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The phonon density of states in equilibrium and nonequilibrium solid argon was analyzed with the
molecular-dynamics method and using the Lennard-Jones interaction. The computational method was validated
by comparing the thermal conductivity and its finite-size effect to reference data. A small, but statistically
significant, difference between the phonon density of states in thermal equilibrium and in a nonequilibrium
stationary state was observed. The phonon density of states was used to characterize the local lattice tempera-
ture in the nonequilibrium case. The results were compared to the local temperature, as defined by the average
kinetic energy.
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I. INTRODUCTION

Recent advances in synthesis, processing, and mi-
croanalysis are enabling the routine production of well char-
acterized materials with a structure that varies on the length
scale of several nanometers. In this length scale, the size is
comparable with the mean free path of phonons, and the
thermal properties become affected by the system size.
Therefore, microscale and nanoscale thermal conduction has
received a lot of interest in the past two decades.1–4

In macroscale, thermal conduction is treated as a material
property, and energy transfer is calculated simply with the
phenomenologicalFourier law derived in the early 1800s.5

The validity of the Fourier law breaks down ifsid the size
scale is less than the mean free path of energy carriers,sii d
the time scale is shorter than the relaxation time, orsiii d
temperature is close to zero.5 In many practical applications,
such as superlattices, polymer nanocomposites, multilayer
coatings, microelectromechanical systems, and micro- and
optoelectronic devices, only the size scale limits the Fourier
law.

In small length scales, thermal conduction can be calcu-
lated with the Boltzmann transport equationsBTEd.3 The so-
lution of BTE falls into three classes: directly solving the
BTE as a partial differential equation,6 using Monte Carlo
methods to obtain the solution,7 or using results fromspho-
tond radiative heat transfer.8 In the BTE approach, the phys-
ics of heat transfer and phonon scattering are incorporated
explicitly in the calculations. Thus, for a reliable calculation,
a good understanding of the fundamental phonon processes
and relaxation times is required. In some casesse.g., point
defectsd, these are well known, but in othersse.g., interfacesd
this is not the case.2

In addition to BTE, the molecular-dynamics method
sMDd is emerging as a tool for studying thermal conduction
at the microscale.2,9 With MD the thermal conductivity can
be calculated from equilibrium calculations, from a known
heat flux and temperature gradient,9 or from temperature de-
cay calculations.10 It is best suited for studying the effect of
structural imperfectionssboundaries, dislocations, grain
boundaries, voids, interstitials, etc.d on the thermal conduc-

tivity. In addition to conductivity calculations, MD can be
used to calculate the temperature-dependent phonon spectral
distribution.11 In the molecular-dynamics method, the trajec-
tories of atoms or molecules in the system are numerically
solved. Generally, the main problem with MD is to find the
accurate interaction between atoms in the system of interest.
In classical MD, the forces acting on atoms are derived from
a classical interaction potential, while inab initio methods
the forces are derived from first principles, i.e., from electron
states and bonding. Sometimes structural energy calculations
are performed withab initio calculations, and a parametrized
classical potential is then fitted to these data to obtain a rea-
sonably accurate and computationally feasible potential.12,13

In microscopic nonequilibrium calculations, the definition
of temperature is not well established. Classically, in equilib-
rium, it can be defined from the average kinetic energy of
particles.14 This is not a problem, since, in equilibrium, av-
eraging over time or population should yield the same result.
However, in the presence of a temperature gradient, what is
the volume over which the averaging should be done? In MD
calculations, the spatial accuracy is often taken to extremes,
and a local temperature can be defined for each atom from its
time-averaged kinetic energy. However, the concept of
phonons introduces two length scales: the wavelength and
the mean free pathsMFPd. As collisions within the distance
of the MFP are needed for the equilibrium population of heat
carriers to exist, two regions with different temperatures
must be at least a distance of MFP away from each other.2

At the microscale, temperature gradients are commonly
generated by hot spots, e.g., in transistors.6 In these cases,
the system is not in equilibrium, since diffusive heat transfer
requires the length scale to be much greater than the MFP. If
the length scale is smaller, the number of scattering events in
the hot spot is reduced by the size of the spot. Then, outside
the hot spot the heat carriers leaving the spot arenot in
thermal equilibriumwith the carriers entering the spot. This
effect has been studied by Chen in Ref. 15, where the BTE
was solved with radiation equations. When the size of the hot
spot is small, temperature has a discontinuity at the boundary
of the hot spot. This is due to the nonequilibrium nature of
heat transfer. In the limit of no scattering, i.e., ballistic trans-
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port between a cold and a hot spot, heat carriers from two
different temperaturesshould exist simultaneously.8,15 Scat-
tering drives these two temperatures towards an equilibrium
temperature, but happens only on the length scale of the
MFP. The aim of this paper is to characterize the local tem-
perature in nonequilibrium molecular-dynamics simulations
including hot spots.

II. EQUILIBRIUM SIMULATIONS

A. The model

Molecular dynamics is used to describe the lattice vibra-
tions in the system. As the main interest is in vibrational
properties of the system, general size effects, and thermal
conduction by phonons, the system is described using the
classic Lennard-Joness6-12d potential,

f0srd = 4eFSs

r
D12

− Ss

r
D6G . s1d

In this work, periodic boundaries and parameters for solid
argon are used. For computational reasons, the potential is
cut at a reasonably large distance, which slightly modifies the
potential. The interaction potential used in the calculations is
given in detail in Appendix A.

B. Phonon density of states (DOS)

Phonons are quanta of lattice vibrations. In MD simula-
tions, phonons are not explicitly simulated. The motion and
vibration of atoms are simulated, and phonon statistics can
be gathered from the analysis of lattice vibrations. These
vibrations are commonly characterized by the phonon den-
sity of statessDOSd, which describes the amount of vibra-
tions at different frequencies. It is calculated from the
velocity-velocity autocorrelation function by Fourier
transform.17 Specifically, the DOS is calculated from18,19

vG =
M

pkBT
E

0

`

dt cossvtde−st/td2kvWstdvWs0dl. s2d

Here the exponential window is explicitly written out,G is
the DOS,v the frequency,M the mass,kB the Boltzmann
constant,T the temperature, andk…l the velocity-velocity
autocorrelation function. The cosine integral was obtained
from the real part of the fast-Fourier-transformsFFTd coef-
ficients. The autocorrelation function was obtained with
MATLAB software, which uses the Wiener-Khinchin
theorem20 si.e., FFTd to speed up the computations. The DOS
in equilibrium temperatures 5, 10, 15, 20,…, 75, and 80 K
were calculated using the windowt=20 ps. These functions
are shown in Fig. 1. In these equilibrium calculations, the
autocorrelation was calculated from 1 million time steps
stime stepDt=6.6 fsd as an average over 50 atoms in a 2200-
atom system. The DOS of solid argon in 25 K has been
calculated also, e.g., in Ref. 17, and the results are similar.
This shows that the DOS is not heavily dependent on the
system size, since most likely the systems sizes were differ-
ent in Ref. 17.

From Fig. 1, the effect of temperature on the DOS is
clearly seen. The system in a low temperature seems to have
some well defined peaks in the DOS, while in higher tem-
peratures these peaks are not present. This can be related to
the disordered structure: the higher the temperature, the more
fluctuations from the fcc structure. There is also a tendency
towards lower frequencies with increasing temperature. This
is most likely due to thermal expansion and anharmonic ef-
fects. The spring constant of each bond, i.e., the second de-
rivative of the bond energy, depends on the bond length, as
depicted in Fig. 2. For the nearest neighbors inT=5 K, the
spring constant is approximatelyk=12 GN/m. As there are
12 nearest neighbors in the fcc structure, a frequency of the
order of Î12k/m, wherem is the mass of the atom, is ex-
pected. For solid argon this givesv=15 THz. As the bonds
lie in six different directions, their addition is indeed ques-
tionable, and thus this frequency is greater than the fre-
quency of the peak in Fig. 1, even if relatively close. At the
temperatureT=80 K, the thermal expansion increases the
bond length, and decreases the spring constant to approxi-
mately 5 GN/m, as depicted in Fig. 2. This decreases the
order of magnitude estimate of the frequency tov
=9.5 THz. Both these frequency estimates are quite close to
the high frequencies shown in Fig. 1. Thus, it seems that the
frequency reduction is due to thermal expansion and anhar-
monic properties of the potential. In a high temperature, the
peaks become distorted due to structural fluctuations, which
widen the bong length and spring constant distributions.

FIG. 1. Phonon density of states as a function of frequency and
temperature given in nine temperatures:T=5 K sblackd, 10 K,
15 K, …, 75 K, and 80 Kslight grayd.

FIG. 2. Energysdashed line, arb. unitsd, force sdotted line, arb.
unitsd, and spring constant of a bond as a function of interatomic
distance. The nearest-neighbor and next-nearest-neighbor distances
for T=5 K andT=80 K are shown with vertical lines.
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The functions presented in Fig. 1 are not simply linear
combinations of each other. Thus, e.g., a system consisting of
both 60 K and 20 K particles has a different DOS than a
system consisting of only 40 K particles. This enables the
calculation of several temperaturessi.e., a distribution of
temperaturesd from a single DOS. Moreover, since the DOS
can be calculated from a single locationsatomd, in principle,
a local temperature distribution can be assigned to each lo-
cation. As motivated in the Introduction, in a nonequilibrium
system, the heat carriers, i.e., phonons, are excited in differ-
ent temperatures. In the microscale, these phonons are not
scattered towards an equilibrium temperature, because there
is not enough space for scattering. Thus, in a single location,
phonons from several temperatures could exist simulta-
neously, and their temperature should be described with a
local temperature distribution.

III. NONEQUILIBRIUM SIMULATIONS

In nonequilibrium simulations, a constant heat flux was
used, as proposed by Jund and Jullien.21 The size of the
system in one direction was varied between 12 nm and
3900 nm, while in the other two directions the system size
was five lattice constants. In another study, the thermal con-
ductivity has been seen to be independent of the system size
in the other two directions, within the error inherent in the
calculations.9 This shows that the phonon statistics in the
system is not heavily dependent on these system sizes. Peri-
odic boundaries were used in all directions, and the number
of atoms in the systems was between 2000 and 64 000. The
constant heat flux was selected so that the temperature inter-
val was roughly 20–60 K. In practice, the flux depended on
system size, and was between 0.19 and 1.5 GW m−2.

A. Thermal conductivity

In nonequilibrium MD simulations, the thermal conduc-
tivity of the system can be calculated directly from the Fou-
rier law,

j = − k ¹ T, s3d

where j is the heat flux,¹T the temperature gradient, andk
the thermal conductivity. In this section, the local tempera-
ture is calculated from the atoms’ kinetic energy as an aver-
age over time and in a narrow region. As an example, the
temperature profile and the region in which the averaging is
done are shown in Fig. 3.

As seen from the inset in Fig. 3, the temperature gradient
is not constant. This is due to the temperature dependence of
thermal conductivity of solid argon, which is nearly linear.16

Thus a second degree polynomial was fitted to the tempera-
ture profile, for 25 K,T,55 K, to obtain the conductivity.
In what follows, thermal conductivity is evaluated in the
mean temperature, i.e.,T=40 K.

The thermal conductivity, as calculated from Eq.s3d, was
seen to be practically independent of the heat flux. However,
the results were heavily dependent on the system size. The
size dependence is due to the phonon scattering locations
induced in the system by the heating and cooling regions. By

decreasing the MFP, these regions should scale the thermal
conductivity as9,22

1

k
=

2

nkBv
S 1

l`

+
4

L
D . s4d

Herek is the thermal conductivity,n is the number density of
atoms,kB the Boltzmann constant,v the average group ve-
locity of acoustic phonon modes,l` the phonon mean free
path in an infinite system, andL the system size. The number
density,n, in an fcc system is 4/d3, whered is the lattice
constant. The data obtained from simulation are shown in
Fig. 4. By fitting Eq.s4d to these data, the size dependence
can be found, and by extrapolating down to 1/L=0 the bulk
thermal conductivity can be obtained. In this case, the con-
ductivity is 0.55 W/mK. In Ref. 16, a thermal conductivity
of approximately 0.54 W/mK was obtained for Lennard-
Jones solid argon by Green-Kubo simulations. The results
are nearly identical. In another work, where the finite-size
effects of solid argon were studied, the conductivity
0.604 W/mK was obtained.22 This is also in good agreement
with the present results. The difference between the simu-
lated conductivities may be related to the different cutoff
distances used for the potential. The experimental value is
about 0.74 W/mK.23 The difference between the simulated

FIG. 3. Temperature profile in a Lennard-Jones system. The
gray dots indicate particles’ local temperature as a time average
over 154 ps, the vertical lines are the limits for spatial averaging,
and the solid black line is the local temperature calculated as the
spatio-temporal average of the atoms. The inset shows a 6 ns
spatio-temporal average, where the two profiles are also averaged.
The black dots indicate atoms which are used to calculate the non-
equilibrium phonon density of statesscf. textd.

FIG. 4. Thermal conductivity of solid argon at 40 K, as a func-
tion of system size. The dashed line is a best fit to the datafcf. Eq.
s4dg. Bulk thermal conductivity can be extrapolated from 1/L=0,
and is in agreement with other simulations and experimental data
sRefs. 16 and 23d.
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and experimental conductivity is relatively large. One pos-
sible explanation is that classical MD simulations for con-
ductivity should be valid only in high temperatures. In this
case, the temperature is less than half of the Debye tempera-
ture, and thus some phonon modes are excited in the MD
simulations that are not excited in the real solid.

In addition to thermal conductivity, the average speed of
acoustic phonons and the mean free path of phonons can be
found from the coefficients in Eq.s4d. Estimates for argon in
T=40 K arev=1500 m/s andl`=2 nm. The average speed
of acoustic phonons is related to the Debye temperature,uD,
as16

v =
kBuD

"kD
, s5d

wherekB is the Boltzmann constant," the Planck constant,
andkD=Î36Np2/V the Debye wave vector. Inserting the De-
bye temperatureuD=92 K,24 1000 m/s is obtained for the
speed of acoustic phonons. In addition, in Ref. 25 experi-
mental values of around 1000 m/s were cited. Moreover,
based on data in Refs. 16 and 23, the phonon mean free path
in T=40 K can be estimated to be around 2 nm. In Ref. 22,
a MFP of 3.4 nm was obtained in 40 K. Therefore, the val-
ues obtained from the finite-size effects of thermal conduc-
tivity, i.e., v=1500 m/s andl`=2 nm, are also in agreement
with reference values.

B. Temperature characterization

In the previous section, the local temperature was calcu-
lated directly from the average kinetic energy. As motivated
above, in microscopic systems with hot spots, the latticesi.e.,
the phononsd should be in several different temperatures si-
multaneously. This is due to the small length scale: phonons
do not have enough space to scatter to equilibrium. Thus
phonons from hot regions should be present in a cold region
and vice versa. As discussed above, the phonon densities of
states in equilibrium systems with different temperatures are
not linearly dependent. This opens up the possibility to cal-
culate a local temperature distribution from the DOS. As the
DOS can be calculated entirely locally, in principle, a local
temperature distribution can be calculated.

A most important question is, is the equilibrium DOS dif-
ferent from nonequilibrium DOS? Moreover, as the velocity-
velocity autocorrelation function is calculated as an average,
is the difference statistically meaningful? In Fig. 5, the
velocity-velocity autocorrelation function is shown both for
the nonequilibrium case, with thelocal temperature 40 K,
and the equilibrium case, with the temperature 40 K. In the
figure, these functions completely overlap. There is a small
difference, as shown in Fig. 5, where the difference is mul-
tiplied by a factor of 100. As seen in the figure, the difference
between autocorrelation functions in equilibrium and non-
equilibrium systems is around 1%. Long simulation times
were used in these simulations. For example, for the data of
the figure, a nonequilibrium system was tracked for more
than 3 million time steps, and the autocorrelation was calcu-
lated from 3 million time steps. Because of the long simula-
tion time, and since the autocorrelation is an average over

time, the standard deviation becomes minute. In the figure,
the standard deviation is multiplied by 300, so the difference
can easily be seen to be much greater than three times the
standard deviation. Most often the difference is about 5–15
times the standard deviation. Thus, it is seen that with these
simulation times and number of atoms recorded, the differ-
ence is statistically meaningful, even if small. In Ref. 17,
Chantrenne and Barrat concluded that the difference between
velocity distributions in equilibrium and nonequilibrium
simulations is not significant, since the difference was less
than 2%. However, they used much shorter simulation times
and smaller temperature gradients. In this case the difference
is around 1%, but still meaningful.

To test the possibility of calculating a local temperature
distribution from the DOS, three regions in the nonequilib-
rium simulations were chosen to represent hot, cold, and
medium temperature atoms. A total of 25 atoms were se-
lected, as depicted in Fig. 3. The autocorrelation over 1.5–3
million time steps and eight or nine atoms was calculated to
obtain the DOS.sIn all cases, over 3 million time steps were
tracked. However, in large systems, a longer initial period
was needed to obtain a stationary temperature profile.d A
linear combination of equilibrium DOS was optimized to fit
the calculated nonequilibrium DOS. The coefficients of the
equilibrium DOS represent the local temperature distribu-
tion. Details of the optimization procedure are presented in
Appendix B.

As an example, DOS from the second smallest system of
Fig. 4 sL=23 nmd are shown in Fig. 6. In the figure, the light
curve corresponds to an average of eight hot atomsslocal
temperature as calculated from the spatio-temporal averaged
kinetic energy isTMD =49.5 Kd. The other curves are for nine
atoms with TMD =39.8 K and eight atoms withTMD
=32.0 K. The black line is the average of these three with
TMD =40.4 K. In Table I, the local temperature distributions,
as obtained by optimization and corresponding to these DOS,
are presented. The average local temperatures calculated
from these distributions are 46.4, 39.6, 34.6, and 40.2 K. As
compared to the local temperature values calculated from the
kinetic energy, these values are extremely good.

It is emphasized that, even if the local temperature calcu-
lated from the kinetic energy is extremely close to a calcu-

FIG. 5. Velocity-velocity autocorrelation function for short time
differencesssolid lined in T=40 K. The difference between non-
equilibrium and equilibrium cases is invisible. Dashed line shows
the difference, magnified by a factor of 100. Although small, this
difference is still much larger than statistical errors300 times stan-
dard deviation is shown by dotted lined.
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lated equilibrium temperature, e.g., the middle atoms—TMD
=39.8 K<40 K—the DOS does not equal the DOS of the
same equilibrium temperature. The DOS of the nonequilib-
rium case suggest a slightly wider local temperature distri-
bution. The difference of autocorrelation functions in this
case was discussed above, and shown in Fig. 5. Moreover,
the temperature,TMD, as calculated from the kinetic energy
of all 25 atomssi.e., an average of three local temperaturesd,
is 40.4 K, and very close to the temperature in the central
region. However, the temperature distribution as calculated
from the DOS is much wider, since the DOS includes con-
tributions from all three locations.

Interestingly, the hot region seems to contain some
s<5%d phonons from the cold region, and the cold region
seems to contain somes<3%d phonons from the hot region.
This is qualitatively in agreement with the phonon relaxation
model: some phonons leaving the cold region can travel bal-
listically si.e., without scatteringd to the hot regionsand vice
versad, because the dimension of the system is not very much
larger than the mean free path of phonons. Similar behavior
was seen also in other systems. However, increasing the sys-
tem size from 23 nm to 380 nm does not significantly
change the percentage of the cold phonons, as the scattering
model suggests. As an example, in Table II the analysis is
repeated for a four-times-larger system. Again there are some
cold atoms present in the hot region. However, the fraction is

about the same order as previously. In the average distribu-
tion, the peaks near theTMD temperatures 55, 38, and 28 K
are shifted to 50, 40, 35, and 30 K, but can be observed.

IV. DISCUSSION

These results show that the DOS in equilibrium and non-
equilibrium MD simulations are different, even if the differ-
ence is only around 1%. From 3 million time steps and nine
atoms in a nonequilibrium system, the difference was typi-
cally 5–15 times the standard deviation, and therefore statis-
tically meaningful results were obtained. Based on these cal-
culations, the results from 3 million times steps should be
meaningful also for a single atom. In these nonequilibrium
systems, the number of atoms in the same environmentsi.e.,
temperatured is limited by the small system size in the direc-
tions perpendicular to the heat flux. Therefore, long simula-
tion times are necessarily needed even if large systems are
used. In another study, Chantrenne and Barrat studied non-
equilibrium solid argon, and concluded that the velocity dis-
tribution of nonequilibrium systems did not differ signifi-
cantly from the equilibrium sMaxwelld distribution.17

However, in their simulations a much smaller temperature
difference was imposed in the system, and significantly
shorter periods of time were simulated.

The results suggest that a local temperature distribution
can be calculated for each location from the DOS in non-
equilibrium MD, and that the average of this distribution is
very close to the local temperature calculated from the ki-
netic energy. The results can be useful in calculating relax-
ation times from MD simulations. The relaxation times are
needed, e.g., in the solution of BTE.

One may ask, is it reasonable to use the equilibrium DOS
as a basis when dealing with a nonequilibrium system? It
might prove informative to study the DOS in different loca-
tions and study, e.g., the relaxation times directly from the
DOS, and not try to fit any equilibrium DOS to the nonequi-
librium DOS. However, this paper was intended to clarify
some of the problems characterizing the temperature in non-
equilibrium microscale systems.2

V. SUMMARY

The phonon density of states was calculated in solid argon
in different equilibrium temperatures and in different non-

FIG. 6. Phonon density of states as a function of frequency in a
small system. The DOS correspond to hotslightd or cold sdarkd
atoms. An average is also shownsblackd.

TABLE I. Optimization results in the case of Fig. 6.
L=23 nm.

Hot s%d Middle s%d Cold s%d Averages%d

T=20 5.0 0 0 1.2

T=25 0 0 0 0

T=30 0 0 16.5 6.8

T=35 0 10.7 80.8 25.1

T=40 0 85.8 0 37.2

T=45 57.6 3.5 0 16.0

T=50 24.6 0 2.7 11.4

T=55 13.9 0 0 0

T=60 0 0 0 2.2

TMD 49.5 39.8 32.0 40.4

Tmean 46.4 39.6 34.6 40.2

TABLE II. Optimization results in anL=100 nm system.

Hot s%d Middle s%d Cold s%d Averages%d

T=20 7.4 0 0 0

T=25 0 0 0 3.3

T=30 0 0 80.3 26.7

T=35 0 29.9 19.6 16.4

T=40 3.2 67.3 0 19.0

T=45 0 2.8 0 0

T=50 35.2 0 0 28.3

T=55 44.9 0 0 0

T=60 12.4 0 0 6.4

TMD 55.8 37.9 27.3 40.3

Tmean 51.2 38.6 30.9 40.1
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equilibrium cases. In a nonequilibrium system, for a given
local temperature, the phonon density of statessDOSd was
not equal to the DOS of an equilibrium system in the same
temperature. Moreover, the equilibrium DOS were linearly
independent of each other. An optimization procedure was
outlined to calculate a temperature distribution from the
DOS. This procedure was used to calculate local temperature
distributions from the nonequilibrium DOS. The averages of
these distributions were extremely close to the local tempera-
tures calculated from the kinetic energy, even though the
nonequilibrium DOS could not be represented by a single
temperature peak in the distribution. It was shown that in
nonequilibrium molecular-dynamics simulations, the local
temperature can be obtained in two ways: from the average
kinetic energy or from the DOS. Both of these approaches
are entirely local, but the latter reflects the nonequilibrium
nature of phonons in microscale systems. These temperature
distributions might prove useful in calculating the phonon
scattering rates from MD simulations.
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APPENDIX A: DETAILS OF THE POTENTIAL

The interaction between noble gas atoms can be described
using the classical Lennard-Jones potential,

f0srd = 4eFSs

r
D12

− Ss

r
D6G . sA1d

In this work, parameters for solid argon are used:s
=3.405 Å ande /kB=119.8 K.16 For computational reasons,
the potential is cut at the cutoff,rc, which is chosen “large
enough,” so that the interaction at this distance is negligible.
In principle, the potential can be cut by adding the cutting
point energyswhich creates a discontinuity for the force,
e.g., Ref. 26d, by introducing a distance-dependent correction
term and zero-point energy for the whole range,27 or to use a
different potential at the cutoff range, e.g., by multiplying the
potential28 or by correcting its parameters.29 What one typi-
cally wants from the cutoff procedure is that the forces and
energy go to zero at the cutoff distance, and that forces and
energy are continuous. Moreover, the original potential
should be modified as little as possible. Motivated by the
traditional polynomial correction27 and the smooth cutting
procedures,28,29 the Lennard-Jones potential is corrected at a
certain range by a polynomial. Thus, the following potential
is used:

fsrd = 5f0srd, r , rs

f0srd − Psrd, rs ø r ø rc

0, r . rc.
6 sA2d

HerePsrd is a corrective polynomial which is defined by the
needs discussed above,

Psrsd = 0, sA3d

P8srsd = 0, sA4d

Psrcd = f0srcd, sA5d

P8srcd = f08srcd. sA6d

Here rs is the lower limit, where the cutoff starts, andrc is
the cutoff distance. A third-degree polynomial satisfies the
constraints, and its coefficients can easily be calculated from
the constraints, e.g., with symbolic mathematics software
such asMAPLE. In this work, the standard cutoff,rc=2.5s,
was selected.30 The distance to start cutoff is chosen so that
the force in the whole cutoff range is decreasing, specifically
in this work rs=2.0s. The effect of a narrower cutoff would
be that the force increases at the rangers, r , rc. This effect
could be minimized also by subtractingf0srcd from the en-
ergy for all r , and requiringPsrcd=0.

APPENDIX B: OPTIMIZATION

Consider a system which consists of atoms in equilibrium
temperaturesTi. Let the fractions in each temperature,pTi

, be

tabulated in a column vectorTW =fpT1
pT2

¯pTN
g. Let DOSW

Ti
be

the DOS of atoms at the equilibrium temperatureTi. Here the
DOS sfunctiond is represented by its discretized column vec-
tor. Now, since autocorrelation and FFT are linear opera-
tions, the DOS of this system can be calculated simply by the
weighed sum,

DOSW = o
i

pTi
DOSW

Ti
= fDOSW

T1
DOSW

T2
¯ DOSW

TN
gTW .

sB1d

From the nonequilibrium MD simulations, a DOS is ob-

tained. Let it be denoted by DOSW
MD. If this distribution is to

be represented by a system of atoms in different equilibrium
temperatures, this DOS should be represented by some linear
combination of the equilibrium DOS, as discussed above.
Thus, the temperature distribution can be found by minimiz-
ing the error,

eW = DOSW
MD − fDOSW

T1
DOSW

T2
¯ DOSW

TN
gTW . sB2d

Here DOSW
MD is the calculated nonequilibrium DOS, ex-

pressed in a column vector, DOSW
Ti

is the calculated DOS in

the equilibrium temperatureTi, eW is the error, andTW is the
temperature distributionsvectord. Since the equilibrium DOS
are linearly independent, the simulated DOS can be repre-
sented by a unique linear combination of equilibrium DOS.

The value ofTW is obtained by minimizing the norm ofeW. In

this equation, the vectors DOSW
Ti

sdiscretized functionsd form
the basis, and the functionsvG were used, since the division
by v would have significantly weighed the low-frequency
DOS. DOS in the temperaturesT=20 K,25 K,30 K, . . . ,
60 K were included in the basis.

As seen from Fig. 1, the difference of different DOSW
Ti

is
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not large, and thus numerical problems may rise. To improve
accuracy, another basis was chosen for the optimization. As
the first basis function, the mean DOS was chosen. The sec-
ond basis function was the DOS of the coldest atoms minus
its projection to the knownsnewd basis. In the first step, only
the average DOS is in the basis. The third basis function was
the DOS of the second coldest atoms minus its projection to
the knownsnewd basis, etc. The optimization was done by
minimizing the sum of absolute error, i.e., the 1-norm, by
using theMATLAB software. In addition, the following re-

strictions were imposed. First, the factors of DOSW
Ti

should be

non-negativesi.e., at least zero phonons must correspond to a
specified temperatured. Second, the factors must sum up to 1.
Both these restrictions apply in the original DOS basis, not
the one used in optimization. These restrictions were imple-
mented in the error function as additional terms, and thus
were not satisfied exactly. Moreover, in the course of optimi-
zation, the basis was reduced iteratively. After each optimi-

zation round, the DOSW
Ti

that corresponded to the tempera-
ture, where the population was lowest and below 1%, was
removed from the basis. This was repeated until each calcu-
lated population exceeded 1%.

1K. E. Goodson and Y. S. Ju, Annu. Rev. Mater. Sci.29, 261
s1999d.

2D. G. Cahill et al., J. Appl. Phys.93, 793 s2003d.
3C.-L. Tien, A. Majumdar, and F. M. Gerner,Microscale Energy

TransportsTaylor & Francis, Washington, D.C., 1998d.
4G. Chen, D. Borca-Tasciuc, and R. G. Yang,Nanoscale Heat

Transfer in Encyclopedia of Nanoscience and Nanotechnology
sAmerican Scientific Publishers, Valencia, CA, 2004d, http://
web.mit.edu/ronggui/www/publications.html.

5K. K. Tamma and X. Zhou, J. Therm. Stresses21, 405 s1998d.
6P. D. Sverdrup, Y. Sungtaek-Ju, and K. E. Goodson, J. Heat

Transfer 123, 130 s2001d.
7S. Mazumder and A. Majumdar, J. Heat Transfer123, 749

s2001d.
8G. Chen, Phys. Rev. B57, 14 958s1998d.
9P. K. Schelling, S. R. Phillpot, and P. Keblinski, Phys. Rev. B65,

144306s2002d.
10B. C. Daly, H. J. Maris, K. Imamura, and S. Tamura, Phys. Rev.

B 66, 024301s2002d.
11C. Z. Wang, C. T. Chan, and K. M. Ho, Phys. Rev. B42, 11 276

s1990d.
12M. Z. Bazant, E. Kaxiras, and J. F. Justo, Phys. Rev. B56, 8542

s1997d.
13Y. X. Shen, H. R. Gong, L. T. Kong, and B. X. Liu, J. Alloys

Compd. 366, 205 s2004d.
14M. Alonso and E. J. Finn,Fundamental University Physics

sAddison-Wesley, Reading, MA, 1968d.

15G. Chen, J. Heat Transfer118, 539 s1996d.
16K. V. Tretiakov and S. Scandolo, J. Chem. Phys.120, 3765

s2004d.
17P. Chantrenne and J.-L. Barrat, J. Heat Transfer126, 577 s2004d.
18P. Gumbsch and M. W. Finnis, Philos. Mag. Lett.73, 137s1996d.
19C.-K. Loonget al., Phys. Rev. B45, 8052s1992d.
20Mathworld, edited by E. W. WeissteinsWolfram Research, http://

mathworld.wolfram.com/, 2004d.
21P. Jund and R. Jullien, Phys. Rev. B59, 13 707s1999d.
22S.-H. Choi, S. Maruyama, K.-K. Kim, and J.-H. Lee, J. Korean

Phys. Soc.43, 747 s2003d.
23D. K. Christen and G. L. Pollack, Phys. Rev. B12, 3380s1975d.
24C. Kittel, Introduction to Solid State Physics, 5th ed.sWiley, NY,

1976d.
25S. Volz, J.-B. Saulnier, M. Lallemand, B. Perrin, P. Depondt, and

M. Mareschal, Phys. Rev. B54, 340 s1996d.
26M. J. D. Brakkee and S. W. deLeeuw, J. Phys.: Condens. Matter

2, 4991s1990d.
27F. Shimizu, H. Kimizuka, H. Kaburaki, J. Li, and S. Yip, Parallel

Molecular Dynamics Simulation on Elastic Properties of Solid
Argon, in Proceedings of the 4th International Conference on
Supercomputing in Nuclear Applications, Tokyo, Japan, 2000.

28J. Mei, J. W. Davenport, and G. W. Fernando, Phys. Rev. B43,
4653 s1991d.

29J. Q. Broughton and G. H. Gilmer, J. Chem. Phys.79, 5095
s1983d.

30D. C. Rapaport,The Art of Molecular Dynamics Simulation, 2nd
ed. sCambridge University Press, Cambridge, 2004d.

THERMAL CONDUCTIVITY AND TEMPERATURE IN… PHYSICAL REVIEW B 71, 144302s2005d

144302-7


