
Bose-Einstein condensation in solid4He

D. E. Galli, M. Rossi, and L. Reatto
INFM and Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy

sReceived 30 September 2004; published 20 April 2005d

We have computed the one-body density matrixr1 in solid 4He atT=0 K using the shadow wave-function
sSWFd variational technique. The accuracy of the SWF has been tested with an exact projector method. We find
that off-diagonal long-range order is present inr1 for a perfect hcp and bcc solid4He for a range of densities
above the melting one, at least up to 54 bars. This is first microscopic indication that Bose Einstein conden-
sationsBECd is present in perfect solid4He. At melting, the condensate fraction in the hcp solid is 5310−6 and
it decreases by increasing the density. The key process giving rise to BEC is the formation of vacancy
interstitial pairs. We also present values for Leggett’s upper bound on the superfluid fraction deduced from the
exact local density.
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The supersolid state, a solid with superfluid properties, is
moving out from theoretical speculations as a result of the
observation of nonclassical rotational inertiasNCRId in solid
4He in Vycor1 and very recently in the bulk.2 The initial
theoretical suggestion3,4 of the supersolid state was based on
the possible presence of vacancies in the ground state of a
Bose quantum solid. In addition, these vacancies have to be
mobile in order to give rise to Bose Einstein condensation
sBECd of 4He atoms. Experimentally, no evidence has been
found for the presence of vacancies at very low temperature
and this is in agreement with the results of microscopic
theory,5,6 which gives an energetic cost of about 15 K for the
formation of a vacancy in bulk solid4He. However, it was
almost immediately recognized7 that the presence of ground-
state vacancies is only one possible mechanism for NCRI,
and what is really needed is that atoms are not localized at
the lattice sites but are delocalized via exchange or other
processes. This gives the possibility of having in the wave
function swfd a phase which governs collectively the motion
of the atoms. The existence of a supersolid state in4He is
therefore strictly related to the question of localization or
delocalization of particles and, of course, this is a topic of
general interest. This is the case, for instance, of cold alkali
atoms in a periodic potential.8 Experiments with4He give
access to the superfluid fractionrs/r which turns out to be2

at most of order 2%. Theoretically, only upper bounds onrs
have been obtained up to now9–11 and no microscopic theory
has given evidence for a supersolid phase. The commonly
accepted view is that one can have a finiters in a three-
dimensional system if there is BEC in the system, so a cen-
tral quantity to compute is the off-diagonal one-body density
matrix r1srW ,rW8d, whose Fourier transform represents the mo-
mentum distribution.

In this article we address the computation ofr1 for solid
4He at T=0 K based on a variational wf, a shadow wf
sSWFd. In a previous computation12 we have found that the
presence of vacancies in the solid induces a BEC which is
proportional to the concentration of vacancies. On the other
hand, the large energy of formation of a vacancy makes the
probability of having such defects at low temperature van-
ishingly small. Here we study in the perfect solid the large

distance behavior ofr1srW ,rW8d, specifically ifr1 has a nonzero
limit at large distance soff-diagonal long-range order,
ODLROd which implies BEC. With perfect solid we mean
that the number of maxima in the local densityrsrWd is equal
to the number of4He atoms. The use of SWF is especially
useful in the present context because with such wf the crys-
talline order is an effect of the spontaneously broken sym-
metry so that local disorder processes such as the exchange
of two or more particles, creation of vacancy interstitial pairs
sVIPd, or more complex processes are in principle allowed.
The major finding of our computation is the presence of a
small but finite condensate for a range of densities above
melting. The variational theory is very useful to describe
strongly interacting systems, such as liquid or solid4He, but
it is always open to debate how much the results depend on
the ansatz on the wf, especially for quantities other than the
energy. In order to give an indication on the reliability of our
SWF we present some results on quantities including the
degree of local order, of localization, and of the local density
obtained also from an exact computation13 based on the pro-
jection algorithm SPIGS, a path integral ground-state
method14 which uses a SWF as the starting wf.

In a SWF the correlations between atoms are introduced
both explicitly by a Jastrow factor and also in an implicit
way by coupling with a set of subsidiary variables, called
“shadow” variables15 sone shadow for each quantum par-
ticled, which are integrated over. All expectation values are
computed by a Monte CarlosMCd method and the statistical
sampling ofuCu2 maps the quantum system ofN particles in
a system ofN special interacting triatomic “molecules”15

which consist of a4He atom and two shadows. The accuracy
of the SWF technique is well documented and it has been
possible to treat also disorder phenomena in a quantum solid,
i.e., a vacancy5,6 or even the interfacial region between a
solid and a liquid at coexistence.16 As a functional form for
the correlating factors contained in the SWF we have taken
the ones used in Ref. 5; as interatomic interaction we have
used a standard Aziz potential.17

A SWF can be interpreted as a first projection step in
imaginary time of a Jastrow wf via a variationally optimized
imaginary time propagator.13 With SPIGS one goes beyond

PHYSICAL REVIEW B 71, 140506sRd s2005d

RAPID COMMUNICATIONS

1098-0121/2005/71s14d/140506s4d/$23.00 ©2005 The American Physical Society140506-1



the variational theory by adding successive projection steps
in the imaginary time propagation with the full Hamiltonian
and in this way we are able to compute exact expectation
values on the ground state without extrapolations. With these
two quantum MC methods, noa priori equilibrium positions
for the solid phase are required, the Bose symmetry is mani-
festly maintained, and atoms can be delocalized.

The equation of state given by SWF is in good agreement
with the results of SPIGS; for instance, at meltingsr
=0.029 Å−3d the energy per particle is25.12 K, 0.76 K
above the SPIGS result.18 Also for a vacancy there is an
excellent agreement; the formation energy at melting is 15.7
K with SPIGS and 15.6 K with SWFsRef. 6d and the jump-
ing rate is similar in the two computations. In addition to the
energy one would like to know the accuracy of SWF in de-
scribing the microscopic local processes and to this end we
have computed the local densityrsrWd and the static structure
factor SskWd. We find again agreement between SWF and
SPIGS with SWF giving a slightly more ordered state. For
instance, at melting, the main Bragg peak of the hcp solid is
about 17% higher than the SPIGS result. A detailed compari-
son will be presented elsewhere and here we focus only on
the results for the upper boundfs

+ for the superfluid fraction
rs/r obtained by Leggett.7 This bound depends on the aver-
aged density,rszd=edjrsrWd, wherez is a longitudinal coor-
dinate andj is a suitable set of transversal coordinates.7 We
have chosen asz axis the one which gives the lowest value of
fs
+; in the hcp crystal this is theGA direction which is per-

pendicular to the basal plane. It should be noticed that usu-
ally in quantum MC computations the center of mass of the
system is not fixed and this would alter the local density
especially around the minima. Therefore, when we compute
rsrWd we have modified the sampling algorithm to keep the
center of mass of the system fixed. In Table I we show the
upper bounds,fs

+, for the superfluid fraction obtained for hcp
bulk solid4He with the SPIGS and SWF methods. There is a
substantial agreement, with the variationalfs

+ being always
lower as a consequence of the larger degree of local order. A
popular representation ofrsrWd is the one in terms of a sum of
Gaussians centered on the lattice sites. We have fitted our
rsrWd with this Gaussian modelsGMd by using the standard

deviations as a fitting parameter. We find that the GM gives
an excellent representation of the integrated density along
planes—what is needed in the Leggett’s inequality—the de-
viation being below 4%. The resulting bounds given by GM
with s fitted on the SPIGSrsrWd are also shown in Table I.
The boundfs

+ given by SWF is similar to the value computed
previously9 with the GM fitted on a different variational
theory. In Refs. 10 and 11 a lowerfs

+ has been obtained by
using a better variational ansatz: the phase of the wf is a
function of rW and not only of the longitudinal coordinatez as
in Ref. 7. This bound computed with the GM for a given
crystal lattice is simply a function of the “localization
parameter.”10,11 Saslow’s computation is for an fcc crystal
but if we neglect the difference between the hcp and the fcc
lattice, using thes in Table I and the results in Ref. 11, we
can estimate anfs

+ which goes from about 0.2 atr
=0.029 Å−3 to about 0.005 atr=0.044 Å−3. A SPIGS com-
putation for fcc atr=0.029 Å−3 gives as in the GM which
is only 2% lower than in hcp crystal. These values offs

+ are
compatible with the experiments butfs

+ is about one order of
magnitude larger than the experimental value ofrs/r and, in
any case, it is only an upper bound so it is not very conclu-
sive. A word of caution on the GM is in order. If this model
gives an excellent representation for the integrated density
rszd, the accuracy is lost when we consider the local density
rsrWd: in the region of the minima ofrsrWd deviations greater
than 100% are found.

The one-body density matrixr1srW ,rW8d is given by the
overlap between the normalized many-body ground-state wf
CsRd andCsR8d where configurationR8=hrW8 ,rW2,… ,rWNj dif-
fers fromR=hrW ,rW2,… ,rWNj only by the position of one of the
N atoms in the system; ifCsRd is translationally invariant, as
in our case when the center of mass is not fixed,r1 only
depends on the differencerW−rW8,

r1srW − rW8d = NE drW2…drWNC*sRdCsR8d. s1d

It is possible to interpret the integrand in Eq.s1d as a prob-
ability density;12 then r1 can be computed by sampling the
integrand in Eq.s1d and by histogramming the occurrence of

the distancedW =rW−rW8. In the following we will call “half”
particles the particles with coordinatesrW andrW8 because they
have just1

2 the correlation strength with the otherN−1 par-
ticles swith coordinateshrW2,… ,rWNjd and no direct correlation
between them. The method of computation has been de-
scribed in Ref. 12. The absence of ODLRO corresponds to
the two “half” particles forming a “molecule,” whereas the
presence of ODLRO corresponds to a finite probability of
dissociation up to infinite distances.

We have computedr1srW−rW8d along the nearest-neighbors
snnd direction which isGK in a hcp andf111g in a bcc crys-
tal. In Fig. 1 we reportr1 for a perfect hcp crystal at different
densities at and above melting, and for a bcc crystal atr
=0.028 98 Å−3. It is clear that at melting and atr
=0.031 Å−3, r1 reaches a plateau at large distance whereas at
r=0.033 Å−3, r1 steadily decreases with increasing distance.
By averaging the tail inr1 for distances greater than 14 Å,
we find at the melting density a condensate fractionnc

TABLE I. Upper boundsfs
+ for the superfluid fraction in hcp

bulk solid 4He computed at different densities with the SWF tech-
nique, the SPIGS method, and the GM forrsrWd. P is the pressure
from the SPIGS equation of state.s is the standard deviation of the
Gaussians used in the GM.

SWF SPIGS GM

r
sÅ−3d

P
sbard fs

+ fs
+ fs

+ s sÅd

0.0290 29.3 0.287 0.384 0.380 0.543

0.0310 53.6 0.255 0.299 0.297 0.503

0.0330 87.8 0.209 0.230 0.222 0.467

0.0353 141.9 0.141 0.164 0.166 0.436

0.0400 316.9 0.077 0.080 0.079 0.381

0.0440 553.5 0.042 0.042 0.041 0.345
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=s5.0±1.7d310−6 in a perfect hcp ands7.6±1.7d310−6 in a
perfect bcc crystal. This is a microscopic indication that BEC
is present in perfect solid4He. sRef. 19d At r=0.031 Å−3 we
find nc=s2.0±0.4d310−6 and atr=0.033 Å−3 the tail is so
much depressed that the size of the simulation box is too
small to conclude if ODLRO is present; in this case we can
only say that the condensate fraction, if any, is lower than
10−9. The simulation box which has been used to computer1
is cubic and containsN=4324He atoms for the bcc crystal, it
is elonged in theGK direction, and containsN=360 4He
atoms for the hcp crystal. By changing the size of the boxes
at fixed density we have checked that our results forr1 have
no finite-size effect within the statistical errors of our com-
putations. This is shown in the inset of Fig. 1 for the hcp
crystal atr=0.029 Å−3; by averaging the tail inr1 for dis-
tances greater than 14 Å, we findnc=s3.9±1.7d310−6 for
N=288 andnc=s5.7±2.0d310−6 for N=432, to be compared
with the value given above:nc=s5.0±1.7d310−6 for N
=360. In Ref. 12 we found that a finite concentration of
vacanciesxv induces a condensate fraction which depends
linearly onxv. In Fig. 1 we show alsor1 when a vacancy is
present both in hcpsRef. 12d and bcc. Taking into account
the value ofxv of the computation we estimate that atr
=0.029 Å−3 the condensate fraction due to a finite concen-
tration of vacancies is equal to the one in a perfect hcp crys-
tal whenxv.1.5310−5.

All the computedr1 show oscillations which reflect the
crystalline order in the system. However, these oscillations
are not the same in the perfect and in the defected solid. We
find that when a vacancy is present the maxima of the oscil-
lations inr1 correspond to multiples of the nn distancednn.
This is an indication that in the presence of a vacancy the
main mechanism which contributes to the separation of the
two “half” particles is that one of them moves through the
crystal following the vacancy which is very mobile.20 The
different positions of the maxima inr1 for the perfect crystal
suggest a different microscopic process for the ODLRO in
this case. By analyzing the particle configurations sampled in
our runs we find that the secondary peak ofr1, located at
about 5 Å, always corresponds to a configuration in which
the two “half” particles occupy two nn lattice positions

slightly distorted by the presence of one interstitial4He atom
between them. In Fig. 2 we show 100 successive configura-
tions of the particles which correspond to this event. In the
formalism of second quantizationr1srW−rW8d is equal to the
expectation value of the composite event where one4He
atom is destroyed atrW8 and one is created atrW; then it is
possible to interpret the event in Fig. 2 as the creation of a
VIP. The same process is found in a bcc crystal. After this
first step the two “half” particles have a finite probability of
moving away from one another by exchange processes with
the other atoms, and this gives rise to the other maxima ofr1
at larger distance. By analyzing the particle configurations
corresponding to these other maxima we find that a VIP is
present in all the configurations. Similar processes were con-
sidered in Ref. 21 as a necessary condition for the supersolid
phase, but there it is argued that VIP cannot be present. Our
results disagree with this hypothesis. In order to characterize

the anisotropy ofr1 as function ofdW we have computedr1
when the two “half” particles are no more constrained to lie
in the nn direction but can freely move in a plane. In Fig. 3
one can see thatr1 in a perfect bcc crystal is strongly aniso-
tropic for distances up to about 6 Å, and the maxima ofr1
are in the direction of nn. However, at greater distancesr1
becomes nearly isotropic and we conclude that our estima-
tion of the BEC fraction is not affected by the previous re-

striction ondW. Similar results are obtained for hcp. It is in-
teresting to notice that when a vacancy is present the
anisotropy ofr1 persists up to greater distancessdata not

FIG. 1. r1srW−rW8d at different densities for hcp and bcc perfect
4He crystals, and for the same crystals with a finite concentrationxv

of vacancies.

FIG. 2. Projection of 100 successive configurations of the par-
ticles swhite circlesd and the two “half” particlessblack circlesd in a
basal plane of an hcp crystal atr=0.031 Å−3. r1 is the probability
distribution of the two “half” particles.

FIG. 3. sColor onlined r1srW−rW8d at r=0.028 98 Å−3 for a perfect
bcc crystal withrW−rW8 lying in the planef-101g.

BOSE-EINSTEIN CONDENSATION IN SOLID4He PHYSICAL REVIEW B71, 140506sRd s2005d

RAPID COMMUNICATIONS

140506-3



shownd. Also in Fig. 1 one can see that the oscillations ofr1
are more persistent with increasing distance in the crystal
with a vacancy; this is another indication that different mi-
croscopic processes are at the origin of the ODLRO in the
perfect and in the defected solid4He. The exchange of atoms
and VIPs are present not only inr1 but also in uCu2. At
melting at about every 23103 MC steps an atom has a dis-
placement larger thandnn and in many cases this is associ-
ated with the presence of an interstitial. In principle one can
devise an algorithm based on SPIGS to computer1 exactly.
However, at present this appears to be a major computational
problem. In any case we have given solid evidence that SWF
overestimates the degree of local order so that we should
expect that the SWF results for the BEC fraction are an un-
derestimation of the exact values.

In conclusion we have shown that solid4He atT=0 K has
BEC at melting density and above, at least up to 54 bars,
whereas we find a vanishing BEC at 90 bars. Thus BEC
should be at the basis of the NCRI observed experimentally.2

Our result has been obtained from an advanced variational

theory, the accuracy of which has been tested with a projec-
tor method on the exact ground state. The key process giving
rise to ODLRO is the formation of a VIP. Such defects have
a finite probability to be present in the ground state of the
system; they are not permanent excitations but simply rare
fluctuations of the perfect crystal induced by the large zero-
point motion. In other words, the number of atoms is equal to
the number of lattice sites and, at the same time, atoms are
delocalized. Since the ground state is the vacuum of the el-
ementary excitations of the system we conjecture that a
branch of low-energy excitations different from phonons
should be present in solid4He. Such excitations should have
an important role in determining the critical temperature. It is
a possibility that this branch is related to some experimental
results which have been interpreted in terms of an excitation
with energy of about 2 KsRef. 22d.
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