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Configurational lattice dynamics: The phase diagram of Rh-Pd
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Free energies of Rh-Pd alloys as functions of both temperature and composition are calculated using
guasiharmonic lattice dynamics. The free energy of the disordered solid is determined from an ensemble of a
large number of randomly generated configurations. Both configurational and vibrational contributions to the
entropy and enthalpy of mixing are taken into account. We study the convergence with the number of random
configurations, and analyze the validity of the zero static internal stress approxini@8t®A), where only
external strains are relaxed fully dynamically while internal stresses are relaxed in the static approximation. It
is shown that the use of ZSISA allows an accurate calculation of free energies in a fraction of the time needed
to carry out fully dynamic optimizations. From the values of free energies as functions of composition and
temperature the phase diagram of Rh-Pd alloys is calculated, showing a good agreement with Monte Carlo
simulations as well as with experiment. It is also shown that although free energies of mixing appear to be
linear functions of temperature to a good approximation, the explicit expressions given by the configurational
lattice dynamics method show that both enthalpies and entropies of mixing change appreciably with

temperature.
DOI: 10.1103/PhysRevB.71.144202 PACS nunt®er63.50+x, 63.20.Dj, 65.40-b, 05.70.Ce
[. INTRODUCTION difference from the work of Marquest al. was that instead

The phase diagram of solids is essential in many applica®f calculating potential differences from a set of fixed
tions, and the development of new methods to allow its cal€oMPositions, Hoyet al. fixed the chemical potential differ-
culation has been the scope of many research programs. TREC® and then calculated the composition giving that
free energy is the key property to be determined as a functio |ﬁgrence. Although th? method followed in these works
of both temperature and pressure. From the free energy, staly- different both share in common the use of Monte Carlo

i ; ; simulations.
?s;gcflgsirgosr)]/gsgnéci;(ge;:;;lgues can be used to build the co? The Rh-Pd system has been studied previously uaing

L ; - 78 ;
Marquezet al2 have recently used Monte Carlo simula- initio simulations and cluster expansions. ¢ual.”° carried

. . . . e . out simulations using the cluster-variation metf@¥/M) to
tions in the Sem_'graf.‘d canonical enser X) to obtain calculate the phase diagram of Rh-Pd obtaining a consolute
chemical potential differences as functions of both temperafemperature 0f=1350 K. No local relaxation or vibrational

ture af‘d composition. To.allow.a Proper samphng of CON"offects were taken into account. Wolvertenal® also used a
figurational space these simulations were carried out consi

4 o oR : jeneralized Ising model and effective pair and multisite in-
ering explicit interchange of atoms. Free energy differencegeractions. By considering these effective interactions as ex-

were obtained by integration of the calculated chemical popjicit functions of volume it was possible to take into ac-
tentials, and then used to construct the phase diagram of th@unt the important effect of local relaxations though, again,
Rh-Pd system. With this method, long runs are required tqjibrational contributions were not considered. Watcal1°
obtain chemical potentials with enough precision to allow afollowed a different method using Monte Carlo simulations
reliable determination of the phase diagram. In these simusased on the embedded-cluster method. Though the calcu-
lations the interatomic potential was described within thelated phase diagram is in fair agreement with the experimen-
embedded atom metho®AM) framework—> with param- tal determination of Shield and Williani$ local relaxations
eters fitted toab initio calculations. The calculated phase and vibrational effects were again not taken into account.
diagram is in good agreement with experimental data. ArHowever, and as mentioned by Wolverteinal,® each one of
important feature of the method is that it is applicable to anythese contributions may change the consolute temperature by
composition, sampling different arrangements of atoms andpproximately 200 K.
allowing for the local structural relaxation surrounding each It is important to emphasize that, when possible, it is a
atom. It was also shown that a mean field calculation is nogeneral methodology in physics to corroborate the results
adequate, at least for this system. given by one method with those given by different and inde-
We note in passing that Hogt al® have also used Monte pendent methods. In this paper we propose the use of a very
Carlo simulations recently, for the phase diagram of thedifferent method for calculating phase diagrams of alloys,
Cu-Pb system. Although they also used the EAM, the modehamely configurational lattice dynamicg¢CLD). This
parameters for the pure metals were taken from previoumethod, used previously for ionic solid solutiofis* is
studies, while the Cu-Pb interaction was fitted to producébased on the generation of a large number of different atomic
the experimental heats of mixing of Cu-Pb alloys. Anotherarrangementgconfigurationy on crystal lattice sites, fol-

1098-0121/2005/714)/1442028)/$23.00 144202-1 ©2005 The American Physical Society



CIENFUEGOS, ISOARDI, AND BARRERA PHYSICAL REVIEW B, 144202(2009

lowed by quasiharmonic lattice dynamic optimization of B 1 0 i) )

each one of them. The optimization gives for each configu- Dl (@) = \/=2 Papl o edmi. (4)
ration not only the relaxed atomic positions but also its free MM 1 b

energy, and hence, its statistical probability. The free energ 0 ] I
of the mixed crystal is then obtained by averaging over the¥- he q)aﬁ( e K.) are second derivatives of the crystal energy
whole ensemble of configurations. Unlike MCX, CLD with respect to atom coordinates

readily takes account of quantum effects, thus extending the 0 I A

range of application to lower temperatures. On the other ®a3< J )=—. (5)
hand, because of the basic assumption of small amplitudes of i K (0 )(; ( l )

vibration, CLD is clearly not valid for the study of liquids, or “ b K|

even for solids at sufficiently high temperatures for the vi- () h di f thexth .
brations to be strongly anharmonic. The two methods argerf’hxa K reﬁresentst @ coordinate of thexth atom in
thus complementary. For this reason, we here illustrate th eTLe umngsc;eeipensive task of a simulation is to determine

use of CLD by calculating the phase diagram of Rh-Pd al_he equilibrium structure. Once obtained, the evaluation of

I i ly th EAM ial h iousl . S . )
l? Sy jduisr:rlg : ﬁg;(y ;irﬁuslgg] oen% potential as that previous Jrelevant thermodynamic properties is relatively fast. The vi-

In the following section we describe the basic equationé)ratIonal frequencies entering in E(P) do not depend on

of the configurational lattice dynamic method, and then weemperature explicitly, but do so implicitly through the posi-

briefly describe the interatomic potential used. We first stud lon of the atoms In the umt.cell and' the lattice parameters
the convergence of free energy values with the number o hich determines the dynamical matrix. The free energy thus

configurations and then we compare results using the zer bt"?"”ed is a function of both the lattice parameterfor a
static internal stress approximatiggSISA),*> where only Cubic crystalagndcfor a.tetragonal crystall,.ebaand of the
external strains are relaxed fully dynamically while internal reduced coordinates which give the position of the atoms

degrees of freedom are relaxed in the static approximatio ithin the unit. The first and second sets of coordinates are

with those obtained from fully dynamic optimizations. The then referred as external and internal coordinates, respec-

results presented include enthalpies, entropies and free en !Iyely. Thefwhole col!ectlon of coordinates is denOted collec-
gies of mixing of Rh-Pd alloys and the corresponding phas Ively as 7. For a given temperature anql ‘fip_p"ed pressure,
diagram. An advantage of our method is that both vibrational & thS crystal structure is that which minimizes the avail-
and local relaxation contributions can be obtained directly, s@bility G:*®

allowing a quantitative assessment of their relative impor- -~ ) B

tance. In the conclusions we compare the results obtained G(2) = F(7) + PeM(2%). (6)
with those obtained previously using Monte CaflIC)  ,
simulations, and comment on further possible applications oé
this method.

Ki

t the equilibrium configuratiolP=P,,; and the availability
quals the Gibbs energy

G=G=F+PV. (7)

Il. CONFIGURATIONAL LATTICE DYNAMICS . . .
We have described elsewhere a particularly efficient method

In the quasiharmonic approximation the free energy of ao minimize G, allowing the study of unit cells with a large
crystal, F, at a given temperature can be expressed as thgumber of atom$?2°and so no further details are presented
sum of static and vibrational contribution here.

F=E. +F (T 1 To find the equilibrium structure efficiently it is necessary
= Esiart Fuin(T). @) to calculate not only the free energy but also its derivative

E.iS the potential energy of the static lattice afg), is the ~ With respect to both internal and external coordinates. For an

sum of harmonic vibrational contributions from all the nor- ionic solid and using only two body potentials, only a few

mal modes elements of the dynamical matrix are nonzero and this leads
to a very efficient way of computing the derivatives of the

N free energy with respect to the whole set of coordinates. The

Fib=2 > Ehwj(Q) +KTIn(1 - i @kT), (20 many body forces characteristic of EAM potentials, on the

=l q contrary, makes the evaluation of the derivatives of the dy-

namical matrix much more expensive, the dynamical matrix
now being less sparse than for ionic systems. For this reason
e have resorted to ZSISA. In this approximation only the
erivatives of the free energy with respect to the external
coordinates are evaluated considering vibrational contribu-
tions, while the derivatives with respect to the internal coor-
dinates are computed in the static approximation, so avoiding

where the first term is the zero-point energyTat0. For a
macroscopic crystal the sum owgbecomes an integral over
a cell in reciprocal space, which can be evaluated by takin
successively finer uniform grids until convergence is
achieved® The frequencies;(q) are obtained by diagonal-
ization of the dynamical matrix in the usual way

D(g)e= w?(q)e (3)  the evaluation of many dynamical matrix derivatives. Of
course, a more self-consistent calculation involves the evalu-
whereD is defined by ation of the dynamical matrix with respect to the whole set of
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4602 Rhg 25Pdg 75 K
e T T T 1300K —— S=(S9 — ks pxIn py (10
k
“Had.a | which leads to
S -469.4 . K
2 e5E | G=-kgTINK-kgTIn| > exp- BGYIK . (11)
5 “
£ -469.6 1 Because it is in general not possible to carry out the summa-
8 4507 | tions in Egs.(8) and (9) over all configurations, they are
= carried out over a subs&t’. ConsistentlyK in the denomi-
-469.8 . nator of Eq.(11) is replaced byK’. The first term of Eq(11)
represents the contribution © from the ideal entropy of
“469-9) 100 200 300 400 500 600 700 800 900 1000  Mixing. Non ideal effects are included in the second term.
(a) Number of configurations Details of this method, and its application to ionic solids,
were already publishédand not repeated here.
Rhg sPdo s
-503.5 —
1300K ——
-503.6} 1 Il. INTERATOMIC POTENTIALS
= -503.7p 7 In the EAM, the crystal energy per unit cell can be written
[e]
£ -503.8 . as
2 503.9 1 1
5 Estar= 2 Filp) + 32 2/ (1), (12)
ga -504.0 . i i
()
g -504.1 ] where Fi(p;) is negative and represents the energy of “em-
L .504.2 . bedding” atomi in the electronic density; created by all
-504.3 i other atoms in the crystal, ang; is the core-core repulsion
L L . L between atoms andj, assumed to depend only on the type
-504.40——50"200 300 400 500 600 700 800 900 1000 of the atomsi andj and the distance between them. The
(b) Number of configurations electron density; is assumed to be the sum of the electron

densities of all other atoms at the nucleus of aiom
FIG. 1. Free energy as a function of the number of configuration
pi= E (i)
i

at T=1300 K for(a) Rhy 8Py 75 and (b) Rhy sPdy 5 In these simu-

(13
lations we used unit cells with 32 atoms.

coordinates. For EAM potentials this is not only very expen-where fi(r;;), assumed to be isotropic about atgmis the

sive but the results produced do not differ significantly fromelectron density due to basis functions centered on gtam

those obtained using ZSISA, as shown in Fig. 2. a distance;. The prime on the summations in E4$2) and
In the way outlined above one can obtain the relaxed13) indicates that terms withn;; =0 are not included. The

structure of any given configuration. To simulate disorderecelectronic densities are represented by simple exponential
solid alloys we use the CLD as proposed in Ref. 12. In thisSynctions
method one generates a set of configuratibne each of
which the location of the Rifor Pd atoms on sites within fi(r) = Ay exp(-r/o}) (14
the unit cell is chosen at random. At each temperature a full . . e /i
dynamic optimisation of the structure of each configurationVith different parametersh, ang oj (j=Rh,Pd for each
is then carried out, calculating at the same time several thef€tal and with a cutoff of 6.0 A. The repulsive potential is
modynamic properties such as the Gibbs eneBgythe en-  also assumed to have the simple form
thalpy, H, and the entro . The probability of each con-

By, Py P Y ;i (r) = Byj exp(=ryj/oy)

figuration is given by (15

exp(- BGy) with different parameters;; and oj; for each type of inter-
O (8)  action(Rh-Rh, Pd-Pd, and Rh-PdFor the embedding en-
> exp- Gy ergy we use

whereK is the total number of possible configurations for the Filp) == C; V’E (16)
supercell considered. The enthalpy of the disordered alloy is o
thus given by the ensemble average again, with different parametefs; for each atom type. The

model parameters are adjusted to reproduce the resudts of
K L. . .

B -3 initio calculations and are reported in Ref. 2 and not repeated
H=(Hgo= - Ptk © here. As seen in Figs. 1 and 2 of this work, the energies
calculated with this potential are in very good agreement
The entropy, however, also contains a configurational term with the results of theb initio simulations.
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FIG. 2. Temperature dependence of several thermodynamic properties, using ZSISA and fully dynamic optimiz&gpwmoliame, (b)
enthalpy,(c) entropy, andd) Gibbs energy. We used a unit cell with 16 atoms of Rh and 16 atoms of Pd. Averages are calculated using 1000
configurations.

IV. RESULTS tions. Because complete dynamic optimizations are very de-

The calculation of the phase diagram requires knowind“"’lmdfing in_tcorr}lp)ute_rﬂ;[irgg V\f[e havi done this co_rgpar(;son
the Gibbs energy as a function of both temperature and cong-g% gsritilg:: O?ER; g(;o o av(\;i?]SiG Ztrgmvgeofcg?]s;rféema
position for a large number of these variables. For a give P 505

temperature and composition, the Gibbs energy is calculate oms of Pd.
e - , There is a ver reemen ween the properti
from a large set of optimized configuratiof&q. (11)]. In ere is a very good agreement between the properties

. . g alculated using ZSISA and those obtained by fully dynamic
order to carry out these calculations in a feasible amount ngtimizations. In Fig. 2 we compare the results for

computing time we start by determining the number of CoN-only some properties and a unit cell of RRde similar
figurations necessary to obtain suitable free energies. In Figesyits were obtained for other thermodynamics properties
1 we show values of the Gibbs energy as a function of theynd compositions. Thousands of configurations are necessary
number of configurations used in the ensemble, ato calculate the phase diagram. For this reason and because
T=1300 K for two different compositions and using a unit the ZSISA approximation is much faster than fully dynamic
cell of 32 atoms. With 1000 configurations, free energiespptimizations, all subsequent calculations presented in
have converged by approximately 0.02 kJ/mol. Similar rethis paper were consequently carried out using this approxi-
sults were obtained for other temperatures as well as for celimation.
with 108 atoms. All subsequent results presented here were When using the ZSISA approximation, we found that
done using 1000 configurations. the time required to carry out an optimization for cells
In order to save computer time we have also considerewith 32, 108, and 256 atoms scales approximately in
the zero static internal stress approximatfoZSISA). In  the relation 1:17:640. Simulations using ZSISA, and for
this approximation, only external degrees of freedom are reeells with 32 and 108 atoms are approximately 70 and
laxed fully dynamically, while all internal degrees of free- 200 times faster than those with full dynamic optimizations.
dom are relaxed in the static approximation. In Fig. 2In comparison with MC simulations, the calculation of
we compare the results of the temperature dependence tfermodynamic properties of mixing using CLD with 1000
several thermodynamic properties obtained using ZSISAonfigurations and unit cells of 108 atom takes approxi-
with those obtained by carrying out fully dynamic optimiza- mately the same computer time as to carry out &+1@’
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FIG. 3. Enthalpies, entropie@s TAS) and Gibbs energies of
mixing as functions of temperature for cells with 32, 108, and 256 3.0 T T
atoms and a composition of REPd, 5 using ZSISA and fully dy-

Rho sPdo s

unit cells MCX simulations score favorably against the use
of CLD.

To study the effect of the unit cell size on the calculated 5
thermodynamic properties, we have carried out several§
calculations using unit cells with a total of 32, 108, and 256 § -1.0
atoms. In Fig. 3 we show the results of our simulations © -1.5
for a composition of RhsPdy 5 for temperatures between -2.0 : : : :
800 and 1400 K. Similar results were obtained for other(b) 700 800 900 Tér?q%%ratJ:eO?K)
compositions. For temperatures higher than approximately
1300 K, both enthalpy and entropy values start to grow F|G. 4. Free energies of mixing vs temperature for two compo-

very ff?lSF as temperature iS. inf:feased- This most likelysitions. The line is a linear square fit to calculated free energy
unrealistic result is a clear indication of the breakdownvalues.

of the quasiharmonic approximation. A careful examination ] ) .

of Fig. 3 shows that the quasiharmonic approximationdepe”d slightly on temperature as illustrated in Table I. Val-
starts to break down at slightly lower temperatures for the!eS 0fAHm, are calculated using E(P) and values oA Sy
smaller unit cells. This is probably due to an artificial ToM those ofAGp, obtained from Eq(11) and the previ-
“stress” created by the smaller unit cells. For this reasorpusly calculated values oAHp;. So, and in spite that
and because the consolute temperature is near 1300 K€€ energies of mixing appear to vary linearly with tempera-
(see Fig. 6, we have subsequently used only the resultdure; the explicit expressions given by CLD show thatenthgl—
for T<1300K. At T=1300 K the free energy of mixing PI€S and entropies of mixing change appreciably with
of the 108-atom unit cell is converged, with respect totemperature. _

the 256-atom unit cell by better than 0.1 kJ/mol. This ©ONC€AGm is known as a function of both temperature
convergence is sufficient for the purpose of constructing?’d composition, is it possible to build the corresponding
the phase diagram and for this reason all subsequefdnodal curve using the standard common tangent

calculations presented here were done using 108 atong)nstructioril. In Fig. 5 we illustrate this method for a tem-
unit cells. perature of 1000 K, well below the consolute temperature,

In passing, we note that the curve &H,,, vs T for 32 and forT=1300 K, which is close to this transition tempera-
atom unit cell,s given in Fig. 4 of Ref. 2 is Tr';‘ error as in that ture. From the positions of the intersections of the tangents

work the use of the minimum image convention precludedVith the AGp;, vs T curves it is then straightforward to build
the use of these small cells. the binodal curve presented in Fig. 6. This curve has been

In Fig. 4 we show the temperature dependence of fre@Uilt by using the tangent construction& 800, 900, 1000,
energies of mixing for two selected compositions. The linest100, 1200, and 1300 K, and fitting these data to an equation
are linear square fits to the calculated Gibbs energy value§' the form
Because of the linear trends, it would be tempting to assume  T(xg,) =a+ b In Xz + ¢ IN(1 = Xgy) + AXxp(1 — Xgp) -
that the intercepts should h&H,,, and that slopes should 17)

representAS,,,, assuming that both functions are indepen-
In Fig. 6 we have plotted also the phase diagram obtained

dent of temperature. However, and in spite thad,;,=a
+bT (with a and b constants both AH.;, and AS,x using MC simulations which is a completely different

0.5
0.0

= 25
namic optimizations. Averages were calculated using 1000§ 20
configurations. 2 ]
= 1.5
(equilibration and productionrun using MCX. For larger % 1.0
E
S
>

1200 1300 1400
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TABLE |. Temperature dependence of the enthalpy and entropy of mixing for two compositions and at a
few selected temperatures. “Linear fit” values represent the intercept and slay@,gf vs T assuming
AHix and AS,, independent off, a common assumption not supported by our calculations.

AHix (kI mor?) ASyix (I mortkKT
Linear 900 K 1100 K 1300 K Linear 900 K 1100 K 1300 K
fit fit
RhyoPdh7s  5.39 5.34 5.61 6.02 5.06 4.99 5.23 5.54
RhyPdhs  6.91 6.97 7.31 7.99 6.15 6.20 6.51 6.99

method. We also show the spinodal curve obtained from bothlifference can in principle be attributed to two different
methods. The spinodal limits the region Bfx where solid  approximations. First, classical Monte Carlo simulations
solutions are kinetically as well as thermodynamically un-neglect quantum effects. While for some systems it was
stable. For a given temperature, the compositions that defifieund that quantum effects are not negligible even at
the spinodal are those for whigRG,,/ 3x?>=0. relatively high temperaturéd,we have checked that the ne-

Both MC and CLD calculations agree very well glect of these effects in our lattice dynamic simulations
with the experimental data, as presented in Fig. 7 of Ref. 2do not change the results presented in this paper, at least on
and not repeated here. There is also a good agreemetiite scale of the graphs presented here. Second, the other
between the results obtained from both methodsmain approximation is the neglect of further anharmonic
The MC simulations predicted a consolute temperaturéerms by quasiharmonic approximation. As we mentioned
of about 1300 K while the present simulations indicateabove, it seems that the quasiharmonic approximation
a temperature slightly below 1400 K. This relatively small starts to break down &= 1400 K, and indeed the simula-
tions give many imaginary frequencies dit=1450 K
and above. In conclusion, it seems that the relatively small
difference between the results of both methods is the neglect
of further anharmonic terms in the quasiharmonic
approximation.

While CLD provides directly absolute values of both
enthalpies and entropies of mixing, MCX simulations
yield primarily enthalpies of mixing. For this reason, a com-
mon assumption has been the use of the “ideal” entropy of
mixing

1000K
0.8 T T T T T

0.6
0.4

0.2

AS%a= Rix In x + (1 —x) In(1 —x)} (19

Gibbs energy of mixing (kJ/mol)

04 , ; , ; , , , , , to calculate approximate free energies of mix[agAG‘,ﬂ&a'

"0 01 02 03 04 05 06 07 08 09 1  =AH, -TAS®) The use of this approximation is

(a) Composition (xgp) illustrated in Fig. 7 where we show the free energy of mixing
0.0 . . . 300K : . . 1500

3 -0.2 L 1

E 1400

2 04 )

= o 1300} 1

S -06 e

€ S 1200t 1

= -0.8 ‘E

> []

D _10 o 1100r 1

@ £

5 g

g ~12 1000 f Binodal LD 1

o) Spinodal LD - -

& -14 Binodal MCX

1 6 L 1 1 1 1 1 1 1 1 900 -- SpinOdaI MCX ..-:-
~0 01 02 03 04 05 06 07 08 09 1 800;" o . .
(b) Composition (xg;,) 0 0.2 0.4 0.6 0.8 1

Composition (xg,)

FIG. 5. Free energy of mixing vs composition (@ 1000 and
(b) 1300 K. The intersections of the common tangents with FIG. 6. Calculated phase diagram of Rh-Pd alloys using con-
the AG,,x curves are used to construct the phase diagram given ifigurational lattice dynamic&.D) and semigrand canonical Monte
Fig. 6. Carlo simulationgsee Ref. 2 (MCX).
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4 4
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mix

Thermodynamic potential (kJ/mol)
o
Thermodynamic potential (kJ/mol)
o

-6 -T ASi N -6

_8 &t . n . N -8 . n .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Composition (xgp,) Composition (xgp,)

FIG. 7. Free energy, enthalpy, and entropy of mixing of FIG. 8. Free energy, enthalpy, and entropy of mixing of
Rh-Pd alloys at 1200 K. Arrows indicate the points where the com-Rh-Pd alloys at 1200 K for three different sets of simulatidias:
mon tangent intersects theG,,;, curves and which define the spin- full calculations including vibrations and relaxatior(y) without
odal given in Fig. 6. Also shown is the ideal entropy of mixing vibrations and with relaxations, arid) without vibrations and with-
(AS%3) and AGYA calculated as\G9%¥=AH ;, ~TASY! out relaxations.

at 1200 K decomposed in its contribution&H,,
and -TAS,, using values of entropies of mixing with
and without this approximation. The arrows indicate the po- In this paper we have used CLD and an EAM potential
sitions where a common tangent construction would give théo calculate the phase diagram of Rh-Pd alloys, which
compositions, afT=1200 K, of the binodal curve of the is in very good agreement with experimental data and
phase diagram. It is easily seen that the use of this ideaksults obtained from MC simulations. This method provides
entropy of mixing has a very important effect on the calcu-not only an alternative to MC simulations but a method
lated phase diagram, not justifying its use, at least for thiso determine directly absolute values of free energies,
system. enthalpies and entropies of mixing. Values of these quantities
Another common assumption in MCX simulations can be obtained also from MC simulations but only
has been the neglect of local relaxation, vibrational contribuindirectly by integration of chemical potentidls.We
tions or both of them. To study the importance of vibrationalhave shown that vibrational and relaxation contributions to
and relaxation effects we have repeated our simulationenthalpies of mixing almost cancel to each other,
using CLD for different cases. In the first, vibrational though none of these effects is negligible. On the contrary,
contributions were neglected, i.e., we carried out only staticelaxation effects do not seem to play an important
simulations, but allowing the atoms to relax. In the secondole on entropies of mixing, though vibrational effects can
case, both vibrations and relaxation were not taken into acchange entropies of mixing by=20% at xz,~0.5 and
count. The results of this simulations at 1200 K are shown 200 K.
Fig. 8, where we have three different casda) with We have studied the convergence of free energy values
vibrations and relaxationgh) without vibrations and with  with the number of configurations and showed that suitable
relaxation, andc) without vibrations and without relaxation. values of free energies can be obtained from simulations
Enthalpies of mixing for casé) are systematically below with 1000 configurations. We have showed also that, at least
those of caséa) because the neglect of vibrational contribu- for this system, ZSISA provides an excellent approximation
tions, with a maximum difference of about 1 kJ/mol atto fully dynamic optimizations in a fraction of the computer
xgrn=0.5. The curve for casé), which neglects vibrations, time.
is below that of casgc) because of the extra stability Though free energies of mixing appeared to be linear
provided by local relaxations. The curve for casas(both  functions of temperature to a good approximation, explicit
effects taken into accountand case(c) (both effects not expressions for both enthalpies and entropies of mixing
taken into accoumtare very similar except akg,~0.3.  reveal that contrary to the common approximation of consid-
We can see that, for this system, vibrational and relaxatiorring them as constant they both vary with temperature.
effects on enthalpies of mixing mostly cancel to each otherFor Rh,Pdy ;5 and T between 900 and 1300 K, for
A similar study can be done for the entropies of mixing.instance,AH,,x and -TAS,,x vary by approximately 12%
Comparing casefb) and (c) it can be seen that relaxations and 11%, respectively. Getting these quantities from a liner
do not play an important role in the entropies of mixing. Onfit to AG,, is thus insensitive and involves considerable
the contrary, and by comparison of cagasand(b), we see error.
that vibrations are very important changing the values The proposed method should prove particularly useful
of -TAS,,x by as much as approximately 1.5 kJ/mol atat low temperatures where the neglect of quantum effects
Xgrn=0.5. in classical MC and molecular dynami@§ID) simulations

V. CONCLUSIONS
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