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Entry of magnetic flux into a magnetically shielded type-Il superconductor filament

S. V. Yampolskif and Yu. A. Genenko
Institut fir Materialwissenschaft, Technische Universitat Darmstadt, D-64287 Darmstadt, Germany
(Received 28 October 2004; published 26 April 2D05

In the framework of the London approximation the magnetic flux penetration into a type-ll superconductor
filament surrounded by a soft-magnet sheath and exposed to a transverse external magnetic field is studied. The
lower transverse critical field as well as the critical field and the critical current of the first vortex nucleation at
the superconductor/magnet interface are calculated on the basis of an exact solution for a vortex of arbitrary
plane configuration. The Bean-Livingston barrier against the vortex nucleation is shown to strongly depend on
the magnet sheath parameters.
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I. INTRODUCTION carrying properties of type-ll superconductor filaments is

Hybrid systems composed of magnetic and superconducglill lacking. _ _
ing materials have attracted much attention during the last Recently, we have considered the flux-free Meissner state

few years in view of the possibilities to improve the super-in & type-Il superconductor filament surrounded by a circular
conductor critical parameters. There were conducted man§oft-magnet sheathand calculated the field distribution and
experimentdi-® and theoreticd?! studies of the heterostruc- the magnetic moment in this object. In the present paper we
tures composed of superconduct@BE's) andferromagnets  consider properties of the vortex state in the above sample
(FM’s). Diverse vortex configurations are generated in suctwhen it is exposed to a transverse magnetic field and/or car-
structures due to the large intrinsic magnetic moments of thges a transport current. In particular, we derive general ex-
FM elements(magnetic dots®10.1416.17gr inhomogeneities pressions for the magnetic field of an arbitrary plane vortex
of the magnet layé#1>1§ and various transitions between and find the transverse lower critical figtt}; and the field of
them occur. The interaction of vortices with these intrinsicthe first flux entry H,. In addition to the experimental
moments results in matching effects of a vortex lattidé, —significancé'~28of such SC/SM heterostructures, the system
spontaneous nucleation of vortices inside a superconductender consideration is simpler, from the theoretical point of
layer16:17.2021enhancement of vortex pinnifig®'2and in-  view, than the strip geometry, because it allows one to ex-
crease of critical magnetic fields of a supercondutiét’ clude the strong influence of a large geometrical factor on
Much less attention has been attracted by heterostructurége superconducting response typical of the planar
of superconductors ansbft magnet§SM's). Soft magnets, configurationg34%-42In our consideration we will follow
such as Permalloy, pure iron, crioperm, etc., have, as a ruleonceptually Ref. 43 where the lower critical field and the
sufficiently large values of the relative permeabilityand a  critical conditions for the first flux entry in a current-carrying
very narrow hysteresis loop and possess negligible remanehtpe-Il superconducting cylinder exposed to a transverse
magnetization. Nevertheless, they may significantly improvemagnetic field have been established.
superconductor performance by effective shielding from the The paper is organized as follows. The theoretical model
external magnetic field as well as from the transport currenis presented in Sec. Il. In Sec. Il we derive the magnetic
self-field?2-2° It was shown first theoreticafi§2 that the  field distribution for a single vortex of an arbitrary plane
magnetic shielding may increase the critical current of a sushape and give a general expression for the self-energy of the
perconductor strip, enhancing in this way its current-carryingvortex in a composite SC/SM filament. The dependences of
capability both in the Meissner and in the partly flux-filled vortex magnetic moment on the thickness and the relative
states. It was found also that such shielding can stronglpermeability of the magnet sheath are discussed in Sec. IV.
reduce the transport ac losses in superconductor wires arkdirther we find critical parameters of the SC/SM cylinder:
tapes?*?5 A strong current redistribution in superconductor the lower critical fieldH., is obtained in Sec. V and the
strips due to bulk SM environments has been establishegdonditions for the vortex loop nucleation on the SC/SM in-
recently by magneto-optic. terface are established in Sec. VI. Our conclusions are pre-
After the discovery of superconductivity in magnesium sented in Sec. VII.
diboride’® very intense investigations were carried out on
;uperconducting MgBwires sheathe(_j in ir_on,.which became Il. THEORETICAL MODEL
ideal objects to explore the magnetic shielding effect due to
simplicity of their fabricatior’!32As was observed in recent  Let us consider an infinite type-Il superconductor cylinder
experiments, such structures exhibit enhanced superconduetf radiusR; enveloped in a coaxial magnetic sheath of thick-
ing critical currents over a wide range of external magnetigiessd with a relative magnetic permeabiligy> 1, the struc-
field®1-33-35as well as a strong reduction of ac losses in theture extended along theaxis of the cylindrical coordinate
external field®6-38At the same time, a theoretical description system(p, ¢,z) adapted to the cylind€Fig. 1). A transverse
of the influence of soft-magnet shielding on the current-magnetic fieldH, is applied along the positivg direction
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The solution of Egs(1)—(4) may be represented as a su-
perposition of the Meissner responBg, induced byHg in
the absence of the magnetic vortex, and of the indudiiof
the vortex itself. The field,, satisfies Eqs(1)—(5) with &
=0 and has been found recentyTherefore we may rewrite
Eqg. (1) in the form

b+ N2 curl curlb®=d, p=<R,. (6)

Taking into account that the field of the vortex is a potential
one outside the superconductor and may be presentéd as
=-V ¢ we obtain in this area, instead of E¢3) and(4), the
FIG. 1. Cross-sectional view of a superconductor filament covLaplace equation
ered by a coaxial cylindrical magnetic sheath and exposed to exter-
nal transverse magnetic field. A plane single vortex of an arbitrary Ay=0, p=Ry, (7)

form entering a superconductor is shown. . .
with s— 0 at p— o and the boundary conditior(5) apply-

. . . . ing mutatis mutandigs well.
and is asymptotically uniform at distances large compared to 9

R,=R;+d. In our consideration we will neglect the remanent
magnetization as well as both nonlinear behavior and con- Ill. STRUCTURE OF A PLANE MAGNETIC VORTEX
ductivity of the magnetic layer so that the magnetic induction IN'A SC/SM CYLINDRICAL SAMPLE
B=uouH in the magnet and, therefore, a relative permeabil-
ity u is assumed the only characteristic of a homogeneou%
isotropic SM sheatliu, is the permeability of free space

We start from the London equation for the magnetic in-
ductionB® in the superconductor aré4,

BY+N\2curl curl BV =d, p=<Ry, (1)

In the manner of Ref. 43, we look for the components of
e vortex self-field in cylindrical coordinatesh®
=(b” bl ,b") and for the potentiaky using the Fourier
transformation in the form

. dk .
bW (p,p,2) = >, explime) f —blM(p)exp-ik2), (8)
with the London penetration depthand the source function m 2m
describing an arbitrary vortex,

dk
®(r) =D, f disr -1, 2 p,@.2) = 2, explime) f ;ka,m(p)exp(—ikz), 9)

where®y is the unit flux quantumy is the position vector, \here the indexj assumes valuep,¢,z In terms of the

anddl is the flux-line element; the integration extends alongroyrier amplituded!™ and . ., Egs. (6) and (7) transform
the flux line (vortex corg. The magnetic field outside the g the set of ordinalr(ymdiffereritial equations
superconductor denoted B¥? in the magnetic sheath and

by H® in the surrounding free space is described by the 2oV 1 gbpY , MEHL\ o2im
Maxwell equations (9—p2 + ;? - +——— |bf - ?bk'm
curlH=0, p=Ry, 3 PP
=-2 P=Ry (10)
divB=0, (4) N

the latter of which is valid in the whole space.

We imply the existence of an insulating, nonmagnetic

Pofy  1abfy m+1 2im
: : 2 1 1
Z km  ZZTkm QP+ —— b¢()+_2b;|zfm)

layer of thickness much less than d, and R; between the > p dp km
superconductor and magnet shefdtin example, such a layer o¢
was experimentally observed in MgH-e wires5). Accord- =- 0 p=R, (12)
ing to this assumption Eqg1)—(4) are provided with the A
boundary conditions
_ _ FPoAY 1 g2 m? P
By = uouH?, B = uoH(?, (5a) ?kzm + ;f -(@+ T oin=-T p=R,

WHP =HP, HE =HE, (b 12
for the normal(n) and tangentia(t) field components on the ,
superconductor/magnet interfat®s) and on the outer mag- Fhem | 1 0hem 2, M _
net surface(5b), respectively. In addition, the field has to ap? * p p Ko+ p? Ym=0, p=Ry, (13
approach asymptotically the value of the external magnetic
field Hy,. with the boundary conditions
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@ a2 (Ry) amplitudes®d}, ,, of the source functioti2) are defined in the
bEm(Ry) = - J same manner as the field components in @By. Indices(2)
P and(3) in Egs.(14) correspond to the areas of the magnetic
(P(l) e sheath and the surrounding free space, respectively. Notice
m (Ry) = Mo Yem(Ry), that Eqs.(10)—(12) are not identical to Eq6) since by their
derivation we used the equality curl cur{? =—-Ab® which
bEB(Ry) = kot h(Ry), (14)  implies that divb®™=0. Therefore the solutions of Egs.
(10<13) should also satisfy the latter constraint to be the
(2) (Rz) ¢ (Rz) solutions of Eqs(6) and (7).
YR =YD (Ry), We consider below arbitrary configurations of a plane vor-
&P ap ' tex lying in the planez 0, so thatd; ,=0. Upon the trans-
,p(k‘?‘r)n(oo) =0. formation fk—m—b” 1)+|b“’nfl) the set of equation$10)—(13)

may be decoupled and solved in terms of the modified Bessel
Here the valueQ=(k?+\"2)'? is introduced and the Fourier functions. We obtain the solutions regularpst0:

bp 1) 1 Ry Ry
(ub“’“)) =5 |m+1(Qp)|:F;,m - f dp’p’ nE,m(p’)Km(Qp’)} + Im(Qp){kam‘ f dp'p’ ni,m(p’)Km-l(Qp’)}
k,m P p

P P
Kmn+1(Qp) f do’p’ T m(P ) me1(Qp") F Kin2(Qp) f dp’P'nE,m(p’)lm-l(Qp’)}, (15
0 0
[
bZY = Ciemlm(Qp), (16)  the actual form of the potentiay? and of the magnetic
' ' inductionb™.
The above-described solutigh5)—(18) exhibits a proper
2 _
Yim= @il m([Klp) + BemKim([Klp), (17 transformation to the case of an isolated supercondtidbgr
setting u=1. Together with the expression for the vortex
ff,)n: Wy KK p), (18)  self-energy(19) it may be applied to configurations with any

. ) number of plane vortices. Among others it allows one to
where 7 .(p)=-N"APL£i®f ), and |, and K, are the investigate, by special choice of vortex shape, the lower criti-
modified Bessel functiorfs. The coefficients in Egs. cal field and the magnetic flux entry in shielded supercon-
(15)—(18), found from Eqs(14) with the constraint div¥  ductors carrying a transport current and/or subjected to an

=0, are given in Appendix A. external magnetic field, the problems considered below.
Before calculation of the physical properties of vortices of

definite configurations and critical parameters of the system
under consideration, we write here a general formula for théV. MAGNETIC MOMENT OF AN ARBITRARY PLANE
free energy of an arbitrary plane vortex in terms of the above VORTEX LOOP

presented solution. The self-energy of the system containing

a single vortex takes the forfsee Appendix B In this section we consider a magnetic moment of a mag-

netically shielded wire, an important measurable characteris-

1 tic which is also necessary for evaluation of critical param-
F=— dV[b®2 + A%(curl b™)?] eters of the SC/SM heterostructure. The magnetic moment
2p0J p=ry projection on the fieldH direction (see Fig. 1 consists of

okt P two parts, presenting contributions from the superconductor

+ 2= f dV(V /)2 + —Of dV(V y9)? and from the magnetic sheath as follows:
Ri=<p=<Rp 2 pP=Ry o °
M, =M +M
1 R y y y
=5 dvbPa + 512 J dk 2 (RYD?, _(Ry). L
ol p=ry m = Ef dMp X jly
(19 p<Ry

Itis mterest.mg to note that this expression is identical tq the (- 1)f dv(V 1/1(2))y, (20)
corresponding formula for the self-energy of a vortex in a Ry=p=<R,

nonshielded superconducting cylindsee Eq.(21) in Ref.
43]; the presence of a magnet is accounted for implicitly bywhich may be reduced to the forms
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20 2mi (R _ radius p for which the loop exists; theny(R;—r)=0. With
MY =~ ;Ribg,(ll)(Rl) + M_f dp p(087 ~ibg?), the functiony(p) defined in this way the Fourier amplitudes
0 00 of the source functiori2) read?

(21)

b
Bf=—" silmy(p)]op =R+ 1), $fp=0, (23
M® = 2mi (1 - D[RR, - Rif(R)].  (22) P

Let us consider now an arbitrary vortex loop lying in the Do dy(p)
planez=0 and penetrating the superconductor to the depth of Of = T cogmyx(p)]0(p =Ry +1).
. . o dp
r from the surface. For simplicity we also suppose that the
loop is symmetric with respect to theaxis and, therefore, Then, upon the substitution of the amplitude§, and ®§ ;
we will describe its specific form by some smooth monotonicin the general expression$5), (17), and(20)—22), we ob-
function ¢=x(p). Let us denoteR,-r as the least value of tain the magnetic moment of the loop:

2p+ (u?+ 1)(d/R) (2 +d/Ry)

My = MY - , (24)
2u+ (u+ D1+ (= DI(RMN)No(RY/N)J(A/IR)(2 +dIRy)
[
where the prime denotes the derivative of the Bessel function Mf -1
. . * _ 0
with respect to its argument and M, =My 2z (28)

o 4P 1 (T
Y poh 1o(R/N) J gy

dp pu(f)sirix(p)] (25)
In the case of very thick* magnet shedth>R;) the lowest
is the magnetic moment for the unshielded superconducto\falue of th_e moment i81,=0.83v,. :
filament® [notice that formula(A4) in Ref. 43 may be re- In the limit of th|r_1 supgrconductoR_l<_)\ the magnetic
' momentM, monotonically increases with increaseofr d

duced to the above formAs it follows from Eq.(24), the . . . . )
dependence of the magnetic moment on the relative perm see Fig. f)] and this dependence is described by the ex

ability u and the thicknesd of the magnet sheath is univer- ression
sal in the sense that it does not depend on the specific form
of the vortex. It is interesting to note that the magnetic mo- o2l2u+ (u?+ 1) (d/IR) (2 +dIRy)]
ment may be factorized as in E(4) though the contribu- My =My dut (ut DAARI2 +dR
tions of the superconductor and of the magnet sheath are pt (et DR )
superimposed in the definitioi20).

The M,(x,d) dependence is shown in Fig. 2 for two dif- | et us note that in both limiting cases the factor accounting
ferent values of superconductor radit=10\n andR;=X.  for the magnet sheath does not depenchon
One can see that this dependence is different for thick and For investigation of critical parameters of the SC/SM het-
thin superconductors. For enough thick supercondUsee  erostructure we must specify a form of the vortex which will
Fig. 2(a)] the momentM, reveals a minimum as a function pe done in the next sections.
of w for any fixedd. In the limit of R;>\ the M,(u,d)
dependence is described by the expression

(29)

) V. LOWER CRITICAL FIELD  H,; OF A SC/SM CYLINDER
M, = po 2t W DR)2+dR) = o IN A TRANSVERSE EXTERNAL FIELD
T 2p+ p(p+ (IR (2 +dIRy)

To obtain the value of the lower critical magnetic field we
The minimum value of the moment is reached at the Ioermec_:onsider now the case of a vortex taking a stable position in
ability the center of the sample: namely, directed along the cylinder

diameter parallel to the applied field, (Fig. 3. This posi-

1/2 tion is analogous to that of the straight vortex located deep
(27) inside a bulk superconductor cylinder parallel to the external

field which energy defines the lower critical field for bulk

samples? The central location of the vortex apparently leads

and equals to a local minimum of the Gibbs free energy of the system,

=l 24—
H (d/R)(2 +dIRy)
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FIG. 2. The dependence of the vortex magnetic monénon
the relative permeabilityx and on the thicknesd of the magnet
sheath for different values of the superconductor radias:R;
=10n and(b) Ry =A\.

G=F-MH,, (30)

whereF is the self-energy19) andM is the magnetic mo-
ment of the sample due to the presence of the vof2dx
Vanishing of the energy30) defines the value of the lower
critical field H;; at which the vortex becomes first energeti-
cally favorable deep inside the supercondudtastice that,

PHYSICAL REVIEW B 71, 134519(2005

Hcl

FIG. 3. Magnetic vortex lying along the diameter of a cylinder
and parallel to the external transverse magnetic field.

Do

P
lp

. m
sm7, p=<Ry,

CIDI‘Qm: ﬁ,m: 0. (3D
Upon the substitution of Eq(31) into the solution
(15—(18), one can find approximate expressions for the self-

energy of the vortex19) in two limiting cases

2 4R, 6
F= 2R1 In_+_+O(R1/)\) y §< R1<)\,
27 o e
(32
F= RifIn—=-y+0ONRy) |, R;>\, (33
277#0)\2 1 ¢ Y ( 1) 1 (33

where the divergence of the energy at large momerkum
usual in the London theofY,is cut at the scal&~ 1/¢ with
the superconductor coherence lengttOne can see that in
both cases of thifiR; <\) and thick(R;>\) superconduct-
ors the self-energy does not depend on the characteristics of
magnet sheath even in terms of the order of small parameters
Ry/\ and\/Ry, respectively. The dependence prmay ap-
pear only in terms of the higher orders of that small param-
eters. Therefore, the magnet sheath virtually does not influ-
ence the self-energy of the vortex.

The magnetic moment of the sample is defined by Eq.
(24), where MS is easily obtained from Eq25) with x(p)
=1/2 (in this case the integration overstarts from :

MO = 27DR; | Lo(Ry/N)
Y o lo(Ry/N)

Il(R]_/)\) - Ll(R]_/)\) y (34)

in this case, the Meissner contribution to the energy is conwherelL, is the modified Struve function. Notice that, con-

stant and may be omitteéd

For the vortex lying along the cylinder diameter the Fou-

rier amplitudes of the source functi@®) read?

o 2+ (e + DI+ (= DR (RN IR (2 +dIRy)

trary to the self-energy, the magnetic moméy strongly
depends o andd. Finally, from Eq.(30) we easily obtain
the following expression for the lower critical field:

Hei=Heg

2p+ (? + 1)(d/Ry) (2 + dIRy) ’

(35
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FIG. 5. Scheme of the first vortex loop nucleation at the inter-
face between superconductor and magnet sheath in the SC/SM fila-
ment exposed to an external magnetic field.

2
M*
Hep = HY 2 a0 (37)
s =1

taking on the largest valud,=1.2H, atd>R,. With de-
crease ofR; this effect disappears and f&; <\ the pres-
ence of magnet sheath depresses the lower critical [foelel
Fig. 4(b)]. In the limit of thin superconductor cof®, <\ the
critical field is described by the asymptotic expression

_ HE Ap+ (p+ DHAIRY (2 + dIRy)
T2 2u+ (B+ D(AR)(2+ARY)

A practical conclusion here is that a cylindrical magnet
sheath has a detrimental effect on superconductivity in thin
superconductor wires of radius less thafacilitating vortex
phase at lower magnetic fields. On the other hand, the mag-
netic coating of thick superconductors with radius much
larger than\ allows optimization of the sheath parametdrs

FIG. 4. The dependence of the lower critical fiedg, on the ~ @ndu in reasonable ranges leading to the moderate enhance-
relative permeability. and on the thickness of the magnet sheath ment of the lower critical field.
for different values of the superconductor radi(®: R;=10\ and
(b) Ry=\. VI. VORTEX LOOP NUCLEATION AT THE SC/SM
INTERFACE (THE BEAN-LIVINGSTON BARRIER)

H

(38)

whereHZ, =F/M? is the transverse lower critical field of the _
nonsheathed sample, the prime denoting the derivative of the N the nonshielded type-Il superconductor sample exposed
Bessel function with respect to its argument. Notice that byl® & transverse magnetic field the entry of magnetic flux

virtue of definition theH.(«,d) dependence is inverted to Starts with the small loop nucleation at the sample
that of the magnetic momex24). surfacé®~° when the surface Bean-Livingston barpfers

The dependences f., on x andd are shown in Fig. 4 ©OVercome. It is evident that in the SC/SM system concerned

for the same values of radius of the superconductor as in FigN€ Similar process of vortex loop nucleation takes place at

2. One can see that for enough large radii this dependence 18€ interface between the superconducting core and the mag-
nonmonotonic and reveals the region of magnet permeabilitff€t SheathFig. 5. However, due to the magnetization of
values WhereHC1>H21. For R;=10\ [Fig. 4(@)] the lower magnetic medium, the. nucleanon_ of vortex loop at the
critical field is enhanced up to 10% and this enhancemenpC/SM interface may differ from this on the uncovered SC
grows with increase oR;. In the limiting caseR;>\ the cylinder surface studied earliét.

Hq(u,d) dependence is described by the expression

o M2t pt DIAR)ZLARY] 4 The Bean-Livingston barrier i It of tition b

cl 2 . e Bean-Livingston barrier is a result of competition be-
Zu+ (= + DA/RY(2 + d/Ry) tween the attraction of the vortex to the boundary and the

The maximum value oH; is reached at any fixed value of repulsive Lorentz force exerted upon the vortex by the

the magnet layer thicknegss for the permeabilityus, Eq.  Meissner current. To evaluate the critical field of the first

(27), and equals vortex loop penetration into the SC cylinder it is convenient

A. Nucleation of a vortex loop in a transverse magnetic field

He=H
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to present the Gibbs energy of the system as a sum of the a 1

vortex loop free energy and the work of the external source AW, = ‘I’of drf dlijm = ECDOTFJ' & (42)

of the magnetic field calculated as the work of the Meissner 0

current®! wherej is a value of the screening current in a place of the

loop entry. The Meissner current in superconducting cylinder

G=F - AW, (39 has the onlyz component?®
We consider a small semicircle loop of radiask\ de- duH
fined in Ref. 43 by the source functi¢@3) with ip,p) = EMTOM(P/?\)COS% (43)
X(p) = $6(Ry — p) bp — NRE - @)
+X(p)0p- Ry +)0(NRE—a2-p), (40 D= M|0(Rl/)\)[# +1 —(1:‘7_/;)2}
1

where sing=a/R; and co§y(p)=(Ri+p?-a?)/2R;p. Sub-

stituting the amplitudes] ,, into the general expression for - M( 2_1q) (d/Ry)(2 +dIRy) (44)
the energy, Eq(19), with magnetic field components from Ry/\ (L+d/R)?

Egs.(15—(18) we find that the self-energy of the vortex loop

for two limiting cases of thick(R;>\) and thin (R, <\) and the maximum magnitude of the screening current,

superconducting core coincides, in the main approximation, ~ 4uHg
with the result, for the unshielded SC cylinéfer Is= ETIl(Rl/)\)’ (45)
2 . . . .
a =
0 amn? f<a<, (41) is achieved at the equatorial lings=0 and ¢=7 where a

= A pugh? é vortex nucleates most probably.

) The Gibbs energy of the vortex loop nucleatingeat0
and does not depend on parameters of magnetic sheath @hormalized by presence of the magnet,

well as in the case of the straight vortex along the diameter o
(see Sec. ¥ The dependence of the loop self-energy on _ 0 a 1 —
permeability u appears only in hig_her orders of the small G= 477#0)\27ra|n & zd)osza ' (46)
parameten/\. Because of complexity of the general expres- . ) o ) )
sions(15)—(18) it is hard to exactly derive these terms. For- 9rows with the radius from zero until it achieves a maxi-
tunately, it is sufficient here to estimate the difference of the'Um at some critical radius valug, defined by the relation
loop energy in the case under consideration from the case &G/ 9a=0. If 'ghe fluctuation 'vortex (eaches this size, further
unshielded superconductor. This difference reaches its maxioOP €xpansion becomes irreversible and the vortex entry
mum in the limit of an infinitely largeu (see, for example, Proceeds. Depending on a sample surface quality vortex pen-
Ref. 40 and is less than the main approximati@l) by the ~ etration may occur at different values of the crmcal radius
factor of the ordea/\. Therefore, we conclude that the self- from the regioné<a, <\ where formula(46) applies. The
energy of the vortex loop is not affected substantially bylowervalue_corresponds to the case of the ideal surface when
presence of the magnet. the nu_cleatlc_m occurs at the scale of the vortex cerihe _
The above paradoxical result—that the influence of the?PPosite limit describes a rough surface with the typical im-
magnet sheath on the vortex self-energy is inessential eve?friection sizes of the order ofx or larger. In general, a field
for large permeabilities—can be explained in the following©f the first flux penetrationH,, defined by the condition
way. Apart from the major contribution to the vortex energy @m=min(3,)), is given by

(41) proportional to its length, the full enerd$9) includes a HO [ 14(Ry/N) 1

contribution of the magnetized sheath. The boundary condi- Hp= —9{ 0—1{,@ +1- ’u—z]

tion (5a) requires the continuity of the normal component of 4 [ 11(Ry/N) (1+d/Ry)

magnetic inductio” = uouH'?. At the same time, the total N, (R)2+dR)

flux of magnetic induction is fixed by the flux quantization in - M—Rl(,u - )W : (47)

a superconductor. Accordingly, a typical magnetic induction
value in the magnet iB~ ®,/\?, whereas the magnetic field whereHg:(<D0/47mO)\am)In(ean/ ¢) is a field of the first flux
in the magneH ~ ®,/ uou\? is suppressed by the large penetration at a flat superconductor/vacuum boundary adopt-
Therefore, the interaction energy proportionalBeH is & ing values between the lower and the thermodynamic critical
times reduced comparing with the vacuum case. Notice thdtelds of the bulk material&*
this conclusion is valid for the vortex loop nucleated at a In Fig. 6 we present the dependence of the figjdon the
SC/SM interface of arbitrary form. relative permeabilityw and the thicknessd for the radii of

Now let us calculate the second part of the Gibbs energguperconductoR;=10N and R;=\. One can see that this
(39). In the geometry of Fig. 1 the Meissner current is per-dependence is monotonic for both cases of thick and thin
pendicular to the loop plane and almost constant in the smafluperconductors, contrary to the same dependences of the
loop region of sizea<<A\. In this case the work of the Meiss- transverse lower critical fieltH.;, and differs only by the
ner current when the loop expands from the radie® toa  scale of magnitudes. With increase mfat fixed thicknessl
reads simply as the H,(u) dependence approximates to the linear one. A
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J_ lop/N)
27TR1)\ Il(R]_/)\) '

ju(p) = (50)

which is superimposed on the screening curf@d). Simi-
larly to the latter, the transport current density remains con-
stant within the loop and equal to the surface value

J  Ig(Ri/N)
27TR1)\ Il(R]_/)\) |

Jsir= (51)
This surface magnitude should be simply added to the maxi-
mum value of the screening curref5) and substituted in
the Gibbs energy46). Using the criteriora,,=min(5,\) to
define the critical current of the first flux penetratidp, we

find the average density of the transport critical currgpt,
=J/ wR?, for Hy<H,:

21,(Ry/N) [
Rylo(Ri/N)

In the limits of thin and thick superconductor cores we ob-
tain, respectively,

0_ 4pHo
P D

je(Ho) = |1(R1/)\)] . (52

Hp _ 4uHoR: [ (p=1? r
jo(Hy) =2 - 52| (u+ 1P -————=| , Ry<\,
Jc( 0) N A2 _(M ) (1+d/R1)2 1
(53
2HS  8H,| p-1 ]'1
j(H)=—=2- = u+1-——0| | Ry>\.
]c( O) R, R, _:U' (1+d/Rl)2 1
(54)

One can see that in view of relatively large values of the
permeability in soft-magnet materials the field dependence of
jc remains linear up to the field,=<H,, which corresponds
to the experimental situatiofsee, for example, Ref. 31

For estimation at the practically interesting temperature of
32 K we take a reasonable=50 for Fe andd/R;=1/2

FIG. 6. The dependence of the field of the first flux penetrations,om Refs. 31. 33. and 34 and thermodynamic parameters of

H, on the relative permeability, and on the thicknesd of the
magnet sheath for different values of the superconductor ra@us:
R;=10\ and(b) Ry=A.

monotonic behavior is also demonstrated by Hytd) de-
pendence with increase dfat fixed permeabilityw. Consid-
ering practically interesting cas® >\ we write down

T P Tt 1 (48)
P | T T @ HdR)? |
In the opposite limitR; <\ we obtain
A (u—1)? }
Hp=Hl——| (u+1*- ————|. 49
P ”4MR1[(“ TETTNE 49

B. Nucleation of a vortex loop in the presence
of a transport current

MgB, from Ref. 54 which gives possible values pf0)
between 7. 10° and 4.4<10* A/cm? and of uoH, be-
tween 0.16 and 1.02 T. The field dependencg(fl,) re-
mains very weak up to the fields comparable wiif. In

view of the relatively low values of the critical temperature,
Ginzburg-Landau parameter, and anisotropy of the polycrys-
talline MgB, (Ref. 54 we assume that thermally activated
penetration through the surface bartléis here negligible.
These estimates are in a good agreement with the results of
Refs. 31, 33, and 34.

VII. CONCLUSIONS

To summarize, we have described the structure of an ar-
bitrary plane vortex in a type-Il superconductor cylindrical
filament covered by a coaxial soft-magnet sheath when it is
exposed to an external transverse magnetic field and carries a

Next, we consider the situation when the superconductotransport current. We have derived general expressions for
carries also a transport current. The appearance of a totttle magnetic field components, self-energy, and magnetic
transport currend results in an additional angle-independentmoment of the vortex. Using these expressions, we have es-

z component of the current densi>3

tablished that the self-energy of the vortex lying along the
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sample diameter as well as that of the small vortex loop Notice also that the above-studied modification of the
nucleated at the interface between the superconductor ar®ean-Livingston barrier is not reduced to the shielding effect
the magnet is practically independent of the parameters aff the magnetic sheath soléh?5-38pbecause the latter does
the magnet sheath—i.e., its permeability and thickness. Thisot account for the magnetic flux expelling from the filament
paradoxical property is due to the phenomenon of flux quaniself. For example, in the limiR; >\ ,d the maximum field
tization in the superconductor. on the superconductor surface amountsHg,=2Hq/(1

We have found that the dependence of the magnetic motud/R;) while for the shielding of the normal core it is
ment of an arbitrary plane vortex on both the permeabilityHo,—=Ho/(1+ud/2R;) (see Ref. 55 The difference be-
and thickness of the magnet sheath is not sensitive to thisveen these two values may be substantial if the parameter
specific form of the vortex. At the same time this dependencewd/R; is not large. The observed range of external magnetic
is qualitatively different for thick and thin superconductors. fields, where the critical transport current remains virtually
For samples with radius much larger thanit reveals the field independent, exceeds substantially the characteristic
minimum at some value of the permeability for any fixed field of the effective shielding by the magnet sheath alone
thickness of the sheath whereas for thin superconductoMhich was discussed in Ref. 33. On the other hand, estima-
having a radius less than the magnetic moment of vortex tions of the field for the first flux entryd,, correlates well
monotonously increases when the permeability and/or sheathith the region of weak field dependence of the critical cur-
thickness increase. Such a behavior of the magnetic momef&nt in MgB,/Fe cylindrical wires’***Reduced flux penetra-
causes the inverted dependence of the transverse lower crition in the superconductor in this field region entails natu-
cal field, the exact expression of which was derived. Thigally reduced ac losses which was also observed in Refs.
field has a maximum at some value of the relative permeabil36—38.
ity for any fixed thickness of the magnet sheath for the case Finally, we have considered the simple model where the
of the thick superconductor, while it decreases monotonousljelative permeability is a sole material characteristic of the
with both permeability and magnet thickness increase for théhagnet and neglected its possible dependence on the applied
case of the thin superconductor. field which may be importar® Nevertheless, the results ob-

We have considered also how the magnet sheath changtained are in good qualitative and quantitative agreement
the conditions for the flux penetration in the superconductokvith the existent experiments and could be used to optimize
(the Bean-Livingston barrigwhen the sample is exposed to the superconducting and current-carrying parameters of
the external transverse magnetic field and/or carries th8C/SM heterostructures.
transpgrt current. The expressions for the gr|t|cal field and ACKNOWLEDGMENTS
the critical current of the first flux penetration have been
derived. We found that, due to the presence of the magnet We are grateful to H. Rauh, H. C. Freyhardt, Ch. Jooss, A.
sheath, the critical field of the first flux entry can be stronglyV. Pan, J. Horvat, S. X. Dou, M. D. Sumption, F. M. Peeters,
enhanced. In contrast to the lower critical field, it stronglyA. Gurevich, and V. Vinokur for stimulating discussions.
increases in both the thick and thin superconductor caseghis work was supported by a research grant of the German
when the magnetic permeability of the sheath is large. Th&kesearch FoundationDFG). Support from the ESF
results obtained have shown that, due to the magnet sheatWDRTEX Program is also acknowledged.
the Meissner state in the superconductor filament can be ef-

fectively preserved in a wide region of the external magnetic APPENDIX A: THE COEFFICIENTS IN EQS. (15)-(18)

field (or transport currentmagnitudes. The coefficients in Eq9415)—(18) read
|
B.+B_-B B.+B_-B
am=A ", Bym= A, (A1)
HoA oA
. |mea((KRy) (K Ry) } { SN Kin([KIR)
Fim=B.—a K| ———+(u-1)——=| - K| -————+(u-1)———= |, (A2)
=B ~ il '{ s @Ry T Ry | Ao T ory T LRy
. | [KIRy) Km<|k|R1>}
Cim=ik {a = + : (A3)
k=L Hm(QR) T M QR
1 B.+B_-B
Wim= , °, (Ad)
KR m([KIR)I([K[R) oA
where
_ (1 - ) Knf([KIR) Ki([KIRy) _ Ka([KRy) 1 KA([KIRy) (A5)

You (KR (KR T (KR 1(KIRy)
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|mea([KIRy) lm_1<|k|R1>} 2k21 ([K[Ry) , [ 1 1 H
A=Aq) K -— - DIK1(KR
1{' '[IM(QRl) P 1aQR) | T 0 @Ry T DKIKRY | e Ry

Km((KIR)  Kno1([KIR 2k? K ([KIR 1 1
+A2{_|k|{ CralR) KK 1)]__ MR <M—1>|k|K;n<|k|Rl>[ . ” o
m1(QR)  In-2(QRy) Q In(QRyY Imr2(QR)  1n-2(QRy)
Kma(QRY (R, 2R,
= d » I , B3z =K (QR)PL (Ry), A7
== QR ), P P (P 1 (Qp) 37320 m(QR) DL (Ry) (A7)
[
the prime denoting the derivative of the Bessel function with ,u
respect to its argument. F&=- ?0 f dVPh@v ¢
—_ Mo ANG (YIKO
APPENDIX B: THE FREE ENERGY OF A HYBRID =75 JdS n® (*7h)|ga. (B4)

SC/SM STRUCTURE _
In Egs. (B2)—(B4) n¥) denotes the outer normal to the sur-

Let us calculate the excess free energy due to presence glee 5i) of the corresponding region. Next we assume that
vortices in an arbitrary hybrid system composed of the SUy,q fig|q h® decreases sufficiently fast, so that the part of

perconductor and insulating soft-magnet components Wit tace integralB4) corresponding to the integration at

respect to the energy of that system in the flux-free Meissner, . \ anishes. The rest of this surface integral—i.e., the in-

state. T_akipg into gonsideration the potential nature Qf thqegrm over the magnet outer surface—is compensated by the
magnetic field outside the superconductor we write this eNzorresponding part of the surface integ(@B) by virtue of

ergy, using the London approximation, in the following way: o boundary conditiof5b) and we have

1 D12 4 \2 W2, L RN @)
_ 1 1
F 2 dVI[bW2+ \%(curl b )]+2 dV?B®h F= VbV
2o
Mo 3 (32 A2
5 fd\/( (h'®)?, (B1) + 2 | ag9n® (6@ x curl b®)|qn

2o
whereb® is the magnetic field of vortices in the supercon- 1
ductor, h®® and h® are the magnetic fields in the magnet +—Jd31)n(1) (?B?)|41). (B5)
media and in the surrounding free space, respectively, and 2
B@=uouh® is the magnetic induction in the magnet media.
With the vector identity ditaxc)=c curla—a curlc and
with the London equatioi6) in the superconducting region
the first term of Eq(B1) becomes

Taking into account that the second term of EB5) con-
tains only tangential components bf, we transform this
integral in the following way:

SHICE dV{b™2 + N\ curl curl b —f dSPn® (V@ x curl b™)|g
210
+div(b™® X curl )T} - f dSPn® [ x curl curl b®
1
= o dVPb D = curl(¢*? curl b®)]|5u. (B6)

N It is easy to show that, by applying the Stokes theorem, the
+ 240 dS¥n™® (b® X curl b)|gn, (B2 a5t integral in Eq(B6) vanishegqsee, for example, Ref. 56
Finally, applying the boundary conditio{a to the normal
The second and third terms of E&1) are transformed, with  components of the induction we obtain
the definitionh?9=-V 423 and with the identity dia)

=y di i i i : 1 1
Yy diva+aVy, in the following surface integrals: F- Z VOO + - f dsY (yPdnW)|g.
1 . . 0
Fe=-2 f dV@[div(y/?B?) - ¢ div B?] (B7)
1 Let us note that Eq(B7) does not contain explicitly any
=3 f ds?n@ (y/?B?)|g0), (B3)  characteristics of the magnetic media which enter only the
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expressions for quantitigs' and ¢/?. From Eq.(B7), for-  is applicable for any configuration of superconductor and

mula (19) immediately follows for the geometry considered magnet componentgfor example, for multiflamentary

in the paper. superconductor/magnet wires or tapesd is valid in the
The general expressidi87) obtained for the free energy whole region of the vortex state in a type-Il superconductor.
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