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Various data are combined to analyze the behavior of condensed rare gases at high pressures or systems of
repelling atoms interacting via a pair interaction. An analysis based on numbers of nearest neighbors of a test
atom shows that the crystalline state is not the most stable thermodynamically for a system of repelling atoms
at high pressures. Rather, the equilibrium solid state of this system at nonzero temperature is an irregular
mixture of small domains/clusters of fairly rigid, close-packed structures. This means that an ensemble of
repelling atoms has a polycrystalline structure at high pressures and low temperatures. Parameters of this
system at low temperatures and its melting curve are considered from different standpoints.
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INTRODUCTION

We consider a bulk ensemble of atoms with a repulsive
pair interaction. Rare gases at high pressures are an example
of such a system. Therefore, on one hand, the behavior of
such atomic systems may be understood from the analysis of
rare gases at high pressure, and on the other hand, the study
of ensembles of strongly repelling atoms gives additional
information about highly compressed rare gases and other
materials. We now link the information about rare gases at
high pressures and about properties of ensembles of repelling
atomic particles in order to construct a general picture of the
behavior of such systems.

Our goal here is to develop the properties of ensembles of
repelling atomic particles, including rare gases at high pres-
sures, through the use of relatively simple models of such
systems. We begin by introducing the numberq of nearest
neighbors of a test internal atom. For crystals with close-
packed structures, i.e., fcc or hcp structures, this number is,
of course, 12. Comparisons of structures on the basis of the
number of nearest neighbors allows us to draw conclusions
about various properties of a system of strongly repelling
atoms. First, we find that, at thermodynamic equilibrium at
low but nonzero temperatures, atoms of this system do not
form a crystal lattice of close-packed structure. Second, we
find some insights into a general statement by Stishov1 that,
under some conditions, the melting curve on the pressure-
temperature phase diagram of this system does not terminate
at a critical point, but continues up to high temperatures and
pressures. Our conclusions suggest that there may be cases
with something resembling a critical point, and other cases
with no such point. Nevertheless, at high pressures, the states
separated by the traditional solid-liquid coexistence curve are
not the crystal and liquid states, as they are at low pressures.
Rather, both states of this phase transition correspond to dis-
ordered distributions of atomic particles and are states of
dense packing structure and loose packing structure.2

PAIR INTERACTION OF RARE GAS ATOMS

At pressures satisfying the criterion

p @ po =
D

Re
3 , s1d

interatomic repulsion is the dominant internal force deter-
mining the system’s phase equilibrium. Then, only the inter-
actions between nearest neighbors are of importance, and the
pair interaction potential can be approximated by

UsRd = UsRodSRo

R
Dg

=
A

Rg , g @ 1. s2d

In this work, specific values of the parametersD, the depth
of the two-body potential well, andRe, the equilibrium dis-
tance for two bound atoms, are taken from literature
sources3–6 and are collected in Table I.

In considering a system of interacting rare gas atoms, we
assume the interatomic interactions can be treated strictly as
pair interactions, and that three-body and higher interactions
are not significant. The predominant cause of repulsion be-
tween two atoms is the overlapping of wave functions of
their valence electrons and is created mostly in a coordinate
region close to the axis that joins the atoms. Hence, interac-
tion of a test atom with each of its neighboring atoms is
essentially independent of other atom-atom interactions.sWe
thereby neglect regions in which wave functions of three or
more atoms overlap.d

Next, the potential energy of interaction between two at-
oms is small compared to any configurational or electronic
excitation energy of the system. This condition is met at low
to moderate pressures. At extremely high pressures that make
interatomic distances sufficiently small, the valence elec-

TABLE I. Parameters of the pair interaction potential for rare
gas atoms and the reduced parameters of systems consisting of in-
teracting atoms of rare gases, for the interaction potentialg, Ro

sRef. 7d if UsRod=0.3 eV.

Ne Ar Kr Xe

Re sÅd 3.09 3.76 4.01 4.36

D sKd 42 143 200 278

m sa.m.u.d 20.18 39.95 83.80 131.3

po=D /Re
3 sMPad 20.2 37.1 43.0 47.1

g 7.6 8.1 7.7 5.9

Ro fÅg 2.07 2.85 2.99 3.18
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trons’ wave functions may change enough to induce a tran-
sition from an insulating state to a metallic state. Here, we
consider pressures below that of metallization. In particular,
xenon metallization is expected at pressures of about
150 GPa;8–10 for other rare gases this transition proceeds at
higher pressures. The pressure range we consider here lies
below this limit.

A SYSTEM OF HARD SPHERES

According to the data in Table I,g@1 for the pair inter-
action potentials2d of rare gas atoms. This allows us to de-
scribe an ensemble of repelling atoms with an almost-hard-
sphere model, and hence to draw on a hard-sphere model to
analyze the behavior of an ensemble of repelling atoms at
low temperatures and high pressures. For this analysis, we
draw on simple experiments with hard balls,11–13 and simu-
lations with hard spheres.14,15The discussion will then relate
the results of this simple model to the behavior of the com-
pressed, solid rare gases, as found in experiments and simu-
lations.

It is convenient to characterize the distribution of spheres
in a space by the packing density,2 given by

w =
4p

3
r3N, s3d

where r is the sphere’s radius,N is the number density of
spherical particles, and the packing densityw is the fraction
of the space occupied by the balls. The maximum value of
this parameter for hard spheres corresponds to a close-
packed crystal lattice. For such crystals of fcc or hcp struc-
ture, the packing density is

wcr =
pÎ2

6
= 0.74. s4d

The packing densityw of an ensemble of hard balls was
initially found from experiments based on filling a container
with hard balls. The observed value iswd=0.64.12 A more
precise value for the packing density of this system was ob-
tained from computer simulations and is14

wd = 0.644 ± 0.005. s5d

These results coincide within the limits of their accuracy
and lead to the conclusion that an ensemble of hard spheres
does not form a crystal lattice. We analyze this result within
the framework of a mean-field approach for a system of at-
oms with a steep repulsive interatomic potential. It is conve-
nient to characterize the state of this system by the mean
coordination numberq, which is the average number of near-
est neighbors of an internal test atom. Clearly, in the limit
g→`, i.e., for the system of hard balls, this value is con-
nected with the packing densityw. Indeed, using the
formula16

q = 12
rcr

r
, s6d

wherercr is the crystal density andr is the density of the
state of interest. Equations4d gives us

q = 12
w

wcr
= 16.2w, s7d

wherewcr and w are, respectively, the packing densities of
the crystal state and the state under consideration. We take
that of the crystal state to bewcr=pÎ2/6=0.7405.

From this relation and from formulas5d for dense random
packing, we haveq=10.4±0.1 for that state. This is close to
the coordination number of liquid rare gases at low pres-
sures, in which atoms are bonded by the attractive forces
between them, withq=10.1±0.1.16,17 Therefore, their struc-
ture suggests that compressed rare gases are, in some sense,
more like liquid rare gases at low pressures than like low-
pressure solids. In any case, from this it follows that com-
pressed rare gases cannot have a crystalline structure at low
temperatures.

Note that this comparison refers to a phase transition
within the conventional part of the melting curvesp!pod,
from the crystalline statesq=12d to the liquid state.

THE VIRIAL THEOREM AND THE EQUATION OF STATE
FOR AN ENSEMBLE OF REPELLING ATOMS

Clearly, the previous results imply that the solid states of
rare gases under pressure are not regular, crystalline solids,
or even disordered but close-packed arrays. The reported
structures, as discussed below, must have some irregularities
in the form of void spaces that lower their densities from that
of close-packed systems. Here we show that the crystalline
aggregate state of the system of repelling atoms is not the
most stable thermodynamically, relative to a disordered ag-
gregation of clusters with some void space. We will base the
results on the virial theorem for a system of repelling atoms
with pair interactions.

We represent the equation of state for atoms interacting
through the potentials2d by invoking the virial theorem,
yielding the form18,19

T = pV−
g

3
Ū, s8d

whereV is the volume per atom, andŪ is the average inter-
action potential per atom. We have, in the mean-field ap-
proximation,

V =
a3

Î2

12

q
, Ū =

q

2
Usad, s9d

wherea is the distance between nearest neighbors, and the
pair interaction potentialUsad is given by formulas2d. In the
limiting cases1d, we havepV@T; i.e., Eq.s9d allows one to
estimate the pressure from just its second term, as

p = 2Î2gS q

12
D2Usad

a3 . s10d

We demonstrate below the validity of this formula in the
case of a close-packed crystal lattice. Let us draw a plane
parallel to a symmetry plane of this lattice, so that the pres-
sure is the force per unit area between atoms located on
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different sides of the crossing plane. The pressure is thus

p =
mfx
s

=
mf cosu

s
, s11d

wherem is the number of nearest neighbors of a test surface
atom which are above and below the separation plane,s is
the surface area per atom, andfx is the force projection onto
the perpendicular to the separation plane. Hence this force
acts between a test atom and its nearest neighbor outside the
separation plane;f is this force, andu is the angle between
the line connecting interacting atoms and the perpendicular
to the separation plane. From this, we have for theh100j
separation plane, withm=4, s=a2, cosu=1/Î2,

p =
4fsad
Î2a2

=
2Î2

a2 UdUsad
da

U =
2Î2

a3 gUsad. s12d

In the case of theh111j direction of the separation plane, we
havem=3, s=Î3a2/2, cosu=Î2/3, so that

p =
3fsad

sÎ3/2da2
Î2

3
=

2Î2

a2 UdUsad
da

U =
2Î2

a3 gUsad. s13d

As we see, formulass12d and s13d are transformed into for-
mula s10d in the caseq=12.

These formulas allow us to compare the crystalline state
of the repelling atoms with a random distribution of the same
atoms characterized by a mean coordination numberq. We
analyze the possibility of a phase transition between these
states when the total number of repelling atoms, the pressure,
and the temperature are conserved. The condition for equi-
librium of the two phases20 is the equality of the Helmholtz
free energies of two phases,DF=DE−TDS=0, andDE and
DS are the differences of the internal energies and entropies
of the two phases, respectively.sStrictly, at constant pressure,
one should use the Gibbs free energy difference,DG=DH
−TDS, but the difference can be neglected here.d In order to
ascertain the stability of the crystalline state of the system
repelling atoms, we take into account that the transition from
the crystal to a disordered state corresponds to an increase of
the entropy. Becausep=const, we have

DE = nsDŪ + pDvd, s14d

whereŪ is the average interaction energy per atom andv is
the volume per atom. From formulas9d, it follows for the
transition from the crystalline state withq=12 to another
state characterized by a coordination numberq that

DE

n
= S1 +

g

3
DsŪcr − Ūrd = S1 +

g

3
DF6Usacrd −

q

2
UsardG

= 6UsacrdS1 +
g

3
DF1 −

q

12

Usard
Usacrd

G , s15ad

whereUsad is the pair interaction potentials2d at the distance
a between interacting atoms, andacr andar are, respectively,
the smeand distances between nearest neighbors in the crys-
talline state and in the state with randomly distributed atoms.
sHere we do not attempt to quantify the degree of random-
ness or to optimizeq, but merely distinguish that state from

the high-density crystal.d In the mean-field approach, the av-

erage interaction potential per atom isŪcr=6Usacrd and

Ūr =qUsard /2. The conditionpsacrd=psard gives

DE

n
= 6UsacrdS1 +

g

3
DF1 −S12

q
Dsg−3d/sg+3dG . s15bd

Only the final factor is negative, so that a transition from the
crystalline state to any random state of the system of repuls-
ing atoms with a lower density or an increase in the mean
distance of nearest neighbors corresponds to energetic stabi-
lization, i.e., toDE,0. Clearly, as long asT.0, DS.0 for
any transition from the crystallinesorderedd state of atoms to
any disorderedsrandomd state.sWe introduce the tempera-
ture constraint to avoid any issues of the third law of ther-
modynamics.d Hence, the crystalline state of a system of at-
oms with a steeply varying repulsive interaction potential
sg.3d is not stable thermodynamically with respect to a
state with a random distribution of atoms. Hence, the crys-
talline state of such a system is not realized under conditions
of thermodynamical equilibrium, so long as the random state
has any local stability under the same conditions. In the
present case, that stability is due to the externally applied
pressure.

Generalizing, we use the analogy of formulas15d to find
the change of the internal energy of the systemDE between
states with coordination numbersq1 andq2:

DEsq1 → q2d
n

=
q1

2
Usa1dS1 +

g

3
DF1 −Sq1

q2
Dsg−3d/sg+3dG .

s16d

This givesDEsq1→q2d,0 if q1.q2, a natural consequence
of relieving the repulsive force. For this transition, the en-
tropy changeDS per atom can have either sign. If the tran-
sition is accompanied by a volume decrease, then it must
also exhibit an entropy decrease if the transition takes place
between two disordered states with random distributions of
atoms. Hence, in principle, a phase transition is possible be-
tween random states. Note that in the limitg→`, formula
s16d givesDE/n=pDV, whereDV is the volume change per
atom. In this limit, we havepDV=TDS, where DS is the
entropy change per atom, and if this phase transition corre-
sponds to a decrease of the coordination numberq, this im-
plies an increase of the specific volumeV and a decrease of
the specific entropyS.

Thus, from the virial theorem, it follows that the crystal-
line system of repelling atoms is unstable with respect to a
decrease of the mean coordination number. A nonregular dis-
tribution of atoms is characterized by a lower interatomic
repulsive energy, and because the entropy of a nonregular
atomic distribution is higher than that of a crystal lattice, we
conclude that the ordered state of this system is unfavorable
thermodynamically. This analysis does not allow us to find
the optimal mean coordination number of an atomic distri-
bution, because we cannot determine the entropies of distri-
butions with a given coordination number. Nonetheless, it
demonstrates the thermodynamic instability of the crystalline
state of an ensemble of repelling atoms.
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While our mean-field model shows the thermodynamic
instability of the uniform lattice distribution for repelling at-
oms, this does not prohibit stability of a polycrystalline
structure, consisting of small-domain clusters, so long as the
density of such a system is lower than that of the uniform
crystal. In this case the system is nonuniform, so that the
virial theorem is not applicable. Thus, on the basis of the
virial theorem one can state only that the uniform crystal
state of the system of strongly repelling atoms is unstable
thermodynamically, but this result does not determine the
optimal atomic distribution in this case.

PHASE TRANSITION IN AN ENSEMBLE OF REPELLING
ATOMS

The system of repelling atoms admits a phase transition.
This is demonstrated by both computer simulations and ex-
periments. This is all consistent with Stishov’s statement1

that the melting curve has no critical point as experimental
temperatures are increased. Here we analyze the results of
computer simulations and experimental results21–29 for com-
pressed rare gases.

According to computer simulations of a hard-sphere
system,14,15 the melting corresponds to a transition between
states of the following values of the packing density

wdr = 0.545, wlr = 0.494. s17d

Because the state of higher density has a density too low to
be the crystalline state, this is not a traditional solid-liquid
phase transition. Following Ref. 2, we call the states associ-
ated with this transition the dense random and loose random
states. Without inquiring into the diffusive or compliant
properties of the loose random state, we shall refer here to
the coexistence curve for this transition as the “melting
curve.” On the basis of formulas7d, we haveqdr=8.8 for the
number of nearest neighbors of a test atom in the dense ran-
dom packing state at the melting curve, andqlr =8.0 for the
loose random packing state, withw=0.494. These results
correspond to the limiting caseg→` for the pair interaction
potentials1d.

Accepting the hypothesis of a polycrystalline structure of
rare gases at high pressure, one can use this simple model:
the atoms are located in identical balls of radiusr, and in
these balls the atomic number density is the same as in a
close-packed crystal. In accordance with formulass4d and
s7d, the average packing densities for the solid and liquid
states of the balls are, respectively,

wsol = 0.55, wliq = 0.46, s18d

that more or less correspond to formulass17d. Note that the
atomic densities and packing densities given by formulas
s18d do not depend on the ball radius. This means that
change of a ball radius leads to a change of pore sizes, but
the relation between volumes occupied by atoms and pores
does not depend on the ball radius. Hence, at this level of
analysis, one cannot yet estimate the extent of short-range
order.

We now go beyond the hard-sphere model and analyze the
character of the phase transitionsassuming that it takes

placed for a system of repelling atoms with the interaction
potentials2d. It is convenient to introduce a parameter with
the dimension of length, based on the parameters of the in-
teraction potentials2d:

d = SA

T
D1/g

, s19d

where T is a temperature we use to define a point on
the melting curve. Introducing the pressurep and the change
of specific volumesthe volume per atomd Dv upon melting,
the volumes per atom for the dense random packing
ssolidd and loose random packingsliquidd statesvdr and
vlr sDv=vdr−vlrd, respectively, and the entropy change per
atomDs, we obtain the scaling law for the melting curve1

p ,
T

d3, Dv , vdr , vlr , d3, Ds, 1. s20d

Table II gives the parameters on the melting curve for a
system of atomic particles with the interaction potentials2d
for various g on the basis of numerical calculations:30 the
equation connecting the the pressurep and temperatureT on
the melting curve is, of course, the usual equation for coex-
istence.

From the data of Table II, it follows that the left side of
Eq. s8d is small compared with each term of the right-hand
side of this equation as we used it. Next, also from Table II,
the packing densities on the coexistence curve in the limit
g→` coincide with those of formulas17d.

Experimental methods of constructing the melting curve
for rare gases at high pressures are based on the diamond-
anvil cell containing a rare gas compressed by a laser beam.
The laser beam heats the rare gas inside the diamond cell
through its metal substratum, and is used to measure the rare
gas pressure and temperature in the course of its heating. The
melting point is found from a change of optical properties of
a compressed condensed rare gas. This method allows us to
analyze the pressures up to 100 GPa two orders of magni-
tude higher than those available to classical methods of gas
compressionsfor example, Refs. 21–24 in the argon cased.

Even at the highest pressures, the kinetic energy of atoms
on the melting curve is small compared to the electronic
excitation energy or the ionization potential of these atoms.
Hence, thermal excitation and ionization of atoms on the

TABLE II. The parameters of a phase transition between the
solid or dense random packing statesindex drd and liquid or loose
random packing statesindex lr d for a system of repelling atomsson
the basis of Ref. 30d.

g 4 6 8 12 `

T/ spVdrd 0.011 0.026 0.036 0.053 0.091

Vdr
Î2/d3 0.254 0.641 1.030 1.185 1.359

Vlr
Î2/d3 0.255 0.649 1.060 1.230 1.499

DV/Vdr 0.005 0.013 0.030 0.038 0.103

pDV/T 0.45 0.50 0.63 0.72 1.16

DS 0.80 0.75 0.84 0.90 1.16
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melting curve under consideration is negligible and does not
influence the phase transitions we consider here. At very
high pressures, compression of rare gases creates a strong
overlap of the wave functions of the valence electrons that
can induce a transition from the van der Waals solid state to
the metallic state. This effect is especially strong for xenon,
for which the transition to the metallic conductivity is ex-
pected at 130–150 GPa.8–10 In reality, this transition pro-
ceeds over a wide pressure range and, evidently, depends on
the temperature. This effect can affect the behavior of the
melting curve. Moreover, one can expect that the observed
decline of the melting curveTspd for xenon at pressures
above 15 GPa and for krypton at pressures above 25 GPa
can be attributed to this effect.

In order to avoid concerns regarding metallization effects
at high pressures on the behavior of the melting curve, we
restrict our discussion to the range of the melting curve of
compressed argon shown in Fig. 1. This figure is based on
experimental data,25–27 from which we have constructed the
empirical curve based on the relation

dp

dT
= 4 +aFS T

Ttr
Dk

− 1G . s21d

In this formula, the derivativedp/dT is measured in MPa/K,
andTtr =83.8 K is the argon triple point. We take this deriva-
tive at Ttr to be 4 MPa/K, as follows from the Clausius-
Clayperon and Simon equations for argon;31 the parameters
of formula s18d are a=2.1, k=0.78. One can see that this
derivative varies by one order of magnitudesfrom 4 up to
37 MPa/Kd when the temperature along the melting curve
varies in the temperaturesor pressured range under consider-
ation, fromTm up to 3400 K.

Let us analyze these experimental results from the stand-
point of the above computer simulation. Assuming atoms
to interact through pair potentials2d and using the scaling
law s19d, we obtain k=3/g, i.e., the exponentg<4 in
this case, while according to direct measurementssTable Id,

the parameterg is a factor of 2 larger. Next, introducing
the parameterd on the basis of formulas18d, Usdd=T, we
obtain at the highest temperature, according to the data of
Table I, d=2.85 Å. Correspondingly, at this temperature
sT<3400 Kd and pressuresp<76 GPad, we obtain the ratio
T/ spd3d=0.026, corresponding, according to Table II, to
g=8; i.e., the exponent of the pair interaction potentials2d
at the corresponding interatomic separation for argonssee
Table Id.

Thus, this analysis shows a partial correspondence be-
tween computer simulations of the phase transition for a sys-
tem of repelling atoms and the experimental data for rare
gases if we assume this transition is determined by pair in-
teractions of atoms. The state equation for strongly com-
pressed argon corresponds to computer simulation with the
real interaction potential between two argon atoms, while the
temperature derivative of the pressure on the melting curve is
sharper than that from the argon-argon pair interaction.

At this point we can make some inferences regarding the
possible forms that phase diagrams of compressed rare gases
may take. Diagrams of this kind of system are shown in
Refs. 14, 15, and 28, but the first two of these references do
not carry pressures high enough that the free energy of the
ordered crystal is higher than that of a disordered form. The
third is derived from a molecular dynamics study that finds
some body-centered cubic structure, which, because of its
lower density, would not be in conflict with the general con-
clusions found here. We begin by accepting that at low pres-
sures, there is a local minimum, not the absolute minimum,
for a disordered solid, and that this minimum is displaced
from that of the ordered solid. In Refs. 14 and 15, this is
shown as a curve of metastable equilibrium between the dis-
ordered solid and a lower-density disordered form, presum-
ably either a liquid or a low-density, very disordered solid,
presumably a phase that could be called a glass.

The conclusions reached here show that at high enough
pressures, the free energy of the disordered form, quite plau-
sibly the form shown as metastable by Rintoul and
Torquato,14,15 falls below that of the crystalline solid. If this
is the case, then the rare gas solids must show a first-order
phase transition from crystalline to a dense, disordered solid
along a coexistence curve. Furthermore, since there is a co-
existence curve of the metastable disordered solid and the
lower-density, more disordered form, there may be a point at
which the metastable disordered form becomes the more
stable solid, the crystalline solid becomes metastable, and
both the disordered and crystalline forms can be in equilib-
rium with the low-density disordered form. In short, this situ-
ation would imply a triple point for the crystalline and two
disordered forms. An alternative scenario is possible but
seems less likely for the rare gas solids as we have discussed
them here. This would be the case if the stable disordered
form were to branch off continuously from the crystalline
form, with a free energy lower than the metastable disor-
dered form. In this case, the transition from crystalline to
disordered solid would of course be second-order. These two
cases are shown schematically in Fig. 2, as phase diagrams in
the space of the variables pressurep and volume fractionf
occupied by the particles. The triple point in the first-order
case does not appear as such in this representation; in a

FIG. 1. The melting curve for condensed argon. Experimental
data: triangles—Ref. 25, open squares—Ref. 26, closed circles—
Ref. 27. A closed square is the triple point, and the full curve is
constructed on the basis of these data, and its derivative is given by
formulas20d. Open circles correspond to evaluations on the basis of
the Table II data with using the parameters of the pair interaction
potential according to Table I.
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pressure-temperature diagram, it appears as such, at the point
at which Fig. 2sad shows its dotted horizontal line. Fig. 2sbd
is the second-order possibility. Until this study is carried fur-
ther, constructing plausiblep-T phase diagrams as counter-
parts to Fig. 2 would be highly conjectural.

STRUCTURE OF RARE GAS SYSTEMS AT HIGH
PRESSURES

As demonstrated by modeling an ensemble of repelling
atoms by hard balls,2,11–13and by computer simulation of the
system of hard, repelling spheres,14,15 the system of strongly
repelling atoms under pressure does not have a crystalline
structure at high pressures and low temperatures. Informa-
tion is also available from x-ray diffraction investigations of
compressed rare gases at low temperatures. If we start from
the crystal state of a rare gas and increase the pressure, a
stacking instability27,29,32occurs at some pressures that leads
to a transition from the face-centered lattice to the hexagonal
lattice. In particular, for xenon at low temperatures, a stack-
ing disorder starts to appear at a pressure of about 4 GPa
sp<100pod. At pressures above 70±5 GPasp<2000pod,
high-resolution x-ray diffraction studies show that the basic
structure of the system of repulsing atoms is hexagonal
close-packed.29,33 However, such measurements give only
one aspect of the atomic structure, namely, that the correla-
tion in positions of nearby atoms corresponds to the hexago-
nal structure. Simultaneously, a pressure increase reduces the
long-range order of the structure, even while nearby atoms
remain correlated. This results in the appearance of charac-
teristic scattering peaks for fcc and hcp structures in the
high-resolution x-ray diffraction study, but nevertheless the
correlation length is comparable with the distance between
nearest atoms.

On the basis of such investigations, one can suggest that
the system of repelling atoms at high pressures consists of
individual domains/solid clusters of fcc and hexagonal struc-
ture, or of only one of these structures. There could even be
domains with arrangements of layers different from the
ABABAB and ABCABC regular patterns of the fcc and hcp
lattices. These clusters are presumably oriented randomly,
with nearest clusters connected by fixed “bonds.” Voids or
vacancies on the boundaries between neighboring clusters
lower the average number of nearest neighborsq in compari-
son with that for the close-packed crystal, for whichq=12.
At high pressures, the number of nearest neighbors varies
from q=10.4 toq=8.8 as we move from low temperatures to
the melting curve. These data are not consistent with recent
molecular dynamics simulations of xenon at high
pressures;28 for those calculations, a bcc structure was as-
sumed. Since the number of nearest neighbors is precisely
q=8 for a body-centered crystal, the assumption of this
structure is in disagreement with our results and seems prob-
lematic. However, the presence of some bcc regions together
with zones with other packing could be compatible with our
conclusions. However the observations may be explained al-
ternatively in terms of a locally close-packed structure that is
globally disordered.

The experiments certainly imply local hcp packing for
rare gas solids at high pressures.27,29,32,33Considering a solid

FIG. 2. Schematic phase diagrams for an ensemble of strongly
repelling atoms in variables the pressurep and the volume fraction
f occupied by the particles, as it was used in Refs. 14 and 15:sad a
first-order transition;sbd a second-order transition. These diagrams
are an illustration of data which are given in the text. The dotted
curves correspond to metastable states, and the phase transition of
first order leads to an increase of the packing parameterf increases
from 0.494 to 0.545 for the hard-sphere approach.14,15The thermo-
dynamically stable state at high pressures relates to the polycrystal
sdomaind structure of repelling atoms, and hence the packing pa-
rameter has the valuef=0.644 in the limit of high pressures, but
not the valuef=0.7405 of the crystal that is given in the diagram of
Refs. 14 and 15 as the limiting value of the packing parameter.
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rare gas at high pressure to be a polycrystalline structure, we
can therefore safely assume that it consists of clusters with
hexagonal close-packed structure. It would thus certainly be
of interest to find the typical size of these cluster/domains.
The above analysis implies that if we construct this bulk
system from clusters with magic numberssi.e., with com-
pleted shellsd, the average number of nearest neighbors for
atoms is approximately 8.8 when individual clusters of iden-
tical size can occupy a volume inside their corresponding
balls. This means that such clusters may rotate freely inside
the ball volume. However, because this is valid for any ball
radius, it is impossible to estimate the number of cluster
atoms on the basis of the packing parameter. Only with a
more elaborate model could one make such an estimate.

Thus, on the basis of recent studies, one can explain the
redistribution of atoms in solid rare gases resulting from
compression, in the following way. At low pressuressp
!pod, the crystal has fcc structuresq=12d; an increase of
external pressure leads to a stacking instability that starts
from p,po. As a result of this instability, elements of hex-
agonal structure arise inside the crystal, at first for layers, and
later for domains or small clusters. The random distribution
of cluster orientations produces a decrease of the packing
density w and of the mean coordination numberq of this
system due to formation of voids on boundaries of regularly
structured clusters. Along with this, neighboring clusters are
fixed by pairwise interactions, so that at high pressures rare
gases consist of small solid domains/clusters, so that a bulk
solid containing a large number of such domains has an
amorphous structure but short-range order. Since interaction
of adjacent domains is determined in significant part by in-
teraction of non-nearest atoms, their structure can be sensi-
tive to the details of the interaction potential between atoms.
Consequently the parameters of strongly compressed rare
gases at low temperatures may be very different for different
rare gases.

We see that the equilibrium solid form of a strongly com-
pressed rare gas has some disorder, differing from the regular
crystalline lattice form that is stable at low pressures. On the
basis of a sum of investigations, we infer that solid rare gases
at high pressures consist of small domains/clusters. The liq-
uid state of such a system at high pressure is similar to that at
low pressure, with voids spread throughout a random distri-
bution of atoms.34 Of course the parameters of voids at low
and high pressures are different. The solid-liquid phase tran-
sition has the same nature for low and high pressures. It
consists in the loss of long-range order for non-nearest at-
oms. sWe use the term “liquid” for the low-density disor-
dered form, even if the atomic mobility in such a phase is
low.d

There is one possibility to raise here, although we have
not investigated it. It is well established that clusters of rare
gas atoms in the gas phase tend to have icosahedral struc-
tures, rather than close-packed lattice structures. The precise
size region in which the crystalline form becomes the more

stable is not known, but it is probably in the range of several
thousand atoms. It is conceivable that if the domains of local
order were of this size or smaller, then the structure of the
locally ordered regions might be icosahedral. One might ask
whether it would be possible to prepare a system with such
clusters, e.g., by deposition onto a cold surface, and then
subject the sample to high pressure, for studies comparable
to those of Refs. 27, 29, 32, and 33.

CONCLUSIONS

Guided by investigations of condensed rare gases at high
pressures and using available information about these sys-
tems and models of dense systems of atoms with repulsive
nearest-neighbor interactions, we conclude that the equilib-
rium solid state of such a system at high pressures does not
have a crystalline structure. From the sum of the investiga-
tions, we infer that the solid system of repelling atoms at
high pressures consists of small solid domains, clusters of
close-packed structuresfcc or hexagonal or their mixtured,
and each cluster is fixed in space. Hence, the solid system of
strongly repelling atoms is characterized by order on the
scale of typical sizes of individual clusters, but is amorphous
on large scales. The corresponding parameters probably vary
continuously as the pressure or temperature varies. Therefore
interaction of non-nearest neighbors can be important for the
solid state structure of a system of repelling atoms. More-
over, the sizes of the ordered domains may well be less than
the correlation length required for scaling laws to be appli-
cable. This means that these systems can violate the scaling
law for parameters of a system of repelling atoms, which is
valid at low pressures for rare gases.16,17,31In addition, one
can see that the liquid state of a system of repelling atoms
differs from that for attracting atoms and is characterized by
a different numberq of nearest neighbors.

One can conclude from the investigations of various prop-
erties of the system of repelling atoms that its properties are
not so simple. Moreover, we have found some apparent in-
consistencies or paradoxes regarding properties of this sys-
tem that require additional analysis. Nevertheless, one can
understand general properties of this system concerning its
structure and phase transition. In particular, it follows that
the properties of the aggregate states of this system differ
from those of condensed rare gases at low pressures. This is
one more example, in addition to the phenomenon of coex-
istence of phases in a finite system of simple atoms,35–37 in
which an assembly of small systems shows us a characteris-
tic of phase transitions more complex than that customarily
derived from classical thermodynamics of bulk systems.
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