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We present a systematic theoretical study of current profiles, magnetic field lines, and hysteresis ac loss in
linearly arranged arrays of rectangular superconducting strips subjected to a transport current. Results are
obtained by means of numerical calculations assuming the critical-state model with a constant critical current
density. Because finite filament thickness and magnetic coupling effects are considered, we can provide some
useful hints as to how to arrange the filaments in order to reduce the ac loss in actual superconducting tapes.
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[. INTRODUCTION veloped to describe superconductors with transport current,
like those from Norrid? Fukunagaet al.?°-22 Daumling?3

Some of the important applications of superconductorsind Pardeet al?* These numerical methods restrict the cal-
are based on the possibility of having a high value of superculation region to the superconducting volume only. The ge-
current transported through them. For hard type Il superconometry investigated numerically was a rectangular strip with
ductors, the energy loss when carrying a static transport starbitrary thicknes$?2324 after which extensive work on
percurrent is very small but it can be significant when themultifilamentary tapes was done by Fukunagaal 2%22 An
current is alternating. The reduction of ac loss is of funda-alternative approach to the critical-state model is to assume a
mental importance for the application of superconductors t@ertainE(J) dependence a8« (J/J.)", whereE is the elec-
actual ac electrical devices, such as power transmissiofical field. An interesting model considering this assumption
cables, ac magnets, and transforniets. is that developed by Braridtfor superconducting strips in

In recent years, a lot of effort has been made in the progpplied magnetic fields, extended for the transport current
duction of high-temperature superconductifJ'S) compos-  case by Rhynéf and Yazawaet al?’ Again, this model re-
ite conductors, which are made of a superconducting corguires numerical calculations inside the superconductor only.
with a multifilamentary structure and a normal-metal con-Qther authors applied conventional finite-element techniques
ducting sheath or substrate. The most common HTS composgo multifilamentary tapes, such as Stavesal 2
ite conductors are Bi-2223/Ag tapes, coated YBCO conduc- |n spite of all the extensive theoretical work done on ac
tors, and MgB tapes and wire$! The understanding of ac |oss, the magnetic coupling behavior between superconduct-
loss in these multifilamentary conductors is not only usefuling filaments has not been systematically studied. To cover
to reduce the energy dissipation but also to characterize th@js lack, in this work we present accurate numerical calcu-
superconductor material propertf@SMoreover, the study of  |ations and discussions of current distribution, magnetic field
the ac loss for several magnetically interacted conductors ifnes, and ac loss for matrix arrays of rectangular strips. The
also useful for applications’~** matrix arrangement is found in many actual t23€%3%and

The critical-state mod&*3has been shown to be a useful js a simple geometry to study for the interaction between
tool to describe the ac loss of superconducting wires. Thejifferent tapes.
model assumes that the current density has a magniiyde  The calculations are performed by a numerical model
wherever it is nonzero. It was first applied to analytically pased on the critical-state model with a constant critical cur-
calculate the ac loss for simple geometries, such as gent density, which is presented in Sec. Il. In Sec. Ill, we first
cylinder;® a circular tube, or an infinite sla.In the early  present a systematic study of the magnetic interaction among
1970s, Norris paved the way for some of the modern modelgectangular strips in both horizontal and vertical arrays, and
by calculating the ac loss produced by a transport current ithen we use such a study as a basis to understand the mag-
a thin strip and an elliptical cross-section wife-urther the-  netic interaction in a matrix array. A comparison of the
oretical advances and the discovery of HTS materials motimodel results with both experimental data and simplified
vated the study of other interesting geometries, such as gnalytical models is presented in that section. Finally, we
cylinder with two concentric circular shells with differedt  summarize our conclusions in Sec. IV.
(Ref. 16 and some multifilamentary geometries, like vertical
and horizontal arrays of an infinite number of thin stHjsr Il. MODEL
double thin strips8 '

Apart from the mentioned analytical studies, some nu- We consider a set of infinitely long superconducting rect-
merical models within the critical-state model have been deangular strips of cross-sectional dimensioresx2b along
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the horizontalx and verticaly axis, respectively. We study X0 o

the case of regularly arranged strips in a matrix configuration W= f J(r)A(r)dS+ Zl InD, (4)

of ng, X ng, (1=<ng,,ng, <9) strips with horizontal and ver- S

tical separationsl, andd,, respectively. beingSthe cross section of the tape at the origin. The second

The rectangular strips are connected to each other in paterm of Eq.(4) is constant for a fixed current so that the
allel and fed by an ac current with amplitudg. Such a  only term in the energy per tape that has to be minimized to
connection is usually found in a real superconducting tapeletermine the current distribution is
with neither twisting nor resistive barriers thanks to the me-
tallic matrix or substrate. We assume that the contribution of
the metallic region to the loss is negligible in front of the
hysteretic superconductor loss. This assumption is valid for
enough low frequencie¥, which we call internal energy. We notice that we obtain the

In the following we present the numerical model used forsame expression fo/’ if we consider that the current re-
calculating the current profiles, the magnetic field lines, andurns through a perfectly conducting shell at a large distance
the ac loss. D, as done by Norri%? instead of an identical superconduct-

ing tape.

W =12 f J(NA(r)dS, (5)
S

A. Magnetic energy minimization B. Physical grounds of magnetic energy minimization

The calculations presented in this work are carried out by In our previous papers about MEM, we assume that the
the magnetic energy minimizaticMEM)3233 based on the actual supercurrent distribution minimizes the magnetic
critical-state model with a constant critical current denS@ty energﬁz The energy and flux minimization in the critical
The MEM, developed for cylindet$** and tape¥*>%in  state was independently studied by PrigoZiff Badia et
the presence of magnetic fields can be extended to the trangt 41 and Chaddah and co-worke¥sin these works it was

port case, as presented in this section. o shown that supercurrent distribution is such that minimizes a
The magnetic energyV per unit length of an infinitely  certain functional, which is not always the magnetic energy.
long circuit with uniform cross section along taeaxis is’ In the following we demonstrate that in the initial curve,

minimizing this functional is equivalent to minimizing the
. magnetic energy provided that current density penetrates
W=3 [ Jr)A(rdS, (D monotonically from the surface.
Sy Following the notation of Prigozhiff, in the absence of

] an applied field the supercurrent at a certain time is such that
whereS,, refers to the wholey plane,J is the current den-  minimizes the functional

sity, andA; is the vector potential created By being bothJ
and A; parallel to thez axis. It follows from the gauge of I = 1J
-2

V-A=0 that J(r)A(r)ds- LJ(r)A(r)dS (6)

S

o , o ' with the constraing sJ(r)dS=1 and|J|<J,, beingA the vec-
Ayr) == e Ir)IN[(x=x)"+(y=y)7dS. (2)  tor potential created by the supercurrent at the previous time
Sxy 2 . . e . . . .
layer, J. The principle of minimization of this functional is
In order to apply the MEM procedure to the transport casgound from first principles in Refs. 39 and 40. Defining the

we consider a circuit consisting of two identical SUPercon-. rrent density variatiod=J-1J, we obtain from Eqs(6)
ducting tapedeach of which may consist of several stjips and(2) that ’

carrying opposite current and separated a large distBnce

compared to their cross-sectional dimensions, as done by g i~ -

Carr3 We choose the origin of coordinates in the center of Fad+J]= Ef 6J(r) 6A(r)dS— EJ JNANAS, (7)

one tape, which carries a transport currenand we center S s

the returning tape atx,y)=(D,0). With this configuration where A is the vector potential created k3j. The second

and using the approximation of lar@® we obtain from Eq. term of Eq.(7) is &) independent and it is irrelevant to the

(2) that the vector potential in the tape at the origin is minimization of F. Then, minimizing F is equivalent to
minimizing 7', defined as

+ M_

%' InD, (3)

Ay(r) = A(r) o ]:/[&]E%J 8J(r)SA(r)dsS. (8)
S

where the first term is the vector potential created by the tape To compare the minimization of’ at every time layer
at the origin and the second is that created by the returningith that for W’ for the finalJ reached from the virgin state,
tape. Considering that the vector potential in each tape hase do the following. Given a physicd| we divide it inton

the same magnitude but opposite sign and inserting(8qg. termsdsJ;, so thatd(r)==,8J,(r), beingn is a large number.
into (1), we obtain that the magnetic energy of the circuit isWe choose these terms as the actual current density incre-
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ments in the virgin curve corresponding to the time layer at
t=t;, 63,=48J(t=t;) with t;>t_;. If the current penetrates
monotonically, all 8J; enclose a field-free region, or core.
Furthermore, ifn is very highdJ; is nonzero in a thin layer
only, so thatdA, created bysJ; is almost uniform in the layer
and

fT&J=%JtﬁﬁAdS%%&NAh—h4L 9)
S

where 6A; . is the vector potential in the field-free core cre-
ated byésJ; andl; is I(t;), with 1(tp)=0.
From Eqs(5) and(2) and using the same division, we can FIG. 1. Current fronts for horizontal arrays made of three strips
separat\V' as with aspect ratica/b=20 and separations,/a=0.02 (a), 0.2 (b),
and 4(c). The current fronts correspond tél.=0.1, 0.2, 0.4, 0.6,
W[J] = %f (J-83))(A- 5A)dS+ %f 5J15A1d8+f J and 0.8 from outer to inner. The vertical axis has been expanded
S S S and strip separations have been drawn as the same for better
visualization.

= 8Jy)6ALdS, (10
when current withJ=J. monotonically penetrates from the

wheredJ; is the first increment of supercurrent density set in . . M
surface inwards, in the reversal cur#e is minimized when

:Ee ?u%e_;conductor. Since thg_ cur‘rsnttzetla???les 'F‘S'ge new current withJ=-J. penetrates in the same way as for
€ fielg-iree core corresponding &,, the 1ast term N £4. e jnitial curve. From these considerations, one can directly
into Eq. (10) and using Eq(9) we obtain are the current density on the reverse and initial curve, re-
spectively. Following the same discussion for the returning
W[J] = %f (J= 831 (A= SA)AS+ 8A 1 - 1,/2]. curve(l=-l,to1=1,), we obtain that the current densily,
s on this curve isd(1)=Ji,(I,) =23 [(I,—1)/2], closing the
(11)  current cycle. This result was already found for single strips
in Refs. 15 and 43.
Following the same steps for ail);, we find that We now describe how we calculate the current distribu-
tion for a certain current starting from the zero-field cooled
state by means of MEM.
Each superconducting strip is divided into=2n,X2n,
elements with dimensiorna/n, X b/ny; current density is as-
At this point we notice that when minimizing’[ 6J;] for ~ sumed to be uniform in each element. We allow the current
each time layer, eacBA, . is minimized[Eq. (9)]. From Eq.  density to have discrete values beloy, that is, J
(12) we see that, sinck are fixed external parameters, mini- =mMJ/my, with m being an integer number from 1 to a maxi-
mizing all A . leads to minimizingW'. If the 8J, which ~ mum valuemy,. As discussed in Ref. 24, the allowance of
minimizes F'[ 8)] is unique, thel=3M,8J, minimizing W' current densities lower thai} reduces the discretization er-
is also unique. Then, if we are only interested in the fihal °r N the ac loss calculation. Actually, we find that a value of

. : L ; , J smaller than], appears only within one layer of elements
it can be obtained by minimizing directyv' by means of ~e . X
any minimization routine. beyond thel=J, front. This layer simulates much better the

The assumption of monotonic penetration of current in theeﬁECt of a smoothly curved front.
initial curve ispconsistent with ouF; numerical results for ar- We consider an already present numerical profile which
minimizes the internal energy with a total curréntThen, we

rargie?jfir?mfessﬁﬁg?gfts(jli;]r:jgririﬁlgisﬁ }e i'ﬁai' ?SB%}G:#(; increase the current faxl =J.ab/n,nymy, in the nonsaturated
P 9 Y 9 element where doing so increases the least the internal en-

the analytical solution for a double thin strip in Ref. 18, Fig. ergy: | is therefore increased for Al and internal energy is

14. kept as the minimum possible. This procedure is repeated
from =0 up tol=I., obtaining all the profiles at a dis-
C. Calculation of current distribution cretized set of values in the process.

S . The variation ofW’', AW’, as a consequence of changing
The current distribution in the whole alternating currentine current in elemerlt from |, to 1,+Al can be calculated
cycle can be deduced from the current profiles for the stateg,, Eq.(5) as

on the initial curve, provided that the current penetrates
monotonically when the state evolves along this curve as the . 1 5
present case. Let us consider first the reversal curve, for AW ‘ECH']A' +3Cu(AD7, (13
which | monotonically decreases fromy, to —I,,. We note =

that 7" in Eqg. (8) remains unchanged if we reverse the signwhere the factor€; are defined as the vector potential cre-
of 8J. Then, if on the initial curveF’ in Eq. (8) is minimized  ated by unit current in elemerjtaveraged over the cross

W3] = > A [1 = (I + 1i-p)/2]. (12
i=1

N
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section of elemenit These factors can be calculated analyti-both horizontal and vertical arrays, and after that we will use

cally and are presented in the Appendix. such a study as a basis to the case of a matrix affeju-

ally, in the transport case the results are independent of the

array orientation so that a horizontal array of strips with di-

. . mensionsa andb has exactly the same properties as a verti-
For constant)., and monotonic current penetratlon, the a1 one with strips with dimensionis and a; for clarity of

transport ac loss per cycl®, at current amplitudéy, can be  exposition, we will refer to horizontal or vertical arrays be-

D. Calculation of ac loss

directly calculated from the current profile k1, as" cause we will always consider strips wigib= 1, so a hori-
zontal array of strips will consist of strips aligned in the
Q= 4f J(r)d(r)ds, (14)  direction perpendicular to their short dimension, and a verti-
S cal array arranged in the parallel directipn.
where®d(r) is the magnetic flux per unit length between the _
flux-free core and positiorr. Using B=V XA and the A. Horizontal arrays
Stokes theorem, one obtains thtr) equals the vector po- 1. Dependence on strip separation

tential difference between the flux-free core and position i h . in a hori |
Considering this and taking into account that the vector po- Tojlllustrate the current penetration process in a horizonta

tential generated by the returning tape is practically uniformf'/@y: We show the calculated current profiles for different
in the tape at the origin, we deduce from Efi4) that values of current for a three-strip horizontal array with di-
’ ' mensionsa/b=20 and d,/a=0.02, 0.2, and 4 in Figs.

1(a)-1(c), respectively. The arrays are artificially drawn with
Q= 4[ J()[Ac—Ar)]dS (19 the same separation to facilitate the profiles’ comparison.
s The general observed behavior is that current penetrates
whereA, is the vector potential in the flux-free core. from the superconductor borders inwards, being the penetra-
The evaluation ofQ from the numerical current profile tion deeper from the external vertical border of the side
yields to strips, so that the current carried by the side strips is higher.
The current profiles for lowed,/a, Figs. 1a) and ib), do
not differ significantly from those obtained as if the array
' (16) were a single strip with the overall dimensions, except near
. the strip gaps for the casf/a=0.2, Fig. 1b). Whend,/a
whereA! is the vector potential due to the elem¢mindris  increasegFig. 1(c)], the current penetration from the inner
a position inside the core. Analytical expressions Aé(r) boundaries is enhanced and the field-free core in the side
can be found in the Appendix. strips moves towards the strip center. Moreover, the current
To calculate the loss fdr, up tol. it is necessary to know fraction carried by each strip in the array becomes more
the kernel position. The kernel is defined as the last point teimilar to each other with increasirtdy/a. Then, the current
be penetrated by current in the initial curve, so that it alway9rofiles for the largel,/a limit would be identical for all the
belongs to the field-free core for aly,<I.. For a matrix strips and equal to those for each of the superconducting
array with oddng, andng, the kernel is always located at the strips taken independently.
center due to the mirror symmetry, but for evieyy and/or We notice that the high,/a limit is reached much slower
nsy the determination of the kernel is not obvious. Sifce for the transport case than for the magnetic one, that is, for
=0 always in the kernel, its position can be found as thearrays of strips under a uniform applied ac figldThis is
point whereB=0 inside the superconducting region when because the magnetostatic coupling between strips has a
=1.. After calculating the magnetic induction generated by adonger range in the transport array than in the magnetic case;
saturated rectangular strip using the Biot-Savart law, the kerfor the transport situation the field produced by a strip varies
nel position can be found numerically using the Newton-with distancer as 1+, while for the magnetic case the net
Raphson method for nonlinear systems of equattéridue  current in a strip is zero so that its field, dominated by the
to symmetry, for matrices with one af, andng, to be even  dipolar contribution, varies as 7.
there appear two kernels in the two strips closest to the cen- In order to study the behavior of the magnetic field, in
ter, while when boting, andng are even the system has four Fig. 2 we plot the vector potential differenég—A(r) level
equivalent kernels. curves and the current profile for a three-strip array with
a/b=20 andd,/a=0.2 [Fig. 2(a)] and d,/a=1 [Fig. 2b)]
carrying a current=0.6. The presented.—A level curves
can be either regarded as magnetic field kRé%and also, in
Although the numerical model presented earlier can behe region wherel,=J;, as the ac loss density level curves.
applied to any superconducting geometry with translationalhis latter property ofA.—A can be found from Eq(15)
symmetry, in the present paper we restrict our study to regueonsidering that the only region where<@,<J. is a thin
lar arrays of rectangular strips. The behavior of the array willayer of one-element width surrounding the flux-free cdre,
depend upon the magnetic interaction between strips. In owhereA.—A=0. As expected from the current profiles in Fig.
der to analyze this behavior we will first make a systematicl, results show that if the separatidgl a is low enougHFig.
study of the magnetic interaction among rectangular strips ir2(a)], the vector potential, the magnetic field, and the current

N N
Q:4[|m2 Arg- 2 Ciiljl

j=1 jl=1

IIl. RESULTS AND DISCUSSION
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=n aligned strips can be calculated from the curve for a
single stripq(i,nsx=1) asq(i,nsx=n)=q(i,Nsx=1)/n, since
= E ——7)) for d,/a=« the strips do not interact with each other and
/ I(nsx=n)=nly(nsx=1). This ac loss reduction in the super-
(@) conductor may also be obtained by ideal magnetic shielding

of the filaments.

As it can be seen in Fig. 3, the curves for three-strip
% 6—\;%)»),, arrays present a sudden increase in the slope at a ceértain
value between 0.9 and 1, which corresponds to the full pen-

(b)

etration of side strips. This effect can be explained as fol-
lows. The vector potential difference, and so the ac loss den-
FIG. 2. Current frontsthick lines and magnetic flux linefac-  Sity, increases in magnitude from the f|eId—.free core outwards
tually they areA.~A(r) level curves; see tekfor horizontal arrays ~ (Fig. 2. Since beyond the kink the only field-free zone be-
made of three strips with aspect ratab=20 and separation longs to the central strip, the ac loss density in the side strips

d,/a=0.2 (a) andd,/a=1 (b) carrying a transport curreh=0.6,.  increases more for the same current increment. Conse-
Only the right half part of the tape is plotted. TAg-A(r) variation ~ quently, this slope increment is higher for larger strip sepa-
between level curves is the same for both plots. ration, as shown in Fig. 3. The presence of a kink has also

been found for geometries with discontinuities of the

profile are very similar to those for a single strip with the value in the cross sectidf#® It is also remarkable that the
overall dimensions. Ifl,/a increases, Fig. (®), these elec- ac loss decreases when the strip separation increases for any
tromagnetic quantities change progressively to approachbelow 0.97. Furthermore, all calculated curves for nonzero
those for magnetically uncoupled strips. Another importantd, /a lay below the Norris strip curve for<0.97 andi
issue is that the magnetic field between strips is very smaH>o 57,0.34,0.24,0.20 fod,/a=0.2,1,10%, respectively.
compared to the field next to the external lateral edges. It calmhe ac loss decreases with increasing the strip separation for
also be seen that the magnetic flux between the field-frepbelow the kink due to the decrease in the magnetic interac-
core of different strips is zero, as expected. tion with increasing the separation. This yields to a more

From the obtained current profiles, we can calculate the agimilar current carried by each strip and a current profile
loss. The normalized ac losp=27Q/ ol per cycle as a more symmetric with respect to each strip midpléRig. 1).
function of the reduced current amplitude= 1./l corre-  Then, since the vector potential decreases with the distance
sponding to a three-strip horizontal array withb=20 and to the field-free core, the average vector potential difference
several values df,/a s plotted in Fig. 3. The curves for one A_—A in each strip is lower, as can be seen in Fig. 2, where
isolated strip witha/b=20 and the well-known cases of el- the A.—A level curves are plotted.
lipses and thin strig8 are also plotted for comparison. For  Another interesting issue is that the normalized ac loss for
all cased is the total critical current for the specific geom- a horizontal array of strips with/b= 1 andi below the kink
etry. The infinite separation casd,/a=c) for a set ofng,  is lower than that for one of the strips taken independently
for anyd,/a. This is so because the normalized ac lqger
a strip monotonically decreases with increasirtb,??2%24so
that g for one of the strips is higher than for the horizontal
array with d,/a=0 and, consequently, higher for aiy/a
since magnetic coupling decreases with increasing

All the features discussed in this section are general for
any horizontal array, as checked by numerical calculations.

0

10

10

2
c

20Qu

2. Dependence on strip number

The current penetration profiles for different values of
current in two horizontal arrays with two and nine strips and
a/b=20 andd,/a=0.2 are plotted in Figs. (4 and 4b),
respectively. The profiles corresponding to the two largest
values of currentl/1.=0.8 and 0.9 are depicted in dashed

- - - — . lines to help the profiles identification. For the array with two
0.2 0.3 = i 05 06 07 08091 strips in Fig. 4a) one of the array kernels is represented as a
e cross. An interesting feature of the profiles for the case of a

FIG. 3. Normalized ac Iossﬂ)/,uolg as a function of the nor- large number of _Strlpﬁsuch asns,=9 in Fig. 4b)] is that

malized ac field amplitudg,/1.. Solid lines correspond to horizon- SOmMe of the strips are fully penetrated by currents even

tal arrays made of three strips witta/b=20 and dy/a  thoughl/lc<1. _ .
=0,0.2,1,10% in the arrow direction, the dashed curve to a rect-  1he normalized ac losg as a function of for different

angular strip witha/b=20, the dotted curve to the analytical for- Nsx IS plot_ted in Fig.. 5. As expected, tfugi) curves present
mulas for ellipsgRef. 19, and the dash-dotted curve to a thin strip several kinks; specifically, they presemk,—1)/2 kinks if
(Ref. 15. Nsx is 0dd and(nsx—2)/2 if ngy is even, so that each kink
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(@) FIG. 4. Current fronts for hori-
zontal arrays withg,=2 (a) and 9
(b). Current profiles correspond to
i=0.1,0.2,0.4,0.6 (solid lineg
®) and i=0.8,0.9 (dash lines from
@j outer to inner. The cross shows
the kernel position. Only the right

half is plotted for space reasons.

corresponds to the full penetration of a pair of strips locatedhe reduced current at which the array is desired to operate.
symmetrically to thezy plane. Several other features can be

discussed. B. Vertical arrays
First, the lowest loss &t=1 is for ngy,=2. This is so be- ' 4
cause linear arrays with evemq, have two kernels, so that 1. Dependence on strip separation

the average distance from a kernel to the current distribution,
and so the vector potential difference, is lower than for any,
odd number, includingig,=1. Arrays with a higher even
number of strips have a higher average distance from th
kernels, so that(i=1) is higher.

Second, the normalized ac loss for lawis lower for

To illustrate the current penetration process in a vertical
ay, we show the calculated current profiles for different
values of current for a three-strip vertical array wiilib
€20 andd,/a=0.2, 2, and 4 in Figs.(@-6(c). We find that
current profiles for vertical arrays have all the characteristics
described earlier for horizontal arrays, with the difference

higher m:]mt_)gr |0f strlphs. Ash Itis ex;?_lalréed later, th'shf.aﬁtthat the transition from the overall behavior to the indepen-
occurs when Is lower than the normalized current at whic dent strip one requires higher separations in this case.

the most external strip is fully penetrated. Below this current, Magnetic flux lines, as well as the current profiles, are
each strip is non_saturated Wlth current density penetratmglotted in Figs. 7 and 1b) corresponding to a vertical
from the whole strip contour, including the border next to thearray of three strips witll,/a=0.2 and 2, respectively, car-
gap(Fig. 4). Since for highens, there is a total larger inter- . ino 2 yransport current yd1‘:0.6lc. It can be seen that the

fe_lce bereen the field-free core and the cr|t|cal-curr_ent den\'/ertical array needs a higher separation to magnetically de-
sity region, the average vector potential difference is Iowermume the strips. The magnetic shielding in the gap between

and so is the ac loss. After some strips become fully pengying[rig. 7(b)] is much higher than for the horizontal array
etrated, so that the field-free core disappears from thegﬁith the same strip separatidfig. 2).

strips, the ac loss increases faster withThen, theq(i)
curves for highens, progressively overcome those for lower

Nsx An important consequence of this is that the optimum @)
nEmeer Iof IZtrips regarZinqguthe normal:ielg ac loss degelndus on ‘rﬁ; ﬁ‘
- — — e B
" ; — =)
{b)
- e
s c«== )
[
Yo} = —— )
{)
0.5 0.6 0.7 0.8 0.9 1 e —
0 = =)
FIG. 5. Normalized ac Ioss@/Molg as a function of the nor- FIG. 6. Current fronts in vertical arrays made of three strips

malized ac field amplitudg,/I.. Solid lines correspond to horizon- with aspect ratica/b=20 and separationd,/a=0.02, 0.2, and 4

tal arrays witha/b=20, d,/a=0.2, andnsx=1, 2, 3, 5, and 9 in the  (a,b,9. The current fronts corresponditel,/1,=0.1, 0.2, 0.4, 0.6,
arrow direction and the dotted line is for an ellipggef. 15. Inset  and 0.8 from outer to inner. The vertical axis has been expanded
shows the ac loss for a wider range of normalized curreniand strip separations have been drawn as the same for better
amplitude. visualization.
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2nQl L

d/a=0,0.2,1,2,10,

0.2 0.3 0.4 05 06 07 08091

II'I'I/IC

FIG. 8. Normalized ac Iossﬂg/,uolﬁ as a function ofl /..
Solid lines correspond to a vertical array made of three strips with
a/b=20 anddy/a=0,0.2,1,100,o in the arrow direction, the dash
curve to a rectangular strip wita/b=20, the dot one to the ana-
lytical formula for ellipse(Ref. 15, and the dash-dotted curve to a
thin strip (Ref. 15.

issues hold as long @& b=20. However, the case for higher

aspect ratios is qualitatively different for logly/a. In Fig. 9

we present thej(i) curves for a vertical array wita/b=50

and vertical separatiortg/a=0, 0.2, 2, ande, as well as the

k curve for one strip of the array. The only qualitative differ-
ence from Fig. 8 is that in Fig. 9 the normalized loss for

\ dy/a=0.2 is higher than that fat,/a=0 wheni =0.35, while
the kink is at much higher current. The reason for this re-

FIG. 7. Current frontgthick lineg andA.—A(r) level curves as  \qrsed trend for higa/b can be understood by means of
magnetic flux lines for vertical arrays made of three strips with

aspect ratica/b=20 and separatiod,/a=1 (a) andd,/a=0.2 (b) 1076
carrying a transport curreft=0.6.. The A.—A(r) variation be- b
tween level curves for these figures is the same as for Fig. 2.

(b) /

In Fig. 8 we preseng as a function of for vertical arrays
with ng, =3, a/b=20, and several values of vertical separa-
tiond,/a. As for horizontal arrays, the normalized ac loss for ¢
vertical arrays shows a kink between0.9 and 1 and below 5
the kink it monotonically decreases with increasing strip &
separation. However, vertical arrays with small separation
dy/a present a higher loss than for one strip, although the
lowest loss is still for vertical arrays with enough higfa.
The reason is simply because each strip has an aspect ratio g
a/b larger than the vertical array with no separation, so that 107 d/a=00.22,»
the latter has a higher loss than the forf&24However, ~ LA — ]
with increasingd,/a the loss below the kink decreases down 0.2 03 0'4] 05 06 0708091
to 1/ng, times the loss for one strifSec. Il A'1). We note ol

that thg IO,SS for a densely pl_Ied yemcal .arl(aynalldy/a) IS FIG. 9. Normalized ac loss as a function of normalized current
more similar to that for a strip with a thickness equal to the;ypjitude. Solid lines correspond to a vertical array made of three
sum of the superconducting region thickness than for a striyips witha/b=50 anddy/a=0,0.2,2 in the arrow direction, the

with the overall dimensiongsuperconducting volume plus gashed curve to a rectangular strip withb=50, and the dotted

air gapg. Another interesting issue is that the loss for thecurve to an ellipse. The inset shows the current fronts for a vertical
array withi=1 is higher than for a single strip for all the array with a/b=50 andd,/a=0.2 (solid lines and a rectangular
calculatedd,/a. strip with a/b=50/3 (dotted line$. The strip separation for the

Numerical calculations have been performed for otherarray has been removed and the vertical axis has been expanded for

a/b values, showing that all the earlier described trends andetter visualization.
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FIG. 10. Normalized ac loss as a function of normalized current  FIG. 11. Normalized ac loss as a function of normalized current
amplitude. Solid lines correspond to vertical arrays of strips withamplitude. Solid lines correspond to vertical arrays of strips with
a/b=20,d,/a=0.2, andns,=1,2,3,5,9 in thearrow direction and  a/b=20, dy/a=1, andns,=1,2,3,9 in thearrow direction and the
the dotted curve is for an ellipse. The inset shows the ac loss for dotted curve is for an ellipse. The inset shows the ac loss for a wider
wider range of normalized current amplitude. range of normalized current amplitude.

Fig. 9 (inse), where the current profiles for the above men-=2,3,5, 9with the difference increasing with increasing,.
tioned cases ant=0.1 and 0.6 are shown. The strips are This is so because for the same changeljifa the average
depicted with zero separation to help the comparison. Fodistance between one strip and the rest of the strips increases
vertical arrays with lowd,/a, the highest loss contribution more for higher number of strips, so that the magnetic inter-
comes from the current next to the outer vertical borders andction among the strips is more reduced compared with the
the four most external corneffig. 7(b)], being the contri- case ofd,/a=0, where all the strips are incorporated into a
bution of the current between the core and the gaps vergingle one with an aspect ratio af (ngyb).

small; this effect is enhanced for high'b. Fori=0.1, the The normalized ac loss for arrays with the same strip
case withd,/a=0 has deeper current penetration from theaspect ratioa/b=20, but larger vertical separatiod,/a=1,

four most external corners and the vertical borders than fois presented in Fig. 11 for several valuesigf. For this case,
dy/a=0.2, so that the loss for zero separation is higherg decreases withs, for i below the lowest kink, being this
whereas the opposite occurs fer0.6. Then, the loss for low  trend is opposite to that for lowd,/a, Fig. 10. This trend
current is lower ford,/a=0.2 than for zero separation, al- appears when the strips are sufficiently magnetically decou-
though for enough high current the loss fiy/a=0.2 over-  pled, so that the governing aspect ratio comes from the strip

comes that fod,/a=0 as shown in Fig. 9. itself but not from the overall. For highérvalues, the outer
_ strips subsequent penetration generates kinks inqthe
2. Dependence on strip number curve which yield a crossover between curves for several

We will study first the effect of stacking strips with low Nsy, as already found for horizontal strigSec. Il B 2.
separation. In Fig. 10 we show the normalized ac loss for
vertical arrays witha/b=20,d,/a=0.2, and a different num- o o _
bers of strips. It can be seen thyt) increases with increas- C. Magnetic interaction in matrix arrays
ing the number of strips. This is so because wigha is low In this section we study the electromagnetic interaction
enough the array almost behaves as a single strip with aspegétween rectangular strips arranged in a matrix configura-
ratio a/(nsyb) (Sec. Il B 1); we call it the equivalent strip. tion. In Fig. 12, we present the magnetic flux lines and cur-
Then, when increasing the number of strips, the equivalentent profiles for matrix arrays wita/b=20, d,/a=0.2, and
strip aspect ratio decreases and the loss incrédddsw-  d,/a=0.2 and 2 in Figs. 1@) and 12b), respectively. For
ever, if the number of strips is so high thaft(ng b) <1, this  both cases the reduced currentl{$.=0.6 and the vector
trend would be reversed since the loss for the equivalent stripotential difference between flux lines is the same. As can be
is the same as if its aspect ratiorigb/a>1 and the trans- seen in Fig. 12, the current profile and magnetic flux lines

port ac loss do not depend on the overall orientation. present the same features as for horizontal and vertical ar-
We see in Fig. 8 foin;,=3 that the ac loss of the array rays, Figs. 2 and (b).
with d,/a=0.2 is lower than that fod,/a=0 wheni is below The calculated ac loss formg, X ng, =3 3 matrix array

the kink but it is the opposite at largerSuch a behavior at  with a/b=20 and several values af/a and d,/a separa-
low i has been confirmed for all the calculated casessgf tions is shown in Fig. 13. In Fig. 18 we plot theq(i)
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FIG. 12. Current frontgthick lines and A.—A(r) level curves o
as magnetic flux lines for a:83 matrix array of strips with aspect &
ratio a/b=20, d,/a=0.2 andd,/a=0.2(a) andd,/a=1 (b). In both 107k 3
cases the array carries a transport curlen®.6.. The A.—A(r) i 1
variation between level curves for both cases is the same.
. N d/2=0.2,02,10,»
curves for a fixedd,/a=0.2 and several values df/a. As 107 (0)’
expected after the discussion in Sec. Il B 1, the normalized ; ; ; i o ]
ac loss monotonically decreases with increasipg down 0.2 0.3 04 05 06 07 0809 1
to 1/ng, times the loss for a column taken independently. L/
Moreover, the loss for lovd,/a is similar to that for a ver-
tical array with a strip width equal tor2,a. The loss results FIG. 13. Normalized ac loss as a function of normalized current

for the calculated case of/a=0.2 andd,/a=<0.2 show that amplitude. Solid lines corregpond to &3 matrix array of strips
at small distanceg may be well approximated by that of a with a/b:2_0 and sever_al strip separations.(& matrlcgs have the
strip made of all the strips in the array without distances. Fopame Vvertical separatiod,/a=0.2 and several horizontal ones
arrays with overall width-to-thickness higher than 1, this ap-tx/@=0,0.2,25 in the arrow direction, whereas ) separations
proximation is more accurate than considering the loss of 4"€¢%/a=0.2 andd,/a=0.2,0,2 in the arrow direction.
strip with overall dimensions, especially for vertical dis-
tances of the order of the thickness of the stips.

The effect of varying the vertical distance between strips
can be illustrated by the results shown in Fig(dd3where 1. Double thin strip
we plot theq(i) curves for matrices with a fixed,/a=0.2 We present the sheet current dendity(current density
and Several Vertical distancdﬂa. The main features in th|S integrated over the thicknesbr a two_strip horizonta' array
figure are the same as in Fig. 9. The kinks corresponding tQjith a/b=100, d,/a=2, andd,/a=0.2 in Figs. 14a) and
the external strips penetration are clearly seen. The figurg(p), respectively, at several normalized current values. In
shows that the loss for lowh,/a slightly increases with ver-  poth figures, solid lines correspond to our numerical calcu-
tical separation fof=0.2 and decreases for lowgras can |ations, while dashed lines are for the analytical solutions
be seen from the slope &t0.2. Compared to Fig. 9, this found by Ainbinder and Maksimova for a double thin stép.
increase irg with increasingd,/a for moderate is enhanced  As can be seen in the figure, the analytical profiles clearly
since the electromagnetic behavior of each row is similar tcagree with the numerical ones, which can be used as a check
that for a strip with aspect ratioa3b=60, which is higher of qur calculations.
thana/b for Fig. 9. Considering a further increase ajff a,
the loss gradually decreases down tagl/times the loss for
a horizontal array ohg, strips due to the decrease in the  Many experiments showed that the transport ac loss in
magnetic coupling. multifilamentary tapes with densely packed filaments is very

D. Comparison with existing analytical limits and
experimental results

2. Comparison with experimental data
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L0 the current profiles, the magnetic flux lines, and the ac loss
0.8 for horizontal, vertical, and matrix arrays of rectangular

. strips with dimensions &x 2b assuming a constant critical-

éu 0.6 current density.

E 0.4 We have found that with increasing the strip distance, the

current profile and the magnetic field progressively changes

0.2 from the overall behavior to the uncoupled filament behavior,
0.0 being this transition slower for vertical arrays. Moreover, the
1.0 distance required to uncouple the strips is much higher for
0.8 the transport case than when the array is immersed in a uni-

= form ac field.

2, 06 The normalized ac losg=27Q/ uyl? as a function of the

S o4 normalized current amplitudie=1,,/l. presents some kinks,

> which correspond to full penetration of the external strips.
02 P ] For horizontal arrays at below the first kink,q decreases
0 I I M Y S S monotonically with increasing strip separation. This trend

00 02 04 06 08 10 12 14 16 18 20 also holds for vertical and matrix arrays except fRga/b
>20 and low horizontal and vertical separations, for which
the trend is reversed farabove a certain value much lower
strips witha/b=100,d,/a=2 (a) andd,/a=0.2(b), andi=0.1, 0.2, thaR that thanydl_(mk‘ Furth?rmorﬁ’ if the Slf(rlpdseplaratlon IS
0.4, 0.6, and 0.8 in the arrow direction. Solid lines correspond tohlg enough andis not very low, the normalized ac loss can

our numerical results, while dashed lines correspond to the analytpe significantly lower than that for _the thin St_rip and, conse-
cal formulas in Ref. 18 for a double thin strip. quently, any single rectangular strip. Numerical results also

show that whend,/a and d,/a are small enoughd,/a

similar to that for an ellipse or a thin strip, depending on theg 0.2 andd,/a<0.2), the loss is close to that for a strip with

_ ; . ; - aspect rationg,a/ng,b, being ng, and ng, the numbers of
,46-48 S, X S,y S,X S,y

overall_ geometry; _belng_th|s_ effect consistent with the strips in the horizontal and vertical directions, respectively.
numerical data and discussion in Sec. Ill C.

More interesting is the measured ac loss for tapes wit The effect of varying the number of strips in a horizontal
filamentsl in maltri?(lilke arran emuents obtained b pbiag:allrbr vertical array has been studied as well. For a horizontal
. rang ' d by array, the loss foi below the first kink decreases with in-

rolling. In Ref. 22 there is shown both experimental and

ical data fof(1) hich t2 kink and creasing the number of strips, although faabove the first
numericar data oQ(l) curves, which present a kink and are subsequent kinks the loss for highgg overcomes that
slightly lower than those for a thin strip for a certain current i

S Kinks i \ tal dat s b for lower ng,. This is the same trend as for vertical arrays
range. Some Kinks in experimental data can aiso be S€en {fy, high strip separation. However, for lower vertical sepa-
Ref. 29 for the 5< 6 matrix curve with the lowest frequency.

Th . tal dat . t with th Ul tr tions, the loss monotonically increases with increasig
resisl'g%);pggcm?ng ata are in agreement with the calculaled thermore, the normalized loss for an even number of

strips and very close to 1 is lower than for an odd number
The calculated data can also be compared to the experf; strips, beingg(i= 1) minimum for two strips

mental ac loss for two Interacting tapes. _In Refs. 9 aﬂd it Since many of the important issues such as magnetic cou-
is shown that the ac loss of the interacting tapes, either ar-

; ) ) pling and finite size of the strips are incorporated in our
ranged vertically or horizontally, decreases with the strlpmodel the presented results may be used in the design of the

separation down toa half of the_ loss for an md_ependent PG ament arrangements in actual superconducting tapes in or-
A similar feature is observed in Ref. 10. This behavior IS yer to reduce the ac loss in them

theoretically predicted in Secs. Ill B and Ill A for linear ar-

rays of strips. Moreover, in Ref. 11 it is observed that when
the two tapes are placed horizontally, the ac loss for low
distances is lower than when they are placed vertically. As

discussed in Secs. lllA1 and Ill B 1, this is due to the fact  Financial support given by MCyT Project No. BFM2000-
that arrays with low separation behave similarly to the overgpo1, CIRIT Project No. SGR2001-00189, CeRMAE, and

all, the horizontal array has a higher width-to-thickness aspyrs| from Generalitat de Catalunya is acknowledged.
pect ratio and the loss for strips decreases with the aspect

ratio.

FIG. 14. Sheet current profiles for a horizontal array of two
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APPENDIX
V. CONCLUSIONS In this Appendix we calculate the vector potential gener-
In this paper we have presented a numerical model t@ted by a current elemewt(r) and the coefficient€; ap-
calculate electromagnetic properties of infinitely long superpearing in Eqs(13) and(16) that are used for calculating the
conductors in the critical-state model carrying a transporinternal energy and the loss. The vector poter#igr) is
alternating current. The model has been applied to calculatalso used for calculating the magnetic flux lines.
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Vector potential generated by a current element ApalXy:t,d)/1;, (A3)

Let us consider an infinite rectangular bar along the
direction, centered at the origin, dimensions<2d in the x
andy directions, respectively, and carrying a uniform current
I. The vector potential in the gaude A=0 generated by the
bar is in thez direction and can be calculated from EB) as

where(x,y;) and(x;,y;) are the central positions of the ele-
ments, 2 X 2d; and 2; X 2d;, their dimensions, any is the
current flowing through the elemert After inserting Eq.
(A1) in Eqg. (A3), we obtain by direct integration

)= - rmty = d) - f(x— - Ci= — % [gx - x +t,y -y +dt,d) +gx —x
Apa(X,y;t,d) = SﬂJﬂxty d) - f(x—t,y+d) - f(x i 3%m@qmm Xj + b,y — Yy + it dp) +g(x - X
+ty-d)+f(x+ty+d], (A1) Ly -y - it d) - g0 =X -ty -y distd)

where the functiorf(u,v) is defined as +g(x =X~ b,y -y~ distg,dy) ], (A4)

1 beingg(u,v;t’,d’") defined as
f(u,v) = 5{— 3uv + v In(U? + v?) + u? arctar<z)
. g(uo;t',d) =Fu-t',v-d) - Fu-t',p+d’)

+ 02 arctar(gﬂ. (A2) —Fu+t',v-d)+Fu+t,v+d)

’ (A5)
Then, the vector potential generated by a current element is
Ar)=AualX=X;,y=Y;;alng, b/ny), where(x;,y;) is the cen-  with
tral position of the element.

25 1
F(U,,U’) - _ _UIZUrZ _ _(U/4+ urZ _ 6u/2072)|n(ur4+ U’z)

Calculation of coefficientsC; 48 48
The coefficientsC;; are defined as the vector potential per u'dy’ ' u'p'? u'
unit current generated by the elem¢m@tveraged in elemeiht + arctar(—,> + arctar(—,>. (A6)
volume. It follows according to this definition: v
1 yiyjtd We note that the coefficients fulfill the relatia®y, =C;.
Cj= ad xf dy The validity of this relation can be easily justified by the
M=% Vi=Yj=dy fourfold integral obtained from inserting E) in (A3).
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