degenerate, but at ayly O the phases with or- analyzed for the ordered phases in Secs. IV B and Ifo€
dered real orbitals have lower energy, withZHBOx) being  a disordered phase a similar analysis could also be nade
more stable ah<0.71 (n>0.71). The range of FO order Nevertheless, the Brinkman-Rice transition from a “metallic”
shrinks gradually with increasing, and abovey=0.94the  to an “insulating” state ah=1 illustrates nicely the compe-
OL phase is stable in the entire range of\We argue that at tition between kinetic energy and Coulomb repulsion
finite U the kinetic energy will become even more dominantenergy?* and so it is worthwhile to consider the general case,
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14 y y y y correlation limit(U>t) indeed orbital(FO or AO) order is
not robust fore, orbitals, and gets replaced by a disordered
(OL) phase, if one goebeyondthe HF approximation and
includes electron correlation effects in the disordered phase
as well. This leads us to the conclusion that the HF
results?92324 syggesting that either the FO+ or the AO*
state is realized in a broad range of doping, are particularly
misleading for the orbital Hubbard model. Here the present
findings agree qualitatively with the results of the self-
: : : : consistent second-order perturbation theory obtained by
' y ' ' Kubo and Hirashim&® The situation could be somewhat dif-
ferent in the 2D case, however, where a tendency towards
particular orbital orderings with larger amplitude xf-y?
orbitals is favored by geomet?:38

We considered specifically tHg=cc limit, where the OL
competes with fully polarized ordered phases and we have
) ) ) shown that it is more stable than any of either uniform FO
i.e., with arbitraryy. Then, completely analogously to the [gq. (4.21)] or staggered AQEQ. (4.22)] states. However, at
spin case, an ‘“insulating” state is found abovefinite U and for sufficiently low doping, real-orbitalC-AO
Uc(y)=8[€y(y)|. Similar to what happens upon dopifige.,  order is stabilized by a superposition of the SE and the JT
at finite x) in the U=o0 limit considered above, here upon effect. Particularly in the regime of low doping the JT inter-
allowing double occupancti.e., finited) at n=1, the “me-  actions might be stronger than the electronic interactions of
tallic” phase gains additional kinetic energyy due to  double-exchange type, and the induced orbital order dictates
pseudospin-nonconserving hopping which lowers the kinetithen the type of magnetic ord&>’ This regime is particu-
energy below the value due to pseudospin-conserving hogarly difficult in realistic models for manganites, as the or-
ping alone(the only one present in the spin casBherefore  bital interactions induced by oxygen distortidhand the or-
the “metallic” phase survives up to a higher valuelbfhan  bital polarization around doped holes,give additional
at y=0, as shown in Fig. 9. important contributions and support particular types of or-
bital order. Furthermore, the overall stability of ordered ver-
sus disorderedOL) phases changes when a realistic Hund'’s
coupling is included? It has been shown that the FM phase

In this paper we have made a detailed analysis of thé&hrinks then to a range of doping 6sX=< 0.5, theA-type AF
eg-orbital Hubbard model on a cubic lattice, exploring the phase is stable near0.5, while theC-AF phase takes over
consequences of the absenceStk2) symmetry and high- at higher hole doping.
lighting them by making a comparison with the familiar ~Summarizing, the absence &U2) symmetry in the
SU(2)-symmetric spin Hubbard model. In the first part we €g-orbital Hubbard model has severe consequences for the
studied the orbital-ordered phases, of which there is a gredaroperties of the model itself and for the stability of orbital-
variety, precisely because of the lower symmetry, emphasizZrdered states. The Nagaoka theorem does not apply to the
ing the difference between the complex-orbital states whictinodel of correlated, electrons atJ=, ordered states are
retain cubic symmetry, and the real-orbital states in whictharder to realize than in the spin case, and the Brinkman-
cubic symmetry is broken. Analytical results for the orderRice transition occurs at a higher value ©f The qualita-
parameter and the energy of each of these phases in the Hirely different properties of the ordered phases show up
approximation at largeJ/t were presented, demonstrating most clearly in thenverted stability(with respect to the spin
that the total energy can be conveniently divided into twocase of the ordered phases with complex orbitals, with ferro
contributions: a kinetic energyt given by theU= limit, ~ (Staggered orbital order favored at smalllarge doping.
and a SE contributiorrt?/U. The SE decides about the rela- Most importantly, the exciting suggestion that such complex-
tive stability of the various phases at half-filling, while the orbital ordered states could be stable at finite dofftit™
kinetic energy contributes and finally becomes dominanhas been disproved because of theerent tendency ofe
upon doping. This analytical treatment allowed 8: to systems towards orbital disordelue to the enhancement of
demonstrate explicitly that SE contributes in both AO andthe kinetic energy wheBU(2) symmetry is absent. All these
FO states(ii) to demonstrate that the real-orbital states havdeatures show that several properties of spin systems which
their orbitals aligned with the cubic axes, as well(dis to  are usually taken for granted, such &gthe very fact that a
elucidate the structure of the HF phase diagram for the orferromagnetic state is an eigenstate of either an itinerant or
dered phases obtained numericdM¥32*We emphasize that the Heisenberg Hamiltonian, arid) the absence of superex-
these properties ad; orbital degrees of freedom are essen-change in ferromagnetic states—are in fact the consequences
tially different from those ot, ones because the latter sat- of the SU2) symmetry of the respective spin models.
isfy certain symmetries and are thus conserved in the hop-
ping processess ACKNOWLEDGMENTS
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FIG. 9. Metal(M) to insulator(l) transition with increasingJ,
as obtained in the disordered phase as a functiop afn=1. At
v=1 (orbital cas¢the transition occurs in the ground state, while at
v=0 (spin casgthe result of Ref. 52 is reproducéRef. 54.

VI. SUMMARY AND CONCLUSIONS
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sightful discussions. A. M. Ofewould like to acknowledge Substituting the complex-orbital slave boson representa-
support by the Polish State Committee of Scientific Researction (5.4) into Eq. (A1) and applying the transformations
(KBN) under Project No. 1 PO3B 068 26. inverse to Eqs(A2) and (A3), one obtains the slave boson

representation for the real-orbital fermionic operators

{c!,cl} analogous to Eq5.4). The result is

APPENDIX: SLAVE BOSON REPRESENTATION FOR

1
REAL ORBITALS ch=+ E(biTzfiTZ -blfhe,
The real-orbital version of the transformation of the elec-
tron operators to slave boson and pseudofermion operators 1
may be derived by making repeated use of the relation be- ol = - =l +bLfle, (A6)
tween the real and complex orbitals, as given by Egsl). V2
Thus with the real-orbital electron operators given by corresponding to a representation of the local states by
1 i0)=e'|vad,
cl = (el +cl), 102 eilvec
V2
. . 1
i lizy=cl]ioy= + ’—E(bfzfrz - bl fl)vag,
\
cl= ?(cf+ -ch), (A1)
| . . 1
we similarly define the real-orbital pseudofermion operators lix) = cfi0) =~ E(b&fﬁz +bfivac. (A7)
by ‘
1 One recognizes that EgGA6) are indeed the proper expres-
fl = —(# +fl), sions for theE doublet resulting from the product represen-
V2 tation E® E® A,.5° The expression§A6) are actually even
U(1)-invariant, i.e., after a rotation in orbital space by an
N PP arbitrary angled, they also hold between the fermion opera-
fix= 7=~ D), (A2) it orh=t et Ot Ooet OF
V2 tors {c{, ,c; }={U;i(6)c, U/ (0),U;(6)c, U/ (0}, transformed
. according to Eq(A4), and the slave boson and pseudofer-
while for the slave boson operators we set mion operatorgb/,’, b/} and{f.,f/'}, transformed accord-
1 ing to Egs.(A5) and(A4), respectively. Consequently, since
bl = ?(b?++ bl), the hopping Hamiltoniari2.3) is invariant under a transfor-
V2 mation (A4) of the fermion(electron operators wherv is
one of the cubic angles 0, 443 and is accompanied by the
bf = —_i(bf ~bh) (A3) corresponding permutation of the cubic axes, this cubic in-
W variance is retained when the Hamiltonian is expressed in

terms of the slave boson and pseudofermion operators by
Then the fermiongelectrong transform undetJ(1) rotations  means of Eq(A6).

as The constraints given by Eg&.7) are now replaced by
~ ~ t t o
Ui(0)chUT () = coga12)c!, - sin(ar2)c!, bi b, + by +e'e =1,
R . bib. +blb, =f f +flf.,
Ui(6)clUT(0) = sin(@/2)c], + cogb2)ct,  (A4) S
and similarly for the pseudofermions, while the slave bosons by = biybi, = 1,y = 1.5, (A8)

transform as Again the first constraint excludes double-occupancy, as re-

Ui(ﬁ)biTZUiT(@ = cos bl + sin ob’ quired in the limitU =, while the last constraint is readily

X verified to eliminate the unphysical singly occupied states,
~ ~ . ) 1
Ui(6)bl Ul (6) = - sin ob!, + coseb!. (A5) liA) = TE(b;;f?Z +b! fl)vag,
V

The different sign choice in EQA3) as compared to Egs.

(A1) and(A2) makes the slave bosons rotate in the opposite 1

direction as thépseudafermions. This compensates for the liAy) = ?(b?;(f?z_ blfl)lvao. (A9)
doubled rotation angle in the sense that the transformations V2

are identical for slave bosons afuseudgfermions whend  \When the constraints are obeyed rigorously and the unphysi-
is a cubic angle, and so the paifs},cl}, {fl.fl}, and  cal states strictly projected out, operators connecting the
{b},.bl} all transform as the ande component of a cubiE  physical and unphysical subspaces necessarily vanish identi-

doublet. cally. Specifically one finds
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bibi, = bl = f.f, - flf, =0, (blbi,) = (blby) = 162
blby + by, = Flfy + £l fi, = 0. (A10) (ele) =&, (AL4)

. . . Actually, the real-orbital boson occupation numbers
It is obvious from the above that the earlier attempt made ) _ Ty (0) _ 1.t . . pa
=b;,b;; andn,”=b, b, are not invariants with respect to

in Ref. 61 to construct a real-orbital slave boson representg-iz . X
tet t ot (1) rotations, and so one would prefer to set, in accordance

i T g
trgr?o:)rﬁarl?zeaa;ir:)sr:w ?)ffltzhebglalaz\?e %gigﬁ f:gtaxrtz,byllowed by with Egs.(A13), the corresponding diagonal averages equal

to
t_ bie, . 52 X
" @ -ele-bib)(1-bby) (ba) = bircosta = o).
T X E_z i - A.
= bre ALD (blbi) = bf sin(a; — ), (A15)

[1 _afea—hh V1 -hh) ) _
V(L — €6 =~ bbi;) (1~ by by in order to make them transform in the same way as the

was misguided because it does not conserve the cubic syrccupation numbers, by setting also

metry and is thus bound to lead to spurious results. However, 1—

glsp the present real—_orbital representation, though invariant (bl by = (bl b,y = =b? sin(2a; - z{si), (A16)
in itself, leaves us with the problem to construct a proper 2

cubic-invariant renormalization. This is not StralghfomariEowever, the expressioré15) and (AL6) do not satisfy

because the hopping Hamiltonian, when expressed con)- . . . .
pletely in terms of slave boson and pseudofermion operato qs- ('A'10), and so it appears to be |mp953|bIeT to assign a
referring to ‘2" and “x,” takes a different appearance for each nontrivial dependence on the phase operatdo (b;;b;,) and
cubic axis, like in Eq(2.3). Moreover, the apparently plau- (bjby) and yet simultaneously respect E¢&10).

sible renormalization by means of Ed#11) is not allowed The issue is immaterial for carrying out the KR proce-
even in combination with the representati@®), becausezfZ dure, since in a state with uniform density, i.e., v@:x for

and z;; as defined by EqgA11) do not constitute a cubie  all i, it follows from the constraint¢A8) that both for Egs.

doublet as their denominators are not cubic invariants. Hav¢A14) and for Eqs(A15) the amplitude satisfigs’=1-x, S0
ing them replac®! e andb! e in Egs.(A6) would spoil also  that

the cubicE doublet nature of the thus renormalizeli and

CL, and so destroy the cubic symmetry of the Hamiltonian. <Z|.Tz> =(z,) = \m coga; — {9i),
Equally seriously, it would also cause the Hamiltonian to

commute no longer with the constraints.

- .
A renormalization not suffering from the above problems (Zh) = (z) = V2q(%) sin(a; - ). (A7)
air:/(lr?tgl in the spirit of the Kotliar-Ruckenstein Ansiizs Inserting this into Eqs(A6) and defining new pseudofermi-

9 y ons by
. ble .
= . i By e i = g s oy i S t
a V(1-¢e'e - 1n®)(1-1n®) fi,= cosaifi, + sina;fy, = cod¥; — ay) i, + sin(; — ay) s,
t N . A~ ~ o A~
A = bi& (A12) fl = —singf] + cosayfl, = sin(9; — o) fl, - cog 9 — )},
X ’
T de 2T ) 19

where n®=bl b, +blby,. The mean-field approximation is where{f! '} are related tdf/,, "} [see Eq(5.20] by Egs.

now made, as in Sec. V A, by replacing only the amplitudesa2), one finds that the mean-field approximation effectively
but not the phases bg-numbers. So, for the off-diagonal |g5ds to the replacements

two-boson products we set, similarly to what was done in
Egs.(5.15, 2 —

45519 ch = VAot ch=aeot]. (A19)

+ t — A The kinetic part of the Hamiltonian is thus simply renormal-
(bi,e) = (e/bi;) = bie; codaj - ), ized by the Gutzwiller factog(x), exactly the same result

o as<> obtained in the complex-orbital approach. As the

(bl &) = (e'by,) = big sin(a; - f}i)_ (A13) Hamiltonian is therefore again cubic, it follows that the re-
o sulting real-orbital OL is isotropifi.e., o;=7/4 at all sites,
whereb, and€ are again real quantities. For the diagonaland(b}b,)=(blb,)=(1-x)/2], and identical to the OL ob-
two-boson products we set tained in the complex-orbital approach.
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