PHYSICAL REVIEW B 71, 144105(2005

Properties of a bound ensemble of repelling atoms
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Various data are combined to analyze the behavior of condensed rare gases at high pressures or systems of
repelling atoms interacting via a pair interaction. An analysis based on numbers of nearest neighbors of a test
atom shows that the crystalline state is not the most stable thermodynamically for a system of repelling atoms
at high pressures. Rather, the equilibrium solid state of this system at nonzero temperature is an irregular
mixture of small domains/clusters of fairly rigid, close-packed structures. This means that an ensemble of
repelling atoms has a polycrystalline structure at high pressures and low temperatures. Parameters of this
system at low temperatures and its melting curve are considered from different standpoints.
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INTRODUCTION interatomic repulsion is the dominant internal force deter-

. . ._mining the system’s phase equilibrium. Then, only the inter-
We consider a bulk ensemble of atoms with a repulsive, .iong hetween nearest neighbors are of importance, and the

pair interaction. Rare gases at high pressures are an exampl&ir interaction potential can be approximated by

of such a system. Therefore, on one hand, the behavior

such atomic systems may be understood from the analysis of R,\? A

rare gases at high pressure, and on the other hand, the study U(R) = U(Ro)<E) =g Y1 (2)

of ensembles of strongly repelling atoms gives additional

information about highly compressed rare gases and othen this work, specific values of the paramet&sthe depth

materials. We now link the information about rare gases abf the two-body potential well, anR,, the equilibrium dis-

high pressures and about properties of ensembles of repellintgnce for two bound atoms, are taken from literature

atomic particles in order to construct a general picture of th&ourced® and are collected in Table 1.

behavior of such systems. In considering a system of interacting rare gas atoms, we
Our goal here is to develop the properties of ensembles aissume the interatomic interactions can be treated strictly as

repelling atomic particles, including rare gases at high prespair interactions, and that three-body and higher interactions

sures, through the use of relatively simple models of suctare not significant. The predominant cause of repulsion be-

systems. We begin by introducing the numioeof nearest tween two atoms is the overlapping of wave functions of

neighbors of a test internal atom. For crystals with closetheir valence electrons and is created mostly in a coordinate

packed structures, i.e., fcc or hep structures, this number isegion close to the axis that joins the atoms. Hence, interac-

of course, 12. Comparisons of structures on the basis of thgon of a test atom with each of its neighboring atoms is

number of nearest neighbors allows us to draw conclusionsssentially independent of other atom-atom interactions.

about various properties of a system of strongly repellinghereby neglect regions in which wave functions of three or

atoms. First, we find that, at thermodynamic equilibrium atmore atoms overlap.

low but nonzero temperatures, atoms of this system do not Next, the potential energy of interaction between two at-

form a crystal lattice of close-packed structure. Second, wems is small compared to any configurational or electronic

find some insights into a general statement by Stishioat,  excitation energy of the system. This condition is met at low

under some conditions, the melting curve on the pressurege moderate pressures. At extremely high pressures that make

temperature phase diagram of this system does not terminaiigteratomic distances sufficiently small, the valence elec-

at a critical point, but continues up to high temperatures and

pressures. Our conclusions suggest that there may be caseStagLE |. parameters of the pair interaction potential for rare

with something resembling a critical point, and other casegas atoms and the reduced parameters of systems consisting of in-

with no such point. Nevertheless, at high pressures, the stat@gacting atoms of rare gases, for the interaction potentjaR,
separated by the traditional solid-liquid coexistence curve argref. 7) if U(R,)=0.3 eV.

not the crystal and liquid states, as they are at low pressures

Rather, both states of this phase transition correspond to dis- Ne Ar Kr Xe
ordered distributions of atomic particles and are states of
dense packing structure and loose packing struéture. Re (A) 3.09 3.76 4.01 4.36
D (K) 42 143 200 278
PAIR INTERACTION OF RARE GAS ATOMS m (a.m.u) 20.18 39.95 83.80 1313
At pressures satisfying the criterion Po=D/R? (MPa) 20.2 37.1 43.0 47.1
D y 7.6 8.1 7.7 5.9
P> po= 3, (1) Ry [A] 2.07 2.85 2.99 3.18
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trons’ wave functions may change enough to induce a tran- @

sition from an insulating state to a metallic state. Here, we q=12—=16.2, (7)
consider pressures below that of metallization. In particular, er

xenon metallization is expected at pressures of abouthere ¢ and ¢ are, respectively, the packing densities of
150 GP&-1%for other rare gases this transition proceeds athe crystal state and the state under consideration. We take
higher pressures. The pressure range we consider here litgat of the crystal state to bg,,=mv2/6=0.7405.

below this limit. From this relation and from formul@) for dense random
packing, we have=10.4+0.1 for that state. This is close to
A SYSTEM OF HARD SPHERES the coordination number of liquid rare gases at low pres-

. . - sures, in which atoms are bonded by the attractive forces
According to the data in Table ly>1 for the pair inter- o een them, witly=10.1+0.11617 Therefore, their struc-
action potential2) of rare gas atoms. This allows us 0 de- o 5,ggests that compressed rare gases are, in some sense,
scribe an ensemble of repelling atoms with an almost—hardr—.nore like liquid rare gases at low pressures than like low-
sphere model, and hence to draw on a hard-sphere model essure solids. In any case, from this it follows that com-

analyze the behavior of.an ensemble of repglllng atoms &l ossed rare gases cannot have a crystalline structure at low
low temperatures and high pressures. For this analysis, mperatures

. . . 13 H _ — . .
draw on simple experiments with hard bafs;*and simu Note that this comparison refers to a phase transition

i i 15 i i i s : .
lations with hard spheré4:'®The discussion will then relate within the conventional part of the melting curgp<p,),

the results of this simple model to the behavior of the COM< 0 the crystalline statég=12) to the liquid state.

pressed, solid rare gases, as found in experiments and simu-

lations.
It is convenient to characterize the distribution of SphereerE VIRIAL THEOREM AND THE EQUATION OF STATE
in a space by the packing densitgiven by FOR AN ENSEMBLE OF REPELLING ATOMS
o= 4—Wr3N, 3) Clearly, the previous results imply that the solid states (_)f
3 rare gases under pressure are not regular, crystalline solids,

or even disordered but close-packed arrays. The reported
structures, as discussed below, must have some irregularities
in the form of void spaces that lower their densities from that
f close-packed systems. Here we show that the crystalline
%’ggregate state of the system of repelling atoms is not the
most stable thermodynamically, relative to a disordered ag-
gregation of clusters with some void space. We will base the
2 results on the virial theorem for a system of repelling atoms
o =——=0.74. (4) with pair interactions.
6 We represent the equation of state for atoms interacting
The packing densityy of an ensemble of hard balls was through the potential2) by invoking the virial theorem,
initially found from experiments based on filling a container yielding the form®19
with hard balls. The observed value ¢g=0.6412 A more o
precise value for the packing density of this system was ob- T=pV- Zu, (8)
tained from computer simulations and“s 3

wherer is the sphere’s radiugy is the number density of
spherical particles, and the packing densitys the fraction

of the space occupied by the balls. The maximum value o
this parameter for hard spheres corresponds to a clos
packed crystal lattice. For such crystals of fcc or hcp struc
ture, the packing density is

@q=0.644 +0.005. (5)  whereV is the volume per atom, arid is the average inter-

. - - ) action potential per atom. We have, in the mean-field ap-
These results coincide within the limits of their accuracy proximation

and lead to the conclusion that an ensemble of hard spheres
does not form a crystal lattice. We analyze this result within _ a®12 — q

the framework of a mean-field approach for a system of at- V= 2q’ U= EU(a)' 9

oms with a steep repulsive interatomic potential. It is conve-

nient to characterize the state of this system by the meawherea is the distance between nearest neighbors, and the
coordination numbegq, which is the average number of near- pair interaction potentidl(a) is given by formula2). In the

est neighbors of an internal test atom. Clearly, in the limitlimiting case(1), we havepV>T, i.e., Eq.(9) allows one to
vy—oo, i.e., for the system of hard balls, this value is con-estimate the pressure from just its second term, as

nected with the packing density. Indeed, using the

2
formulat® =2\2 (ﬂ) u@ 10
p=2zvzy 12) &8 ° (10
P - . .
q= 125, (6) We demonstrate below the validity of this formula in the

case of a close-packed crystal lattice. Let us draw a plane

where p, is the crystal density angd is the density of the parallel to a symmetry plane of this lattice, so that the pres-
state of interest. Equatio@) gives us sure is the force per unit area between atoms located on
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different sides of the crossing plane. The pressure is thus the high-density crystalin the mean-field approach, the av-

mf, mfcosé erage interaction potential per atom %, =6U(a,) and
S s (11 y,=qU(a,)/2. The conditiorp(a,)=p(a,) gives
wherem is the number of nearest neighbors of a test surface AE _ su@)(1+2) 1- 12\ 07903 (15b)
atom which are above and below the separation plang, n Ber '

the surface area per atom, afyds the force projection onto ] ) ] N

the perpendicular to the separation plane. Hence this forc@nly th_e final factor is negative, so that a transition from the
acts between a test atom and its nearest neighbor outside tR/Stalline state to any random state of the system of repuls-
separation planef; is this force, and is the angle between iNg atoms with a lower density or an increase in the mean
the line connecting interacting atoms and the perpendiculafistance of nearest neighbors corresponds to energetic stabi-

to the Separation p|ane_ From this' we have for {H]GO} |i2ati0n, i..e-., toAE<O0. Clearly,.aS |0ng as> O, AS>0 for
separation plane, witm=4, s=a2, cos#=1/.2, any transition from the crystallin@rdered state of atoms to

any disorderedrandon) state.(We introduce the tempera-

ture constraint to avoid any issues of the third law of ther-
modynamics. Hence, the crystalline state of a system of at-
oms with a steeply varying repulsive interaction potential
In the case of th¢111} direction of the separation plane, we (>3) is not stable thermodynamically with respect to a

dU(a)
da

_ 4@ _2\2

2

22
282 @

a3

yU(a). (12

havem=3, s=13a2/2, cos#=12/3, so that state with a random distribution of atoms. Hence, the crys-
5 > talline state of such a system is not realized under conditions

2\2 2\2 . o
= ?’_La)z 2_ Lz du@ = %yu(a). (13)  of thermodynamical equilibrium, so long as the random state
(\V3/2a* V3 a° | da a has any local stability under the same conditions. In the

As we see, formulagl?) and (13) are transformed into for- present case, that stability is due to the externally applied

mula (10) in the caseg=12. pressure.

These formulas allow us to compare the crystalline state Generalizing, we use the analogy of formdkb) to find

of the repelling atoms with a random distribution of the same€ change of the internal energy of the systkEnbetween

atoms characterized by a mean coordination nungpate  States with coordination numbegg anddy:

analyze the possibility of a phase transition between these AE(Gy — @) O y gy | (D)
states when the total number of repelling atoms, the pressure, ——— = —U(al)(l + —) 1- (—) .
and the temperature are conserved. The condition for equi- 2 3 %

librium of the two phase® is the equality of the Helmholtz (16)
free energies of two phaseAF=AE-TAS=0, andAE and L )
AS are the differences of the internal energies and entropies 'S 9IVESAE(Gy— 0p) <0 if 0, >, a natural consequence
of the two phases, respectivelgtrictly, at constant pressure, of relieving the repulsive force. For t_hls tra_nsmon, the en-
one should use the Gibbs free energy different&=AH tr_o_py qhangeAS per atom can have either sign. If the_tran-
—TAS, but the difference can be neglected hehe.order to sition is _ag:compamed by a volume decreagt_a, then it must
ascertain the stability of the crystalline state of the systenfiSO exhibit an entropy decrease if the transition takes place
repelling atoms, we take into account that the transition fronP&tWween two disordered states with random distributions of
the crystal to a disordered state corresponds to an increase J°MS. Hence, in principle, a phase transition is possible be-

the entropy. Because=const, we have tween random states. Note that in the linyit> o, formula
o (16) givesAE/n=pAV, whereAV is the volume change per
AE=n(AU + pAv), (14)  atom. In this limit, we havepAV=TAS, where AS is the

_ entropy change per atom, and if this phase transition corre-
whereU is the average interaction energy per atom angl  sponds to a decrease of the coordination nunapéhis im-
the volume per atom. From formul®), it follows for the  plies an increase of the specific voluieand a decrease of
transition from the crystalline state witj=12 to another the specific entrops.

state characterized by a coordination numip¢hnat Thus, from the virial theorem, it follows that the crystal-
AE 9 P — y q line system of repelling atoms is unstable with respect to a
—= (1 + —)(Ucr -U,) = (1 + —) [GU(acr) - —U(ar)] decrease of the mean coordination number. A nonregular dis-
n 3 3 2 tribution of atoms is characterized by a lower interatomic
y q Ua,) repulsive energy, and because the entropy of a nonregular
=6U(ay)| 1+ 3 1- 1—2@ ) (153 atomic distribution is higher than that of a crystal lattice, we
I

conclude that the ordered state of this system is unfavorable
whereU(a) is the pair interaction potenti@2) at the distance thermodynamically. This analysis does not allow us to find

a between interacting atoms, ang anda, are, respectively, the optimal mean coordination number of an atomic distri-

the (mean distances between nearest neighbors in the crysaution, because we cannot determine the entropies of distri-
talline state and in the state with randomly distributed atomsbutions with a given coordination number. Nonetheless, it

(Here we do not attempt to quantify the degree of randomdemonstrates the thermodynamic instability of the crystalline

ness or to optimize, but merely distinguish that state from state of an ensemble of repelling atoms.
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While our mean-field model shows the thermodynamic TABLE II. The parameters of a phase transition between the
instability of the uniform lattice distribution for repelling at- solid or dense random packing stébedex dr) and liquid or loose
oms, this does not prohibit stability of a polycrystalline random packing staténdexIr) for a system of repelling atonten
structure, consisting of small-domain clusters, so long as théhe basis of Ref. 30
density of such a system is lower than that of the uniform
crystal. In this case the system is nonuniform, so that the 7 4 6 8 12 0

5143
state of the system of strongly repelling atoms is unstable Vd'\;_Z/ds 0.254 0641 1.030 1.185 1.359
thermodynamically, but this result does not determine the Virv2/d 0255  0.649 1060 1230  1.499

optimal atomic distribution in this case. AV/Vy 0.005  0.013 0.030  0.038  0.103
pPAV/T 0.45 0.50 0.63 0.72 1.16
PHASE TRANSITION IN AN ENSEMBLE OF REPELLING AS 0.80 0.75 0.84 0.90 1.16
ATOMS

The system of repelling atoms admits a phase transitiony|ace for a system of repelling atoms with the interaction
This is demonstrated by both computer simulations and expotential(2). It is convenient to introduce a parameter with

periments. This is all consistent with Stishov's staterhentihe dimension of length, based on the parameters of the in-
that the melting curve has no critical point as experimentajeraction potentia(2):

temperatures are increased. Here we analyze the results of

computer simulations and experimental regied for com- d= A Uy

pressed rare gases. A1)
According to computer simulations of a hard-sphere ] )

systemt415 the melting corresponds to a transition betweenhere T is a temperature we use to define a point on

(19

states of the following values of the packing density the melting curve. Introducing the pressyrand the change
of specific volume(the volume per atoinAv upon melting,
¢gr=0.545, ¢, =0.494. (17)  the volumes per atom for the dense random packing

Because the state of higher density has a density too low tESOI'd) and loose fa”do'.“ packingiquid) statesvg; and

be the crystalline state, this is not a traditional solid-liquid®" (Av=vgr—vy), _respectwe]y, and the entropy change per
phase transition. Following Ref. 2, we call the states assocBlOMAS, we obtain the scaling law for the melting cutve
ated with this transition the dense random and loose random
states. Without inquiring into the diffusive or compliant
properties of the loose random state, we shall refer here to

the coexistence curve for this transition as the “meltingTgple | gives the parameters on the melting curve for a
curve.” On the basis of formule), we havegy,=8.8 for the  system of atomic particles with the interaction potent®l
number of nearest neighbors of a test atom in the dense rafyr various y on the basis of numerical calculatio?fsthe
dom packing state at the melting curve, ajd=8.0 for the  equation connecting the the pressprand temperatur& on
loose random packing state, with=0.494. These results the melting curve is, of course, the usual equation for coex-
correspond to the limiting casg— o« for the pair interaction jstence.
potential(1). _ . From the data of Table II, it follows that the left side of
Accepting the hypothesis of a polycrystalline structure ofgq. (8) is small compared with each term of the right-hand
rare gases at high pressure, one can use this simple modgjge of this equation as we used it. Next, also from Table I,

the atoms are located in identical balls of radiysand in  the packing densities on the coexistence curve in the limit
these balls the atomic number density is the same as in 8« coincide with those of formulél?).

e Av ~vg~vy ~d, As~1. (20

close-packed crystal. In accordance with formuldsand  * Experimental methods of constructing the melting curve

(7), the average packing densities for the solid and liquickor rare gases at high pressures are based on the diamond-

states of the balls are, respectively, anvil cell containing a rare gas compressed by a laser beam.
o= 0.55, g =0.46, (18) The laser beam heats the rare gas inside the diamond cell

through its metal substratum, and is used to measure the rare
that more or less correspond to formuld3). Note that the gas pressure and temperature in the course of its heating. The
atomic densities and packing densities given by formulasnelting point is found from a change of optical properties of
(18) do not depend on the ball radius. This means that compressed condensed rare gas. This method allows us to
change of a ball radius leads to a change of pore sizes, bahalyze the pressures up to 100 GPa two orders of magni-
the relation between volumes occupied by atoms and poraside higher than those available to classical methods of gas
does not depend on the ball radius. Hence, at this level ofompressiorifor example, Refs. 21-24 in the argon case
analysis, one cannot yet estimate the extent of short-range Even at the highest pressures, the kinetic energy of atoms
order. on the melting curve is small compared to the electronic
We now go beyond the hard-sphere model and analyze thexcitation energy or the ionization potential of these atoms.
character of the phase transitidassuming that it takes Hence, thermal excitation and ionization of atoms on the
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}‘:‘:“’ck;’n';’('::";')‘ the parametery is a factor of 2 larger. Next, introducing
3} dense the parameted on the basis of formuld18), U(d)=T, we
63 "(;‘z‘i‘(‘,‘)“ o obtain at the highest temperature, according to the data of
fj packing (¢=8) Table |, d=2.85 A. Correspondingly, at this temperature
3] (T=3400 K) and pressurép= 76 GPa, we obtain the ratio
:,:3 T/(pd?)=0.026, corresponding, according to Table I, to
& 0] v=8; i.e., the exponent of the pair interaction potent@l
S -1 at the corresponding interatomic separation for ar¢see
:§: liquid (¢=10) Table |)
437 . Thus, this analysis shows a partial correspondence be-
‘_:3 ﬂ"P’er”‘ tween computer simulations of the phase transition for a sys-
73 erystal (12> ) tem of_repelling atoms and th_e_ ex_perimenta_ll data for rare
'30 : o T gases if we assume this transition is determined by pair in-

teractions of atoms. The state equation for strongly com-
FIG. 1. The melting curve for condensed argon. ExperimentaPreéssed argon corresponds to computer simulation with the
data: triangles—Ref. 25, open squares—Ref. 26, closed circles-L€al interaction potential between two argon atoms, while the
Ref. 27. A closed square is the triple point, and the full curve istemperature derivative of the pressure on the melting curve is
constructed on the basis of these data, and its derivative is given Bjharper than that from the argon-argon pair interaction.
formula(20). Open circles correspond to evaluations on the basis of At this point we can make some inferences regarding the

the Table Il data with using the parameters of the pair interactiorP0SSible forms that phase diagrams of compressed rare gases
potential according to Table I. may take. Diagrams of this kind of system are shown in

Refs. 14, 15, and 28, but the first two of these references do
ot carry pressures high enough that the free energy of the
rdered crystal is higher than that of a disordered form. The
rp'rd is derived from a molecular dynamics study that finds
e body-centered cubic structure, which, because of its
ower density, would not be in conflict with the general con-
Clusions found here. We begin by accepting that at low pres-
Sures, there is a local minimum, not the absolute minimum,
for a disordered solid, and that this minimum is displaced
gﬁm that of the ordered solid. In Refs. 14 and 15, this is
Shown as a curve of metastable equilibrium between the dis-

melting curve. Moreover, one can expect that the observeardere.d solid gnq a Iower—densny. dlsordergd form, presum-
ably either a liquid or a low-density, very disordered solid,

decline of the melting curvd(p) for xenon at pressures
above 15 GPa and for krypton at pressures above 25 GFparesumany a p_hase that could be called a glass._
The conclusions reached here show that at high enough

Ca?nbgrggr“t%u;e\/%itc(i) églrlscgfr?sc tr.e arding metallization effectsp ressures, the free energy of the disordered form, quite plau-
9 9 sibly the form shown as metastable by Rintoul and

at high pressures on the behavior of the melting curve, W%’orquato}“vlf’falls below that of the crystalline solid. If this
restrict our discussion to the range of the melting curve of

compressed argon shown in Fig. 1. This figure is based oS the case, then the rare gas solids must show a first-order

experimental dat&®-2"from which we have constructed the phase transition from crystalline to a dense, disordered solid
per ' . along a coexistence curve. Furthermore, since there is a co-
empirical curve based on the relation

existence curve of the metastable disordered solid and the
dp T \K lower-density, more disordered form, there may be a point at
5_:4+a (T_) -1f. (21)  which the metastable disordered form becomes the more
” stable solid, the crystalline solid becomes metastable, and
In this formula, the derivativelp/dT is measured in MPa/K, both the disordered and crystalline forms can be in equilib-
andT, =83.8 K is the argon triple point. We take this deriva- rium with the low-density disordered form. In short, this situ-
tive at T, to be 4 MPa/K, as follows from the Clausius- ation would imply a triple point for the crystalline and two
Clayperon and Simon equations for argdrihe parameters disordered forms. An alternative scenario is possible but
of formula (18) are a=2.1, k=0.78. One can see that this seems less likely for the rare gas solids as we have discussed
derivative varies by one order of magnitufeom 4 up to  them here. This would be the case if the stable disordered
37 MPa/K) when the temperature along the melting curveform were to branch off continuously from the crystalline
varies in the temperatui@r pressurgrange under consider- form, with a free energy lower than the metastable disor-
ation, fromT,, up to 3400 K. dered form. In this case, the transition from crystalline to
Let us analyze these experimental results from the standfisordered solid would of course be second-order. These two
point of the above computer simulation. Assuming atomsases are shown schematically in Fig. 2, as phase diagrams in
to interact through pair potenti#R) and using the scaling the space of the variables pressprand volume fractionp
law (19), we obtain k=3/y, i.e., the exponenty=4 in  occupied by the particles. The triple point in the first-order
this case, while according to direct measureméniable ), case does not appear as such in this representation; in a

. . . . .. n
melting curve under consideration is negligible and does not
influence the phase transitions we consider here. At ver
high pressures, compression of rare gases creates a stro
overlap of the wave functions of the valence electrons th
can induce a transition from the van der Waals solid state t
the metallic state. This effect is especially strong for xenon
for which the transition to the metallic conductivity is ex-
pected at 130—150 GPal° In reality, this transition pro-
ceeds over a wide pressure range and, evidently, depends
the temperature. This effect can affect the behavior of th
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pressure-temperature diagram, it appears as such, at the point
at which Fig. Za) shows its dotted horizontal line. Fig(l2

is the second-order possibility. Until this study is carried fur-
ther, constructing plausiblp-T phase diagrams as counter-
parts to Fig. 2 would be highly conjectural.

STRUCTURE OF RARE GAS SYSTEMS AT HIGH
PRESSURES

As demonstrated by modeling an ensemble of repelling
atoms by hard ball3*-*2and by computer simulation of the
system of hard, repelling spher&s>the system of strongly
repelling atoms under pressure does not have a crystalline
structure at high pressures and low temperatures. Informa-
tion is also available from x-ray diffraction investigations of
compressed rare gases at low temperatures. If we start from
the crystal state of a rare gas and increase the pressure, a
stacking instability’2°-320ccurs at some pressures that leads
to a transition from the face-centered lattice to the hexagonal
lattice. In particular, for xenon at low temperatures, a stack-
ing disorder starts to appear at a pressure of about 4 GPa
(p=100p,). At pressures above 70+5 GRa=2000Q,),
high-resolution x-ray diffraction studies show that the basic
structure of the system of repulsing atoms is hexagonal
close-packed?3® However, such measurements give only
one aspect of the atomic structure, namely, that the correla-
tion in positions of nearby atoms corresponds to the hexago-
nal structure. Simultaneously, a pressure increase reduces the
long-range order of the structure, even while nearby atoms
remain correlated. This results in the appearance of charac-
teristic scattering peaks for fcc and hcp structures in the
high-resolution x-ray diffraction study, but nevertheless the
correlation length is comparable with the distance between
nearest atoms.

On the basis of such investigations, one can suggest that
the system of repelling atoms at high pressures consists of
individual domains/solid clusters of fcc and hexagonal struc-
ture, or of only one of these structures. There could even be
domains with arrangements of layers different from the
ABABAB and ABCABC regular patterns of the fcc and hcp
lattices. These clusters are presumably oriented randomly,
with nearest clusters connected by fixed “bonds.” Voids or
vacancies on the boundaries between neighboring clusters
lower the average number of nearest neighloarscompari-
son with that for the close-packed crystal, for whigh12.

At high pressures, the number of nearest neighbors varies
from q=10.4 toq=8.8 as we move from low temperatures to
the melting curve. These data are not consistent with recent
folecular dynamics simulations of xenon at high

repelling atoms in variables the pressprand the volume fraction s )
& occupied by the particles, as it was used in Refs. 14 andal5: pressureg® for those calculations, a bcc structure was as-

first-order transition{b) a second-order transition. These diagramsSUmed. Since the number of nearest neighbors is precisely
are an illustration of data which are given in the text. The dottedd=8 for a body-centered crystal, the assumption of this
curves correspond to metastable states, and the phase transitiongfucture is in disagreement with our results and seems prob-
first order leads to an increase of the packing paramgtacreases lematic. However, the presence of some bcc regions together
from 0.494 to 0.545 for the hard-sphere approcl The thermo- ~ With zones with other packing could be compatible with our
dynamically stable state at high pressures relates to the polycryst@onclusions. However the observations may be explained al-
(domain structure of repelling atoms, and hence the packing paternatively in terms of a locally close-packed structure that is
rameter has the valug=0.644 in the limit of high pressures, but globally disordered.

not the valuep=0.7405 of the crystal that is given in the diagram of ~ The experiments certainly imply local hcp packing for
Refs. 14 and 15 as the limiting value of the packing parameter. rare gas solids at high pressufé$%32:33Considering a solid
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rare gas at high pressure to be a polycrystalline structure, watable is not known, but it is probably in the range of several
can therefore safely assume that it consists of clusters witthousand atoms. It is conceivable that if the domains of local
hexagonal close-packed structure. It would thus certainly berder were of this size or smaller, then the structure of the
of interest to find the typical size of these cluster/domainsjocally ordered regions might be icosahedral. One might ask
The above analysis implies that if we construct this bulkwhether it would be possible to prepare a system with such
system from clusters with magic numbeiie., with com-  c|ysters, e.g., by deposition onto a cold surface, and then

pleted shells the average number of nearest neighbors folspiect the sample to high pressure, for studies comparable
atoms is approximately 8.8 when individual clusters of iden+q those of Refs. 27. 29. 32. and 33.

tical size can occupy a volume inside their corresponding
balls. This means that such clusters may rotate freely inside
the ball volume. However, because this is valid for any ball
radius, it is impossible to estimate the number of cluster Guided by investigations of condensed rare gases at high
atoms on the basis of the packing parameter. Only with gressures and using available information about these sys-
more elaborate model could one make such an estimate. tems and models of dense systems of atoms with repulsive
Thus, on the basis of recent studies, one can explain thgearest-neighbor interactions, we conclude that the equilib-
redistribution of atoms in solid rare gases resulting fromg, solid state of such a system at high pressures does not
compression, in the following way. At low pressurés e 5 crystalline structure. From the sum of the investiga-
<Po), the crystal has fcc structur@=12); an increase of tjons we infer that the solid system of repelling atoms at
external pressure leads to a stacking instability that startgigh pressures consists of small solid domains, clusters of
from p~p,. As a result of this instability, elements of hex- cjose-packed structuréicc or hexagonal or their mixtuye
agonal structure arise inside the crystal, at first for layers, angdnq each cluster is fixed in space. Hence, the solid system of
later for domains or small clusters. The random distributionstrong|y repelling atoms is characterized by order on the
of cluster orientations produces a decrease of the packing:ale of typical sizes of individual clusters, but is amorphous
density ¢ and of the mean coordination numbgrof this o |arge scales. The corresponding parameters probably vary
system due to formation of voids on boundaries of regularly;ontinuously as the pressure or temperature varies. Therefore
structured clusters. Along with this, neighboring clusters argnteraction of non-nearest neighbors can be important for the
fixed by pairwise interactions, so that at high pressures rarggjiq state structure of a system of repelling atoms. More-
gases consist of small solid domains/clusters, so that a b“'dfver, the sizes of the ordered domains may well be less than
solid containing a large number of such domains has age correlation length required for scaling laws to be appli-
amorphous structure but short-range order. Since interactiofyple. This means that these systems can violate the scaling
of adjacent domains is determined in significant part by inqg for parameters of a system of repelling atoms, which is
teraction of non-nearest atoms, their structure can be sensjzjid at low pressures for rare gagé47:31In addition, one
tive to the details of the interaction potential between atomseg, see that the liquid state of a system of repelling atoms
Consequently the parameters of strongly compressed raters from that for attracting atoms and is characterized by
gases at low temperatures may be very different for differen} gitferent number of nearest neighbors.
rare gases. o . One can conclude from the investigations of various prop-
We see that the equilibrium solid form of a strongly com- gties of the system of repelling atoms that its properties are
pressed rare gas has some disorder, differing from the regulagt 5o simple. Moreover, we have found some apparent in-
crystalline lattice form that is stable at low pressures. On thegnsistencies or paradoxes regarding properties of this sys-
basis of a sum of investigations, we infer that solid rare gaseg,y that require additional analysis. Nevertheless, one can
at high pressures consist of small domains/clusters. The liqyngerstand general properties of this system concerning its
uid state of such a system at high pressure is similar to that &krycture and phase transition. In particular, it follows that
Iovv_ pressure, with voids spread throughout a ran'dom distrizne properties of the aggregate states of this system differ
bution of atoms?* Of course the parameters of voids at Iow from those of condensed rare gases at low pressures. This is
and high pressures are different. The solid-liquid phase transne more example, in addition to the phenomenon of coex-
sition_ hag the same nature for low and high pressures. \tience of phases in a finite system of simple at8m¥,in
consists in the loss of long-range order for non-nearest ajyhich an assembly of small systems shows us a characteris-
oms. (We use the term *liquid” for the low-density disor- {ic of phase transitions more complex than that customarily

?jer?d form, even if the atomic mobility in such a phase isgerived from classical thermodynamics of bulk systems.
OW.

There is one possibility to raise here, although we have ACKNOWLEDGMENTS
not investigated it. It is well established that clusters of rare
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tures, rather than close-packed lattice structures. The precis®m the National Science Foundation. Anoth@&: M. S)
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