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In the framework of the London approximation the magnetic flux penetration into a type-II superconductor
filament surrounded by a soft-magnet sheath and exposed to a transverse external magnetic field is studied. The
lower transverse critical field as well as the critical field and the critical current of the first vortex nucleation at
the superconductor/magnet interface are calculated on the basis of an exact solution for a vortex of arbitrary
plane configuration. The Bean-Livingston barrier against the vortex nucleation is shown to strongly depend on
the magnet sheath parameters.
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I. INTRODUCTION

Hybrid systems composed of magnetic and superconduct-
ing materials have attracted much attention during the last
few years in view of the possibilities to improve the super-
conductor critical parameters. There were conducted many
experimental1–8 and theoretical9–21studies of the heterostruc-
tures composed of superconductorssSC’sd and ferromagnets
sFM’sd. Diverse vortex configurations are generated in such
structures due to the large intrinsic magnetic moments of the
FM elementssmagnetic dots2,9,10,14,16,17or inhomogeneities
of the magnet layer13,15,18d and various transitions between
them occur. The interaction of vortices with these intrinsic
moments results in matching effects of a vortex lattice,1,3,7

spontaneous nucleation of vortices inside a superconductor
layer,16,17,20,21enhancement of vortex pinning,3–6,12 and in-
crease of critical magnetic fields of a superconductor.7,11,17

Much less attention has been attracted by heterostructures
of superconductors andsoft magnetssSM’sd. Soft magnets,
such as Permalloy, pure iron, crioperm, etc., have, as a rule,
sufficiently large values of the relative permeabilitym and a
very narrow hysteresis loop and possess negligible remanent
magnetization. Nevertheless, they may significantly improve
superconductor performance by effective shielding from the
external magnetic field as well as from the transport current
self-field.22–29 It was shown first theoretically22,23 that the
magnetic shielding may increase the critical current of a su-
perconductor strip, enhancing in this way its current-carrying
capability both in the Meissner and in the partly flux-filled
states. It was found also that such shielding can strongly
reduce the transport ac losses in superconductor wires and
tapes.24,25 A strong current redistribution in superconductor
strips due to bulk SM environments has been established
recently by magneto-optics.26

After the discovery of superconductivity in magnesium
diboride30 very intense investigations were carried out on
superconducting MgB2 wires sheathed in iron, which became
ideal objects to explore the magnetic shielding effect due to
simplicity of their fabrication.31,32As was observed in recent
experiments, such structures exhibit enhanced superconduct-
ing critical currents over a wide range of external magnetic
field31,33–35as well as a strong reduction of ac losses in the
external field.36–38At the same time, a theoretical description
of the influence of soft-magnet shielding on the current-

carrying properties of type-II superconductor filaments is
still lacking.

Recently, we have considered the flux-free Meissner state
in a type-II superconductor filament surrounded by a circular
soft-magnet sheath39 and calculated the field distribution and
the magnetic moment in this object. In the present paper we
consider properties of the vortex state in the above sample
when it is exposed to a transverse magnetic field and/or car-
ries a transport current. In particular, we derive general ex-
pressions for the magnetic field of an arbitrary plane vortex
and find the transverse lower critical fieldHc1 and the field of
the first flux entry Hp. In addition to the experimental
significance31–38of such SC/SM heterostructures, the system
under consideration is simpler, from the theoretical point of
view, than the strip geometry, because it allows one to ex-
clude the strong influence of a large geometrical factor on
the superconducting response typical of the planar
configurations.23,40–42 In our consideration we will follow
conceptually Ref. 43 where the lower critical field and the
critical conditions for the first flux entry in a current-carrying
type-II superconducting cylinder exposed to a transverse
magnetic field have been established.

The paper is organized as follows. The theoretical model
is presented in Sec. II. In Sec. III we derive the magnetic
field distribution for a single vortex of an arbitrary plane
shape and give a general expression for the self-energy of the
vortex in a composite SC/SM filament. The dependences of
vortex magnetic moment on the thickness and the relative
permeability of the magnet sheath are discussed in Sec. IV.
Further we find critical parameters of the SC/SM cylinder:
the lower critical fieldHc1 is obtained in Sec. V and the
conditions for the vortex loop nucleation on the SC/SM in-
terface are established in Sec. VI. Our conclusions are pre-
sented in Sec. VII.

II. THEORETICAL MODEL

Let us consider an infinite type-II superconductor cylinder
of radiusR1 enveloped in a coaxial magnetic sheath of thick-
nessd with a relative magnetic permeabilitym.1, the struc-
ture extended along thez axis of the cylindrical coordinate
systemsr ,w ,zd adapted to the cylindersFig. 1d. A transverse
magnetic fieldH0 is applied along the positivey direction
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and is asymptotically uniform at distances large compared to
R2=R1+d. In our consideration we will neglect the remanent
magnetization as well as both nonlinear behavior and con-
ductivity of the magnetic layer so that the magnetic induction
B=m0mH in the magnet and, therefore, a relative permeabil-
ity m is assumed the only characteristic of a homogeneous,
isotropic SM sheathsm0 is the permeability of free spaced.

We start from the London equation for the magnetic in-
ductionBs1d in the superconductor area,44

Bs1d + l2 curl curl Bs1d = F, r ø R1, s1d

with the London penetration depthl and the source function
describing an arbitrary vortex,

Fsr d = F0E dldsr − ld, s2d

whereF0 is the unit flux quantum,r is the position vector,
anddl is the flux-line element; the integration extends along
the flux line svortex cored. The magnetic field outside the
superconductor denoted byH s2d in the magnetic sheath and
by H s3d in the surrounding free space is described by the
Maxwell equations

curl H = 0, r ù R1, s3d

div B = 0, s4d

the latter of which is valid in the whole space.
We imply the existence of an insulating, nonmagnetic

layer of thickness much less thanl, d, andR1 between the
superconductor and magnet sheathsfor example, such a layer
was experimentally observed in MgB2/Fe wires35d. Accord-
ing to this assumption Eqs.s1d–s4d are provided with the
boundary conditions

Bn
s1d = m0mHn

s2d, Bt
s1d = m0Ht

s2d, s5ad

mHn
s2d = Hn

s3d, Ht
s2d = Ht

s3d, s5bd

for the normalsnd and tangentialstd field components on the
superconductor/magnet interfaces5ad and on the outer mag-
net surfaces5bd, respectively. In addition, the field has to
approach asymptotically the value of the external magnetic
field H0.

The solution of Eqs.s1d–s4d may be represented as a su-
perposition of the Meissner responseBM, induced byH0 in
the absence of the magnetic vortex, and of the inductionb of
the vortex itself. The fieldBM satisfies Eqs.s1d–s5d with F
=0 and has been found recently.39 Therefore we may rewrite
Eq. s1d in the form

bs1d + l2 curl curl bs1d = F, r ø R1. s6d

Taking into account that the field of the vortex is a potential
one outside the superconductor and may be presented ash
=−=c we obtain in this area, instead of Eqs.s3d ands4d, the
Laplace equation

Dc = 0, r ù R1, s7d

with c→0 at r→` and the boundary conditionss5d apply-
ing mutatis mutandisas well.

III. STRUCTURE OF A PLANE MAGNETIC VORTEX
IN A SC/SM CYLINDRICAL SAMPLE

In the manner of Ref. 43, we look for the components of
the vortex self-field in cylindrical coordinatesbs1d

=sbr
s1d ,bw

s1d ,bz
s1dd and for the potentialc using the Fourier

transformation in the form

bjs1dsr,w,zd = o
m

expsimwd E dk

2p
bk,m

js1dsrdexps− ikzd, s8d

csr,w,zd = o
m

expsimwd E dk

2p
ck,msrdexps− ikzd, s9d

where the indexj assumes valuesr ,w ,z. In terms of the
Fourier amplitudesbk,m

js1d andck,m Eqs.s6d and s7d transform
to the set of ordinary differential equations

]2bk,m
rs1d

]r2 +
1

r

]bk,m
rs1d

]r
− SQ2 +

m2 + 1

r2 Dbk,m
rs1d −

2im

r2 bk,m
ws1d

= −
Fk,m

r

l2 , r ø R1, s10d

]2bk,m
ws1d

]r2 +
1

r

]bk,m
ws1d

]r
− SQ2 +

m2 + 1

r2 Dbk,m
ws1d +

2im

r2 bk,m
rs1d

= −
Fk,m

w

l2 , r ø R1, s11d

]2bk,m
zs1d

]r2 +
1

r

]bk,m
zs1d

]r
− SQ2 +

m2

r2 Dbk,m
zs1d = −

Fk,m
z

l2 , r ø R1,

s12d

]2ck,m

]r2 +
1

r

]ck,m

]r
− Sk2 +

m2

r2 Dck,m = 0, r ù R1, s13d

with the boundary conditions

FIG. 1. Cross-sectional view of a superconductor filament cov-
ered by a coaxial cylindrical magnetic sheath and exposed to exter-
nal transverse magnetic field. A plane single vortex of an arbitrary
form entering a superconductor is shown.
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bk,m
rs1dsR1d = − m0m

]ck,m
s2d sR1d
]r

,

ibk,m
ws1dsR1d = m0

m

R
ck,m

s2d sR1d,

bk,m
zs1dsR1d = ikm0ck,m

s2d sR1d, s14d

m
]ck,m

s2d sR2d
]r

=
]ck,m

s3d sR2d
]r

, ck,m
s2d sR2d = ck,m

s3d sR2d,

ck,m
s3d s`d = 0.

Here the valueQ=sk2+l−2d1/2 is introduced and the Fourier

amplitudesFk,m
j of the source functions2d are defined in the

same manner as the field components in Eq.s8d. Indicess2d
and s3d in Eqs.s14d correspond to the areas of the magnetic
sheath and the surrounding free space, respectively. Notice
that Eqs.s10d–s12d are not identical to Eq.s6d since by their
derivation we used the equality curl curlbs1d=−Dbs1d which
implies that divbs1d=0. Therefore the solutions of Eqs.
s10d–s13d should also satisfy the latter constraint to be the
solutions of Eqs.s6d and s7d.

We consider below arbitrary configurations of a plane vor-
tex lying in the planez=0, so thatFk,m

z =0. Upon the trans-
formation fk,m

± =bk,m
rs1d± ibk,m

ws1d the set of equationss10d–s13d
may be decoupled and solved in terms of the modified Bessel
functions. We obtain the solutions regular atr=0:

S bk,m
rs1d

ibk,m
ws1d D =

1

2HIm+1sQrdFFk,m
+ −E

r

R1

dr8r8hk,m
+ sr8dKm+1sQr8dG ± Im−1sQrdFFk,m

− −E
r

R1

dr8r8hk,m
− sr8dKm−1sQr8dG

− Km+1sQrdE
0

r

dr8r8hk,m
+ sr8dIm+1sQr8d 7 Km−1sQrdE

0

r

dr8r8hk,m
− sr8dIm−1sQr8dJ , s15d

bk,m
zs1d = Ck,mImsQrd, s16d

ck,m
s2d = ak,mImsukurd + bk,mKmsukurd, s17d

ck,m
s3d = Ck,mKmsukurd, s18d

where hk,m
± srd=−l−2sFk,m

r ± iFk,m
w d, and In and Kn are the

modified Bessel functions.45 The coefficients in Eqs.
s15d–s18d, found from Eqs.s14d with the constraint divbs1d

=0, are given in Appendix A.
Before calculation of the physical properties of vortices of

definite configurations and critical parameters of the system
under consideration, we write here a general formula for the
free energy of an arbitrary plane vortex in terms of the above
presented solution. The self-energy of the system containing
a single vortex takes the formssee Appendix Bd

F =
1

2m0
E

røR1

dVfbs1d2 + l2scurl bs1dd2g

+
m0m

2
E

R1ørøR2

dVs=cs2dd2 +
m0

2
E

rùR2

dVs=cs3dd2

=
1

2m0
E

røR1

dVbs1dF +
R1

2 o
m
E dk ck,m

s2d sR1dF−k,−m
r sR1d.

s19d

It is interesting to note that this expression is identical to the
corresponding formula for the self-energy of a vortex in a
nonshielded superconducting cylinderfsee Eq.s21d in Ref.
43g; the presence of a magnet is accounted for implicitly by

the actual form of the potentialcs2d and of the magnetic
inductionbs1d.

The above-described solutions15d–s18d exhibits a proper
transformation to the case of an isolated superconductor43 by
setting m=1. Together with the expression for the vortex
self-energys19d it may be applied to configurations with any
number of plane vortices. Among others it allows one to
investigate, by special choice of vortex shape, the lower criti-
cal field and the magnetic flux entry in shielded supercon-
ductors carrying a transport current and/or subjected to an
external magnetic field, the problems considered below.

IV. MAGNETIC MOMENT OF AN ARBITRARY PLANE
VORTEX LOOP

In this section we consider a magnetic moment of a mag-
netically shielded wire, an important measurable characteris-
tic which is also necessary for evaluation of critical param-
eters of the SC/SM heterostructure. The magnetic moment
projection on the fieldH0 direction ssee Fig. 1d consists of
two parts, presenting contributions from the superconductor
and from the magnetic sheath as follows:

My = My
s1d + My

s2d

=
1

2
E

røR1

dVfr 3 j gy

− sm − 1dE
R1ørøR2

dVs=cs2ddy, s20d

which may be reduced to the forms
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My
s1d = −

2p

m0
R1

2b0,1
ws1dsR1d +

2pi

m0
E

0

R1

dr rsb0,1
rs1d − ib0,1

ws1dd,

s21d

My
s2d = 2pism − 1dfR2c0,1

s2dsR2d − R1c0,1
s2dsR1dg. s22d

Let us consider now an arbitrary vortex loop lying in the
planez=0 and penetrating the superconductor to the depth of
r from the surface. For simplicity we also suppose that the
loop is symmetric with respect to thex axis and, therefore,
we will describe its specific form by some smooth monotonic
function w=xsrd. Let us denoteR1−r as the least value of

radiusr for which the loop exists; then,xsR1−rd=0. With
the functionxsrd defined in this way the Fourier amplitudes
of the source functions2d read43

Fk,m
r =

F0

ipr
sinfmxsrdgusr − R1 + rd, Fk,m

z = 0, s23d

Fk,m
w =

F0

p

dxsrd
dr

cosfmxsrdgusr − R1 + rd.

Then, upon the substitution of the amplitudesF0,1
r andF0,1

w

in the general expressionss15d, s17d, ands20d–s22d, we ob-
tain the magnetic moment of the loop:

My = My
0 2m + sm2 + 1dsd/R1ds2 + d/R1d
2m + sm + 1df1 + sm − 1dI18sR1/ld/I0sR1/ldgsd/R1ds2 + d/R1d

, s24d

where the prime denotes the derivative of the Bessel function
with respect to its argument and

My
0 =

4F0

m0l

1

I0sR1/ldER1−r

R1

dr rI1S r

l
Dsinfxsrdg s25d

is the magnetic moment for the unshielded superconductor
filament43 fnotice that formulasA4d in Ref. 43 may be re-
duced to the above formg. As it follows from Eq. s24d, the
dependence of the magnetic moment on the relative perme-
ability m and the thicknessd of the magnet sheath is univer-
sal in the sense that it does not depend on the specific form
of the vortex. It is interesting to note that the magnetic mo-
ment may be factorized as in Eq.s24d though the contribu-
tions of the superconductor and of the magnet sheath are
superimposed in the definitions20d.

The Mysm ,dd dependence is shown in Fig. 2 for two dif-
ferent values of superconductor radius:R1=10l and R1=l.
One can see that this dependence is different for thick and
thin superconductors. For enough thick superconductorfsee
Fig. 2sadg the momentMy reveals a minimum as a function
of m for any fixed d. In the limit of R1@l the Mysm ,dd
dependence is described by the expression

My = My
0 2m + sm2 + 1dsd/R1ds2 + d/R1d
2m + msm + 1dsd/R1ds2 + d/R1d

. s26d

The minimum value of the moment is reached at the perme-
ability

m* = 1 +F2 +
2

sd/R1ds2 + d/R1dG1/2

s27d

and equals

My
* = My

0m*
2 − 1

m*
2 . s28d

In the case of very thick magnet sheathsd@R1d the lowest
value of the moment isMy

* .0.83My
0.

In the limit of thin superconductorR1!l the magnetic
momentMy monotonically increases with increase ofm or d
fsee Fig. 2sbdg and this dependence is described by the ex-
pression

My = My
02f2m + sm2 + 1dsd/R1ds2 + d/R1dg

4m + sm + 1d2sd/R1ds2 + d/R1d
. s29d

Let us note that in both limiting cases the factor accounting
for the magnet sheath does not depend onl.

For investigation of critical parameters of the SC/SM het-
erostructure we must specify a form of the vortex which will
be done in the next sections.

V. LOWER CRITICAL FIELD Hc1 OF A SC/SM CYLINDER
IN A TRANSVERSE EXTERNAL FIELD

To obtain the value of the lower critical magnetic field we
consider now the case of a vortex taking a stable position in
the center of the sample: namely, directed along the cylinder
diameter parallel to the applied fieldH0 sFig. 3d. This posi-
tion is analogous to that of the straight vortex located deep
inside a bulk superconductor cylinder parallel to the external
field which energy defines the lower critical field for bulk
samples.44 The central location of the vortex apparently leads
to a local minimum of the Gibbs free energy of the system,
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G = F − MH 0, s30d

whereF is the self-energys19d andM is the magnetic mo-
ment of the sample due to the presence of the vortexs24d.
Vanishing of the energys30d defines the value of the lower
critical field Hc1 at which the vortex becomes first energeti-
cally favorable deep inside the superconductorsnotice that,
in this case, the Meissner contribution to the energy is con-
stant and may be omittedd.

For the vortex lying along the cylinder diameter the Fou-
rier amplitudes of the source functions2d read43

Fk,m
r =

F0

ipr
sin

pm

2
, r ø R1,

Fk,m
w = Fk,m

z = 0. s31d

Upon the substitution of Eq.s31d into the solution
s15d–s18d, one can find approximate expressions for the self-
energy of the vortexs19d in two limiting cases

F .
F0

2

2pm0l2R1Fln
4R1

ej
+

6

p
+ OsR1/ldG, j ! R1 ! l,

s32d

F .
F0

2

2pm0l2R1Fln
l

j
− g + Osl/R1dG, R1 @ l, s33d

where the divergence of the energy at large momentumk,
usual in the London theory,44 is cut at the scalek,1/j with
the superconductor coherence lengthj. One can see that in
both cases of thinsR1!ld and thicksR1@ld superconduct-
ors the self-energy does not depend on the characteristics of
magnet sheath even in terms of the order of small parameters
R1/l andl /R1, respectively. The dependence onm may ap-
pear only in terms of the higher orders of that small param-
eters. Therefore, the magnet sheath virtually does not influ-
ence the self-energy of the vortex.

The magnetic moment of the sample is defined by Eq.
s24d, whereMy

0 is easily obtained from Eq.s25d with xsrd
;p /2 sin this case the integration overr starts from 0d:

My
0 =

2pF0R1

m0
FL0sR1/ld

I0sR1/ld
I1sR1/ld − L1sR1/ldG , s34d

whereLn is the modified Struve function. Notice that, con-
trary to the self-energy, the magnetic momentMy strongly
depends onm andd. Finally, from Eq.s30d we easily obtain
the following expression for the lower critical field:

Hc1 = Hc1
0 2m + sm + 1df1 + sm − 1dI18sR1/ld/I0sR1/ldgsd/R1ds2 + d/R1d

2m + sm2 + 1dsd/R1ds2 + d/R1d
, s35d

FIG. 2. The dependence of the vortex magnetic momentMy on
the relative permeabilitym and on the thicknessd of the magnet
sheath for different values of the superconductor radius:sad R1

=10l and sbd R1=l.

FIG. 3. Magnetic vortex lying along the diameter of a cylinder
and parallel to the external transverse magnetic field.
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whereHc1
0 =F /My

0 is the transverse lower critical field of the
nonsheathed sample, the prime denoting the derivative of the
Bessel function with respect to its argument. Notice that by
virtue of definition theHc1sm ,dd dependence is inverted to
that of the magnetic moments24d.

The dependences ofHc1 on m andd are shown in Fig. 4
for the same values of radius of the superconductor as in Fig.
2. One can see that for enough large radii this dependence is
nonmonotonic and reveals the region of magnet permeability
values whereHc1.Hc1

0 . For R1=10l fFig. 4sadg the lower
critical field is enhanced up to 10% and this enhancement
grows with increase ofR1. In the limiting caseR1@l the
Hc1sm ,dd dependence is described by the expression

Hc1 = Hc1
0 mf2 + sm + 1dsd/R1ds2 + d/R1dg

2m + sm2 + 1dsd/R1ds2 + d/R1d
. s36d

The maximum value ofHc1 is reached at any fixed value of
the magnet layer thicknessd for the permeabilitym* , Eq.
s27d, and equals

Hc1 = Hc1
0 m*

2

m*
2 − 1

, s37d

taking on the largest valueHc1>1.2Hc1
0 at d@R1. With de-

crease ofR1 this effect disappears and forR1&l the pres-
ence of magnet sheath depresses the lower critical fieldfsee
Fig. 4sbdg. In the limit of thin superconductor coreR1!l the
critical field is described by the asymptotic expression

Hc1 =
Hc1

0

2

4m + sm + 1d2sd/R1ds2 + d/R1d
2m + sm2 + 1dsd/R1ds2 + d/R1d

. s38d

A practical conclusion here is that a cylindrical magnet
sheath has a detrimental effect on superconductivity in thin
superconductor wires of radius less thanl facilitating vortex
phase at lower magnetic fields. On the other hand, the mag-
netic coating of thick superconductors with radius much
larger thanl allows optimization of the sheath parametersd
andm in reasonable ranges leading to the moderate enhance-
ment of the lower critical field.

VI. VORTEX LOOP NUCLEATION AT THE SC/SM
INTERFACE (THE BEAN-LIVINGSTON BARRIER)

In the nonshielded type-II superconductor sample exposed
to a transverse magnetic field the entry of magnetic flux
starts with the small loop nucleation at the sample
surface46–49 when the surface Bean-Livingston barrier50 is
overcome. It is evident that in the SC/SM system concerned
the similar process of vortex loop nucleation takes place at
the interface between the superconducting core and the mag-
net sheathsFig. 5d. However, due to the magnetization of
magnetic medium, the nucleation of vortex loop at the
SC/SM interface may differ from this on the uncovered SC
cylinder surface studied earlier.43

A. Nucleation of a vortex loop in a transverse magnetic field

The Bean-Livingston barrier is a result of competition be-
tween the attraction of the vortex to the boundary and the
repulsive Lorentz force exerted upon the vortex by the
Meissner current. To evaluate the critical field of the first
vortex loop penetration into the SC cylinder it is convenient

FIG. 4. The dependence of the lower critical fieldHc1 on the
relative permeabilitym and on the thicknessd of the magnet sheath
for different values of the superconductor radius:sad R1=10l and
sbd R1=l.

FIG. 5. Scheme of the first vortex loop nucleation at the inter-
face between superconductor and magnet sheath in the SC/SM fila-
ment exposed to an external magnetic field.
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to present the Gibbs energy of the system as a sum of the
vortex loop free energy and the work of the external source
of the magnetic field calculated as the work of the Meissner
current:51

G = F − DWH. s39d

We consider a small semicircle loop of radiusa!l de-
fined in Ref. 43 by the source functions23d with

xsrd = ftusR1 − rdusr − ÎR1
2 − a2d

+ x̃srdusr − R1 + adusÎR1
2 − a2 − rd, s40d

where sinft=a/R1 and cosx̃srd=sR1
2+r2−a2d /2R1r. Sub-

stituting the amplitudesFk,m
j into the general expression for

the energy, Eq.s19d, with magnetic field components from
Eqs.s15d–s18d we find that the self-energy of the vortex loop
for two limiting cases of thicksR1@ld and thin sR1!ld
superconducting core coincides, in the main approximation,
with the result, for the unshielded SC cylinder43

F .
F0

2

4pm0l2pa ln
a

j
, j ! a ! l, s41d

and does not depend on parameters of magnetic sheath as
well as in the case of the straight vortex along the diameter
ssee Sec. Vd. The dependence of the loop self-energy on
permeabilitym appears only in higher orders of the small
parametera/l. Because of complexity of the general expres-
sionss15d–s18d it is hard to exactly derive these terms. For-
tunately, it is sufficient here to estimate the difference of the
loop energy in the case under consideration from the case of
unshielded superconductor. This difference reaches its maxi-
mum in the limit of an infinitely largem ssee, for example,
Ref. 40d and is less than the main approximations41d by the
factor of the ordera/l. Therefore, we conclude that the self-
energy of the vortex loop is not affected substantially by
presence of the magnet.

The above paradoxical result—that the influence of the
magnet sheath on the vortex self-energy is inessential even
for large permeabilities—can be explained in the following
way. Apart from the major contribution to the vortex energy
s41d proportional to its length, the full energys19d includes a
contribution of the magnetized sheath. The boundary condi-
tion s5ad requires the continuity of the normal component of
magnetic inductionBn

s1d=m0mHn
s2d. At the same time, the total

flux of magnetic induction is fixed by the flux quantization in
a superconductor. Accordingly, a typical magnetic induction
value in the magnet isB,F0/l2, whereas the magnetic field
in the magnetH,F0/m0ml2 is suppressed by the largem.
Therefore, the interaction energy proportional toB·H is m
times reduced comparing with the vacuum case. Notice that
this conclusion is valid for the vortex loop nucleated at a
SC/SM interface of arbitrary form.

Now let us calculate the second part of the Gibbs energy
s39d. In the geometry of Fig. 1 the Meissner current is per-
pendicular to the loop plane and almost constant in the small
loop region of sizea!l. In this case the work of the Meiss-
ner current when the loop expands from the radiusr =0 to a
reads simply as

DWH = F0E
0

a

drE dljM =
1

2
F0p jsa

2, s42d

where js is a value of the screening current in a place of the
loop entry. The Meissner current in superconducting cylinder
has the onlyz component,39

jzsr,wd =
4m

D

H0

l
I1sr/ldcosw, s43d

D = mI0sR1/ldFm + 1 −
m − 1

s1 + d/R1d2G
−

I1sR1/ld
R1/l

sm2 − 1d
sd/R1ds2 + d/R1d

s1 + d/R1d2 , s44d

and the maximum magnitude of the screening current,

js =
4m

D

H0

l
I1sR1/ld, s45d

is achieved at the equatorial linesw=0 andw=p where a
vortex nucleates most probably.

The Gibbs energy of the vortex loop nucleating atw=0
renormalized by presence of the magnet,

G =
F0

2

4pm0l2pa ln
a

j
−

1

2
F0p jsa

2, s46d

grows with the radiusa from zero until it achieves a maxi-
mum at some critical radius valueam defined by the relation
]G/]a=0. If the fluctuation vortex reaches this size, further
loop expansion becomes irreversible and the vortex entry
proceeds. Depending on a sample surface quality vortex pen-
etration may occur at different values of the critical radius
from the regionj,am,l where formulas46d applies. The
lower value corresponds to the case of the ideal surface when
the nucleation occurs at the scale of the vortex core,j. The
opposite limit describes a rough surface with the typical im-
perfection sized of the order ofl or larger. In general, a field
of the first flux penetration,Hp, defined by the condition
am=minsd ,ld, is given by

Hp =
Hp

0

4
H I0sR1/ld

I1sR1/ldFm + 1 −
m − 1

s1 + d/R1d2G
−

l

mR1
sm2 − 1d

sd/R1ds2 + d/R1d
s1 + d/R1d2 J , s47d

whereHp
0=sF0/4pm0lamdlnseam/jd is a field of the first flux

penetration at a flat superconductor/vacuum boundary adopt-
ing values between the lower and the thermodynamic critical
fields of the bulk materials.44

In Fig. 6 we present the dependence of the fieldHp on the
relative permeabilitym and the thicknessd for the radii of
superconductorR1=10l and R1=l. One can see that this
dependence is monotonic for both cases of thick and thin
superconductors, contrary to the same dependences of the
transverse lower critical fieldHc1, and differs only by the
scale of magnitudes. With increase ofm at fixed thicknessd
the Hpsmd dependence approximates to the linear one. A
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monotonic behavior is also demonstrated by theHpsdd de-
pendence with increase ofd at fixed permeabilitym. Consid-
ering practically interesting caseR1@l we write down

Hp =
Hp

0

4
Fm + 1 −

m − 1

s1 + d/R1d2G . s48d

In the opposite limitR1!l we obtain

Hp = Hp
0 l

4mR1
Fsm + 1d2 −

sm − 1d2

s1 + d/R1d2G . s49d

B. Nucleation of a vortex loop in the presence
of a transport current

Next, we consider the situation when the superconductor
carries also a transport current. The appearance of a total
transport currentJ results in an additional angle-independent
z component of the current density,52,53

j trsrd =
J

2pR1l

I0sr/ld
I1sR1/ld

, s50d

which is superimposed on the screening currents43d. Simi-
larly to the latter, the transport current density remains con-
stant within the loop and equal to the surface value

js,tr =
J

2pR1l

I0sR1/ld
I1sR1/ld

. s51d

This surface magnitude should be simply added to the maxi-
mum value of the screening currents45d and substituted in
the Gibbs energys46d. Using the criterionam=minsd ,ld to
define the critical current of the first flux penetration,Jc, we
find the average density of the transport critical current,jc
=Jc/pR2, for H0,Hp:

jcsH0d =
2I1sR1/ld
R1I0sR1/ldFHp

0 −
4mH0

D
I1sR1/ldG . s52d

In the limits of thin and thick superconductor cores we ob-
tain, respectively,

jcsH0d =
Hp

0

l
−

4mH0R1

l2 Fsm + 1d2 −
sm − 1d2

s1 + d/R1d2G−1

, R1 ! l,

s53d

jcsH0d =
2Hp

0

R1
−

8H0

R1
Fm + 1 −

m − 1

s1 + d/R1d2G−1

, R1 @ l.

s54d

One can see that in view of relatively large values of the
permeability in soft-magnet materials the field dependence of
jc remains linear up to the fieldH0&Hp, which corresponds
to the experimental situationssee, for example, Ref. 31d.

For estimation at the practically interesting temperature of
32 K we take a reasonablem>50 for Fe andd/R1>1/2
from Refs. 31, 33, and 34 and thermodynamic parameters of
MgB2 from Ref. 54 which gives possible values ofjcs0d
between 7.03103 and 4.43104 A/cm2 and of m0Hp be-
tween 0.16 and 1.02 T. The field dependence ofjcsH0d re-
mains very weak up to the fields comparable withHp. In
view of the relatively low values of the critical temperature,
Ginzburg-Landau parameter, and anisotropy of the polycrys-
talline MgB2 sRef. 54d we assume that thermally activated
penetration through the surface barrier47,48 is here negligible.
These estimates are in a good agreement with the results of
Refs. 31, 33, and 34.

VII. CONCLUSIONS

To summarize, we have described the structure of an ar-
bitrary plane vortex in a type-II superconductor cylindrical
filament covered by a coaxial soft-magnet sheath when it is
exposed to an external transverse magnetic field and carries a
transport current. We have derived general expressions for
the magnetic field components, self-energy, and magnetic
moment of the vortex. Using these expressions, we have es-
tablished that the self-energy of the vortex lying along the

FIG. 6. The dependence of the field of the first flux penetration
Hp on the relative permeabilitym and on the thicknessd of the
magnet sheath for different values of the superconductor radius:sad
R1=10l and sbd R1=l.
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sample diameter as well as that of the small vortex loop
nucleated at the interface between the superconductor and
the magnet is practically independent of the parameters of
the magnet sheath—i.e., its permeability and thickness. This
paradoxical property is due to the phenomenon of flux quan-
tization in the superconductor.

We have found that the dependence of the magnetic mo-
ment of an arbitrary plane vortex on both the permeability
and thickness of the magnet sheath is not sensitive to the
specific form of the vortex. At the same time this dependence
is qualitatively different for thick and thin superconductors.
For samples with radius much larger thanl it reveals the
minimum at some value of the permeability for any fixed
thickness of the sheath whereas for thin superconductors
having a radius less thanl the magnetic moment of vortex
monotonously increases when the permeability and/or sheath
thickness increase. Such a behavior of the magnetic moment
causes the inverted dependence of the transverse lower criti-
cal field, the exact expression of which was derived. This
field has a maximum at some value of the relative permeabil-
ity for any fixed thickness of the magnet sheath for the case
of the thick superconductor, while it decreases monotonously
with both permeability and magnet thickness increase for the
case of the thin superconductor.

We have considered also how the magnet sheath changes
the conditions for the flux penetration in the superconductor
sthe Bean-Livingston barrierd when the sample is exposed to
the external transverse magnetic field and/or carries the
transport current. The expressions for the critical field and
the critical current of the first flux penetration have been
derived. We found that, due to the presence of the magnet
sheath, the critical field of the first flux entry can be strongly
enhanced. In contrast to the lower critical field, it strongly
increases in both the thick and thin superconductor cases,
when the magnetic permeability of the sheath is large. The
results obtained have shown that, due to the magnet sheath,
the Meissner state in the superconductor filament can be ef-
fectively preserved in a wide region of the external magnetic
field sor transport currentd magnitudes.

Notice also that the above-studied modification of the
Bean-Livingston barrier is not reduced to the shielding effect
of the magnetic sheath solely25,36–38because the latter does
not account for the magnetic flux expelling from the filament
itself. For example, in the limitR1@l ,d the maximum field
on the superconductor surface amounts toHmax=2H0/ s1
+md/R1d while for the shielding of the normal core it is
Hmax=H0/ s1+md/2R1d ssee Ref. 55d. The difference be-
tween these two values may be substantial if the parameter
md/R1 is not large. The observed range of external magnetic
fields, where the critical transport current remains virtually
field independent, exceeds substantially the characteristic
field of the effective shielding by the magnet sheath alone
which was discussed in Ref. 33. On the other hand, estima-
tions of the field for the first flux entry,Hp, correlates well
with the region of weak field dependence of the critical cur-
rent in MgB2/Fe cylindrical wires.31,33Reduced flux penetra-
tion in the superconductor in this field region entails natu-
rally reduced ac losses which was also observed in Refs.
36–38.

Finally, we have considered the simple model where the
relative permeability is a sole material characteristic of the
magnet and neglected its possible dependence on the applied
field which may be important.39 Nevertheless, the results ob-
tained are in good qualitative and quantitative agreement
with the existent experiments and could be used to optimize
the superconducting and current-carrying parameters of
SC/SM heterostructures.
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APPENDIX A: THE COEFFICIENTS IN EQS. (15)–(18)

The coefficients in Eqs.s15d–s18d read

ak,m = A1
B+ + B− − B3

m0D
, bk,m = A2

B+ + B− − B3

m0D
, sA1d

Fk,m
± = B± − ak,mm0ukuF Im±1sukuR1d

Im±1sQR1d
+ sm − 1d

Im8 sukuR1d
Im±1sQR1dG − bk,mm0ukuF−

Km±1sukuR1d
Im±1sQR1d

+ sm − 1d
Km8 sukuR1d
Im±1sQR1dG , sA2d

Ck,m = ikm0Fak,m

ImsukuR1d
ImsQR1d

+ bk,m

KmsukuR1d
ImsQR1d G , sA3d

Ck,m =
1

ukuR2ImsukuR2dIm8 sukuR2d
B+ + B− − B3

m0D
, sA4d

where

A1 =
s1 − md

m

KmsukuR2d
ImsukuR2d

Km8 sukuR2d
Im8 sukuR2d

, A2 =
KmsukuR2d
ImsukuR2d

−
1

m

Km8 sukuR2d
Im8 sukuR2d

, sA5d
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D = A1HukuF Im+1sukuR1d
Im+1sQR1d

+
Im−1sukuR1d
Im−1sQR1d G −

2k2

Q

ImsukuR1d
ImsQR1d

+ sm − 1dukuIm8 sukuR1dF 1

Im+1sQR1d
+

1

Im−1sQR1dGJ
+ A2H− ukuFKm+1sukuR1d

Im+1sQR1d
+

Km−1sukuR1d
Im−1sQR1d G −

2k2

Q

KmsukuR1d
ImsQR1d

+ sm − 1dukuKm8 sukuR1dF 1

Im+1sQR1d
+

1

Im−1sQR1dGJ , sA6d

B± =
Km±1sQR1d
Im±1sQR1d E0

R1

dr rhk,m
± srdIm±1sQrd, B3 =

2R1

l2Q
KmsQR1dFk,m

r sR1d, sA7d

the prime denoting the derivative of the Bessel function with
respect to its argument.

APPENDIX B: THE FREE ENERGY OF A HYBRID
SC/SM STRUCTURE

Let us calculate the excess free energy due to presence of
vortices in an arbitrary hybrid system composed of the su-
perconductor and insulating soft-magnet components with
respect to the energy of that system in the flux-free Meissner
state. Taking into consideration the potential nature of the
magnetic field outside the superconductor we write this en-
ergy, using the London approximation, in the following way:

F =
1

2m0
E dVs1dfbs1d2 + l2scurl bs1dd2g +

1

2
E dVs2dBs2dhs2d

+
m0

2
E dVs3dshs3dd2, sB1d

wherebs1d is the magnetic field of vortices in the supercon-
ductor, hs2d and hs3d are the magnetic fields in the magnet
media and in the surrounding free space, respectively, and
Bs2d=m0mhs2d is the magnetic induction in the magnet media.
With the vector identity divsa3cd=c curl a−a curl c and
with the London equations6d in the superconducting region
the first term of Eq.sB1d becomes

Fs1d =
1

2m0
E dVs1dhbs1d2 + l2fcurl curl bs1d

+ divsbs1d 3 curl bs1ddgj

=
1

2m0
E dVs1dbs1dF

+
l2

2m0
E dSs1dns1dusbs1d 3 curl bs1dduSs1d, sB2d

The second and third terms of Eq.sB1d are transformed, with
the definitionhs2,3d=−=cs2,3d and with the identity divscad
=c div a+a=c, in the following surface integrals:

Fs2d = −
1

2
E dVs2dfdivscs2dBs2dd − cs2d div Bs2dg

= −
1

2
E dSs2dns2duscs2dBs2dduSs2d, sB3d

Fs3d = −
m0

2
E dVs3dhs3d = cs3d

= −
m0

2
E dSs3dns3duscs3dhs3dduSs3d. sB4d

In Eqs. sB2d–sB4d ns jd denotes the outer normal to the sur-
face Ss jd of the corresponding region. Next we assume that
the field hs3d decreases sufficiently fast, so that the part of
surface integralsB4d corresponding to the integration atr
→` vanishes. The rest of this surface integral—i.e., the in-
tegral over the magnet outer surface—is compensated by the
corresponding part of the surface integralsB3d by virtue of
the boundary conditions5bd and we have

F =
1

2m0
E dVs1dbs1dF

+
l2

2m0
E dSs1dns1dusbs1d 3 curl bs1dduSs1d

+
1

2
E dSs1dns1duscs2dBs2dduSs1d. sB5d

Taking into account that the second term of Eq.sB5d con-
tains only tangential components ofbs1d, we transform this
integral in the following way:

−E dSs1dns1dus=cs2d 3 curl bs1dduSs1d

=E dSs1dns1dufcs2d 3 curl curl bs1d

− curlscs2d curl bs1ddguSs1d. sB6d

It is easy to show that, by applying the Stokes theorem, the
last integral in Eq.sB6d vanishesssee, for example, Ref. 56d.
Finally, applying the boundary conditions5ad to the normal
components of the induction we obtain

F =
1

2m0
E dVs1dbs1dF +

1

2
E dSs1duscs2dFns1dduSs1d.

sB7d

Let us note that Eq.sB7d does not contain explicitly any
characteristics of the magnetic media which enter only the
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expressions for quantitiesbs1d andcs2d. From Eq.sB7d, for-
mula s19d immediately follows for the geometry considered
in the paper.

The general expressionsB7d obtained for the free energy

is applicable for any configuration of superconductor and
magnet componentssfor example, for multifilamentary
superconductor/magnet wires or tapesd and is valid in the
whole region of the vortex state in a type-II superconductor.
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