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Physics of cuprates with the two-band Hubbard model:
The validity of the one-band Hubbard model
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We calculate the properties of the two-band Hubbard model using the dynamical cluster approximation. The
phase diagram resembles the generic phase diagram of the cuprates, showing a strong asymmetry with respect
to electron- and hole-doped regimes, in agreement with experiment. Asymmetric features are also seen in
one-particle spectral functions and in the charge, spindandve pairing-susceptibility functions. We address
the possible reduction of the two-band model to a low-energy single-band one, as it was suggested by Zhang
and Rice. Comparing the two-band Hubbard model properties with the single-band Hubbard model ones, we
have found similar low-energy physics provided that the next-nearest-neighbor hopping teama signifi-
cant value(t’/t=0.3). The parametet’ is the main culprit for the electron-hole asymmetry. However, a
significant value of’ cannot be provided in a strict Zhang and RiBdys. Rev. B37, R3759(1988; 41, 7243
(1990] picture where the extra holes added into the system bind to the existing Cu holes forming local singlets.
We note that by considering approximate singlet states, such as plaguette states, reasonablet{alu@stof
capture qualitatively the physics of the two-band model, can be obtained. We conclude that a single-band
-t’-U Hubbard model captures the basic physics of the cuprates concerning superconductivity, antiferromag-
netism, pseudogap, and electron-hole asymmetry, but is not suitable for a quantitative analysis or to describe
physical properties involving energy scales larger than about 0.5 eV.
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I. INTRODUCTION physics cannot be described in terms of Fermi-liquid theory
and is characterized by the presence of a pseudogap. An
The theory of the cuprate high-temperature superconducessential demand of every successful theory is to capture all
ors remains one of the most important and daunting probthese fundamental features at the same time.
lems in condensed-matter physics. The highcuprate su- Experimental data show that the phase diagram and other
perconductors are layered materials with relatively complexphysical characteristics, such as the density of std€xS)
structures and chemical composition. They are highly correnear the Fermi level of the hole- and electron-doped materi-
lated, with an effective bandwidth roughly equal to the ef-als, are very differemt:* There could be many reasons for
fective local Coulomb interaction. The short-range correlathis asymmetry. The electron- and hole-doped materials are
tions are known to play a paramount role in these materialgphysically different, and apart from the CpQ@lanes, they
Therefore, the dynamical cluster approximatiofDCA),  contain different elements and chemical structures. These
which treats short-range correlations explicitly and the long-structural and compositional differences can influence the
range physics at the mean-field level, is an ideal tool for thdow-energy physics. Therefore in this paper, we use DCA to
investigation of these systems. address whether the physics of a pure G@ldne contains
A common characteristic all cuprate materials share is théhis asymmetry or if the origin of the asymmetry in real
presence of quasi-two-dimensional Gu@lanes. These materials comes from other influences.
planes are commonly believed to contain the low-energy Different models for describing the physics of a GuO
physics. However, the full complexity of the orbital chemis- plane were proposed by various authors. Photoemission ex-
try of just the CuQ@ planes and the strong Coulomb repulsion periments in the insulating parent material show that the first
on the Cu ions would lead to models that are very difficult toelectron-removal states have primarily oxygen character;
study with conventional techniques. whereas, the first electron-addition states heveharacter,
The cuprates are characterized by a very rich, but also, ialready suggesting a strong asymmetry. This places these
many respects, very intriguing physics. The undoped materimaterials in the charge-transfer gap region of the Zaanen-
als are antiferromagnetitAFM) insulators with a gap of Sawatzky-Allen scheme Early on, considering the ligand
approximatively 2 eV. Upon doping the AFM is destroyed field symmetry and band-structure calculatiénit was re-
and the system becomes superconducti8@). At small alized that the most important degrees of freedom are the Cu
doping, in the proximity of the AFM phase, the normal stated,2_,2, which couple with the in-plane @ orbitals. There-
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fore, one of the first models proposed to describe the physider the oxygen spin and destroys the equivalence of these
of high T, materials was the so-called three-band Hubbardtates to holes. However, it is not clear if the situation is
model presented by Varnet al® and Emeryet al,'® which ~ similar in the cuprates, i.e., if the ZR singlet-ZR triplet ad-
considers explicitly both the oxygem, and the coopetiz_y2 mixture i_s significant. But the merit of Emery and Reiter is to
orbitals. In fact, because the direct oxygen-oxygen hoppingmphasize that the fact that, as a consequence of the strong
is neglected, only the combination of oxygen orbitals withCU-O hybridization low-energy states well separated from
x2—y? symmetry couples with the orbitals, and the above- the_nonbondlng oxygen band states appear, does_not neces-
proposed three-band model reduces to a two-band model. sarily mean that the physics can be reduced to a single-band
However Zhang and RicéZR)!! argue that the low- del. . .
energy physics of théole-dopedsuperconductors can be The third problem we address regarding the reduction to a

: ; . . single-band model is the estimation of the single-band pa-
described by a single-band model. Starting from the two meters. We note that different approximations result in dif-

. : r
_band model, Zhang ano_l Rice claim tha_t an extra hole addefgrent values of the parameters. Especially the magnitude of
Into Fhe oxygen_banq binds s_trongly with a hole_ on the Cu’the next-nearest-neighbor hopping is very dependent of the
forming an on-site singlet. This singlet state, which has zerq,ia| assumptions. For example, if we assume that the hole
spin can be thought as moving through the lattice like a hole,ygition low-energy states are genuine ZR singlets, i.e.,
in an antiferromagnetic background. Consequently, the phyg;onq states between a Cu hole and a orthogonal Wannier
ics can be described by a one-band model. oxygen orbital, we obtain a negligible next-nearest-neighbor

Pertinent criticism to these simplified models were raisednopping_ls On the other hand, if we consider the low-energy
by various authors. With respect to Cu degrees of freedonktates to be plaquette singlets, i.e., bound states between a Cu
Eskeset al!? stressed the possible importance of the other hole and a hole on the state formed by the four oxygens
orbitals, showing that they should be explicitly consideredground the Cu, the value of the next-nearest-neighbor hop-
when physics, which implies excitations with energy largerping is significant® Of course, because of the nonorthogo-
than =1 eV, is involved. However, these criticisms do not pajity of the plaquette states, the plaquette singlets are not
concern us for the present study because we are interestgdnyine singlets and, therefore, they cannot be rigorously
only in physics at energies lower thar0.5 eV. mapped into holes. However, because their overlap with the

Investigating the relative importance of various param-joca| singlets is largé96%),'7 it is still possible that this
eters describing the Cy(planes it was realized early on gpproximation is good.
that, in addition to the Cu on-site Coulomb repulsidyg Our calculations show that a multiband model and a
~8 eV) and Cu-O hopping integralt,q=1.3-1.5 eV, the  single-band-t’-U Hubbard model with a significant value of
O-O hopping integrals result in a large @ Bandwidth(W  the next-nearest-neighbor hopping exhibit a similar low-
~5 eV), indicating that these should be included explicitly energy physics. The essential parameter needed for the
in any theory:>*4Therefore, using the DCA technique as a agreement is the next-nearest-neighbor hopgingihis pa-
means of including all these most important parameters anchmeter is also the main culprit for the observed electron-
bands, we address two major problems in this paper: thlole asymmetry. However, as mentioned above, the large
physics of the Cu@plane(including a detailed study of the value oft’ cannot be obtained in a strict ZR picture. Thus our
electron-hole asymmetrand the reduction of the multiband results also implicitly indicate that the multiband model can-
model to a single-band model. not be rigorously reduced to a single-band model. Therefore,

Regarding the reduction to a one-band model, one of théesides showing the similarities between the two models, we
most serious criticisms to ZR theory is the neglect of the Qalso point out their significant differences in this paper.
2p band structuré®>®The natural tendency of the finite oxy-  The final conclusion is that a single-batt! -U Hubbard
gen bandwidth is to delocalize and destabilize the ZR sinmodel, with a significant value df, captures the basic phys-
glets. The question arises whether the low-energy stages ics of the cuprates and thus is suitable to describe the AFM,
the ZR singlets are still well separated from the higher- pseudogap, and SC physics together with the relevant asym-
energy statef.e., the nonbonding oxygen state®therwise, metries observed in the phase diagram, in the one-particle
the reduction to a single-band model, which neglects thesspectra and in the two-particle response functions. However,
high-energy states, is not possible. This problem was previwe believe that it is not suitable for a quantitative material-
ously considered by Eskes and Sawatfkyithin an impu-  specific analysis, for describing the higher-energy spectro-
rity calculation approach, but there, unlike in the DCA ap-scopic features as in optical spectroscopy or resonant inelas-
proach, both the spatial correlation effects and the dispersiotic x-ray scattering, or for studying more subtle features
of the low-energy states were neglected. related to the finite value of the spin on the oxygen.

Another important objection to ZR theory was raised by  This paper is organized as follows. In Sec. Il the two-band
Emery and Reitéf and regards the nature of the low-energy Hubbard model and the DCA technique is introduced. Our
states. Are these states real singlets that can be mapped omiw-band model takes fully into account the oxygen disper-
holes, or does the hole on the O bind into a more complision and considers only the oxygen degrees of freedom that
cated state that involves more than one Cu hole? Choosingauple directly to the Cul2_,2 orbitals. The results of the
particular solvable example, which considers the Cu spin®CA calculation applied to the two-band Hamiltonian are
arranged ferromagnetically, they showed that the low-energgresented in Sec. lll. The possible reduction of the two-band
states are, in fact, an admixture of the Zhang-Rice singletmodel to a single-band model, together with a detailed analy-
and the corresponding triplets. This implies a nonzero valusis of the single-bantit’-U Hubbard model, is addressed in
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Sec. IV. A discussion regarding the similarities and the dif- kl k
ferences between the two-band and single-band models is 3
given in Sec. V. The conclusions of our study are reviewed in
Sec. VI.

II. FORMALISM

A. The model Hamiltonian

Band-structure calculatiod4?® cluster calculatio? FIG. 1. Vertex interactions, which enter in the calculation of the
photoemissiod? and other experiments show that the rel-self-energy. In DMFT the momentum conservation is completely
evant Cu degrees of freedom are e ,» orbitals, which  neglected. In DCA the momentum conservation is partially
couple with the in-plang, andp, O orbitals. All these de-  considered.
grees of freedom result in a five-baffdur oxygen and one
copper bangHamiltonian, in general. We have studied the density of oxygen hole$25-30%, we treat the Coulomb
five-band model, in detaft and have found that due to the repulsion onO (given by U,,,) and the repulsion between
strong Cu-O hybridization, only the oxygen degrees of freenearest-neighbor Cu and O holggven byU,) at the mean-
dom, which couple directly with Cu, are relevant for the field level as a reasonable approximation. The effect will be
low-energy physics. Consequently, to a very good approxian increases of our estimation far=E,~Ey4 by U,(n,/2)
mation, the five-band model can be reduced to a two-banqlupd(ﬁd_ﬁp), whereny andn, are the average occupation of
model. . Cu and, respectively, O bands. A choiceldf,=6 eV, Upy

The two-band model contains one @2 correlated -1 .3 o= inai | b

ALy =1.3 eV, andh,=0.3 results in a increase afby 1.3 eV. To
band and one oxygen band. At every site the oxygen stategpnclude, we take in Eq2), tog=1.3 eV, t,,=0.65 eV, A
are obtained by taking a linear combination wifh-y> sym- -4 .8 ey, andU=8.8 eV.
metry of the four Op, orbitals, which form a plaquette
around the Cu ion. These are the only oxygen states that
hybridize directly with Cu. However, it should be mentioned B. DCA technique

that these plaquette states are not orthogonal, two neighbor- The DCA is an extension of the dynamical mean field

ing states sharing a common oxygen atom. An Orthogonaéneorfz(DMFT). The DMFT maps the lattice problem to an

basis can be th?“”ed by the procedu_re described in the Orlg“"npurity-embedded self-consistently in a host and therefore
nal ZR papet! First, applying a Fourier transform, transla-

tional | ant (Bloch) stat tructed. The Bloch neglects spatial correlations. The DCA maps the lattice to a
ional invariant (Bloch) states are constructed. The Bloc finite-sized periodic cluster embedded in a host. Nonlocal

states are orthogonal .but.not normalized, so they should b(?’orrelations up to the cluster size are treated explicitly, while
multiplied by a normalization factor

the physics on longer length scales is treated at the mean-
B(K) = [sirt(k/2) + Sinz(ky/Z]_llz. (1) field Ievel_. Here we calculate the properties of t_he embedded
o cluster with a quantum Monte Carl@MC) algorithm. The

After normalization a complete and orthonormal set of oxy-cluster self-energy is used to calculate the properties of the

gen states is obtained. - host, and this procedure is repeated until a self-consistent
In this basis the two-band Hubbard Hamiltonian can begonvergent solution is reached. The self-energy and vertex
written as functions of the cluster are then used to calculate lattice

quantities. Below we give a brief description of DMFT and
its generalization to DCA.
In DMFT, the self-energy can be obtained by neglecting
+UD, Nai N, - 2) the momentum conservation at the interaction vertices of the
i generating functional and its derivatives. Formally, for
Hubbard-like modeld? this is done by replacing the Laue
function

H= E E(k)CL,-CkU + Eddl(rdka + V(k)(clrrdko + HC)
k,o

We work in the hole representation, adj,(c},) represents
the creation operator of a Q@) hole with spine and mo-
mentumk. The O-band dispersion and the Cu-O hybridiza-

. . N
tion are given by

— 2 . . A = 2 e_i(kl+k2_k3_k4)r = N5k1+k2vk3+k47 (5)
E(K) = Ep — 8t,8AK)sir(k,/2)sirP(k,/2) 3) r

V(K) = 2t,4871(K) (4)  responsible for momentum conservati@ee Fig. 1, with?*

with t,, being the O-O hopping integral. The last term in Eq.
PP . A =1 (6)
(2) represents the Coulomb repulsion between two holes on DMFT = -
the samal orbital. We choose the commonly accepted values
of the parameters, based on the band-structure calculations ®his is equivalent to replacing the Green’s function used in
McMahanet al?® and Hybertseret al* Because of the low the calculation of the self-energy diagrams, with
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a Apca = Nebic kK g4k, (11)

where theK,,K,,...K, label the cell centers. The Green’s
% 3 function used in the calculation of the self-energy is then

GpcalK,iw) = NNCZ‘, G(K +Kk,iw), (12)
k

where thek summation is taken over the cell centeredkan
The DCA algorithm is very similar with the DMFT one,
containing the same steps. The difference is that now, the
SRS self-energy is partially momentum dependent, and the
5 8% problem does not reduce to an impurity embedded in a
host, but to a cluster with periodic boundary conditions em-
bedded in a host. The Green'’s functions in E§.and(10)
(labeled now with the DCA subscript instead of DMl
be K dependent, as it is the self-ener@yca(K,iw). We
solve the cluster-embedded-in-a-host problem with a
Hirsch-Fye-typ& QMC algorithm. A detailed description of
the QMC-DCA algorithm is given in Ref. 26.

Neglecting the conservation of small momentum
[k<AK=(27/N)N.] in the calculation of the self-energy is

i.e., the “impurity” Green’s functioGpyer is obtained as the €duivalent with neglecting long-ranged correlations
average of the lattice Green’s function over the entire Bril-~ 7/AK), according to Nyquist theorem. Therefore this
louin zone(BZ). The DMFT algorithm is the following(i)  technique is ideal for the problems where short-range corre-
One starts with a guess for the self-eneBgyyer, which, for  lations are predominant, such as the higfmaterials.
instance, can be zero or a perturbation theory result. The For simplicity, the above discussion about DMFT and

FIG. 2. Coarse-graining of the Brillouin Zone in four ce(lN,
=4) aroundK=(0,0),(0,),(7,0), and(m, 7).

1
Gowrrlio) = N% G(k,iw), )

lattice Green’s function is then DCA was done by assuming a single-band Hubbard model.
In the two-band model the oxygen degrees of freedom are
G(kiw) =[iw- e(k) - Spyer(io)]™ 8) not correlated, and therefore they are not included explicitly

in the cluster. Their effect is fully contained in the cluster-
host hybridization function and in the host of Green’s func-
tions. The Green'’s functio®pca, Which enters in the calcu-
lation of the self-energy, is obtained by coarse-graining the
lattice Green’s function describing tlteorbitals, i.e.,

(i) The impurity Green'’s function is obtained using Ed),
and the impurity excluded Green’s function as

Gy'(iw) = Gpyer(io) + Spyer(io). 9

N ~
Goca(K,iw) = ﬁE Gua(K +k,iw), (13)
k

Such a problem is reduced to an impurity embedded in a
host; the impurity excluded Green’s function containing the

full information about the hybridization of the impurity with where
the host.(iii) The “embedded impurity” problem is solved ) N
using techniques such as QMC, exact diagonalization, renor- GuKiw) = | iw—E - Vod(K) _SeaKiio)
malization group, et@2 and the impurity Green’s function ddt™ 4 jw-E(K TPAT '
GpumeT IS Obtained. The resulting self-energy is (14)

iw) =G Yiw) -Gt (iw). 10 By comparing Eq.(14) to Eq. (8) one can see that iy
*ourr(ie) o (1) ower(ics) (10 there is a term resulting from the hybridization of tthend
This self-energy is used again as a input for gigpand the P orbitals. _ _ _
procedure is repeated until the convergence is reached. Here we consider a 2 cluster of Cu ions, which we
In DCA, the momentum conservation at the internal ver-Pelieve to be large enough to capture the gssentlal p_hyS|cs of
tices of the irreducible quantities is partially restored. TheHubbard-type models. The >22 cluster will result in a
BZ is split into N, coarse-graining cells each equivalent to c0arse-graining of the BZ in four cells, as shown in Fig. 2.
the Wigner-Seitz cell of the superlattice formed by tiling the
lattice with the clustefsee Fig. 2 foN.=4). The momentum
transferred between the cells, i.e., the momentum larger than
the cell length, is conserved. On the other hand, the conser- The undoped materials have one hole per CuO unit. For
vation of the momentum within the cell, i.e., the momentumt,4=0 the DOS is given by the dashed line in Fig. 3 and the
smaller than the cell length, is neglected. Formally, this ishole addition states would be of pure O character. When the
done by approximating the Laue function with Cu-0O hybridizatiort,y is switched on, the extra holes added

Ill. TWO-BAND HUBBARD MODEL RESULTS
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FIG. 3. Two-band Hubbard model DOS at 0% doping. The solid = "i-‘ ,,,,,,, NN S
line is thed part of the DOS calculated 8t=685 K. The value of o (eV)
the parameters igp3=1.3 eV, t,,=0.65 eV, A=4.8 eV, andU _
=8.8 eV. The dashed line shows the DOS whgx0. The chemi- FIG. 5. Totald DOS and coarse-graindd dependent DOS at
cal potentialu=0. 5% doping:(a) hole-doping case an@d) electron-doping case.

. . ) contrary, SC disappears at a smaller critical doph@hese
to the oxygen band will scatter with the Cu spins and boundeatures of the phase diagram are in qualitative agreement
states will appear at the bottom of the oxygen band. This igyith the experimental findings.
illustrated by the solid line, which plots the partclDOS The one-electron spectral functions, as measured with
that was obtained using the maximum entropy methothhotoemission, are also different. Ou2 cluster divides
(MEM)?7 for the analytic continuation of the QMC data to the BZ into four cells around=(0,0),(0,),(s,0), and
real frequencies. It can be noted that the first hole additions; ) (see Fig. 2 and approximates the lattice self-energy
states have a strongly mixetland p character(the d char-  py 5 constank (K, ») within a cell. Because of this coarse-
acter in the spectrum is large npwind an energy pushed raining, a comparison with ARPES is not possible, apart
well below the edge of the initial nonbonding oxygen band.from gross features. However, as the phase diagram shows,
Therefore only these states are relevant for the low-energye pejieve that even our small cluster captures much of the
physics?® In the ZR theory these low-energy states, whichphysics of the cuprates. Here we want to stress the difference
appear as a consequence of the strong Cu-O hybridizatiojetyeen the electron- and hole-doped cases within our 2
are con5|dered tp be local singlets that move through the 5 q|uster approximation. In Fig.(& and 5b) we show the
Iatt!ce _Ilke holes in an AFM background._ Consequently, theoia) d states DOS and thd coarse-grainek dependent
claim is that the physics can be described by a one-bangos [which would correspond to the average overkalie-

t-J model. longing to a coarse-graining cell of the single particle spectra

In order to determine the phase diagram we calculate @ )] for the hole- and, respectively, for the electron-
large number of susceptibilities that are relevant for spin

doped case, at 5% doping. The total DOS looks qualitativel
charge, and superconducting ordering, both at the center a%é,).f © dopirig d y

h fth le. th sel and SC criti ilar, and at the chemical potential, we see in both cases a
the corner of the BZ. For example, the Neel an critic@lyepletion of states, which indicates the presence of the

temperaturesTy and respectivelyT¢ in the phase diagram ,qe,dogap. Th dependent DOS is very different. The im-
presented in Fig. 4 are determined from the divergence of thg, ot feature that we want to stress is the location of the
corresponding susceptibilities. The pseudogap crossov seudogap in the BZ. In the hole-doped case, the pseudogap
ggmwp?;?urr]eeticlss uc;?:tglTi%(ijlitfrovr\?hg;]eall]s:rlrznL;r:ielg ttt]e ;';'u appears aroun(d, ). For the electron-doped case we do not

9 P y P y PYetect any suppression of states aro@@dr) even though

pression of spectral weight in the DOS. Similar to what was, : .
) X . . e pseudogap is clearly present in the total DOS. These
found in the single-band Hubbard modBlye find A”M and features are in agreement with the photoemission experi-

d-wave SC for both electron- and hole-doped regimes. How- . :
. ments. The hole-doped materials show Fermi pockets around
ever, the electron-hole symmetry is broken. In the electron

: . (m/2,7/12) and gapped states aroun®,w).2 For the
doped case AFM persists to a much larger doping. On thélectron-doped materials the photoemission sp&etxaibit

a gap nearnw/2,7/2) and Fermi surface pockets around

ix-_ ' electron doped " hole doped ] (0,7). With the present cluster size the DCA cannot deter-
- mine where ink space the pseudogap is, but it is interesting
12000 LA I that it is not at(0,m). The presence of the pseudogap at
_tooop gap = T* ] (w/2,712) for the electron-doped system can only be
£ so0r 8 checked by increasing the cluster size, and this work is in
600[- ] progress.
00k ] The electron- and the hole-doped susceptibility functions
2001 M\  d-wave 1 are also different both for the divergence temperatures and
- ¢ ; the temperature and doping dependence. In Fig. 6 we show
87 1 LT 12 13 the uniform spin and charge susceptibilities versus tempera-
ture at 5% and 10% doping. A common feature for all cases
FIG. 4. Two-band Hubbard model phase diagram. is the existence of a characteristic temperatlitebelow
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025k  screened moment on Cu, T#*Xjocal
02f
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FIG. 6. Uniform spinspi, (upper part and chargeycy, (lower FIG. 8. () The Cu occupation number,, the unscreened Cu
pary susceptibilities vs temperature for different hol.e densitids.  momentu? [Eq. (15)] vs hole filling. (b) The screened Cu moment
the legend represents the number of holes per unit cell. Txiocal [EQ. (16)] vs hole filling.

which the spin response is suppressed and the charge fghere the Cu occupation number versus hole density is plot-
sponse is enhanced* corresponds to the pseudogéeen  ted. A constant covalency, equal to the one in the undoped
in the DOS onset temperature. The suppression of the spifegime(i.e., 0.73 Cu holes and 0.27 O holes per)siteould
excitations belowr* was also seen in NMR experimedts  correspond to the dashed line. It can be noted that, for the
and it was associated with the pseudogap. Besides the%‘?ectron-doped regime, the Cu hole occupation number is
common features the electron- and the hole-doped suscepHiecreasing faster than the hole concentration, which indi-
bilities behave differently. Generally, the maximum value of cates an increasing covalency with increasing electron dop-
the spin susceptibility increases with hole filling. This meansng. This happens because at large electron doping, i.e., when
that in the hole-doped case, the spin susceptibility at thene hole-filling of the Cu@ plane is small, the effective hy-
pseudogap temperature is strongly increasing with dopingyigization is a result of a large(k) in the BZ34 Increasing
unlike in the electron-doped case, where it decreases UpGRe number of holes, the BZ starts to fill up and a smaller
doping. At the same doping the hole-doped spin susceptibily () will be responsible for the hybridization, and, conse-
ity is much larger than the electron-doped one. Another ingenty the covalency decreases. For the hole-doped regime,
teresting feature is the very strong increase of the chargg . extra holes go primarily on the oxygen band, and there-
susceptibility for the electron-doped case in the underdopeg},.« \ve do not have a direct measure of the covalency.
region (5% doping, suggesting a tendency toward phase |, Fig. ga) the unscreened moment on the Cu orbitals is

i 2
separatiorf? , o shown. It is defined as
Asymmetric behavior can also be noted in Fig. 7, where ) )
we plot the inverse of the d-wave-paring susceptibility. = ={(Ngip = Ngi )9 = Ng = 2Ngi N ) - (15

Above T, the pairing susceptibility increases with doping in
the electron-doped case and remains more or less constant
the hole-doped case.

The difference betweeny and u? is a measure of the double

d@cupancy with holes on Cu sites. In the electron-doped re-
L . gime the double occupancy is very small, but it increases
Because of the large Cu-O hybridization the system i ubstantially in the hole-doped regime, which indicates that

strongly c0\_/alent. For e_xample, in the undoped regime th?he low-energy hole addition states contain double-occupied
Cu occupation number is onk73%. The fact that the cu- Cu configurations in a significant measure

prates are strongly covalent was also observed in NMR In Fig. 8(b) the screened moment on Cu, defined as
measurements. We note that the system exhibits a slightly ' '

doping-dependent covalency. This is shown in Figa),8 T B
ProeEr ’ * Tioea= S | (RSO0 a9
35 i J0

ol o where § is Cu spin operator at site is shown. The main
- effect of the extra holes is to screen the spins on the Cu sites.
S - N o The screening starts to be effective below temperatures of

| N S g o about=0.5 eV (not shown. In the Zhang-RicE scenario an
i pd ® n=1.05 extra hole perfectly screens one spin on Cu forming a

15 - ® n=0.95 . . . . .
o o n=1.10 strongly bound on-site singlet, which would contain a sig-
1or © 1=050 nificant amount of the double-occupied Cu configuration. So,
LI, our results do not contradict the ZR theory, but also do not
ol L e exclude other scenarios where the extra holes form more
0 01 02 en ™ 04 05 complicated bound states that involve more than one Cu

spin. Quantitative analysis based on the amount of screening
FIG. 7. Inverse of thel-wave-pairing susceptibilityst vs tem-  as function of hole doping cannot give an answer to the
perature for different hole densities. validity of the ZR assumption because, aside from the
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TABLE I. First row: parameters calculated using cell-perturbation theory, and second row: parameters calculated using cluster diagonal-
ization (in eV).

cell perturbation ~ U=3.04 J=0.25 Jr=0 t'=0.477 1°=-0.35 t'=0.433 t"=-0.03 t¥=-0.016 t''=-0.003

cluster calculation J=0.192 Jr=0.012 t"=0.452 t¢=-0.323 t""=-0.169 t¥=0.078

screening due to the_ oxygen holes, ther_e are also nonloca|_|0: D Ho = Eiza[EOCiTg—Cio'l' EddiJrgdio-+VO(CiJr¢rdio-+ H.0)]

processes that contribute to the screening of Cu moments i

(for example, a possibility is the formation of intersite spin

singlets associated with the resonance valence bond sce- +Ungii g - (18

nario). Here i represents the site index. The oxygen operatprs
describe the orthogonal Wannier states. The ZR assumption
implies thatH, is responsible for the formation of the low-

IV. REDUCTION TO SINGLE-BAND HUBBARD MODEL energy stateflocal singlety, andH, will determine the hop-

Concluding that the electron-hole asymmetry is an intrin-PINg parameters. Therefore the cell-perturbation theory pro-

sic property of the Cu@plane, we next address the cause ofVidéS a means fo determine the one-band parameters
this asymmetry and the possible reduction to a one-ban@rovided that the ZR assumption is correct. Elaborate calcu-
model. lations along this line were done in Ref. 18 for a variety of

In Sec. Ill we showed that, because of the Cu-O hybrid_multiband parameters. In a first-order approximatiorHin

ization, the addition of holes results in the formation of low- the effectiveU is given by

energy states, With_ an energy well _bel()wl eV) the initial Ugr= E2+ E®— 2EL, (19)
oxygen bandsee Fig. 3 The reduction to a one-band model

is based on the ZR claim that these states are singlets, i.&vhereE?, E', andE® represent the energies of the tie.,
spinless entities that can be regarded as holes moving in 4Ae¢ ZR single), one (i.e., the bonding staleand, respec-
antiferromagnetic background. Because of the Monte Carldvely, zero-hole states of E(L8). An important point is that
nature of our calculation, which does not provide a waveH: introduces three types of hoppings. If we denote with
function for the ground state, we cannot directly determind2;),|1;), and|0;), the lowest energy states Hf; correspond-
the exact nature of these states. The most we can do is {69 to two, one, and, respectively, zero holes, we have the
compare the results of a two-band Hubbard model calculafollowing hopping integrals:

tion to those of a one-band Hubbard model and, based on the

h_

similarities and differences that we might find, to decide t = (20, 1j|H41;.2), (20)
about the validity of the single-band approach. .

tij :<Oi!1j|Hl|1i!0j>v (21)

A. Zhang and Rice'! approximation and derivation tiJj = (1, 1/H40,,2), (22)

of the effective parameters
wheret" [Eq. (20)] describes the hopping of the ZR singlet,

In order to compare the two- and one-band models, wee : .
should first get an idea about the possible single-band mod%gE&C(ﬁ;)n]gg itr:],zrg%gglr?g of the electron, antiproduces

effective parameters. We discuss here two different ap-

proaches for calculating these parameters, both based on the J= 4tJZ/Ueff- (23
assumption that the low-energy states are localized and close _ ) )
to the ZR-proposed singlets. The cell-perturbation theory applied to our model gives the

parameters shown in the first row of Table. I.
1. Cell-perturbation theory We want to point out two things. First, the reduced Hamil-
' tonian in the cell-perturbation theory istd’-J model,

The cell-perturbation theoty assumes that the ZR map- . A
ping is strictly true and therefore the low-energy states are H=-t> b'bj-t' > bib+JX SS, (24)
genuine local singlets. Here and everywhere in the paper by (% WL @y
local we refer to the oxygemrthogonal Wannier states, jth different hopping parameters for the electron- and the
which are different from the non orthogonal plagquette statefgle-doped regions and with a value of the exchange inter-
around the Cu ions. action not determined by the quasiparticle’s hoppitigor

To deduce the one-band model parameters we work in th@) put, as it is shown in Eq23), by t'. Therefore, a com-

site representation. We can Fourier transform B).and  parison with a one-band Hubbard model, should be done

write it as cautiously. Second, we want to stress that the value of the
H=Ho+Hy, (17) next-nearest-neighbor hoppujg terftisandty) is very smal_l

compared to the nearest-neighbor terms. The reason is that
where the initial oxygen-oxygen hybridizatioty, results in an ef-
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fective hopping term comparable in magnitude to the onelone with extreme caution. We want to stress the possible
resulting from the copper-oxygen hybridization, but with aproblems here.
different sign. This was also remarked in Ref. 18 and turns First, the reduction based on the ZR approximation, which
out to be an important observation for our final conclusionsresults in a single-ban¢+J (or t-t’-J) model assumes the
strong-coupling limit, i.e., a ratioUg/t>8 (the two-
2. Cluster calculation dimensional bandwidth i#/=8t). The low-energy density of

The other approach used for determining the parameter@ates of the two-band model shown in Figs. 3 and 5 indi-
of the one-band model is based on a cluster calculation. I§ates a bandwidth of the order of the gap, showing that we
order to estimate the nearest-neighbor hopping, the nex@re rather at the intermediate coupling than at strong cou-
nearest-neighbor hopping, and the exchange terms, EskesPling. In the cell-perturbation theory we gely/t'=7.02,
al.9 considered two clusters, CyQwhich contains two Which also suggests intermediate-coupling physics. There-
nearest-neighbor Cu iopsnd, respectively, CuQ(which  fore, the question to be asked is whether the intermediate
contains two next-nearest-neighbor Cu jpriEhe exchange coupling regime, characterized by an effective repulsion of
term is determined as the energy difference between the sitbe same order of magnitude as the bandwidth, can still be
glet and the triplet state of two holes on a cluster. For thredvell approximated by a second-order perturbation reduced
holes on a cluster, the two energetically lowest states can HeJ model.
very well (98%) approximated with the bonding and anti- Second, considering the previous objection, one may
bonding states Of a'aquetteZR Sing'ethopping between the th|nk that a reduct|0n to the S|ng|e'band Hubbard mOdel n
two cells. Therefore, the differences between these two levthe intermediate coupling regime, rather than teJamodel,
els is two times the ZR singlet hoppin In an analogous is more appropriate. However, serious problems arise from
way, considering only one hole on a cluster, the electrorthe fact that, in the ZR theory the nature of the antiferromag-
hopp|ng te is determined. Using the cluster approach, Ournetic correlations is different from that in the Single'band
two-band model results in the effective parameters shown iflubbard model, i.e., it is not directly related to the quasipar-

the second row of the Table |. ticle (ZR singlet or electronhopping. Therefore, unless both
the two- and one-band Hubbard models can be reduced to a
3. Comparison of the two approaches t-J model, a comparison between them does not make much

It can be immediately noted that the two approaches proSe"Se: Nevertheless, we believe that even when the effective

: : : pulsion is comparable to the bandwidth the second-order
duce different parameters, especially regarding the value J]eerturbation theory, which produces thé model. can be

the next-nearest-neighbor hoppings. In the cluster calculatioR . . . .
we obtain significant next-nearest-neighbor hoping termsused successfully. We are going to discuss this at the begin-

) o X hing of Sec. IV C.
’ — h h| =
[te|/|t=0.22 and|t" |/|t"|=0.37 with different signs for the Third, the nonlocality of the low-energy staté® the

hole- and, respectively, electron-doped ceS€0,t%)0). sense discussed in Sec. IV A 8an have very serious con-
The reason for the discrepancy between the two apsequences beyond determining the value of the hopping pa-

proaches is that, unlike the cell-perturbation method, whiclrameters, making the single-band approach to fail com-
considers local singlets, the cluster approach considers sipietely.

glets between a Cu hole and an oxygen state formed on the

plaguette around the Cu ion. Since the oxygen plaquette

states are nonorthogonal, it is possible to write them as a C. t-t’-U Hubbard model results

linear cpmbipation of many orth_ogonal oxygen states at dif-  The t-J model results as a low-energy effective Hamil-
ferent sites, i.e., the plaquette singlets are nonlocal st@es 4njan from the Hubbard model by projecting out the doubly
the orthogonal bageAt first glance this nonlocality seems qccypied states. Therefore, the double occupancy of the site

irrelevant (the 0\1/7e'rlap of the local oxygen states with the o hita|s constitutes a measure of the validity of this approxi-
plaquette staté*’is about 96% but apparently it turns out  mation. In Fig. 9 we plot the double occupancy of the site

to influence the value of the next-nearest-neighbor hoppinghitals for different values of the ratid/t. It can be noted
of the reduced Hamiltonian considerably. that forU/t= 6, the double occupancy is always smaller than
It is worth pointing out that, in the cluster approach, thegg, 35 This indicates that, even in the intermediate coupling

large value of the next-nearest-neighbor hopping terms réegime, the low-energy physics of the one-band Hubbard
sults solely from the finite oxygen dispersion and the lack of,qdel can be well described bytal model.

hopping between the copper and the next-nearest-neighbor gyen if, it is more natural to compare the two-band model
oxygen plaquette state. On the other hanc_i, in the cellyith at-t-J (or at-t’-J-J') model, this turns out, from our
perturbation theory a copper next-nearest-neighbor oxygenserspective, to be rather inconvenient because of the techni-
hopping term is present. It results in an effective next-cq| gifficulties encountered by the QMC when applied to
nearest-nel_ghbor hopping with a sign different from the one;,ch models. Therefore, we proceed by comparing the two-
produced via oxygen-oxygen hopping. band model with &-t’-U Hubbard model, focusing on the
. . . qualitative features rather than on a quantitative comparison.
B. Possible reasons for the reduction to fail In the strong-coupling limit, thé-t’-U model reduces to a
We believe that a comparison between the two-band Hubt-t’-J-J' model, with the constraint’' =J X (t'/t)% Therefore,
bard model and a single-band Hubbard model should b# is reasonable to assume that if the valugtoft)? is not too
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s s, » = (=0.52¢V, 8=5%

0.06/- — oat=0.52eV, §=10%

J=022eV 4

<n1 n >/n
=]
®
T

xcharge & xspm

0.02[-

FIG. 9. The relative double occupancy of the orbitafsn;)/n,
vs hole filling n for different values of the rati&J/t of the single-
band Hubbard model.

FIG. 11. Spin and charge susceptibilities at 83tack and 10%
(gray) doping fort=0.37 eV(circle) andt=0.52 eV(square.

where the antiferromagnetism disappear decrease. For ex-
ample, at 5% doping, the antiferromagnetic susceptibility is
diverging only for the small value of shown in Fig. 10.

large and the reduction of the two-band model to a single
band model is valid, the two models should exhibit similar

physics. Assuming that the hole-doped regime is characterized by a

.A.ssumlng that the r_edug:ﬂon toa c_)ne—band model in th‘:'farger value oft/J, this feature is in agreement with the
spirit of the ZR approximation is possible, we should eXpeCttwo-band model asymmetric behavi@ee Fig. 4

from Table. | the hopping parameters to be different in the The uniform spin susceptibility is shown in Fig. 11. One

hole- and _electron-doped regions. On the other hand, thE“an note that an increase tofesults in an increase g and
exchange interaction, a decrease of the spin susceptibilityTat This together with

At? the behavior of the susceptibility as a function of doping is in
J= nE (25 contrast to what was observed in the two-band mddee
Fig. 6) where the spin susceptibility is larger in the hole-
should be the same. doped case and an increa@kecreasewith doping of the

Therefore, we study the single-banet’-U Hubbard  susceptibility afT* for the hole- and electron-doped regimes
model and address the following questiofi$:How do the is found.
system properties depend on the ratid? (ii) What is the The behavior of thed-wave-pairing susceptibility as a
role of the next-nearest-neighbor hoping t'? function of t is shown in Fig. 12. The critical temperature
increases with increasing(the increase of . is about 10%
of the increase of), as can be seen in Fig. . This in-
The values of the parameters in Table | show that, increase is much too large to be in agreement with the two-
general, the rati¢t/J| is larger in the hole-doped regime than pand-model results even if, actually, for the two-band model
in the electron-doped case. In order to address the electrone obtained a hole-dopef, larger, with about 20 K, than
hole asymmetry observed in the two-band model, in this secthe electron-doped orf€ By extrapolating the inverse of the
tion we study the properties of the single-band Hubbardij-wave-pairing susceptibility at 28% dopifsee Fig. 10)],

model as a function aff J, by keepingJ [given by Eq.(25)] it can be concluded that an increase oésults in an increase
constant and varying the hopping The next-nearest-

1. t/J dependence

neighbor hoppind’ is set to zero. T(V)
With respect to antiferromagnetism, with increastrifpe e 0Ht=ooél7 Ib)o.z
z . e . a ..

Néel temperature at small doping and the critical doping 20l / 1 = 73 8le1=052| 7

1 s H0.047 A
L - et a4 o
H e ° 3=28%
200 25} /:_—_:?g»% 0035 5
P e I
| 04 ey < 5201 04045 05
+-91=0.52 eV t(eV)
150 15F
J=0.22eV 3 8
F . J=0.22 eV]
§ 5% doping 10F —e(=0.37, 59:
R 1001 ' o—o01=0.37, 10%
5k 12052, 5%
o—0t=0.52, 10%
o 1 | ) | n
s0l- % 0.1 0.2 03 04 0.5
a T V)
@
L Dt o Lo FIG. 12. Inverse ofl-wave-pairing susceptibility vs temperature
0 ol 02 0™ 04 05 for different hole densities and hopping parameters. ltseThe

critical temperature v$ at 5% (circle) and 10%(squarey doping.
FIG. 10. Antiferromagnetic susceptibility at 5% doping, for Inset(b) Inverse ofd-wave-pairing susceptibility vs temperature at
three different values of whenJ is constant. 28% doping, fort=0.37 eV(circles andt=0.52 eV (diamonds.
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FIG. 13. Single-banttU Hubbard model total anK-dependent FIG. 14. H,'l_J Hubbard model(solid ling) and t-U Hubbard
DOS at 5% dopingd=0.22 eV,t=0.45 eV model (dashed ling phase diagrams for=-0.45 eV,U=3.6 eV.

For thet-t’-U Hubbard modet’/t=-0.3.

of the critical doping where SC disappears. We also not®ne correspond to the electron-doped regime. We keep the
that, at small doping and abovig, a larget suppresses the sign oft’ always positive. In order to avoid confusion we
pairing correlations. These features are in agreement with th&ant to point out that in d-J model the filling is always
asymmetry of the two-band-model phase diagram. Neverthesmaller than one. Therefore, in order to describe the electron-
less, we note that, abovE, and for both values of, by ~ and hole-doped regimes one has to employ the hole and,
increasing the doping the pairing correlations increase, todespectively, the electron representation. Accordingly, the
This behavior is characteristic in the electron-doped regim&ign oft’ has to be chosen negative in the hole-doped regime
of the two-band model, but cannot explain the hole-dopednd positive in the electron-doped cése.
regime where the pairing does not depend on the dofsieg In Fig. 14 the phase diagram of th¢'-U model is shown
Fig. 7). The other difference between the two-band and the¥ith a solid line. For comparison, the phase diagrant-of
single-band Hubbard model is the value of the SC susceptiHubbard modeli.e., t'=0 cas¢ which is symmetric with
bility critical exponenty, which is much smaller in the two- respect to hole and electron doping, is shown with a dashed
band model. line. At half filling, t’ introduces an effective antiferromag-
The density of states and the K-dependent DOS for th@etic exchangd’ =4t’?/U between the same sublattice spins
one-band-U Hubbard model at 5% dop|ng is shown in F|g and Subsequently frustrates the lattice. However, at finite
13. The one-particle spectra exhibit a pseudogap in the tot&llectron dopingt’ favors the antiferromagnetism, making it
DOS and in the K-dependent DOS @, ) point in Bz,  Persist up to a larger doping. On the other hand, in the hole-
similar to the hole-doped spectra of the two-band Hubbardoped case, the antiferromagnetism is always suppressed by
model. The single-bandU Hubbard Hamiltonian is particle- t'- With respect to superconductivity, the presence’afe-
hole symmetric and therefore cannot explain the one-particl&Ults in a smallelargep critical electron(hole) doping at
spectra in the electron-doped regime of the two-band Hubwhich the superconductivity disappears. The asymmetry in-
bard model. troduced byt’ is in agreement with the one observed in the
At the end of this section we conclude the following: A two-band model phase diagram. We find ttiatas no major
single-bandt-U Hubbard model(i.e., t'=0) with a larger influence on the maximum superconductivity critical tem-
value of the hopping parameter for the hole-doped regim@eratureTg ™ _ o .
cannotexplain the electron-hole asymmetries observed in the  The uniform spin and charge susceptibilities are shown in
two-band Hubbard model, especially the ones that charactef-9- 15. The spin susceptibility at the pseudogap temperature

ize the one-particle spectral functions and the susceptibilitﬂ'* is strongly increqsing With_ doping for the hole-doped
functions. case, and an opposite effect is seen for the electron-doped

case. The downturn &t* in the spin susceptibility is much
2.t dependence sharper for the hole-doped regime, indicating a fast transition
] ] to the pseudogap physics. All these features are in very good
In this section we study the role of the next-nearest-qygjitative agreement with the ones corresponding to the
neighbor hopping’ in the single-band Hubbard model two-band Hubbard model. Because of the similarity with the
_ + , + two-band model, it is also worth mentioning that in the
H= _t% byb; -t «izm bb; + U; LLTE (26) electron-doped regime the charge susceptibility is strongly
’ ’ increased below™ in the underdoped region.

We choose the following parameterd)J=3.6 eV, t The d-wave-paring susceptibilities shown in Fig. 16 ex-

=-0.45 eV, and’=0.15 eV. These parameters are close tohibit asymmetric features, also in a qualitative agreement
the ones in Table. I, resulting iW=0.22 eV andJ  with those in the two-band model. In the electron-doped re-
=0.02 eV. gime, by increasing the doping, the pairing correlations

As for the two-band Hubbard model, we work in the hole aboveT, increase. In the hole-doped regime closdtpthe
representation, defined as the one where the filling ter-  pairing correlations do not significantly depend on the dop-
responds to a hole doping Values of the filling smaller than ing. However, contrary to the two-band model behavior, at
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FIG. 15. t-t'-U Hubbard model. Uniform spifspin (Upper pant DOZG' ;03 éa) t-t fU t_Oté(l)l ESOSVa?/d_COgrgeUg_rglréeﬁ\?epe;dlent
and chargey., (lower par} susceptibilities vs temperature for dif- doo at 5% doping Cl’t‘ - eVvit'/t=-0.3,U=3.6 eV.(a) hole-
ferent hole densities. oping case anth) electron-doping case.

larger temperature, an increase of pairing correlations witinodel, provided a significant value of the next-nearest-
doping is observed. The magnitude of this increase is smalléteighbor hoppingt’/t=0.2-0.9, is considered. However,
than in the electron-doped case and a larger valué @.g., besides all these similarities there are also some important
t'~0.4, not shown will reduce it further, improving the differences that we emphasize in Sec. V.

resemblance with the two-band model.

In Fig. 17 we present the DOS of thet’-U Hubbard V. DISCUSSION
model at 5% doping. The one-particle spectral functions re- ) )
semble the corresponding two-band Hubbard model ones. In general, the deduction of an effective low-energy
The presence of the parameter is responsible for the loca- Hamiltonian implies two steps. First, defining the low-energy
tion of the pseudogap in the BZ. states, and second, projecting the resolvent operéids)

The necessity of thef in explaining the measured angle- =(E-H)™%, on the subspace spanned by these low-energy
resolved photoemission spectroscodRPES line shape states’® The inverse of the projected operator can be written
and the electron-hole asymmetry was realized earlj®sh. asE—He(E), whereH is the low-energy Hamiltoniaft.
Representing hoppings in the same sublattice, this paramet&his procedure is equivalent to finding an Hamiltonian that
is not severely renormalized by the AFM background andproduces the same one-, two-, three-particle, etc., spectral
consequently, its influence turns out to be important. Exacfunctions on the energy range considered to be “low energy.”
diagonalization result8 of a t-t’-J model are in agreement Rigorously, in order to prove that the one-band model is
with ours. Thet’-hopping process lowers the kinetic energythe effective Hamiltonian, which describes the two-band
and moves the quasiparticle position from/2,7/2) to  Hubbard model in low-energy physics, we should compare
(0,m) in the electron-doped case. The Néel-like configuranot only the one- and two-particle spectra, but also all
tions, which do not hinder this process, are stabilized. In thdligher-order correlation functions. However, we believe that
hole-doped case thg hopping does not lower the kinetic the comparison of only the one- and two-particle spectral
energy of quasiparticles and it is not energetically favorablefunctions is compelling enough, especially since the experi-
therefore leading to a suppression of AFM at all dopings. Mmental information is also obtained by measuring the re-

The main conclusion of this section is that a one-bandsPonse functions behavi¢and in almost all cases the two-
t-t'-U Hubbard model describes qualitatively well the phys-Or one-particle operators; as in photoemission, are involved
ics (i.e., the phase diagram, the one-particle spectra, and tHeis also true that a comparison of the dynamic susceptibili-
two-particle response function®f the two-band Hubbard ties would be required, but with our quantum Monte Carlo

based algorithm the calculation of these quantities for the

L U Habbard model two-pand model is extremely computational resource con-
0l 0y =an=105 suming and has not been done yet. However partial informa-
. /=03 3332?1?(5) tion about the relevant excited states is contained in the tem-

22y 002090 perature behavior of the static susceptibilities.

201 The main conclusion of Sec. IV is thatta’-U Hubbard
I 8 model describes qualitatively well the physics of the two-
band Hubbard model, but only if a substantial next-nearest-
neighbor hopping is considered. However, the calculation in
Sec. IV A1 (first row of Table ) and the more rigorous
. . ‘ results by Jeffersoet al,'® show that in a strict ZR picture
-2T(ev) 0.3 04 0.5 the next-nearest-neighbor hopping is negligible. Therefore it
is difficult to explain the two-band Hubbard model physics

FIG. 16. t-t’-U Hubbard model. Inverse of thdwave-pairing  assuming the formation of local ZR singlets. For hole-doped

susceptibilityxst. vs temperature for different hole densities. systems, a significant value tf can be obtained only if the
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extra holes form nonlocal bound states with the existing Cuhe relevant susceptibility functions. These characteristics are
holes, presumably something close to the plaquette singlets qualitative agreement with experimental findings.
Of course we have no reasons to discard other states spreadWe address the validity of the single-band Hamiltonian as
over even more oxygen sites, which can result in a magnithe effective low-energy model for the cuprates. We discuss
tude of the hopping parameters differéptobably not too the possible problems that may cause the failure of the re-
much from the one obtained by cluster calculatiGgecond duction from two-band to one-band and also show that, de-
row of Table ). In the electron-doped systems, the doping-pending on the approximations involved, the value of the
dependent covalency shown in FigaBclearly indicates that one-band Hubbard parametdiespecially the next-nearest-
the hybridization of the Cu with the O states at different sitesneighbor hoppingcan be significantly different.
is important. A doping-dependent covalency should also im- We use DCA to study the role of the different parameters
ply doping-dependent parameters. in the single-band-t’-U Hubbard model and compare the
The cluster calculation, which allows the formation of phase diagram, the one-particle, and two-particle response
nonlocal (plaquette low-energy states, unlike the cell- functions to those corresponding to the two-band Hubbard
perturbation approactor strict ZR), provides a value of the model. We conclude that the two models exhibit similar low-
hopping parameters that qualitatively captures the physics adnergy physics provided that a significant next-nearest-
the two-band model. However, we do not believe that findingheighbor hopping’ is considered. The parametgris also
the exact value of the one-band Hubbard model parametersike main culprit for the electron-hole asymmetry of the cu-
a relevant or even a well-addressed problem, because tipeates.
nonlocality of the low-energy states implies that the two The large value of’ needed for a qualitative agreement
models are not equivalent. Aside from the similarities be-between the two models cannot be obtained in a strict ZR
tween the two-band ant’-U Hubbard models discussed in picture, where the extra holes form local singlets with the
Sec. IV C 2 we also find some differences. existing Cu holes. Plaquette singlets, which in the oxygen
For example, one important difference can be observed iVannier representation are not local, and presumably other
the d-wave-pairing susceptibilityFigs. 7 and 16 In the spatially extended states can provide a larger valué. dhe
two-band Hubbard model the critical exponentwhich de-  doping-dependent covalency in the electron-doped case also
fines the divergence of the susceptibility &, is much indicates that the nonlocal Cu-O hybridization is important.
smaller (around =0.4 at finite hole dopingthan the one However, the formation of nonlocal low-energy states also
characteristic to the one-band modatound=0.6), indicat-  implies that they are not real singlets and, consequently, can-

ing larger fluctuation§243 not be rigorously mapped into holes, and therefore the two
Both the cell perturbation and cluster calculation providemodels are not equivalent.
a larger nearest-neighbor hoppindor the hole-doped re- We also point out some differences between the two mod-

gion. According to the analysis presented in Sec. IV C 1, thiels. In the two-band Hubbard model the fluctuations in the
should result in both largef* and T.. However, the two- d-wave-pairing channel abovE, is much stronger. The de-
band model results do not indicate that this is the case, théuction of the parameters both in cell perturbation and clus-
respective critical temperatures being not very different inter approach results in a larger nearest-neighbor hopgirg
the electron- and hole-doped regimes. the hole-doped regime. However the critical temperatlites
Based on our comparison we can draw the following con-andT, in the two-band Hubbard model are approximatively
clusions. The one-band Hubbard model retains much of théhe same in both regimes, quite different from what should
two-band Hubbard model physics, but a significant nextbe expected.
nearest-neighbor hopping' /t=0.3) should be provided. If The conclusion is that a single-band Hubbard model with
the purpose of the investigation is the study of the basi@ significant value of the next-nearest-neighbor hopping
physics, such as the SC mechanism, the proximity of AFM(t’/t=0.3) captures the basic physics of the two-band Hub-
SC, and pseudogap, we believe that a one-lia'vl) Hub-  bard model, including the proximity of antiferromagnetism,
bard model should be good enough. On the other hand, if theuperconductivity, and pseudogap and explaining the
purpose is to describe more subtle features, such as the onelectron-hole asymmetry seen in the phase diagram, one-
that may result from the finite value of the spin correlationparticle, and two-particle spectral functions. However, the
on oxygen, or if a quantitative material-specific calculation issingle-band Hubbard model is not entirely equivalent to the
desired, the single-band model approach fails. Obviouslywo-band Hubbard model and we believe that it is not suit-
also the single-band model should not be used to describeble for quantitative material-specific studies or for describ-
spectral features at energies above 0.5 eV, such as the opticalg more subtle features that may result from the nonlocality
electron energy loss, and inelastic x-ray-scattering results. of the low-energy states. It is also not suitable to describe
physics, which implies excitations with energy scales larger

VI. SUMMARY AND CONCLUSIONS than=0.5 eV.

In this paper we use the DCA to calculate the properties
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