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The correlation between charge and spin orderings in hole-doped antiferromagnets is studied within an
effective model of quantum strings fluctuating in an antiferromagnetic background. In particular, we perform
the direct estimation of the charge and spin long-range-order parameters by means of the quantum Monte Carlo
simulation. A hidden spin long-range order is found to be governed by a competition between the two trends
caused by increasing hole mobility: the enhancement of the two-dimensional spin-spin correlation mediated by
hole motions and the reformation of a strong stripe order.
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Since the observation of high-temperature superconduc-
tivity in a hole-doped antiferromagneticsAFd insulator, spin
dynamics in hole-doped low-dimensional Heisenberg antifer-
romagnets has turned into a major subject of theoretical and
experimental studies. The discovery of an anomalous stripe
phase within CuO2 planes of the Cu-oxide superconductor,
La2−x−yNdySrxCuO4, has stimulated considerable interest in
the studies of the correlation between the charge and spin
orderings in hole-doped antiferromagnets.1 The experimental
findings suggest that, in the stripe phase, the dopant holes are
segregated into one-dimensionals1Dd domain walls that
separate AF antiphase spin domains.2,3 The stripe phases
have been experimentally observed in a wide range of
doped-hole concentrations for the lanthanum cuprate4,5 and
proposed in the two-dimensionals2Dd Hubbard-like6–11 and
t-J models.12,13 It is generally accepted that the static stripe
order, e.g., observed for La2−xSrxCuO4 with x.1/8, is
pinned by the lattice modulation in the low-temperature te-
tragonal phase.

The stripe order with AF antiphase spin domains has also
been observed in Ni-oxide La2−xSrxNiO4,

14,15 though the ma-
terial remains insulating except at very high Sr concentra-
tions. There is by now a wide consensus that the formation of
stripe is a generic property of hole-doped antiferromagnets.1

The mean-field theory for the Hubbard-Peierls model pro-
posed by Zaanen and Littlwood16 suggests a picture in which
holes bind to domain walls embedded in an AF background.

Several years ago Zaanen and coworkers reported17 an
appealing model for stripes acting as antiphase boundaries
intervening AF spin domains, which captures well the essen-
tial features of the interplay between spin and charge degrees
of freedom. This effective model, deduced on basis of the
Ogata-Shiba principle18 is described in terms of fluctuating
quantum strings. Zaanen’s model can be viewed as a variant
of the bond-alternated spin model with bond randomness as
mentioned below and is interesting in its own rights as a new
random quantum spin system. Our main purpose in the
present paper is to investigate the correlation between the
spin and charge orderings and the tendency of the spontane-
ous ordering of stripes within the effective model. In particu-
lar, we carry out a high precision numerical investigation
into the charge and spin orderings by direct calculation of the
order parameters at zero temperature in the thermodynamic

limit by means of the quantum Monte CarlosQMCd simula-
tion. We find that a hidden spin long-range ordersLROd is
governed by a competition between the two trends caused by
increasing hole mobility: the enhancement of the two-
dimensional 2D spin-spin correlation and the reformation of
a strong stripe order.

The motive of the aforementioned model is to describe
the quantum mechanical motion of hard core particles form-
ing extended strings, which fluctuate in an AF background.
The strings have an overall orientation that is aligned with
the y direction. Each quantum string consists ofLy hardcore
particles referred to hereafter as “holes.” Each hole moves in
the x direction and an effective exchange interaction exists
between the two spins neighboring a hole. By regarding the
hole as residing on the link between two spins neighboring
the hole, we can reduce our system to a spin-only model
defined on a squeezed lattice as depicted in Fig. 1. The
model thus obtained is described by the Hamiltonian17

H = o
x,y

f− tPsasx+1,yd
† asx,yd + h . c .dP

+ Js1 − s1 − adnsx,yddSsx,yd ·Ssx+1,yd

+ Js1 − nsx,ydnsx−1,y+1d − nsx−1,ydnsx,y+1ddSsx,yd ·Ssx,y+1dg,

s1d

where the summationox,y runs over all the lattice sites on the
squeezed lattice andSsx,yd is theS=1/2 spin operator at site

FIG. 1. Transformation from the original lattice to the squeezed
lattice. The quantum strings in the original lattice are described by
the dashed lines connecting links denoted by bold lines in the
squeezed lattice.
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sx,yd. The first term corresponds to the kinetic energy of
holes, whereasx,yd

† is the creation operator of the hole sitting
on the link between the sitessx,yd and sx+1,yd in the
squeezed lattice, andP is the projection operator ensuring
that strings are not broken up and are separated by at least
one spin site in the original lattice. The second term de-
scribes theS=1/2 exchange interactions in thex direction.
We fix J to unity hereafter. The value ofa corresponds to the
effective interaction between spins neighboring a hole and
nsx,yd is the hole number operator at sitesx,yd. The third term
makes the exchange interaction zero in a link parallel toŷ in
the squeezed lattice for bonds connecting to the holes in the
original lattice.

In the perfect stripe system witht=0, in which case the
quantum strings are perfectly straight and line up at regular
intervals, the system as described on the squeezed lattice
reduces to a spin ladder model with an interladder interaction
of strengtha.19 When Lx/Ns is an odd integer, whereLx is
the size of the lattice in thex direction andNs is the number
of strings, this system exhibits an even-leg-ladder-like be-
havior: there is a quantum phase transition between the dis-
ordered phase with a finite spin gap for smalla and the AF
LRO phase for largea.20 The transition point is located at,
e.g.,ac=0.3138s1d, 0.0787s2d, and 0.0153s1d for the concen-
trationsx=Ns/Lx=1/3,1/5, and 1/7,respectively. These re-
sults are obtained by the finite-size scalingsFSSd analysis of
our QMC data of the correlation length with the exponent
n=0.71 fixed to the value of the three-dimensional classical
Heisenberg universality class.21 This disordered phase per-
sists in the presence of the hopping interaction up to a certain
value oftc as mentioned below. On the other hand, when the
value of Lx/Ns is even, the system behaves like an odd-leg
spin ladder: the system witha=0 is in a gapless phase and
AF LRO is induced by an infinitesimal value ofa.

The strings in the present model, subject to quantum fluc-
tuation viz. thet term, are at the same time in contact with
the AF background, and thus induces an imaginary-time de-
pendence of the spin-exchange coupling on the squeezed lat-
tice. To deal with this aspect, the spin configuration is there-
fore updated by thediscontinuous imaginary-time loop
algorithm22 with fixed hole configuration. Meanwhile, the
hole configuration is described by the Suzuki-Trotter decom-
position via the prescription due to Eskeset al.23 and updated
by the Metropolis algorithm with a fixed spin configuration.
The QMC simulation with the loop algorithm combined with
the conventional worldline algorithm is carried out onLx
3Ly sLx=Ly;Lø36d square lattices with the periodic
boundary condition. The value ofb /Nt is fixed to be 1/4,
whereb is the inverse of temperatureT andNt is the Trotter
number. The error bars are estimated based on about 102

samplings. For each sample, 104 Monte Carlo stepssMCSd
are spent for measurement after 104 MCS for thermalization.

The ground-state phase diagram parametrized bya and t
for x=1/3 waspreviously presented by Zaanenet al..17 Our
result is qualitatively consistent with theirs: the system is in
the charge-ordered and spin-disordered phase for smallt and
small a and the phase transition to the charge-ordered and
hidden AF LRO phase occurs as the value oft or a is in-
creased. Hereafter, the AF LRO in the squeezed lattice will

also be referred to as the hidden AF LRO in terms of the
original lattice. The spin-disordered state is effectively the
same as the state realized in the spin-1/2 even-leg-ladder
system with the interladder interactiona as mentioned
above. Whena=0.1 andx=1/3, our FSSanalysis of the
Binder parameter24 shows that the phase transition occurs at
tc=0.21s1d. The charge-ordered and hidden AF LRO phase
for t. tc is characterized by peaks of the charge-charge struc-
ture factor Scskx,kyd;1/L2kfore

ik·rnrg2l at skx,kyd
= s± 2

3p ,0d, wherenr is the hole number operator at siter ,
and those of the spin-structure factorSsskx,kyd;1/LsL
−Nsdkfore

ik·rSr
zg2l at skx,kyd= s± 2

3p , ±pd as shown in Figs.
2sad and 2sbd. The results show that the hidden AF correla-
tions with antiphase boundaries are present, consistent with
the stripe structure, namely, the peaks ofScskx,kyd and
Ssskx,kyd are atskx,kyd=s±2px,0d and f±s1−xdp , ±pg, re-
spectively. Note that there are no additional peaks corre-
sponding to other modes, except for the one atskx,kyd
=s0,0d for Scskx,kyd in the thermodynamic limit. While the
x= 1

3 system exhibits an even-leg-ladder–like behavior, the
system atx= 1

4 is odd-leg ladderlike. This is evident from the
peaks that are observed at the positionsskx,kyd= s± 1

2p ,0d and
s± 3

4p , ±pd as shown in Figs. 3sad and 3sbd, respectively. It
shows that at least in the parameter range we calculated, the
stripe configuration consisting of only three-leg ladders is
realized rather than an alternating series of two- and four-leg
ladders, which was suggested in Ref. 17, where interactions
from holes were neglected. The peaks ofScskx,kyd at ky=0
shows that each string selects a overall direction in space,
though it can locally fluctuate. This is associated with the
“directedness” observed in a quantum string model.23 On the
other hand, the peaks atkx= ±2px corresponding to strings
lined up at regular intervals might have their primary origin
in the effective repulsion coming from the constraint that the
stripes be separated by at least one spin site.

FIG. 2. Plots ofsad the charge-charge structure factor andsbd the
spin structure factor in the original lattice forx=1/3 atT=0.01 in
the charge-ordered and hidden AF long-range ordered phase with
a=0.1 andt=1. Note that the peak ats0,0d of the charge-charge
structure factor is subtracted.
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We make direct estimations of thet-dependent stripe LRO
parameter defined by

kOstripel ; lim
L→`

lim
T→0

ÎScs2px,0d
L2 . s2d

The value ofScs2px,0d converges to its zero-temperature
value atT lower than an energy scale related to the finiteness
of the system size. Thus,Scs2px,0d at low temperatures,
where its T dependence becomes indiscernible within the
error bars is taken as the values in theT→0 limit. Further-
more, the value in the limit ofL→` is obtained by fitting the
QMC data toÎScs2px,0d /L2.kOstripel+a/L. The results of
the extrapolation are shown in Fig. 4. When the system is in
the perfect stripe phase witht=0, the value ofkOstripel equals
x, because the strings are perfectly straight and align at regu-
lar intervals, from which follows thatScs2px,0d=Ns

2. For t
,3 the value ofkOstripel reduces ast is increased. This is
consistent with the picture that hole fluctuation competes
with the stripe order. Fort.3, however, the strong stripe
order is reformed and the ground state approaches the perfect

stripe. This reformation of the strong stripe will be discussed
later.

We also make direct estimations of thet-dependent hid-
den AF LRO parameter defined by

MH ; lim
L→`

lim
T→0

Î 3Ssp,pd
LsL − Nsd

, s3d

whereSsp ,pd is the size-dependent staggered structure fac-
tor in the squeezed lattice. The extrapolation is performed by
a procedure similar to that forkOstripel. A finite MH is induced
at t. tc=0.21s1d for a=0.1, with the value increasing witht
in the regiontc, tø3 as shown in Fig. 5. This result sug-
gests that the hole motion enhances the effective spin-spin
interactions, which, in turn, obscures the ladderlike structure,
and yields instead the 2D magnetic LRO. To paraphrase, the
magnetization, which had been suppressed in the underlying
bond-alternating spin system due to quantum fluctuations, is
recovered by the randomness of the spin interaction brought
on by turning on a finitet. Randomness-induced LRO is
expected to occur also in 2D quantum spin systems with
bond randomness.25 The present case differs in that the ran-
domness is present also in the imaginary-time direction, i.e.,
one may view it as a “2+1D random quantum spin system.”
A further increase in the hole motions, however, eventually
leads to the reduction of the spin LRO due to the reformation
of the strong stripe order, leading to the spin system with
alternating structure, which was seen for 0, t, tc. The prop-
erties mentioned above are also seen fora=0.5, where the
system with t→0 does not belong to the spin-disordered
phase.

The values ofkOstripel for a=0.1 are larger than those for
a=0.5 as shown in Fig. 4. This result is in conflict with the
following naive energetics: a kink, arising when one hole in
the straight string moves to a neighboring site, yields an
energy loss proportional to a nearest spin-spin correlation. In
the hidden AF LRO phase, a naive mean-field-like argument
gives the correlation proportional toMH

2 . This implies then
that in order to gain energy the value of the stripe LRO
parameter fora=0.5 should become larger than that fora

FIG. 3. Plots ofsad the charge-charge structure factor andsbd the
spin-structure factor in the original lattice forx=1/4 atT=0.01 in
the a=0.1 andt=1 system.

FIG. 4. Thet dependence of the stripe LRO parameter atT=0
for x= 1

3. The square and circle denote the QMC results of the stripe
LRO parameter fora=0.1 and 0.5, respectively.

FIG. 5. Thet dependence of the hidden AF LRO parameter at
T=0 for x= 1

3. The open square and circle denote the QMC results
of the hidden AF LRO parameter fora=0.1 and 0.5, respectively.
The filled square denotes the critical pointtc.0.21 fora=0.1. The
dashed line is obtained by the least-squares fitting with the fitting
function MH=csx−0.21db in the range of 0.3ø tø1. The values of
c andb are estimated to be 0.30s1d and 0.23s4d, respectively.
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=0.1 because of thea dependence ofMH. Our results indi-
cate that the speculation is too naive to explain quantitatively
the magnitude of the order parameters.

The t dependences ofkOstripel and MH for a=0.1 andx
= 1

4 are also shown in Fig. 6, where the system in the limit of
t→0 becomes odd-leg-ladderlike. Though a similar upturn
behavior of the order parameters to that forx=1/3 is ob-
served, thet dependence is indiscernible due to the weak
effective repulsion between quantum strings. We thus expect,
in general, that it becomes harder in practice to see the cor-
relation between spin and charge orderings as one goes to
lower hole densities, in particular for the odd-leg-ladder-like
system.

To conclude, we have demonstrated that the magnitude of
the hidden AF LRO is governed by the competition between
the enhancement of the 2D spin-spin correlation and the ref-
ormation of the strong stripe order. The question as to why
the stripe tends to reorder at larget remains to be resolved.
Although we have not yet found a rigorous description of the
reformation of the strong stripe order, it may be due to the
effective Coulomb repulsion coming from the constraint that
the stripes are separated by at least one spin site. The present
model with the constraint is not realistic at larget. There are
two further issues along the line of the present study left for
future work. One is the effect of adding a next-nearest-
neighbor interaction on the squeezed lattice. In that case, the
diagonal stripe, observed in Cu oxides and Ni oxides, would
be expected to emerge in a certain parameter region. The
other is to incorporate the dislocation of the strings. In the
present paper, we have restricted the string mobility so as to
ensure that the strings are not broken up. In order to access a
superconducting regime, however, it would be crucial to
study the situation where the stripes start to get destroyed.17

The numerical simulation for this situation is a major chal-
lenge and new ideas are in need.
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FIG. 6. Thet dependence of the LRO parameters atT=0 for
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4. The square and circle denote the values of the stripe LRO and
the hidden AF LRO parameters fora=0.1.
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