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We calculate the properties of the two-band Hubbard model using the dynamical cluster approximation. The
phase diagram resembles the generic phase diagram of the cuprates, showing a strong asymmetry with respect
to electron- and hole-doped regimes, in agreement with experiment. Asymmetric features are also seen in
one-particle spectral functions and in the charge, spin, andd-wave pairing-susceptibility functions. We address
the possible reduction of the two-band model to a low-energy single-band one, as it was suggested by Zhang
and Rice. Comparing the two-band Hubbard model properties with the single-band Hubbard model ones, we
have found similar low-energy physics provided that the next-nearest-neighbor hopping termt8 has a signifi-
cant valuest8 / t<0.3d. The parametert8 is the main culprit for the electron-hole asymmetry. However, a
significant value oft8 cannot be provided in a strict Zhang and RicefPhys. Rev. B37, R3759s1988d; 41, 7243
s1990dg picture where the extra holes added into the system bind to the existing Cu holes forming local singlets.
We note that by considering approximate singlet states, such as plaquette states, reasonable values oft8, which
capture qualitatively the physics of the two-band model, can be obtained. We conclude that a single-bandt
-t8-U Hubbard model captures the basic physics of the cuprates concerning superconductivity, antiferromag-
netism, pseudogap, and electron-hole asymmetry, but is not suitable for a quantitative analysis or to describe
physical properties involving energy scales larger than about 0.5 eV.
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I. INTRODUCTION

The theory of the cuprate high-temperature superconduct-
ors remains one of the most important and daunting prob-
lems in condensed-matter physics. The highTc cuprate su-
perconductors are layered materials with relatively complex
structures and chemical composition. They are highly corre-
lated, with an effective bandwidth roughly equal to the ef-
fective local Coulomb interaction. The short-range correla-
tions are known to play a paramount role in these materials.
Therefore, the dynamical cluster approximation1 sDCAd,
which treats short-range correlations explicitly and the long-
range physics at the mean-field level, is an ideal tool for the
investigation of these systems.

A common characteristic all cuprate materials share is the
presence of quasi-two-dimensional CuO2 planes. These
planes are commonly believed to contain the low-energy
physics. However, the full complexity of the orbital chemis-
try of just the CuO2 planes and the strong Coulomb repulsion
on the Cu ions would lead to models that are very difficult to
study with conventional techniques.

The cuprates are characterized by a very rich, but also, in
many respects, very intriguing physics. The undoped materi-
als are antiferromagneticsAFMd insulators with a gap of
approximatively 2 eV. Upon doping the AFM is destroyed
and the system becomes superconductingsSCd. At small
doping, in the proximity of the AFM phase, the normal state

physics cannot be described in terms of Fermi-liquid theory
and is characterized by the presence of a pseudogap. An
essential demand of every successful theory is to capture all
these fundamental features at the same time.

Experimental data show that the phase diagram and other
physical characteristics, such as the density of statessDOSd
near the Fermi level of the hole- and electron-doped materi-
als, are very different.2–4 There could be many reasons for
this asymmetry. The electron- and hole-doped materials are
physically different, and apart from the CuO2 planes, they
contain different elements and chemical structures. These
structural and compositional differences can influence the
low-energy physics. Therefore in this paper, we use DCA to
address whether the physics of a pure CuO2 plane contains
this asymmetry or if the origin of the asymmetry in real
materials comes from other influences.

Different models for describing the physics of a CuO2
plane were proposed by various authors. Photoemission ex-
periments in the insulating parent material show that the first
electron-removal states have primarily oxygen character;
whereas, the first electron-addition states haved character,
already suggesting a strong asymmetry. This places these
materials in the charge-transfer gap region of the Zaanen-
Sawatzky-Allen scheme.5 Early on, considering the ligand
field symmetry and band-structure calculations,6–8 it was re-
alized that the most important degrees of freedom are the Cu
dx2−y2, which couple with the in-plane Op orbitals. There-
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fore, one of the first models proposed to describe the physics
of high Tc materials was the so-called three-band Hubbard
model presented by Varmaet al.9 and Emeryet al.,10 which
considers explicitly both the oxygenps and the cooperdx2−y2

orbitals. In fact, because the direct oxygen-oxygen hopping
is neglected, only the combination of oxygen orbitals with
x2−y2 symmetry couples with thed orbitals, and the above-
proposed three-band model reduces to a two-band model.

However Zhang and RicesZRd11 argue that the low-
energy physics of thehole-dopedsuperconductors can be
described by a single-band model. Starting from the two-
band model, Zhang and Rice claim that an extra hole added
into the oxygen band binds strongly with a hole on the Cu,
forming an on-site singlet. This singlet state, which has zero
spin can be thought as moving through the lattice like a hole
in an antiferromagnetic background. Consequently, the phys-
ics can be described by a one-bandt-J model.

Pertinent criticism to these simplified models were raised
by various authors. With respect to Cu degrees of freedom,
Eskeset al.12 stressed the possible importance of the otherd
orbitals, showing that they should be explicitly considered
when physics, which implies excitations with energy larger
than <1 eV, is involved. However, these criticisms do not
concern us for the present study because we are interested
only in physics at energies lower than<0.5 eV.

Investigating the relative importance of various param-
eters describing the CuO2 planes it was realized early on
that, in addition to the Cu on-site Coulomb repulsionsUdd

<8 eVd and Cu-O hopping integralstpd<1.3–1.5 eVd, the
O-O hopping integrals result in a large O 2p bandwidthsW
<5 eVd, indicating that these should be included explicitly
in any theory.12–14 Therefore, using the DCA technique as a
means of including all these most important parameters and
bands, we address two major problems in this paper: the
physics of the CuO2 planesincluding a detailed study of the
electron-hole asymmetryd and the reduction of the multiband
model to a single-band model.

Regarding the reduction to a one-band model, one of the
most serious criticisms to ZR theory is the neglect of the O
2p band structure.15,16The natural tendency of the finite oxy-
gen bandwidth is to delocalize and destabilize the ZR sin-
glets. The question arises whether the low-energy statessi.e.,
the ZR singletsd are still well separated from the higher-
energy statessi.e., the nonbonding oxygen statesd. Otherwise,
the reduction to a single-band model, which neglects these
high-energy states, is not possible. This problem was previ-
ously considered by Eskes and Sawatzky16 within an impu-
rity calculation approach, but there, unlike in the DCA ap-
proach, both the spatial correlation effects and the dispersion
of the low-energy states were neglected.

Another important objection to ZR theory was raised by
Emery and Reiter17 and regards the nature of the low-energy
states. Are these states real singlets that can be mapped onto
holes, or does the hole on the O bind into a more compli-
cated state that involves more than one Cu hole? Choosing a
particular solvable example, which considers the Cu spins
arranged ferromagnetically, they showed that the low-energy
states are, in fact, an admixture of the Zhang-Rice singlets
and the corresponding triplets. This implies a nonzero value

for the oxygen spin and destroys the equivalence of these
states to holes. However, it is not clear if the situation is
similar in the cuprates, i.e., if the ZR singlet-ZR triplet ad-
mixture is significant. But the merit of Emery and Reiter is to
emphasize that the fact that, as a consequence of the strong
Cu-O hybridization low-energy states well separated from
the nonbonding oxygen band states appear, does not neces-
sarily mean that the physics can be reduced to a single-band
model.

The third problem we address regarding the reduction to a
single-band model is the estimation of the single-band pa-
rameters. We note that different approximations result in dif-
ferent values of the parameters. Especially the magnitude of
the next-nearest-neighbor hopping is very dependent of the
initial assumptions. For example, if we assume that the hole
addition low-energy states are genuine ZR singlets, i.e.,
bound states between a Cu hole and a orthogonal Wannier
oxygen orbital, we obtain a negligible next-nearest-neighbor
hopping.18 On the other hand, if we consider the low-energy
states to be plaquette singlets, i.e., bound states between a Cu
hole and a hole on the state formed by the four oxygens
around the Cu, the value of the next-nearest-neighbor hop-
ping is significant.19 Of course, because of the nonorthogo-
nality of the plaquette states, the plaquette singlets are not
genuine singlets and, therefore, they cannot be rigorously
mapped into holes. However, because their overlap with the
local singlets is larges96%d,11,17 it is still possible that this
approximation is good.

Our calculations show that a multiband model and a
single-bandt-t8-U Hubbard model with a significant value of
the next-nearest-neighbor hopping exhibit a similar low-
energy physics. The essential parameter needed for the
agreement is the next-nearest-neighbor hopping,t8. This pa-
rameter is also the main culprit for the observed electron-
hole asymmetry. However, as mentioned above, the large
value oft8 cannot be obtained in a strict ZR picture. Thus our
results also implicitly indicate that the multiband model can-
not be rigorously reduced to a single-band model. Therefore,
besides showing the similarities between the two models, we
also point out their significant differences in this paper.

The final conclusion is that a single-bandt-t8-U Hubbard
model, with a significant value oft8, captures the basic phys-
ics of the cuprates and thus is suitable to describe the AFM,
pseudogap, and SC physics together with the relevant asym-
metries observed in the phase diagram, in the one-particle
spectra and in the two-particle response functions. However,
we believe that it is not suitable for a quantitative material-
specific analysis, for describing the higher-energy spectro-
scopic features as in optical spectroscopy or resonant inelas-
tic x-ray scattering, or for studying more subtle features
related to the finite value of the spin on the oxygen.

This paper is organized as follows. In Sec. II the two-band
Hubbard model and the DCA technique is introduced. Our
two-band model takes fully into account the oxygen disper-
sion and considers only the oxygen degrees of freedom that
couple directly to the Cudx2−y2 orbitals. The results of the
DCA calculation applied to the two-band Hamiltonian are
presented in Sec. III. The possible reduction of the two-band
model to a single-band model, together with a detailed analy-
sis of the single-bandt-t8-U Hubbard model, is addressed in
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Sec. IV. A discussion regarding the similarities and the dif-
ferences between the two-band and single-band models is
given in Sec. V. The conclusions of our study are reviewed in
Sec. VI.

II. FORMALISM

A. The model Hamiltonian

Band-structure calculations,14,20 cluster calculation,12

photoemission,12 and other experiments show that the rel-
evant Cu degrees of freedom are thedx2−y2 orbitals, which
couple with the in-planepx and py O orbitals. All these de-
grees of freedom result in a five-bandsfour oxygen and one
copper bandd Hamiltonian, in general. We have studied the
five-band model, in detail,21 and have found that due to the
strong Cu-O hybridization, only the oxygen degrees of free-
dom, which couple directly with Cu, are relevant for the
low-energy physics. Consequently, to a very good approxi-
mation, the five-band model can be reduced to a two-band
model.

The two-band model contains one Cudx2−y2 correlated
band and one oxygen band. At every site the oxygen states
are obtained by taking a linear combination withx2−y2 sym-
metry of the four Ops orbitals, which form a plaquette
around the Cu ion. These are the only oxygen states that
hybridize directly with Cu. However, it should be mentioned
that these plaquette states are not orthogonal, two neighbor-
ing states sharing a common oxygen atom. An orthogonal
basis can be obtained by the procedure described in the origi-
nal ZR paper.11 First, applying a Fourier transform, transla-
tional invariant sBlochd states are constructed. The Bloch
states are orthogonal but not normalized, so they should be
multiplied by a normalization factor

bskd = fsin2skx/2d + sin2sky/2g−1/2. s1d

After normalization a complete and orthonormal set of oxy-
gen states is obtained.

In this basis the two-band Hubbard Hamiltonian can be
written as

H = o
k,s

Eskdcks
† cks + Eddks

† dks + Vskdscks
† dks + H.c.d

+ Uo
i

ndi↑ndi↓. s2d

We work in the hole representation, anddks
† scks

† d represents
the creation operator of a CusOd hole with spins and mo-
mentumk. The O-band dispersion and the Cu-O hybridiza-
tion are given by

Eskd = Ep − 8tppb
2skdsin2skx/2dsin2sky/2d s3d

Vskd = 2tpdb
−1skd s4d

with tpp being the O-O hopping integral. The last term in Eq.
s2d represents the Coulomb repulsion between two holes on
the samed orbital. We choose the commonly accepted values
of the parameters, based on the band-structure calculations of
McMahanet al.20 and Hybertsenet al.14 Because of the low

density of oxygen holess25–30%d, we treat the Coulomb
repulsion onO sgiven by Uppd and the repulsion between
nearest-neighbor Cu and O holessgiven byUpdd at the mean-
field level as a reasonable approximation. The effect will be
an increases of our estimation forD=Ep−Ed by Upsn̄p/2d
+Updsn̄d− n̄pd, wheren̄d andn̄p are the average occupation of
Cu and, respectively, O bands. A choice ofUpp=6 eV, Upd
=1.3 eV, andn̄p=0.3 results in a increase ofD by 1.3 eV. To
conclude, we take in Eq.s2d, tpd=1.3 eV, tpp=0.65 eV, D
=4.8 eV, andU=8.8 eV.

B. DCA technique

The DCA is an extension of the dynamical mean field
theory22 sDMFTd. The DMFT maps the lattice problem to an
impurity-embedded self-consistently in a host and therefore
neglects spatial correlations. The DCA maps the lattice to a
finite-sized periodic cluster embedded in a host. Nonlocal
correlations up to the cluster size are treated explicitly, while
the physics on longer length scales is treated at the mean-
field level. Here we calculate the properties of the embedded
cluster with a quantum Monte CarlosQMCd algorithm. The
cluster self-energy is used to calculate the properties of the
host, and this procedure is repeated until a self-consistent
convergent solution is reached. The self-energy and vertex
functions of the cluster are then used to calculate lattice
quantities. Below we give a brief description of DMFT and
its generalization to DCA.

In DMFT, the self-energy can be obtained by neglecting
the momentum conservation at the interaction vertices of the
generating functional and its derivatives. Formally, for
Hubbard-like models,23 this is done by replacing the Laue
function

D = o
r

N

e−isk1+k2−k3−k4dr = Ndk1+k2,k3+k4
, s5d

responsible for momentum conservationssee Fig. 1d, with24

DDMFT = 1. s6d

This is equivalent to replacing the Green’s function used in
the calculation of the self-energy diagrams, with

FIG. 1. Vertex interactions, which enter in the calculation of the
self-energy. In DMFT the momentum conservation is completely
neglected. In DCA the momentum conservation is partially
considered.
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GDMFTsivd =
1

N
o
k

Gsk,ivd, s7d

i.e., the “impurity” Green’s functionGDMFT is obtained as the
average of the lattice Green’s function over the entire Bril-
louin zonesBZd. The DMFT algorithm is the following.sid
One starts with a guess for the self-energySDMFT, which, for
instance, can be zero or a perturbation theory result. The
lattice Green’s function is then

Gsk,ivd = fiv − eskd − SDMFTsivdg−1 s8d

sii d The impurity Green’s function is obtained using Eq.s7d,
and the impurity excluded Green’s function as

G0
−1sivd = GDMFT

−1 sivd + SDMFTsivd. s9d

Such a problem is reduced to an impurity embedded in a
host; the impurity excluded Green’s function containing the
full information about the hybridization of the impurity with
the host.siii d The “embedded impurity” problem is solved
using techniques such as QMC, exact diagonalization, renor-
malization group, etc.,22 and the impurity Green’s function
GDMFT is obtained. The resulting self-energy is

SDMFTsivd = G0
−1sivd − GDMFT

−1 sivd. s10d

This self-energy is used again as a input for stepsid, and the
procedure is repeated until the convergence is reached.

In DCA, the momentum conservation at the internal ver-
tices of the irreducible quantities is partially restored. The
BZ is split into Nc coarse-graining cells each equivalent to
the Wigner-Seitz cell of the superlattice formed by tiling the
lattice with the clusterssee Fig. 2 forNc=4d. The momentum
transferred between the cells, i.e., the momentum larger than
the cell length, is conserved. On the other hand, the conser-
vation of the momentum within the cell, i.e., the momentum
smaller than the cell length, is neglected. Formally, this is
done by approximating the Laue function with

DDCA = NcdK1+K2,K3+K4
, s11d

where theK1,K2,…K4 label the cell centers. The Green’s
function used in the calculation of the self-energy is then

GDCAsK,ivd =
Nc

N
o
k̃

GsK + k̃,ivd, s12d

where thek̃ summation is taken over the cell centered onK.
The DCA algorithm is very similar with the DMFT one,
containing the same steps. The difference is that now, the
self-energy is partially momentum dependent, and the
problem does not reduce to an impurity embedded in a
host, but to a cluster with periodic boundary conditions em-
bedded in a host. The Green’s functions in Eqs.s9d ands10d
slabeled now with the DCA subscript instead of DMFTd will
be K dependent, as it is the self-energySDCAsK , ivd. We
solve the cluster-embedded-in-a-host problem with a
Hirsch-Fye-type25 QMC algorithm. A detailed description of
the QMC-DCA algorithm is given in Ref. 26.

Neglecting the conservation of small momentum
fk,DK=s2p /NddNcg in the calculation of the self-energy is
equivalent with neglecting long-ranged correlationssL
.p /DKd, according to Nyquist theorem. Therefore this
technique is ideal for the problems where short-range corre-
lations are predominant, such as the high-Tc materials.

For simplicity, the above discussion about DMFT and
DCA was done by assuming a single-band Hubbard model.
In the two-band model the oxygen degrees of freedom are
not correlated, and therefore they are not included explicitly
in the cluster. Their effect is fully contained in the cluster-
host hybridization function and in the host of Green’s func-
tions. The Green’s functionGDCA, which enters in the calcu-
lation of the self-energy, is obtained by coarse-graining the
lattice Green’s function describing thed orbitals, i.e.,

GDCAsK,ivd =
Nc

N
o
k̃

GddsK + k̃,ivd, s13d

where

Gddsk,ivd = Fiv − Ed −
Vpd

2 skd
iv − Eskd

− SDCAsK,ivdG−1

.

s14d

By comparing Eq.s14d to Eq. s8d one can see that inGdd
there is a term resulting from the hybridization of thed and
p orbitals.

Here we consider a 232 cluster of Cu ions, which we
believe to be large enough to capture the essential physics of
Hubbard-type models. The 232 cluster will result in a
coarse-graining of the BZ in four cells, as shown in Fig. 2.

III. TWO-BAND HUBBARD MODEL RESULTS

The undoped materials have one hole per CuO unit. For
tpd=0 the DOS is given by the dashed line in Fig. 3 and the
hole addition states would be of pure O character. When the
Cu-O hybridizationtpd is switched on, the extra holes added

FIG. 2. Coarse-graining of the Brillouin Zone in four cellssNc

=4d aroundK=s0,0d ,s0,pd ,sp ,0d, andsp ,pd.
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to the oxygen band will scatter with the Cu spins and bound
states will appear at the bottom of the oxygen band. This is
illustrated by the solid line, which plots the partiald DOS
that was obtained using the maximum entropy method
sMEMd27 for the analytic continuation of the QMC data to
real frequencies. It can be noted that the first hole addition
states have a strongly mixedd and p charactersthe d char-
acter in the spectrum is large nowd and an energy pushed
well below the edge of the initial nonbonding oxygen band.
Therefore only these states are relevant for the low-energy
physics.28 In the ZR theory these low-energy states, which
appear as a consequence of the strong Cu-O hybridization,
are considered to be local singlets that move through the
lattice like holes in an AFM background. Consequently, the
claim is that the physics can be described by a one-band
t-J model.

In order to determine the phase diagram we calculate a
large number of susceptibilities that are relevant for spin,
charge, and superconducting ordering, both at the center and
the corner of the BZ. For example, the Néel and SC critical
temperatures,TN and respectivelyTc in the phase diagram
presented in Fig. 4 are determined from the divergence of the
corresponding susceptibilities. The pseudogap crossover
temperatureT* is obtained from the maximum in the uni-
form magnetic susceptibility when accompanied by a sup-
pression of spectral weight in the DOS. Similar to what was
found in the single-band Hubbard model,29 we find AFM and
d-wave SC for both electron- and hole-doped regimes. How-
ever, the electron-hole symmetry is broken. In the electron-
doped case AFM persists to a much larger doping. On the

contrary, SC disappears at a smaller critical doping.30 These
features of the phase diagram are in qualitative agreement
with the experimental findings.2

The one-electron spectral functions, as measured with
photoemission, are also different. Our 232 cluster divides
the BZ into four cells aroundK=s0,0d ,s0,pd ,sp ,0d, and
sp ,pd ssee Fig. 2d and approximates the lattice self-energy
by a constantSsK ,vd within a cell. Because of this coarse-
graining, a comparison with ARPES is not possible, apart
from gross features. However, as the phase diagram shows,
we believe that even our small cluster captures much of the
physics of the cuprates. Here we want to stress the difference
between the electron- and hole-doped cases within our 2
32 cluster approximation. In Fig. 5sad and 5sbd we show the
total d states DOS and thed coarse-grainedK dependent
DOS fwhich would correspond to the average over allk be-
longing to a coarse-graining cell of the single particle spectra
Ask,vdg for the hole- and, respectively, for the electron-
doped case, at 5% doping. The total DOS looks qualitatively
similar, and at the chemical potential, we see in both cases a
depletion of states, which indicates the presence of the
pseudogap. TheK dependent DOS is very different. The im-
portant feature that we want to stress is the location of the
pseudogap in the BZ. In the hole-doped case, the pseudogap
appears arounds0,pd. For the electron-doped case we do not
detect any suppression of states arounds0,pd even though
the pseudogap is clearly present in the total DOS. These
features are in agreement with the photoemission experi-
ments. The hole-doped materials show Fermi pockets around
sp /2 ,p /2d and gapped states arounds0,pd.3 For the
electron-doped materials the photoemission spectra4 exhibit
a gap nearsp /2 ,p /2d and Fermi surface pockets around
s0,pd. With the present cluster size the DCA cannot deter-
mine where ink space the pseudogap is, but it is interesting
that it is not ats0,pd. The presence of the pseudogap at
sp /2 ,p /2d for the electron-doped system can only be
checked by increasing the cluster size, and this work is in
progress.

The electron- and the hole-doped susceptibility functions
are also different both for the divergence temperatures and
the temperature and doping dependence. In Fig. 6 we show
the uniform spin and charge susceptibilities versus tempera-
ture at 5% and 10% doping. A common feature for all cases
is the existence of a characteristic temperatureT* below

FIG. 3. Two-band Hubbard model DOS at 0% doping. The solid
line is thed part of the DOS calculated atT=685 K. The value of
the parameters istpd=1.3 eV, tpp=0.65 eV, D=4.8 eV, and U
=8.8 eV. The dashed line shows the DOS whentpd=0. The chemi-
cal potentialm=0.

FIG. 4. Two-band Hubbard model phase diagram.

FIG. 5. Totald DOS and coarse-grainedK dependentd DOS at
5% doping:sad hole-doping case andsbd electron-doping case.
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which the spin response is suppressed and the charge re-
sponse is enhanced.T* corresponds to the pseudogapsseen
in the DOSd onset temperature. The suppression of the spin
excitations belowT* was also seen in NMR experiments31

and it was associated with the pseudogap. Besides these
common features the electron- and the hole-doped suscepti-
bilities behave differently. Generally, the maximum value of
the spin susceptibility increases with hole filling. This means
that in the hole-doped case, the spin susceptibility at the
pseudogap temperature is strongly increasing with doping
unlike in the electron-doped case, where it decreases upon
doping. At the same doping the hole-doped spin susceptibil-
ity is much larger than the electron-doped one. Another in-
teresting feature is the very strong increase of the charge
susceptibility for the electron-doped case in the underdoped
region s5% dopingd, suggesting a tendency toward phase
separation.32

Asymmetric behavior can also be noted in Fig. 7, where
we plot the inverse of the d-wave-paring susceptibility.
Above Tc the pairing susceptibility increases with doping in
the electron-doped case and remains more or less constant in
the hole-doped case.

Because of the large Cu-O hybridization the system is
strongly covalent. For example, in the undoped regime the
Cu occupation number is only<73%. The fact that the cu-
prates are strongly covalent was also observed in NMR
measurements.33 We note that the system exhibits a slightly
doping-dependent covalency. This is shown in Fig. 8sad,

where the Cu occupation number versus hole density is plot-
ted. A constant covalency, equal to the one in the undoped
regimesi.e., 0.73 Cu holes and 0.27 O holes per sited, would
correspond to the dashed line. It can be noted that, for the
electron-doped regime, the Cu hole occupation number is
decreasing faster than the hole concentration, which indi-
cates an increasing covalency with increasing electron dop-
ing. This happens because at large electron doping, i.e., when
the hole-filling of the CuO2 plane is small, the effective hy-
bridization is a result of a largeVskd in the BZ.34 Increasing
the number of holes, the BZ starts to fill up and a smaller
Vskd will be responsible for the hybridization, and, conse-
quently, the covalency decreases. For the hole-doped regime,
the extra holes go primarily on the oxygen band, and there-
fore we do not have a direct measure of the covalency.

In Fig. 8sad the unscreened moment on the Cu orbitals is
shown. It is defined as

m2 = ksndi↑ − ndi↓d2l = nd − 2kndi↑ndi↓l. s15d

The difference betweennd andm2 is a measure of the double
occupancy with holes on Cu sites. In the electron-doped re-
gime the double occupancy is very small, but it increases
substantially in the hole-doped regime, which indicates that
the low-energy hole addition states contain double-occupied
Cu configurations in a significant measure.

In Fig. 8sbd the screened moment on Cu, defined as

Txlocal =
T

N
o

i
E

0

b

kSi
−stdSi

+s0dldt, s16d

whereSi is Cu spin operator at sitei, is shown. The main
effect of the extra holes is to screen the spins on the Cu sites.
The screening starts to be effective below temperatures of
about<0.5 eVsnot shownd. In the Zhang-Rice11 scenario an
extra hole perfectly screens one spin on Cu forming a
strongly bound on-site singlet, which would contain a sig-
nificant amount of the double-occupied Cu configuration. So,
our results do not contradict the ZR theory, but also do not
exclude other scenarios where the extra holes form more
complicated bound states that involve more than one Cu
spin. Quantitative analysis based on the amount of screening
as function of hole doping cannot give an answer to the
validity of the ZR assumption because, aside from the

FIG. 6. Uniform spinxspin supper partd and chargexch slower
partd susceptibilities vs temperature for different hole densities.n in
the legend represents the number of holes per unit cell.

FIG. 7. Inverse of thed-wave-pairing susceptibilityxSC
−1 vs tem-

perature for different hole densities.

FIG. 8. sad The Cu occupation numbernd, the unscreened Cu
momentm2 fEq. s15dg vs hole filling. sbd The screened Cu moment
Txlocal fEq. s16dg vs hole filling.
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screening due to the oxygen holes, there are also nonlocal
processes that contribute to the screening of Cu moments
sfor example, a possibility is the formation of intersite spin
singlets associated with the resonance valence bond sce-
nariod.

IV. REDUCTION TO SINGLE-BAND HUBBARD MODEL

Concluding that the electron-hole asymmetry is an intrin-
sic property of the CuO2 plane, we next address the cause of
this asymmetry and the possible reduction to a one-band
model.

In Sec. III we showed that, because of the Cu-O hybrid-
ization, the addition of holes results in the formation of low-
energy states, with an energy well belows<1 eVd the initial
oxygen bandssee Fig. 3d. The reduction to a one-band model
is based on the ZR claim that these states are singlets, i.e.,
spinless entities that can be regarded as holes moving in an
antiferromagnetic background. Because of the Monte Carlo
nature of our calculation, which does not provide a wave
function for the ground state, we cannot directly determine
the exact nature of these states. The most we can do is to
compare the results of a two-band Hubbard model calcula-
tion to those of a one-band Hubbard model and, based on the
similarities and differences that we might find, to decide
about the validity of the single-band approach.

A. Zhang and Rice11 approximation and derivation
of the effective parameters

In order to compare the two- and one-band models, we
should first get an idea about the possible single-band model
effective parameters. We discuss here two different ap-
proaches for calculating these parameters, both based on the
assumption that the low-energy states are localized and close
to the ZR-proposed singlets.

1. Cell-perturbation theory

The cell-perturbation theory18 assumes that the ZR map-
ping is strictly true and therefore the low-energy states are
genuine local singlets. Here and everywhere in the paper by
local we refer to the oxygenorthogonal Wannier states,
which are different from the non orthogonal plaquette states
around the Cu ions.

To deduce the one-band model parameters we work in the
site representation. We can Fourier transform Eq.s2d and
write it as

H = H0 + H1, s17d

where

H0 = o
i

H0i = SiSsfE0cis
† cis + Eddis

† dis + V0scis
† dis + H.cdg

+ Undi↑ndi↓. s18d

Here i represents the site index. The oxygen operatorsci
describe the orthogonal Wannier states. The ZR assumption
implies thatH0 is responsible for the formation of the low-
energy statesslocal singletsd, andH1 will determine the hop-
ping parameters. Therefore the cell-perturbation theory pro-
vides a means to determine the one-band parameters
provided that the ZR assumption is correct. Elaborate calcu-
lations along this line were done in Ref. 18 for a variety of
multiband parameters. In a first-order approximation inH1,
the effectiveU is given by

Ueff = E2 + E0 − 2E1, s19d

whereE2, E1, andE0 represent the energies of the twosi.e.,
the ZR singletd, one si.e., the bonding stated, and, respec-
tively, zero-hole states of Eq.s18d. An important point is that
H1 introduces three types of hoppings. If we denote with
u2il , u1il, andu0il, the lowest energy states ofH0i correspond-
ing to two, one, and, respectively, zero holes, we have the
following hopping integrals:

tij
h = k2i,1juH1u1i,2jl, s20d

tij
e = k0i,1juH1u1i,0jl, s21d

tij
J = k1i,1juH1u0i,2jl, s22d

whereth fEq. s20dg describes the hopping of the ZR singlet,
te fEq. s21dg is the hopping of the electron, andtJ produces
the exchange interaction

J = 4tJ
2
/Ueff. s23d

The cell-perturbation theory applied to our model gives the
parameters shown in the first row of Table. I.

We want to point out two things. First, the reduced Hamil-
tonian in the cell-perturbation theory is at-t8-J model,

H = − to
ki,jl

b̂i
†b̂j − t8 o

kki,jll
b̂i

†b̂j + Jo
ki,jl

SiSj , s24d

with different hopping parameters for the electron- and the
hole-doped regions and with a value of the exchange inter-
action not determined by the quasiparticle’s hoppingsth or
ted, but, as it is shown in Eq.s23d, by tJ. Therefore, a com-
parison with a one-band Hubbard model, should be done
cautiously. Second, we want to stress that the value of the
next-nearest-neighbor hopping termsste8 andth8d is very small
compared to the nearest-neighbor terms. The reason is that
the initial oxygen-oxygen hybridizationtpp results in an ef-

TABLE I. First row: parameters calculated using cell-perturbation theory, and second row: parameters calculated using cluster diagonal-
ization sin eVd.

cell perturbation U=3.04 J=0.25 J8<0 th=0.477 te=−0.35 tJ=0.433 th8=−0.03 te8=−0.016 tJ8=−0.003

cluster calculation J=0.192 J8=0.012 th=0.452 te=−0.323 th8=−0.169 te8=0.078
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fective hopping term comparable in magnitude to the one
resulting from the copper-oxygen hybridization, but with a
different sign. This was also remarked in Ref. 18 and turns
out to be an important observation for our final conclusions.

2. Cluster calculation

The other approach used for determining the parameters
of the one-band model is based on a cluster calculation. In
order to estimate the nearest-neighbor hopping, the next-
nearest-neighbor hopping, and the exchange terms, Eskeset
al.19 considered two clusters, CuO7 swhich contains two
nearest-neighbor Cu ionsd and, respectively, CuO8 swhich
contains two next-nearest-neighbor Cu ionsd. The exchange
term is determined as the energy difference between the sin-
glet and the triplet state of two holes on a cluster. For three
holes on a cluster, the two energetically lowest states can be
very well s98%d approximated with the bonding and anti-
bonding states of aplaquetteZR singlethopping between the
two cells. Therefore, the differences between these two lev-
els is two times the ZR singlet hoppingth. In an analogous
way, considering only one hole on a cluster, the electron
hopping te is determined. Using the cluster approach, our
two-band model results in the effective parameters shown in
the second row of the Table I.

3. Comparison of the two approaches

It can be immediately noted that the two approaches pro-
duce different parameters, especially regarding the value of
the next-nearest-neighbor hoppings. In the cluster calculation
we obtain significant next-nearest-neighbor hoping terms,
ute8u / uteu=0.22 anduth8u / uthu=0.37 with different signs for the
hole- and, respectively, electron-doped casesth8k0,te8l0d.

The reason for the discrepancy between the two ap-
proaches is that, unlike the cell-perturbation method, which
considers local singlets, the cluster approach considers sin-
glets between a Cu hole and an oxygen state formed on the
plaquette around the Cu ion. Since the oxygen plaquette
states are nonorthogonal, it is possible to write them as a
linear combination of many orthogonal oxygen states at dif-
ferent sites, i.e., the plaquette singlets are nonlocal statessin
the orthogonal based. At first glance this nonlocality seems
irrelevant sthe overlap of the local oxygen states with the
plaquette states11,17 is about 96%d, but apparently it turns out
to influence the value of the next-nearest-neighbor hopping
of the reduced Hamiltonian considerably.

It is worth pointing out that, in the cluster approach, the
large value of the next-nearest-neighbor hopping terms re-
sults solely from the finite oxygen dispersion and the lack of
hopping between the copper and the next-nearest-neighbor
oxygen plaquette state. On the other hand, in the cell-
perturbation theory a copper next-nearest-neighbor oxygen-
hopping term is present. It results in an effective next-
nearest-neighbor hopping with a sign different from the one
produced via oxygen-oxygen hopping.

B. Possible reasons for the reduction to fail

We believe that a comparison between the two-band Hub-
bard model and a single-band Hubbard model should be

done with extreme caution. We want to stress the possible
problems here.

First, the reduction based on the ZR approximation, which
results in a single-bandt-J sor t-t8-Jd model assumes the
strong-coupling limit, i.e., a ratioUeff/ t@8 sthe two-
dimensional bandwidth isW=8td. The low-energy density of
states of the two-band model shown in Figs. 3 and 5 indi-
cates a bandwidth of the order of the gap, showing that we
are rather at the intermediate coupling than at strong cou-
pling. In the cell-perturbation theory we getUeff/ t

J=7.02,
which also suggests intermediate-coupling physics. There-
fore, the question to be asked is whether the intermediate
coupling regime, characterized by an effective repulsion of
the same order of magnitude as the bandwidth, can still be
well approximated by a second-order perturbation reduced
t-J model.

Second, considering the previous objection, one may
think that a reduction to the single-band Hubbard model in
the intermediate coupling regime, rather than to at-J model,
is more appropriate. However, serious problems arise from
the fact that, in the ZR theory the nature of the antiferromag-
netic correlations is different from that in the single-band
Hubbard model, i.e., it is not directly related to the quasipar-
ticle sZR singlet or electrond hopping. Therefore, unless both
the two- and one-band Hubbard models can be reduced to a
t-J model, a comparison between them does not make much
sense. Nevertheless, we believe that even when the effective
repulsion is comparable to the bandwidth the second-order
perturbation theory, which produces thet-J model, can be
used successfully. We are going to discuss this at the begin-
ning of Sec. IV C.

Third, the nonlocality of the low-energy statessin the
sense discussed in Sec. IV A 3d can have very serious con-
sequences beyond determining the value of the hopping pa-
rameters, making the single-band approach to fail com-
pletely.

C. t-t8-U Hubbard model results

The t-J model results as a low-energy effective Hamil-
tonian from the Hubbard model by projecting out the doubly
occupied states. Therefore, the double occupancy of the site
orbitals constitutes a measure of the validity of this approxi-
mation. In Fig. 9 we plot the double occupancy of the site
orbitals for different values of the ratioU / t. It can be noted
that forU / tù6, the double occupancy is always smaller than
6%.35 This indicates that, even in the intermediate coupling
regime, the low-energy physics of the one-band Hubbard
model can be well described by at-J model.

Even if, it is more natural to compare the two-band model
with a t-t8-J sor a t-t8-J-J8d model, this turns out, from our
perspective, to be rather inconvenient because of the techni-
cal difficulties encountered by the QMC when applied to
such models. Therefore, we proceed by comparing the two-
band model with at-t8-U Hubbard model, focusing on the
qualitative features rather than on a quantitative comparison.
In the strong-coupling limit, thet-t8-U model reduces to a
t-t8-J-J8 model, with the constraintJ8=J3 st8 / td2. Therefore,
it is reasonable to assume that if the value ofst8 / td2 is not too
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large and the reduction of the two-band model to a single-
band model is valid, the two models should exhibit similar
physics.

Assuming that the reduction to a one-band model in the
spirit of the ZR approximation is possible, we should expect
from Table. I the hopping parameters to be different in the
hole- and electron-doped regions. On the other hand, the
exchange interaction,

J =
4t2

U
, s25d

should be the same.
Therefore, we study the single-bandt-t8-U Hubbard

model and address the following questions:sid How do the
system properties depend on the ratiot /J? sii d What is the
role of the next-nearest-neighbor hoping t’?

1. t/J dependence

The values of the parameters in Table I show that, in
general, the ratiout /Ju is larger in the hole-doped regime than
in the electron-doped case. In order to address the electron-
hole asymmetry observed in the two-band model, in this sec-
tion we study the properties of the single-band Hubbard
model as a function oft /J, by keepingJ fgiven by Eq.s25dg
constant and varying the hoppingt. The next-nearest-
neighbor hoppingt8 is set to zero.

With respect to antiferromagnetism, with increasingt the
Néel temperature at small doping and the critical doping

where the antiferromagnetism disappear decrease. For ex-
ample, at 5% doping, the antiferromagnetic susceptibility is
diverging only for the small value oft shown in Fig. 10.
Assuming that the hole-doped regime is characterized by a
larger value oft /J, this feature is in agreement with the
two-band model asymmetric behaviorssee Fig. 4d.

The uniform spin susceptibility is shown in Fig. 11. One
can note that an increase oft results in an increase ofT* and
a decrease of the spin susceptibility atT*. This together with
the behavior of the susceptibility as a function of doping is in
contrast to what was observed in the two-band modelssee
Fig. 6d where the spin susceptibility is larger in the hole-
doped case and an increasesdecreased with doping of the
susceptibility atT* for the hole- and electron-doped regimes
is found.

The behavior of thed-wave-pairing susceptibility as a
function of t is shown in Fig. 12. The critical temperature
increases with increasingt sthe increase ofTc is about 10%
of the increase oftd, as can be seen in Fig. 12sad. This in-
crease is much too large to be in agreement with the two-
band-model results even if, actually, for the two-band model
we obtained a hole-dopedTc larger, with about 20 K, than
the electron-doped one.36 By extrapolating the inverse of the
d-wave-pairing susceptibility at 28% dopingfsee Fig. 12sbdg,
it can be concluded that an increase oft results in an increase

FIG. 10. Antiferromagnetic susceptibility at 5% doping, for
three different values oft, whenJ is constant.

FIG. 11. Spin and charge susceptibilities at 5%sblackd and 10%
sgrayd doping for t=0.37 eVscircled and t=0.52 eVssquared.

FIG. 9. The relative double occupancy of the orbitals,kn↑n↓l /n,
vs hole filling n for different values of the ratioU / t of the single-
band Hubbard model.

FIG. 12. Inverse ofd-wave-pairing susceptibility vs temperature
for different hole densities and hopping parameters. Insetsad The
critical temperature vst at 5% scircled and 10%ssquaresd doping.
Inset sbd Inverse ofd-wave-pairing susceptibility vs temperature at
28% doping, fort=0.37 eVscirclesd and t=0.52 eVsdiamondsd.
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of the critical doping where SC disappears. We also note
that, at small doping and aboveTc, a larget suppresses the
pairing correlations. These features are in agreement with the
asymmetry of the two-band-model phase diagram. Neverthe-
less, we note that, aboveTc and for both values oft, by
increasing the doping the pairing correlations increase, too.
This behavior is characteristic in the electron-doped regime
of the two-band model, but cannot explain the hole-doped
regime where the pairing does not depend on the dopingssee
Fig. 7d. The other difference between the two-band and the
single-band Hubbard model is the value of the SC suscepti-
bility critical exponentg, which is much smaller in the two-
band model.

The density of states and the K-dependent DOS for the
one-bandt-U Hubbard model at 5% doping is shown in Fig.
13. The one-particle spectra exhibit a pseudogap in the total
DOS and in the K-dependent DOS ats0,pd point in BZ,
similar to the hole-doped spectra of the two-band Hubbard
model. The single-bandt-U Hubbard Hamiltonian is particle-
hole symmetric and therefore cannot explain the one-particle
spectra in the electron-doped regime of the two-band Hub-
bard model.

At the end of this section we conclude the following: A
single-bandt-U Hubbard modelsi.e., t8=0d with a larger
value of the hopping parameter for the hole-doped regime
cannotexplain the electron-hole asymmetries observed in the
two-band Hubbard model, especially the ones that character-
ize the one-particle spectral functions and the susceptibility
functions.

2. t8 dependence

In this section we study the role of the next-nearest-
neighbor hoppingt8 in the single-band Hubbard model

H = − to
ki,jl

bi
†bj − t8 o

kki,jll
bi

†bj + Uo
i

ni↑ni↓. s26d

We choose the following parameters,U=3.6 eV, t
=−0.45 eV, andt8=0.15 eV. These parameters are close to
the ones in Table. I, resulting inJ=0.22 eV and J8
=0.02 eV.

As for the two-band Hubbard model, we work in the hole
representation, defined as the one where the filling 1+d cor-
responds to a hole dopingd. Values of the filling smaller than

one correspond to the electron-doped regime. We keep the
sign of t8 always positive. In order to avoid confusion we
want to point out that in at-J model the filling is always
smaller than one. Therefore, in order to describe the electron-
and hole-doped regimes one has to employ the hole and,
respectively, the electron representation. Accordingly, the
sign of t8 has to be chosen negative in the hole-doped regime
and positive in the electron-doped case.37

In Fig. 14 the phase diagram of thet-t8-U model is shown
with a solid line. For comparison, the phase diagram oft-U
Hubbard modelsi.e., t8=0 cased, which is symmetric with
respect to hole and electron doping, is shown with a dashed
line. At half filling, t8 introduces an effective antiferromag-
netic exchangeJ8=4t82/U between the same sublattice spins
and subsequently frustrates the lattice. However, at finite
electron doping,t8 favors the antiferromagnetism, making it
persist up to a larger doping. On the other hand, in the hole-
doped case, the antiferromagnetism is always suppressed by
t8. With respect to superconductivity, the presence oft8 re-
sults in a smallerslargerd critical electronsholed doping at
which the superconductivity disappears. The asymmetry in-
troduced byt8 is in agreement with the one observed in the
two-band model phase diagram. We find thatt8 has no major
influence on the maximum superconductivity critical tem-
peratureTc

max.
The uniform spin and charge susceptibilities are shown in

Fig. 15. The spin susceptibility at the pseudogap temperature
T* is strongly increasing with doping for the hole-doped
case, and an opposite effect is seen for the electron-doped
case. The downturn atT* in the spin susceptibility is much
sharper for the hole-doped regime, indicating a fast transition
to the pseudogap physics. All these features are in very good
qualitative agreement with the ones corresponding to the
two-band Hubbard model. Because of the similarity with the
two-band model, it is also worth mentioning that in the
electron-doped regime the charge susceptibility is strongly
increased belowT* in the underdoped region.

The d-wave-paring susceptibilities shown in Fig. 16 ex-
hibit asymmetric features, also in a qualitative agreement
with those in the two-band model. In the electron-doped re-
gime, by increasing the doping, the pairing correlations
aboveTc increase. In the hole-doped regime close toTc, the
pairing correlations do not significantly depend on the dop-
ing. However, contrary to the two-band model behavior, at

FIG. 13. Single-bandt-U Hubbard model total andK-dependent
DOS at 5% doping.J=0.22 eV,t=0.45 eV

FIG. 14. t-t8-U Hubbard modelssolid lined and t-U Hubbard
model sdashed lined phase diagrams fort=−0.45 eV,U=3.6 eV.
For thet-t8-U Hubbard modelt8 / t=−0.3.
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larger temperature, an increase of pairing correlations with
doping is observed. The magnitude of this increase is smaller
than in the electron-doped case and a larger value oft8 se.g.,
t8<0.4t, not shownd will reduce it further, improving the
resemblance with the two-band model.

In Fig. 17 we present the DOS of thet-t8-U Hubbard
model at 5% doping. The one-particle spectral functions re-
semble the corresponding two-band Hubbard model ones.
The presence of thet8 parameter is responsible for the loca-
tion of the pseudogap in the BZ.

The necessity of thet8 in explaining the measured angle-
resolved photoemission spectroscopysARPESd line shape
and the electron-hole asymmetry was realized early on.38,39

Representing hoppings in the same sublattice, this parameter
is not severely renormalized by the AFM background and,
consequently, its influence turns out to be important. Exact
diagonalization results39 of a t-t8-J model are in agreement
with ours. Thet8-hopping process lowers the kinetic energy
and moves the quasiparticle position fromsp /2 ,p /2d to
s0,pd in the electron-doped case. The Néel-like configura-
tions, which do not hinder this process, are stabilized. In the
hole-doped case thet8 hopping does not lower the kinetic
energy of quasiparticles and it is not energetically favorable,
therefore leading to a suppression of AFM at all dopings.

The main conclusion of this section is that a one-band
t-t8-U Hubbard model describes qualitatively well the phys-
ics si.e., the phase diagram, the one-particle spectra, and the
two-particle response functionsd of the two-band Hubbard

model, provided a significant value of the next-nearest-
neighbor hoppingst8 / t<0.2−0.5d, is considered. However,
besides all these similarities there are also some important
differences that we emphasize in Sec. V.

V. DISCUSSION

In general, the deduction of an effective low-energy
Hamiltonian implies two steps. First, defining the low-energy
states, and second, projecting the resolvent operator,GsEd
=sE−Hd−1, on the subspace spanned by these low-energy
states.40 The inverse of the projected operator can be written
as E−HeffsEd, whereHeff is the low-energy Hamiltonian.41

This procedure is equivalent to finding an Hamiltonian that
produces the same one-, two-, three-particle, etc., spectral
functions on the energy range considered to be “low energy.”

Rigorously, in order to prove that the one-band model is
the effective Hamiltonian, which describes the two-band
Hubbard model in low-energy physics, we should compare
not only the one- and two-particle spectra, but also all
higher-order correlation functions. However, we believe that
the comparison of only the one- and two-particle spectral
functions is compelling enough, especially since the experi-
mental information is also obtained by measuring the re-
sponse functions behaviorsand in almost all cases the two-
or one-particle operators; as in photoemission, are involvedd.
It is also true that a comparison of the dynamic susceptibili-
ties would be required, but with our quantum Monte Carlo
based algorithm the calculation of these quantities for the
two-band model is extremely computational resource con-
suming and has not been done yet. However partial informa-
tion about the relevant excited states is contained in the tem-
perature behavior of the static susceptibilities.

The main conclusion of Sec. IV is that at-t8-U Hubbard
model describes qualitatively well the physics of the two-
band Hubbard model, but only if a substantial next-nearest-
neighbor hopping is considered. However, the calculation in
Sec. IV A 1 sfirst row of Table Id and the more rigorous
results by Jeffersonet al.,18 show that in a strict ZR picture
the next-nearest-neighbor hopping is negligible. Therefore it
is difficult to explain the two-band Hubbard model physics
assuming the formation of local ZR singlets. For hole-doped
systems, a significant value oft8 can be obtained only if the

FIG. 17. sad t-t8-U total DOS and coarse-grainedK-dependent
DOS at 5% doping fort=−0.45 eV,t8 / t=−0.3,U=3.6 eV.sad hole-
doping case andsbd electron-doping case.

FIG. 15. t-t8-U Hubbard model. Uniform spinxspin supper partd
and chargexch slower partd susceptibilities vs temperature for dif-
ferent hole densities.

FIG. 16. t-t8-U Hubbard model. Inverse of thed-wave-pairing
susceptibilityxSC

−1 vs temperature for different hole densities.
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extra holes form nonlocal bound states with the existing Cu
holes, presumably something close to the plaquette singlets.
Of course we have no reasons to discard other states spread
over even more oxygen sites, which can result in a magni-
tude of the hopping parameters differentsprobably not too
muchd from the one obtained by cluster calculationssecond
row of Table Id. In the electron-doped systems, the doping-
dependent covalency shown in Fig. 8sad clearly indicates that
the hybridization of the Cu with the O states at different sites
is important. A doping-dependent covalency should also im-
ply doping-dependent parameters.

The cluster calculation, which allows the formation of
nonlocal splaquetted low-energy states, unlike the cell-
perturbation approachsor strict ZRd, provides a value of the
hopping parameters that qualitatively captures the physics of
the two-band model. However, we do not believe that finding
the exact value of the one-band Hubbard model parameters is
a relevant or even a well-addressed problem, because the
nonlocality of the low-energy states implies that the two
models are not equivalent. Aside from the similarities be-
tween the two-band andt-t8-U Hubbard models discussed in
Sec. IV C 2 we also find some differences.

For example, one important difference can be observed in
the d-wave-pairing susceptibilitysFigs. 7 and 16d. In the
two-band Hubbard model the critical exponentg, which de-
fines the divergence of the susceptibility atTc, is much
smaller saround <0.4 at finite hole dopingd than the one
characteristic to the one-band modelsaround<0.6d, indicat-
ing larger fluctuations.42,43

Both the cell perturbation and cluster calculation provide
a larger nearest-neighbor hoppingt for the hole-doped re-
gion. According to the analysis presented in Sec. IV C 1, this
should result in both largerT* and Tc. However, the two-
band model results do not indicate that this is the case, the
respective critical temperatures being not very different in
the electron- and hole-doped regimes.

Based on our comparison we can draw the following con-
clusions. The one-band Hubbard model retains much of the
two-band Hubbard model physics, but a significant next-
nearest-neighbor hoppingst8 / t<0.3d should be provided. If
the purpose of the investigation is the study of the basic
physics, such as the SC mechanism, the proximity of AFM,
SC, and pseudogap, we believe that a one-bandt-t8-U Hub-
bard model should be good enough. On the other hand, if the
purpose is to describe more subtle features, such as the ones
that may result from the finite value of the spin correlation
on oxygen, or if a quantitative material-specific calculation is
desired, the single-band model approach fails. Obviously
also the single-band model should not be used to describe
spectral features at energies above 0.5 eV, such as the optical,
electron energy loss, and inelastic x-ray-scattering results.

VI. SUMMARY AND CONCLUSIONS

In this paper we use the DCA to calculate the properties
of the two-band Hubbard model. The 232-site cluster phase
diagram resembles the generic phase diagram of the cuprates
and exhibits electron-hole asymmetry. We also find asym-
metric features for the one-particle spectral functions and for

the relevant susceptibility functions. These characteristics are
in qualitative agreement with experimental findings.

We address the validity of the single-band Hamiltonian as
the effective low-energy model for the cuprates. We discuss
the possible problems that may cause the failure of the re-
duction from two-band to one-band and also show that, de-
pending on the approximations involved, the value of the
one-band Hubbard parameterssespecially the next-nearest-
neighbor hoppingd can be significantly different.

We use DCA to study the role of the different parameters
in the single-bandt-t8-U Hubbard model and compare the
phase diagram, the one-particle, and two-particle response
functions to those corresponding to the two-band Hubbard
model. We conclude that the two models exhibit similar low-
energy physics provided that a significant next-nearest-
neighbor hoppingt8 is considered. The parametert8 is also
the main culprit for the electron-hole asymmetry of the cu-
prates.

The large value oft8 needed for a qualitative agreement
between the two models cannot be obtained in a strict ZR
picture, where the extra holes form local singlets with the
existing Cu holes. Plaquette singlets, which in the oxygen
Wannier representation are not local, and presumably other
spatially extended states can provide a larger value oft8. The
doping-dependent covalency in the electron-doped case also
indicates that the nonlocal Cu-O hybridization is important.
However, the formation of nonlocal low-energy states also
implies that they are not real singlets and, consequently, can-
not be rigorously mapped into holes, and therefore the two
models are not equivalent.

We also point out some differences between the two mod-
els. In the two-band Hubbard model the fluctuations in the
d-wave-pairing channel aboveTc is much stronger. The de-
duction of the parameters both in cell perturbation and clus-
ter approach results in a larger nearest-neighbor hoppingt for
the hole-doped regime. However the critical temperaturesT*
andTc in the two-band Hubbard model are approximatively
the same in both regimes, quite different from what should
be expected.

The conclusion is that a single-band Hubbard model with
a significant value of the next-nearest-neighbor hopping
st8 / t<0.3d captures the basic physics of the two-band Hub-
bard model, including the proximity of antiferromagnetism,
superconductivity, and pseudogap and explaining the
electron-hole asymmetry seen in the phase diagram, one-
particle, and two-particle spectral functions. However, the
single-band Hubbard model is not entirely equivalent to the
two-band Hubbard model and we believe that it is not suit-
able for quantitative material-specific studies or for describ-
ing more subtle features that may result from the nonlocality
of the low-energy states. It is also not suitable to describe
physics, which implies excitations with energy scales larger
than<0.5 eV.
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