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The theoretical approach of two-magnon scattering in polycrystalline ferrites by Sparks, Loudon, and Kittel
fPhys. Rev.122, 791 s1961dg aiming at the microstructure-related relaxation of the uniform precession mode
is extended to describe the relaxation of spin-wave modes. Within this framework we introduce a unified model
that describes the influence of pores and microdomains on the relaxation of both the uniform precession and
spin-wave modes. It is shown that the spin-wave linewidth does not only depend on the wave number—as
assumed in conventional theory—but also on the propagation direction of the spin waves. This will, in
particular, affect the damping of the critical modes at spin-wave instabilities, when probed in different experi-
mental configurations. The effect of the number and size of pores as well as the influence of domain size and
anisotropy is studied in detail, and as will be shown, this results in quite different parameter dependencies.
Good qualitative and even quantitative agreement with previous experimental data is achieved without using
any fit parameter.
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I. INTRODUCTION

The present boom in the communication industry has
raised the demand for specific microwave ferrite materials
necessary to construct passive microwave devices, such as
isolators or circulators. High-power applicationsse.g., com-
ponents for transmitters, accelerators or radarsd require spe-
cific materials having low-loss properties in combination
with a stable high-power performance. From the point of
view of the underlying physical mechanisms these technical
requirements may be considered as antagonistic, since they
call for low dissipation of the uniform magnetization mode,
but for high dissipation of critical spin-wave modes in order
to prevent the occurrence of instabilities1,2 that could destroy
the device. In conventional material design these two de-
mands exclude each other. Increasing the spin-wave damp-
ing, e.g., by chemical doping would simultaneously increase
the damping of the uniform magnetization. Vice versa, the
use of ultrapure materials would guarantee low propagation
losses, but also decrease the spin-wave damping and, conse-
quently, the instability threshold.

The recent progress of micro- and nanotechnology has
offered new ways to influence material properties by ma-
nipulating the microscopic structure and to tailor these prop-
erties by specific kinds of preparation. This can be a way out
of the above dilemma and allow one to change the dissipa-
tion of the uniform magnetization and of the spin-wave
modes independently of each other. It is well known that the
size of grains and pores in polycrystalline ferrites can dra-
matically affect the observed linewidths of ferromagnetic
resonancesFMRd. Schlömann3 attributed the broadening of
the FMR line to microscopic nonmagnetic comprisalssporesd
and was able to give a reasonable quantitative explanation in
terms of hissingle-pore model. Later he studied the effect of
local anisotropy in randomly oriented microdomainssgrainsd
and explained the inhomogeneous broadening of the FMR in
terms of hisindependent grain model.4 The relaxation of the
uniform mode by pores and surface pits was investigated by

Sparks5–7 and explained by Sparks, Loudon, and Kittel
sSLKd8 to result from two-magnon scattering processes. Ex-
perimental results concerning the influence of grain size on
the spin-wave linewidth were explained in a phenomenologi-
cal way by the transit time model by Borghese,9,10

Patton,11–13 and Scotter.14

All these models could qualitatively explain part of the
observed effects, but a quantitative agreement was generally
lacking, and some of their detailed predictions clearly con-
tradict the experimental findings. For example, the approach
by SLK8 as well as the transit time model11,15 predicted a
wave-number dependence of the spin-wave linewidth linear
in k, which means a vanishing effect of pores and grains on
long-wave modes. In contrast to that many experiments did
show that the linewidth of long-wave modes, too, is mark-
edly increased with increasing porosity or decreasing grain
size. So, in practice, experimental data have been fitted to
trial functions, such asDHk=A+Bk,16 where the striking in-
crease of the parameterA with porosity remained unex-
plained.

The aim of this paper is to discuss a microstructure-
induced relaxation mechanism that could account for both
cases. We will show that an extension of the SLK theory can
explain the relaxation of both the uniform mode and of spin
waves with arbitrary wave vectork. We demonstrate that the
common restriction towave-numberdependencies turns out
to be insufficient, and one has also to include thedirectionof
wave propagation. This means that the spin-wave linewidth
DHk is no longer universal for a givenk, but depends on the
kind of experiment performed. One important consequence
will be that the thresholds for different types of spin-wave
instabilities se.g., first- and second-order Suhl instability,1

parallel pumping instabilityd2 are no longer related to each
other but have to be explained by independent values of
DHk, since the respective critical modes are propagating in
different directions. Within the same framework we extend
our model to include the influence of grain size and aniso-
tropy on relaxation. Their effect is studied, in detail, and
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turns out to result in parameter dependencies quite different
from that of the pores. We compare our results to experimen-
tal data from the literature.

II. THEORY

A. Porosity

The model by Sparks, Loudon, and Kittel8 attributes the
microstructure-induced relaxation of the uniform mode in
polycrystalline material to a two-magnon scattering process
at pores or surface pits. For simplicity SLK considered the
scattering potential of a single spherical pore located in the
center of a spherical sample. By means of Fermi’s golden
rule the resulting decay rate for the uniform mode was de-
rived. The superposition of many of such scattering centers
finally yields the linewidth of the ferromagnetic resonance
swhich is just the relaxation rate of the uniform mode in field
unitsd as a function of the density and size of the scattering
pores. In the following we shall extend this approach to
the more general case of spin waves with arbitrary wave
vectorsk.

The magnetizationM sr d is defined by the local density of
sdimensionlessd spinsSi, each of them carrying a magnetic
moment 2m, summed up over a unit volumeV sas far as
possible we follow the notation of the original paperd

MW srWd ;
2m

VsrWd o
i,rWiPVsrWd

SW i . s1d

By means of the Holstein-Primakov transformation17 the
spin operatorsSi are transformed into magnon operatorsbm

+

and bm. To this end the Hamiltonian of the spin system con-
sisting of Zeeman, dipolar and exchange energy, is diagonal-
ized to obtain the form of a harmonic oscillator, where thebm

+

andbm can be understood to represent creation and annihila-
tion operators for spin waves. The magnetizationM sr d is
written in terms of such magnon operators, and up to second
order inbm

+, bm its components read

MzsrWd = Ms −
2m

V
o
m,n

feiskWm−kWnd·rWbmbn
+ + e−iskWm−kWnd·rWbm

+bng,

s2d

M+srWd =Î4mMs

V
o
m

eikWm·rWbm. s3d

Ms is the saturation magnetization, andkm and kn are the
wave vectors of the spin waves involved in the scattering
process.

A pore affects the propagating spin waves by means of its
demagnetization fieldHdsr d. The standard recipe from elec-
tromagnetic field theory to obtainHd is to calculate the gra-
dient of themagnetostatic potentialFsr d

HW dsrWd = − gradFsrWd where FsrWd =E
sample

div MW srW8d
urW − rW8u

d3r8.

s4d

For further convenience we split the demagnetization field
into two parts,Hdsr d=Hbsr d+Hswsr d, whereHb denotes the
part originating from the boundary conditions of the magne-
tization at the surface of the pore andHsw denotes the intrin-
sic demagnetization field of the spin waves. Now, expressing
the magnetizationM sr d in terms of magnon operators ac-
cording to s2d and s3d and using spherical coordinates we
obtain for the first part ofFsr d arising from the surface of
the pore

FbsrWd =
4

3
pR3Î4mMs

V

1

2
feiwb0

+ − e−iwb0g
sinQ

r2

−
4

3
pR3Ms

cosQ

r2 , s5d

and the corresponding components ofHbsr d read

Hb
QsrWd = −

4

3
pR3ÎmMs

V

cosQ

r3 fb0
+eiw − b0e

−iwg

−
4

3
pR3MS

sinQ

r3 , s6ad

Hb
wsrWd = − i

4

3
pR3ÎmMs

V

1

r3fb0
+eiw + b0e

−iwg, s6bd

Hb
r srWd = −

8

3
pR3ÎmMs

V

sinQ

r3 fb0
+eiw − b0e

−iwg

−
8

3
pR3MS

cosQ

r3 . s6cd

The demagnetization fieldHswsr d arising from intrinsic part
of the spin waves can be obtained the same way. The calcu-
lation is more tedious but straightforward,18 and the relevant
terms yield

Hsw
x srWd = o

m,n

4p

K2

2m

V
KxKzfeiKW ·rWbmbn

+ + e−iKW ·rWbm
+bng

− o
m

4p

km
2 ÎmMS

V
km

x fskm
x − ikm

y deikWm·rWbm

+ skm
x + ikm

y de−ikWm·rWbm
+g, s7ad

Hsw
y srWd = o

m,n

4p

K2

2m

V
KyKzfeiKW ·rWbmbn

+ + e−iKW ·rWbm
+bng

− o
m

4p

km
2 ÎmMS

V
km

y fskm
x − ikm

y deikWm·rWbm

+ skm
x + ikm

y de−ikWm·rWbm
+g, s7bd
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Hsw
z srWd = o

m,n

4p

K2

2m

V
KzKzfeiKW ·rWbmbn

+ + e−iKW ·rWbm
+bng

− o
m

4p

km
2 ÎmMS

V
km

z fskm
x − ikm

y deikWm·rWbm

+ skm
x + ikm

y de−ikWm·rWbm
+g, s7cd

whereK is defined by

KW = kWm − kWn. s7dd

With these ingredients we are ready to determine the scat-
tering potentialSpore for a two-magnon scattering process
that reflects the change of dipolar energy when introducing
the pore from outside into a homogeneous sample

Spore= −
1

2FESample with pore
MW ·HW dd

3r

−E
Sample without pore

MW ·HW dd
3rG . s8d

We emphasize that the scattering potential is given by the
changeof the dipolar energy inside the sample, and not by
the total dipolar energy as proposed in the original paper.8

This ansatz will guarantee that we strictly separate the scat-
tering by the pore from other processes which may already
occur in the homogeneous material.

To make the evaluation of the integrals as simple as pos-
sible, we have already chosen spherical shapes for sample
and pore and a concentric location. We profit from the high
symmetry of such an arrangement by expanding the spatial
phase factors expsik ·r d into spherical harmonics. Taking ad-
vantage of their orthogonality relations the three-dimensional
integrals can be solved exactly. Then the scattering potential
S for spin-wave modes with arbitrary wave vectorskm reads
explicitly fsince we only focus on two-magnonscattering
processes, terms,sbn

+bm
+ +c.c.d have been omittedg

Spore= 2pmMs
Vpore

V o
n,m

s12 cos2 QK − 8 + 3 cos2 Qkm

+ 3 cos2 Qknd
j1sKRd

KR
fbnbm

+ + bn
+bmg

+ ao
n

fbnb0
+ + bn

+b0g, s9d

while for the special case of the uniform modeskm=0d we
get

Spore= 12pmMs
Vpore

V
f3 cos2sQknd − 1g

j1sknRd
knR

3o
n

fbnb0
+ + bn

+b0g. s10d

HereVpore is the volume of the pore andV the volume of the
sample. The fractionVpore/V is called theporosity of the
sample. Thescattering vectorK =km−kn is given by the
difference between the wave vectors of the incident spin

wavekm and of the scattered spin wavekn, andQK, Qkm, and
Qkn describe the corresponding directions.j1sxd denotes a
spherical Bessel function of first order. For spin waves
km.0 thea term in Eq.s9d turns out to become negligible in
the following calculation because of the vanishing density of
states for long-wave magnons within the spin-wave approxi-
mation. For the special case of the uniform mode thea term
just compensates one part of the previous sum, so including
it results in the less complicated forms10d.

According to Fermi’s golden rule the relaxation rateTk
−1,

which in magnetic field units means just the linewidthDHk,
for a magnon with wave vectork =km is given by18

gDHk =
1

Tk
= o

n

2p

"
zkknuSporeuklz2ds"vkn − "vkd. s11d

Because of energy conservation required for the scattering
process the spin wavek with frequencyvk is scattered only
in spin waveskn with frequenciesvkn=vk. By insertings9d
into s11d, converting the sum into an integral, and taking
account of the density of magnon states,

rsknd =
V

2p2

kn
2

"g4pMs cosQkn

vk

gsDkn
2 + Hid

, s12d

we finally obtain the following expression for the linewidth
of spin waves with arbitrary nonzero wave vectorsk:

DHk
pore=

4pMS

12

Vpore

V
Rvk

1

2p
E

0

2p E
kmin

kmax gsQd
cossQk2d

S j1sKRd
K

D2

3
k2

2

gsDk2
2 + Hid

dk2dw2, s13d

wherek is the wave vector of the relaxed spin-wave mode,
k2 is the wave vector of the degenerate mode, and
K =k −k2 their difference vector.Qk, Qk2, and QK are the
corresponding polar angles with respect to the direction of
the static field.w2 denotes the azimuthal angle betweenk and
k2, andR is the radius of the pore. The angular dependent
terms are defined by

gsQd = s12 cos2 QK − 8 + 3 cos2 Qk + 3 cos2 Qk2d2 s14d

and

FIG. 1. Embedded grain model: Inside a grain the static internal
field Hi8 differs from the mean valueHi by the strength and direc-
tion of the effective anisotropy fieldHA.
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cosQK =
k2 cosQk2 − k cosQk

Îsk2 + k2
2d − 2kk2scosw2 sinQk2 sinQk + cosQk2 cosQkd

. s15d

D is the spin-wave stiffness andHi the internal static mag-
netic field. Finally,kmin and kmax have to be calculated as
functions of frequencyv and static magnetic fieldHi using
the dispersion relation for spin waves.

For the particular case of uniform precessionsk =0d we
reproduce the result obtained by SLK8

DH0
pore= 3s4pMSd

Vpore

V
Rv0

3E
kmin

kmax s3 cos2 Qk2 − 1d2

cossQk2d
j1
2sk2Rd

gsDk2
2 + Hid

dk2.

s16d

From s16d we can numerically calculate the resonance and
off-resonance losses of the uniform mode, which will be of
particular importance for material design. Because within
most applications ferromagnetic materials—ferrites—are op-
erated off resonance it is important to describe the influence
of porosity in this regime. Here not only the total porosity
Vpore/V but also the pore sizeR is very important, which is
not the case on resonance.6 For example it can be shown
from s16d that the bigger the pores the less is the influence on
the off-resonance losses compared to the resonance line-
width. In experiment these losses are measured and de-
scribed in terms of the so-calledeffective linewidth.15 From
s13d we obtain the spin-wave linewidth for nonzerok, which
e.g., is necessary to determine the thresholds of spin-wave
instabilities. Note that not only the porosity, i.e., the relative
volume of the pores, but also the pore size is relevant, espe-
cially for k Þ0 modes. We emphasize that the linewidth of
the spin waves is dramatically affected by their propagation
direction, as will be further discussed in Sec. II C. The main
advantage of our extended approach is that now the influence
of porosity on the relaxation of the uniform mode as well as
spin waves is treated within the same model. This provides
us with more reliable grounds when designing materials with
optimized microstructure.

B. Grain size and anisotropy

Schlömann4 has analyzed the influence of grain size and
crystalline anisotropy on the relaxation of the uniform mode.
Unfortunately his model is formally too complex to be ex-
tended to the general case of nonzerok spin waves in a
straightforward way. Here we develop a model describing
the anisotropy-induced line broadening for nonzerok spin
waves in terms of a two-magnon scattering process.

The basic idea is to replace the pore in our previous ap-
proach, Sec. II A, by a spherical “embedded” grain of radius
R in the center of a spherical sample. The crystal orientation
of this grain is well defined but arbitrary. Strength and direc-
tion of the crystalline anisotropy are described by an effec-

tive anisotropy fieldHA, so that the effective static field in-

side the embedded grain is approximately given byHi
z8=Hi

z

+HA cosQA ssee Fig. 1d. All other grains forming the poly-
crystalline sample are randomly oriented and are summa-
rized in a mean field. Then the Hamiltonian for the two-
magnon scattering processSgrain reflects the change of
dipolar energy of the sample when “switching on” the aniso-
tropy inside the embedded grain

Sgrain= −
1

2FEsample with aniso.
MW ·HW isrWdd3r

−E
sample without aniso.

MW ·HW isrWdd3rG . s17d

Focusing on two-magnon scattering contributions only,
we can follow the formal derivation given in Sec. II A. By
analogy with Eqs.s13d and s16d we obtain the linewidth
contribution induced by grains for spin waves with arbitrary
k

DHk
grain= 3

Vgrain

V

HA
2 cos2 QA

4pMs
Rvk

1

2p

3E
0

2p E
kmin

kmax j1
2sKRd

K2 cosQk2

k2
2

gsDk2
2 + Hid

dk2dw2,

s18d

and for the particular case of the uniform mode we get

DH0
grain= 3

Vgrain

V

HA
2 cos2 QA

4pMs
Rv0

3E
kmin

kmax j1
2sk2Rd

cosQk2gsDk2
2 + Hid

dk2. s19d

Here, QA denotes the angle between the easy axis of the
embedded grain and the magnetic field,R the grain radius,
Vgrain the grain volume andV again the volume of the
sample. The crystalline anisotropy is randomly oriented, so
when considering the contribution of all grains of the sample
we have to average cos2 QA over all orientations and replace
it by its mean value1

2. In total we haveVgrain=V because
each grain of the sample contributes to the scattering process,
and the common prefactor in Eqs.s18d and s19d reduces to
1.5HA

2Rvk,0/4pMs.
The Eqs.s18d ands19d describe the linewidth broadening

resulting from the anisotropy-induced two-magnon scattering
process. This way the two most important forms of micro-
structure, namely, porosity and grain size, can be treated
within a unified model.
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C. k dependence of spin-wave linewidth

Thek dependence of spin-wave linewidthDHk has widely
been discussed in the literature. It was found that for differ-
ent experimental configurations, e.g., parallel pumping, first-
and second-order Suhl instability, one had to use different fit
parameters forDHk to explain the corresponding data.11,16,19

Our model can explain these deviations in a straightforward
way.

As a first approach let us neglect the angular dependence
of DHk, i.e., we assume thatDHk depends only on the wave
numberk. Then we find an approximate analytical solution
for the integral in Eq.s13d as follows. For largeR the func-
tion j1

2sKRd / sKRd2 is strongly peaked atKR<2 and for suf-
ficiently high values of the internal static fieldHi we can
replace the integrand by ad function. Then Eq.s13d results
in

DHk
pore~ 4pMS

Vp

V

vk

gHi
sk2R2 + 4kR+ 2d. s20d

We see that the spin-wave linewidth is no longer linear ink,
as assumed in conventional theory and, in particular, in the
SLK paper.8 Apart from the linear term there is a term pro-
portional tok2 and, even more important, a constant term, all
of them reflecting two-magnon scattering processes induced
by the pores. We emphasize that, even within such a rough
approximation, we can for the first time explain the influence
of microstructure on the relaxation of spin waves in the long-
wave limit k→0.

In a qualitative way this simplified form shows already
the main contributions, but it is still improved when includ-
ing the full angular dependencies of Eqs.s13d and s18d,
which also turn out to be of major influence. Figure 2 shows
thek dependence of the spin-wave linewidthDHk calculated
numerically from Eq.s13d for the propagation anglesuk
=90°, 45° and 0°.sAs will be discussed in Sec. III, according
to standard theory1,2 these angles correspond to the critical,
i.e., most unstable spin waves for the parallel pumping insta-
bility and for the first- and second-order Suhl instabilities.d
Our simulations clearly demonstrate that the spin-wave line-
width is neither a simple constant nor a linear function of
wave numberk, but depends on bothk and uk, in a more
complicated way.

In order to get some intuitive understanding of these nu-
merical results we have illustrated the scattering process ink
space. Let us first consider the reason of the wave-number
dependence. In the case of big pores the region ink space,
which significantly contributes to the integral in Eq.s13d is a
small sphere of radius 2/R fdue to the termj1

2sKRd / sKRd2g.
This sphere is centered close to the origin ofk space when
describing the scattering of long-wave modesfFig. 3sadg. For
spin-waves with largerk, the small sphere is located farer
away from the origin, which implies that for a givenk vector
of direction uk all scattering contributionsk2 have more or
less the same directionfFig. 3sbdg and the same amount. So,
the angular dependent terms in the integral can be considered
as constant, and thek2-dependent factor should directly re-

FIG. 2. Spin-wave linewidthDHkskd for vk

=4.5 GHz calculated for polycrystalline YIG
with 1% porosity and a pore size of 5mm.

FIG. 3. Relevant region ink space for the scattering process in
big pores.sad For small wave numbers the small sphere of radius
2/R yields contributions from a large solid angle.sbd For large
wave numbers only a small angle contributes significantly to the
integral.
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flect the k dependence of the spin-wave linewidth
DHk,k2sDk2+vd−1. In the large k limit Dk2@v this
factor, too, becomes constant. However, from the
w2-integration we get an extra weighting by 4/Rk reflecting
the aperture of the small sphere. So in total, we obtain a
dependence proportional tok for intermediate wave numbers
fK!k, sv /gDd1/2g, but proportional to 1/k for very large
wave numbers. This is the reason for the increase of the
spin-wave linewidthDHk in Fig. 2 followed by a decrease
after having passed a maximum.

The angular dependence ofDHk is somewhat more diffi-
cult to understand. It is plausible that the scattering geometry
will be different when the wave vector of the incident spin
wave is at the upper edgesuk=90°d, in the middle
suk=45°d, or at the lower edgesuk=0°d of the spin-wave
manifold sFig. 4d. For big pores and large wave numbersk
we haveuk<uk2, and therefore, via the density of magnon
states, we have a direct and pronounced influence ofuk on
the integrals of Eqs.s13d and s18d.

In principle, the angular dependent factorgsud /cosuk2

should explain the observed variation of linewidth taking
uk2<uk=90°, 45°, and 0°, respectively, while averagingu
over all possible directions. Qualitatively it is evident that,
even when choosing the same sample and the same field and
frequency parameters, we obtain different spin-wave line-
widths for different experimental configurations, which is the
consequence of the different propagation direction specific
for the corresponding critical modes. This explains, e.g., the
higher values ofDHk derived from the first-order Suhl insta-
bility suk<45°d compared to the parallel pumping case
suk<90°d. In fact, experimental data from the first-order
Suhl instability and from the parallel pumping instability
taken on the same set of samples did show a larger spin-
wave linewidth in the first-order case.11,12,16

Thus far only big scatterers were treated. For small scat-
terersse.g., Rø20 nmd, the relevant sphere ink space be-
comes very large andDHk was found to be nearlyindepen-
dent of wave numberk. For the same reason the angular
dependence ofDHk vanishes and the scattering process be-
comes more isotropic, as recently suggested in Ref. 20. In
fact, experiments have shown ak-independentincrease of the
spin-wave linewidth with decreasing grain size.12 This be-
havior does not follow the embedded grain model but can be
interpreted to result from many small scatterers located at the
surface of the grains. Since the number of such small scat-
terers is expected to increase proportional to the ratio of

grain surface to volumesi.e., proportional to 1/Rd, the ex-
perimental value ofDHk, which was found to be proportional
to the inverse grain size, can be well explained by our model.
Other explanations for this behavior are still missing.

III. APPLICATION TO HIGH-POWER PROPERTIES:
THRESHOLD OF SPIN-WAVE INSTABILITY

Spin-wave instabilities are based on the resonant paramet-
ric excitation of spin waves induced by an external micro-
wave field. The parametric mechanism is either based on the
direct coupling of the spin waves with the microwave field
component oscillating parallel to the static magnetic field
sparallel pumpingd,2 or indirectly by their dipolar coupling to
the uniform mode pumped by a transverse microwave field
sfirst- and second-order Suhl instabilitiesd.1 The efficiency of
excitation depends on the damping of the modes to be ex-
cited, i.e., the spin-wave linewidth is the crucial property that
determines the thresholds of these instabilities. Recall that
the standard technique for evaluatingDHk is to measure the
parallel pumping threshold.

Let us consider here the case of the first-order Suhl insta-
bility where the transverse pumped uniform mode excites a
pair of spin waves at half the pumping frequencysv=2vkd.
For this configuration the critical microwave fieldhc reads:1

hc = F DHkvk

g4pMS cosQk sinQk

Îsv − v0d2 + sgDH0/2d2

sgHi + gDk2 + vkd
G

min
.

s21d

The threshold becomes lowest when simultaneously the reso-
nance conditions for the uniform modesv=v0d can be sat-
isfied, which is possible only for a limited frequency regime
sthe so-called coincidence regimed. In any case, since the
spin-wave linewidthDHk for polycrystalline samples was
found to be stronglyk dependent, one has to minimize Eq.
s21d on variation of bothk anduk in order to find the mode
with the lowest threshold. This critical mode is the first one
to become unstable.

Figure 5 shows the numerical result based on the ex-
tended SLK theory and the embedded grain model. The
minimization is carried out with respect to all possiblek
values of degenerate modes. The experimental data on YIG
spheres were taken from Silber and Patton.16 The measured
grain sizea0 was 30 and 5mm, and the total porosityp
=Vp/V was 0.5% and 1.9%, respectively. We used these val-
ues in our simulation, and in addition we assumed an average
pore size of 0.05mm and an effective anisotropy field
strength of 66 Oe. Our theoretical curve fits the experimental
data quite well without using any fit parameters. A new and
important result is that the increase of the threshold for
higher magnetic fieldsHi scorresponding to lowk valuesd
can qualitatively be well explained and shows even quanti-
tatively reasonable coincidence. In particular, the observed
increase of the minimum of the threshold curve with increas-
ing porosity is well described. All previous models failed to
explain such a behavior.

It is important to note that thek dependence of the spin-
wave linewidth due to microstructure gives rise to an addi-

FIG. 4. Location of critical modes in the spin-wave band.
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tional frequency dependence of the threshold value. This was
already observed by Green and Sandy19 in experiments on
polycrystalline samples, but a connection with microstruc-
ture had not explicitly been proven. This frequency depen-
dence is very important for technical application and has to
be realized, when using the value ofDHk, determined from a
standard parallel pumping experiment at 9 GHz, to calculate
the threshold of, e.g., the first-order Suhl instability at, say,
3 GHz. The result could be wrong by a factor of 2.

IV. SUMMARY

The influence of the two main parameters of microstruc-
ture, porosity and grain size, on the relaxation of the uniform
mode as well as spin-wave modes has been investigated
within the framework of a unified model. By extending the
SLK theory to account also for spin-wave modes with arbi-
trary k, the effect of microstructure on the spin-wave line-
width DHk is now well understood. In particular we were
able to explainsid the wave-number dependence ofDHk, sii d
the angular dependence ofDHk sconcerning the direction of
kd which results in a drastic change of the linewidth for
different experimental configurations,siii d the importance of
the size of pores and grains,sivd the influence of the crystal-
line anisotropy, andsvd the effect of such linewidth proper-
ties on the threshold for spin-wave instabilities. Calculating
the threshold of the first-order Suhl instability, we obtain
realistic values for the threshold without using any fit param-
eters.

The detailed knowledge of the influence of microstructure
on the relaxation of the uniform mode and of spin-wave
modes brings us back to our starting problem: How to tailor
low-loss ferrite materials with a stable high-power perfor-
mance. The different effects of pores and grains on the line-
widths of the uniform mode and of spin-wave modes can be
the key for a possible design. For example, a small grain size
seems to be optimal for a large spin-wave linewidth—and
therefore also the instability threshold—and a relative small
linewidth of the uniform mode. Moreover our calculations
predict a strong dependence on frequency and direction of
the relevant spin wavek which also needs to be considered
within the design process of such materials.
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