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We present a systematic theoretical study of current profiles, magnetic field lines, and hysteresis ac loss in
linearly arranged arrays of rectangular superconducting strips subjected to a transport current. Results are
obtained by means of numerical calculations assuming the critical-state model with a constant critical current
density. Because finite filament thickness and magnetic coupling effects are considered, we can provide some
useful hints as to how to arrange the filaments in order to reduce the ac loss in actual superconducting tapes.
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I. INTRODUCTION

Some of the important applications of superconductors
are based on the possibility of having a high value of super-
current transported through them. For hard type II supercon-
ductors, the energy loss when carrying a static transport su-
percurrent is very small but it can be significant when the
current is alternating. The reduction of ac loss is of funda-
mental importance for the application of superconductors to
actual ac electrical devices, such as power transmission
cables, ac magnets, and transformers.1–3

In recent years, a lot of effort has been made in the pro-
duction of high-temperature superconductingsHTSd compos-
ite conductors, which are made of a superconducting core
with a multifilamentary structure and a normal-metal con-
ducting sheath or substrate. The most common HTS compos-
ite conductors are Bi-2223/Ag tapes, coated YBCO conduc-
tors, and MgB2 tapes and wires.3,4 The understanding of ac
loss in these multifilamentary conductors is not only useful
to reduce the energy dissipation but also to characterize the
superconductor material properties.5,6 Moreover, the study of
the ac loss for several magnetically interacted conductors is
also useful for applications.2,7–11

The critical-state model12,13has been shown to be a useful
tool to describe the ac loss of superconducting wires. The
model assumes that the current density has a magnitudeJc
wherever it is nonzero. It was first applied to analytically
calculate the ac loss for simple geometries, such as a
cylinder,13 a circular tube, or an infinite slab.14 In the early
1970s, Norris paved the way for some of the modern models
by calculating the ac loss produced by a transport current in
a thin strip and an elliptical cross-section wire.15 Further the-
oretical advances and the discovery of HTS materials moti-
vated the study of other interesting geometries, such as a
cylinder with two concentric circular shells with differentJc
sRef. 16d and some multifilamentary geometries, like vertical
and horizontal arrays of an infinite number of thin strips17 or
double thin strips.18

Apart from the mentioned analytical studies, some nu-
merical models within the critical-state model have been de-

veloped to describe superconductors with transport current,
like those from Norris,19 Fukunagaet al.,20–22 Däumling,23

and Pardoet al.24 These numerical methods restrict the cal-
culation region to the superconducting volume only. The ge-
ometry investigated numerically was a rectangular strip with
arbitrary thickness,20,23,24 after which extensive work on
multifilamentary tapes was done by Fukunagaet al.21,22 An
alternative approach to the critical-state model is to assume a
certainEsJd dependence asE~ sJ/Jcdn, whereE is the elec-
trical field. An interesting model considering this assumption
is that developed by Brandt25 for superconducting strips in
applied magnetic fields, extended for the transport current
case by Rhyner26 and Yazawaet al.27 Again, this model re-
quires numerical calculations inside the superconductor only.
Other authors applied conventional finite-element techniques
to multifilamentary tapes, such as Stavrevet al.28

In spite of all the extensive theoretical work done on ac
loss, the magnetic coupling behavior between superconduct-
ing filaments has not been systematically studied. To cover
this lack, in this work we present accurate numerical calcu-
lations and discussions of current distribution, magnetic field
lines, and ac loss for matrix arrays of rectangular strips. The
matrix arrangement is found in many actual tapes22,29,30and
is a simple geometry to study for the interaction between
different tapes.

The calculations are performed by a numerical model
based on the critical-state model with a constant critical cur-
rent density, which is presented in Sec. II. In Sec. III, we first
present a systematic study of the magnetic interaction among
rectangular strips in both horizontal and vertical arrays, and
then we use such a study as a basis to understand the mag-
netic interaction in a matrix array. A comparison of the
model results with both experimental data and simplified
analytical models is presented in that section. Finally, we
summarize our conclusions in Sec. IV.

II. MODEL

We consider a set of infinitely long superconducting rect-
angular strips of cross-sectional dimensions 2a32b along
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the horizontalx and verticaly axis, respectively. We study
the case of regularly arranged strips in a matrix configuration
of ns,x3ns,y s1øns,x,ns,yø9d strips with horizontal and ver-
tical separationsdx anddy, respectively.

The rectangular strips are connected to each other in par-
allel and fed by an ac current with amplitudeIm. Such a
connection is usually found in a real superconducting tape
with neither twisting nor resistive barriers thanks to the me-
tallic matrix or substrate. We assume that the contribution of
the metallic region to the loss is negligible in front of the
hysteretic superconductor loss. This assumption is valid for
enough low frequencies.31

In the following we present the numerical model used for
calculating the current profiles, the magnetic field lines, and
the ac loss.

A. Magnetic energy minimization

The calculations presented in this work are carried out by
the magnetic energy minimizationsMEMd32,33 based on the
critical-state model with a constant critical current densityJc.
The MEM, developed for cylinders32,34 and tapes33,35,36 in
the presence of magnetic fields can be extended to the trans-
port case, as presented in this section.

The magnetic energyW per unit length of an infinitely
long circuit with uniform cross section along thez axis is37

W= 1
2E

Sxy

Jsr dAJsr ddS, s1d

whereSxy refers to the wholexy plane,J is the current den-
sity, andAJ is the vector potential created byJ, being bothJ
and AJ parallel to thez axis. It follows from the gauge of
= ·A=0 that

AJsr d = −
m0

4p
E

Sxy

Jsr 8dlnfsx − x8d2 + sy − y8d2gdS8. s2d

In order to apply the MEM procedure to the transport case
we consider a circuit consisting of two identical supercon-
ducting tapesseach of which may consist of several stripsd
carrying opposite current and separated a large distanceD
compared to their cross-sectional dimensions, as done by
Carr.38 We choose the origin of coordinates in the center of
one tape, which carries a transport currentI, and we center
the returning tape atsx,yd=sD ,0d. With this configuration
and using the approximation of largeD, we obtain from Eq.
s2d that the vector potential in the tape at the origin is

AJsr d < Asr d +
m0

2p
I ln D, s3d

where the first term is the vector potential created by the tape
at the origin and the second is that created by the returning
tape. Considering that the vector potential in each tape has
the same magnitude but opposite sign and inserting Eq.s3d
into s1d, we obtain that the magnetic energy of the circuit is

W=E
S

Jsr dAsr ddS+
m0

2p
I2 ln D, s4d

beingS the cross section of the tape at the origin. The second
term of Eq.s4d is constant for a fixed currentI, so that the
only term in the energy per tape that has to be minimized to
determine the current distribution is

W8 ; 1
2E

S

Jsr dAsr ddS, s5d

which we call internal energy. We notice that we obtain the
same expression forW8 if we consider that the current re-
turns through a perfectly conducting shell at a large distance
D, as done by Norris,15 instead of an identical superconduct-
ing tape.

B. Physical grounds of magnetic energy minimization

In our previous papers about MEM, we assume that the
actual supercurrent distribution minimizes the magnetic
energy.32 The energy and flux minimization in the critical
state was independently studied by Prigozhin,39,40 Badia et
al.,41 and Chaddah and co-workers.42 In these works it was
shown that supercurrent distribution is such that minimizes a
certain functional, which is not always the magnetic energy.
In the following we demonstrate that in the initial curve,
minimizing this functional is equivalent to minimizing the
magnetic energy provided that current density penetrates
monotonically from the surface.

Following the notation of Prigozhin,40 in the absence of
an applied field the supercurrent at a certain time is such that
minimizes the functional

FfJg = 1
2E

S

Jsr dAsr ddS−E
S

Jsr dÂsr ddS, s6d

with the constrainseSJsr ddS= I anduJuøJc, beingÂ the vec-
tor potential created by the supercurrent at the previous time

layer, Ĵ. The principle of minimization of this functional is
found from first principles in Refs. 39 and 40. Defining the

current density variationdJ;J− Ĵ, we obtain from Eqs.s6d
and s2d that

FfdJ + Ĵg = 1
2E

S

dJsr ddAsr ddS− 1
2E

S

Ĵsr dÂsr ddS, s7d

wheredA is the vector potential created bydJ. The second
term of Eq.s7d is dJ independent and it is irrelevant to the
minimization of F. Then, minimizingF is equivalent to
minimizing F8, defined as

F8fdJg ; 1
2E

S

dJsr ddAsr ddS. s8d

To compare the minimization ofF8 at every time layer
with that forW8 for the finalJ reached from the virgin state,
we do the following. Given a physicalJ, we divide it inton
termsdJi, so thatJsr d=oi=1

n dJisr d, beingn is a large number.
We choose these terms as the actual current density incre-
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ments in the virgin curve corresponding to the time layer at
t= ti, dJi =dJst= tid with ti . ti−1. If the current penetrates
monotonically, alldJi enclose a field-free region, or core.
Furthermore, ifn is very highdJi is nonzero in a thin layer
only, so thatdAi created bydJi is almost uniform in the layer
and

F8fdJig = 1
2E

S

dJidAidS< 1
2dAi,csI i − I i−1d, s9d

wheredAi,c is the vector potential in the field-free core cre-
ated bydJi and I i is Istid, with Ist0d=0.

From Eqs.s5d ands2d and using the same division, we can
separateW8 as

W8fJg = 1
2E

S

sJ − dJ1dsA − dA1ddS+ 1
2E

S

dJ1dA1dS+E
S

sJ

− dJ1ddA1dS, s10d

wheredJ1 is the first increment of supercurrent density set in
the superconductor. Since the current set afterdJ1 lies inside
the field-free core corresponding todJ1, the last term in Eq.
s10d follows eSsJ−dJ1ddA1dS=dA1,csI − I1d. Inserting this
into Eq. s10d and using Eq.s9d we obtain

W8fJg < 1
2E

S

sJ − dJ1dsA − dA1ddS+ dA1,cfI − I1/2g.

s11d

Following the same steps for alldJi, we find that

W8fJg < o
i=1

n

dAi,cfI − sI i + I i−1d/2g. s12d

At this point we notice that when minimizingF8fdJig for
each time layer, eachdAi,c is minimizedfEq. s9dg. From Eq.
s12d we see that, sinceI i are fixed external parameters, mini-
mizing all dAi,c leads to minimizingW8. If the dJi which
minimizesF8fdJig is unique, theJ=oi=1

n dJi minimizing W8
is also unique. Then, if we are only interested in the finalJ,
it can be obtained by minimizing directlyW8 by means of
any minimization routine.

The assumption of monotonic penetration of current in the
initial curve is consistent with our numerical results for ar-
rays of strips connected in parallelsFigs. 1, 6, and 14d, our
preceding results for cylinders and single strips24,32,34,36and
the analytical solution for a double thin strip in Ref. 18, Fig.
14.

C. Calculation of current distribution

The current distribution in the whole alternating current
cycle can be deduced from the current profiles for the states
on the initial curve, provided that the current penetrates
monotonically when the state evolves along this curve as the
present case. Let us consider first the reversal curve, for
which I monotonically decreases fromIm to −Im. We note
that F8 in Eq. s8d remains unchanged if we reverse the sign
of dJ. Then, if on the initial curveF8 in Eq. s8d is minimized

when current withJ=Jc monotonically penetrates from the
surface inwards, in the reversal curveF8 is minimized when
new current withJ=−Jc penetrates in the same way as for
the initial curve. From these considerations, one can directly
find that JrevsId=JinsImd−2JinfsIm− Id /2g, whereJrev and Jin
are the current density on the reverse and initial curve, re-
spectively. Following the same discussion for the returning
curvesI =−Im to I = Imd, we obtain that the current densityJret
on this curve isJretsId=JinsImd−2JinfsIm− Id /2g, closing the
current cycle. This result was already found for single strips
in Refs. 15 and 43.

We now describe how we calculate the current distribu-
tion for a certain currentI starting from the zero-field cooled
state by means of MEM.

Each superconducting strip is divided intoN=2nx32ny
elements with dimensionsa/nx3b/ny; current density is as-
sumed to be uniform in each element. We allow the current
density to have discrete values belowJc, that is, J
=mJc/mm with m being an integer number from 1 to a maxi-
mum valuemm. As discussed in Ref. 24, the allowance of
current densities lower thanJc reduces the discretization er-
ror in the ac loss calculation. Actually, we find that a value of
J smaller thanJc appears only within one layer of elements
beyond theJ=Jc front. This layer simulates much better the
effect of a smoothly curved front.

We consider an already present numerical profile which
minimizes the internal energy with a total currentI. Then, we
increase the current forDI =Jcab/nxnymm in the nonsaturated
element where doing so increases the least the internal en-
ergy; I is therefore increased toI +DI and internal energy is
kept as the minimum possible. This procedure is repeated
from I =0 up to I = Ic, obtaining all the profiles at a dis-
cretized set ofI values in the process.

The variation ofW8, DW8, as a consequence of changing
the current in elementl, from I l to I l +DI can be calculated
from Eq. s5d as

DW8 = o
j=1

N

Cjl I jDI + 1
2CllsDId2, s13d

where the factorsCjl are defined as the vector potential cre-
ated by unit current in elementj averaged over the cross

FIG. 1. Current fronts for horizontal arrays made of three strips
with aspect ratioa/b=20 and separationsdx/a=0.02 sad, 0.2 sbd,
and 4scd. The current fronts correspond toI / Ic=0.1, 0.2, 0.4, 0.6,
and 0.8 from outer to inner. The vertical axis has been expanded
and strip separations have been drawn as the same for better
visualization.
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section of elementl. These factors can be calculated analyti-
cally and are presented in the Appendix.

D. Calculation of ac loss

For constantJc and monotonic current penetration, the
transport ac loss per cycle,Q, at current amplitudeIm can be
directly calculated from the current profile atI = Im as15

Q = 4E
S

Jsr dFsr ddS, s14d

whereFsr d is the magnetic flux per unit length between the
flux-free core and positionr . Using B= = 3A and the
Stokes theorem, one obtains thatFsr d equals the vector po-
tential difference between the flux-free core and positionr .
Considering this and taking into account that the vector po-
tential generated by the returning tape is practically uniform
in the tape at the origin, we deduce from Eq.s14d that

Q = 4E
S

Jsr dfAc − Asr dgdS, s15d

whereAc is the vector potential in the flux-free core.
The evaluation ofQ from the numerical current profile

yields to

Q = 4FImo
j=1

N

Ajsr cd − o
j ,l=1

N

Cjl I jIkG , s16d

whereAj is the vector potential due to the elementj andr c is
a position inside the core. Analytical expressions forAjsr d
can be found in the Appendix.

To calculate the loss forIm up to Ic it is necessary to know
the kernel position. The kernel is defined as the last point to
be penetrated by current in the initial curve, so that it always
belongs to the field-free core for anyImø Ic. For a matrix
array with oddns,x andns,y the kernel is always located at the
center due to the mirror symmetry, but for evenns,x and/or
ns,y the determination of the kernel is not obvious. SinceB
=0 always in the kernel, its position can be found as the
point whereB=0 inside the superconducting region whenI
= Ic. After calculating the magnetic induction generated by a
saturated rectangular strip using the Biot-Savart law, the ker-
nel position can be found numerically using the Newton-
Raphson method for nonlinear systems of equations.44 Due
to symmetry, for matrices with one ofns,x andns,y to be even
there appear two kernels in the two strips closest to the cen-
ter, while when bothns,x andnsy are even the system has four
equivalent kernels.

III. RESULTS AND DISCUSSION

Although the numerical model presented earlier can be
applied to any superconducting geometry with translational
symmetry, in the present paper we restrict our study to regu-
lar arrays of rectangular strips. The behavior of the array will
depend upon the magnetic interaction between strips. In or-
der to analyze this behavior we will first make a systematic
study of the magnetic interaction among rectangular strips in

both horizontal and vertical arrays, and after that we will use
such a study as a basis to the case of a matrix array.sActu-
ally, in the transport case the results are independent of the
array orientation so that a horizontal array of strips with di-
mensionsa andb has exactly the same properties as a verti-
cal one with strips with dimensionsb and a; for clarity of
exposition, we will refer to horizontal or vertical arrays be-
cause we will always consider strips witha/bù1, so a hori-
zontal array of strips will consist of strips aligned in the
direction perpendicular to their short dimension, and a verti-
cal array arranged in the parallel direction.d

A. Horizontal arrays

1. Dependence on strip separation

To illustrate the current penetration process in a horizontal
array, we show the calculated current profiles for different
values of current for a three-strip horizontal array with di-
mensions a/b=20 and dx/a=0.02, 0.2, and 4 in Figs.
1sad–1scd, respectively. The arrays are artificially drawn with
the same separation to facilitate the profiles’ comparison.

The general observed behavior is that current penetrates
from the superconductor borders inwards, being the penetra-
tion deeper from the external vertical border of the side
strips, so that the current carried by the side strips is higher.
The current profiles for lowerdx/a, Figs. 1sad and 1sbd, do
not differ significantly from those obtained as if the array
were a single strip with the overall dimensions, except near
the strip gaps for the casedx/a=0.2, Fig. 1sbd. Whendx/a
increasesfFig. 1scdg, the current penetration from the inner
boundaries is enhanced and the field-free core in the side
strips moves towards the strip center. Moreover, the current
fraction carried by each strip in the array becomes more
similar to each other with increasingdx/a. Then, the current
profiles for the largedx/a limit would be identical for all the
strips and equal to those for each of the superconducting
strips taken independently.

We notice that the highdx/a limit is reached much slower
for the transport case than for the magnetic one, that is, for
arrays of strips under a uniform applied ac field.33 This is
because the magnetostatic coupling between strips has a
longer range in the transport array than in the magnetic case;
for the transport situation the field produced by a strip varies
with distancer as 1/r, while for the magnetic case the net
current in a strip is zero so that its field, dominated by the
dipolar contribution, varies as 1/r2.

In order to study the behavior of the magnetic field, in
Fig. 2 we plot the vector potential differenceAc−Asr d level
curves and the current profile for a three-strip array with
a/b=20 anddx/a=0.2 fFig. 2sadg and dx/a=1 fFig. 2sbdg
carrying a currentI =0.6Ic. The presentedAc−A level curves
can be either regarded as magnetic field lines25,33and also, in
the region whereJz=Jc, as the ac loss density level curves.
This latter property ofAc−A can be found from Eq.s15d
considering that the only region where 0,Jz,Jc is a thin
layer of one-element width surrounding the flux-free core,24

whereAc−A=0. As expected from the current profiles in Fig.
1, results show that if the separationdx/a is low enoughfFig.
2sadg, the vector potential, the magnetic field, and the current
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profile are very similar to those for a single strip with the
overall dimensions. Ifdx/a increases, Fig. 2sbd, these elec-
tromagnetic quantities change progressively to approach
those for magnetically uncoupled strips. Another important
issue is that the magnetic field between strips is very small
compared to the field next to the external lateral edges. It can
also be seen that the magnetic flux between the field-free
core of different strips is zero, as expected.

From the obtained current profiles, we can calculate the ac
loss. The normalized ac lossq;2pQ/m0Ic

2 per cycle as a
function of the reduced current amplitudei ; Im/ Ic corre-
sponding to a three-strip horizontal array witha/b=20 and
several values ofdx/a is plotted in Fig. 3. The curves for one
isolated strip witha/b=20 and the well-known cases of el-
lipses and thin strips15 are also plotted for comparison. For
all casesIc is the total critical current for the specific geom-
etry. The infinite separation casesdx/a=`d for a set ofns,x

=n aligned strips can be calculated from the curve for a
single stripqsi ,ns,x=1d asqsi ,ns,x=nd=qsi ,ns,x=1d /n, since
for dx/a=` the strips do not interact with each other and
Icsns,x=nd=nIcsns,x=1d. This ac loss reduction in the super-
conductor may also be obtained by ideal magnetic shielding
of the filaments.7

As it can be seen in Fig. 3, the curves for three-strip
arrays present a sudden increase in the slope at a certaini
value between 0.9 and 1, which corresponds to the full pen-
etration of side strips. This effect can be explained as fol-
lows. The vector potential difference, and so the ac loss den-
sity, increases in magnitude from the field-free core outwards
sFig. 2d. Since beyond the kink the only field-free zone be-
longs to the central strip, the ac loss density in the side strips
increases more for the same current increment. Conse-
quently, this slope increment is higher for larger strip sepa-
ration, as shown in Fig. 3. The presence of a kink has also
been found for geometries with discontinuities of theJc
value in the cross section.16,45 It is also remarkable that the
ac loss decreases when the strip separation increases for any
i below 0.97. Furthermore, all calculated curves for nonzero
dx/a lay below the Norris strip curve fori ,0.97 and i
.0.57,0.34,0.24,0.20 fordx/a=0.2,1,10,̀ , respectively.
The ac loss decreases with increasing the strip separation for
i below the kink due to the decrease in the magnetic interac-
tion with increasing the separation. This yields to a more
similar current carried by each strip and a current profile
more symmetric with respect to each strip midplanesFig. 1d.
Then, since the vector potential decreases with the distance
to the field-free core, the average vector potential difference
Ac−A in each strip is lower, as can be seen in Fig. 2, where
the Ac−A level curves are plotted.

Another interesting issue is that the normalized ac loss for
a horizontal array of strips witha/bù1 andi below the kink
is lower than that for one of the strips taken independently
for anydx/a. This is so because the normalized ac lossq for
a strip monotonically decreases with increasinga/b,20,23,24so
that q for one of the strips is higher than for the horizontal
array with dx/a=0 and, consequently, higher for anydx/a
since magnetic coupling decreases with increasingdx.

All the features discussed in this section are general for
any horizontal array, as checked by numerical calculations.

2. Dependence on strip number

The current penetration profiles for different values of
current in two horizontal arrays with two and nine strips and
a/b=20 anddx/a=0.2 are plotted in Figs. 4sad and 4sbd,
respectively. The profiles corresponding to the two largest
values of currentsI / Ic=0.8 and 0.9d are depicted in dashed
lines to help the profiles identification. For the array with two
strips in Fig. 4sad one of the array kernels is represented as a
cross. An interesting feature of the profiles for the case of a
large number of stripsfsuch asns,x=9 in Fig. 4sbdg is that
some of the strips are fully penetrated by currents even
thoughI / Ic,1.

The normalized ac lossq as a function ofi for different
ns,x is plotted in Fig. 5. As expected, theqsid curves present
several kinks; specifically, they presentsns,x−1d /2 kinks if
ns,x is odd andsns,x−2d /2 if ns,x is even, so that each kink

FIG. 2. Current frontssthick linesd and magnetic flux linesfac-
tually they areAc−Asr d level curves; see textg for horizontal arrays
made of three strips with aspect ratioa/b=20 and separation
dx/a=0.2 sad anddx/a=1 sbd carrying a transport currentI =0.6Ic.
Only the right half part of the tape is plotted. TheAc−Asr d variation
between level curves is the same for both plots.

FIG. 3. Normalized ac loss 2pQ/m0Ic
2 as a function of the nor-

malized ac field amplitudeIm/ Ic. Solid lines correspond to horizon-
tal arrays made of three strips witha/b=20 and dx/a
=0,0.2,1,10,̀ in the arrow direction, the dashed curve to a rect-
angular strip witha/b=20, the dotted curve to the analytical for-
mulas for ellipsesRef. 15d, and the dash-dotted curve to a thin strip
sRef. 15d.
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corresponds to the full penetration of a pair of strips located
symmetrically to thezy plane. Several other features can be
discussed.

First, the lowest loss ati =1 is for ns,x=2. This is so be-
cause linear arrays with evenns,x have two kernels, so that
the average distance from a kernel to the current distribution,
and so the vector potential difference, is lower than for any
odd number, includingns,x=1. Arrays with a higher even
number of strips have a higher average distance from the
kernels, so thatqsi =1d is higher.

Second, the normalized ac loss for lowi is lower for
higher number of strips. As it is explained later, this fact
occurs wheni is lower than the normalized current at which
the most external strip is fully penetrated. Below this current,
each strip is nonsaturated with current density penetrating
from the whole strip contour, including the border next to the
gapsFig. 4d. Since for higherns,x there is a total larger inter-
face between the field-free core and the critical-current den-
sity region, the average vector potential difference is lower,
and so is the ac loss. After some strips become fully pen-
etrated, so that the field-free core disappears from these
strips, the ac loss increases faster withi. Then, theqsid
curves for higherns,x progressively overcome those for lower
ns,x. An important consequence of this is that the optimum
number of strips regarding the normalized ac loss depends on

the reduced current at which the array is desired to operate.

B. Vertical arrays

1. Dependence on strip separation

To illustrate the current penetration process in a vertical
array, we show the calculated current profiles for different
values of current for a three-strip vertical array witha/b
=20 anddy/a=0.2, 2, and 4 in Figs. 6sad–6scd. We find that
current profiles for vertical arrays have all the characteristics
described earlier for horizontal arrays, with the difference
that the transition from the overall behavior to the indepen-
dent strip one requires higher separations in this case.

Magnetic flux lines, as well as the current profiles, are
plotted in Figs. 7sad and 7sbd corresponding to a vertical
array of three strips withdy/a=0.2 and 2, respectively, car-
rying a transport current ofI =0.6Ic. It can be seen that the
vertical array needs a higher separation to magnetically de-
couple the strips. The magnetic shielding in the gap between
stripsfFig. 7sbdg is much higher than for the horizontal array
with the same strip separationsFig. 2d.

FIG. 4. Current fronts for hori-
zontal arrays withns,x=2 sad and 9
sbd. Current profiles correspond to
i =0.1,0.2,0.4,0.6 ssolid linesd
and i =0.8,0.9 sdash linesd from
outer to inner. The cross shows
the kernel position. Only the right
half is plotted for space reasons.

FIG. 5. Normalized ac loss 2pQ/m0Ic
2 as a function of the nor-

malized ac field amplitudeIm/ Ic. Solid lines correspond to horizon-
tal arrays witha/b=20, dx/a=0.2, andns,x=1, 2, 3, 5, and 9 in the
arrow direction and the dotted line is for an ellipsesRef. 15d. Inset
shows the ac loss for a wider range of normalized current
amplitude.

FIG. 6. Current fronts in vertical arrays made of three strips
with aspect ratioa/b=20 and separationsdy/a=0.02, 0.2, and 4
sa,b,cd. The current fronts correspond toi = Im/ Ic=0.1, 0.2, 0.4, 0.6,
and 0.8 from outer to inner. The vertical axis has been expanded
and strip separations have been drawn as the same for better
visualization.
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In Fig. 8 we presentq as a function ofi for vertical arrays
with ns,y=3, a/b=20, and several values of vertical separa-
tion dy/a. As for horizontal arrays, the normalized ac loss for
vertical arrays shows a kink betweeni =0.9 and 1 and below
the kink it monotonically decreases with increasing strip
separation. However, vertical arrays with small separation
dy/a present a higher loss than for one strip, although the
lowest loss is still for vertical arrays with enough highdy/a.
The reason is simply because each strip has an aspect ratio
a/b larger than the vertical array with no separation, so that
the latter has a higher loss than the former.20,23,24However,
with increasingdy/a the loss below the kink decreases down
to 1/ns,y times the loss for one stripsSec. III A 1d. We note
that the loss for a densely piled vertical arrayssmalldy/ad is
more similar to that for a strip with a thickness equal to the
sum of the superconducting region thickness than for a strip
with the overall dimensionsssuperconducting volume plus
air gapsd. Another interesting issue is that the loss for the
array with i =1 is higher than for a single strip for all the
calculateddy/a.

Numerical calculations have been performed for other
a/b values, showing that all the earlier described trends and

issues hold as long asa/bø20. However, the case for higher
aspect ratios is qualitatively different for lowdy/a. In Fig. 9
we present theqsid curves for a vertical array witha/b=50
and vertical separationsdy/a=0, 0.2, 2, and̀ , as well as the
curve for one strip of the array. The only qualitative differ-
ence from Fig. 8 is that in Fig. 9 the normalized loss for
dy/a=0.2 is higher than that fordy/a=0 wheni ù0.35, while
the kink is at much higher current. The reason for this re-
versed trend for higha/b can be understood by means ofFIG. 7. Current frontssthick linesd andAc−Asr d level curves as

magnetic flux lines for vertical arrays made of three strips with
aspect ratioa/b=20 and separationdy/a=1 sad and dx/a=0.2 sbd
carrying a transport currentI =0.6Ic. The Ac−Asr d variation be-
tween level curves for these figures is the same as for Fig. 2.

FIG. 8. Normalized ac loss 2pQ/m0Ic
2 as a function ofIm/ Ic.

Solid lines correspond to a vertical array made of three strips with
a/b=20 anddy/a=0,0.2,1,10,̀ in the arrow direction, the dash
curve to a rectangular strip witha/b=20, the dot one to the ana-
lytical formula for ellipsesRef. 15d, and the dash-dotted curve to a
thin strip sRef. 15d.

FIG. 9. Normalized ac loss as a function of normalized current
amplitude. Solid lines correspond to a vertical array made of three
strips witha/b=50 anddy/a=0,0.2,2 ,̀ in the arrow direction, the
dashed curve to a rectangular strip witha/b=50, and the dotted
curve to an ellipse. The inset shows the current fronts for a vertical
array with a/b=50 anddy/a=0.2 ssolid linesd and a rectangular
strip with a/b=50/3 sdotted linesd. The strip separation for the
array has been removed and the vertical axis has been expanded for
better visualization.
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Fig. 9 sinsetd, where the current profiles for the above men-
tioned cases andi =0.1 and 0.6 are shown. The strips are
depicted with zero separation to help the comparison. For
vertical arrays with lowdy/a, the highest loss contribution
comes from the current next to the outer vertical borders and
the four most external cornersfFig. 7sbdg, being the contri-
bution of the current between the core and the gaps very
small; this effect is enhanced for higha/b. For i =0.1, the
case withdy/a=0 has deeper current penetration from the
four most external corners and the vertical borders than for
dy/a=0.2, so that the loss for zero separation is higher,
whereas the opposite occurs fori =0.6. Then, the loss for low
current is lower fordy/a=0.2 than for zero separation, al-
though for enough high current the loss fordy/a=0.2 over-
comes that fordy/a=0 as shown in Fig. 9.

2. Dependence on strip number

We will study first the effect of stacking strips with low
separation. In Fig. 10 we show the normalized ac loss for
vertical arrays witha/b=20,dy/a=0.2, and a different num-
bers of strips. It can be seen thatqsid increases with increas-
ing the number of strips. This is so because whendy/a is low
enough the array almost behaves as a single strip with aspect
ratio a/ sns,ybd sSec. III B 1d; we call it the equivalent strip.
Then, when increasing the number of strips, the equivalent
strip aspect ratio decreases and the loss increases.24 How-
ever, if the number of strips is so high thata/ sns,ybd,1, this
trend would be reversed since the loss for the equivalent strip
is the same as if its aspect ratio isns,yb/a.1 and the trans-
port ac loss do not depend on the overall orientation.

We see in Fig. 8 fornf,y=3 that the ac loss of the array
with dy/a=0.2 is lower than that fordy/a=0 wheni is below
the kink but it is the opposite at largeri. Such a behavior at
low i has been confirmed for all the calculated cases ofns,y

=2,3,5,9with the difference increasing with increasingns,y.
This is so because for the same change indy/a the average
distance between one strip and the rest of the strips increases
more for higher number of strips, so that the magnetic inter-
action among the strips is more reduced compared with the
case ofdy/a=0, where all the strips are incorporated into a
single one with an aspect ratio ofa/ sns,ybd.

The normalized ac loss for arrays with the same strip
aspect ratio,a/b=20, but larger vertical separation,dy/a=1,
is presented in Fig. 11 for several values ofns,y. For this case,
q decreases withns,y for i below the lowest kink, being this
trend is opposite to that for lowdy/a, Fig. 10. This trend
appears when the strips are sufficiently magnetically decou-
pled, so that the governing aspect ratio comes from the strip
itself but not from the overall. For higheri values, the outer
strips subsequent penetration generates kinks in theqsid
curve which yield a crossover between curves for several
ns,y, as already found for horizontal stripssSec. III B 2d.

C. Magnetic interaction in matrix arrays

In this section we study the electromagnetic interaction
between rectangular strips arranged in a matrix configura-
tion. In Fig. 12, we present the magnetic flux lines and cur-
rent profiles for matrix arrays witha/b=20, dy/a=0.2, and
dx/a=0.2 and 2 in Figs. 12sad and 12sbd, respectively. For
both cases the reduced current isI / Ic=0.6 and the vector
potential difference between flux lines is the same. As can be
seen in Fig. 12, the current profile and magnetic flux lines
present the same features as for horizontal and vertical ar-
rays, Figs. 2 and 7sbd.

The calculated ac loss for ans,x3ns,y=333 matrix array
with a/b=20 and several values ofdx/a and dy/a separa-
tions is shown in Fig. 13. In Fig. 13sad we plot the qsid

FIG. 10. Normalized ac loss as a function of normalized current
amplitude. Solid lines correspond to vertical arrays of strips with
a/b=20,dy/a=0.2, andns,y=1,2,3,5,9 in thearrow direction and
the dotted curve is for an ellipse. The inset shows the ac loss for a
wider range of normalized current amplitude.

FIG. 11. Normalized ac loss as a function of normalized current
amplitude. Solid lines correspond to vertical arrays of strips with
a/b=20, dy/a=1, andns,y=1,2,3,9 in thearrow direction and the
dotted curve is for an ellipse. The inset shows the ac loss for a wider
range of normalized current amplitude.
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curves for a fixeddy/a=0.2 and several values ofdx/a. As
expected after the discussion in Sec. III B 1, the normalized
ac loss monotonically decreases with increasingdx/a down
to 1/ns,x times the loss for a column taken independently.
Moreover, the loss for lowdx/a is similar to that for a ver-
tical array with a strip width equal to 2ns,xa. The loss results
for the calculated case ofdy/a=0.2 anddx/aø0.2 show that
at small distancesq may be well approximated by that of a
strip made of all the strips in the array without distances. For
arrays with overall width-to-thickness higher than 1, this ap-
proximation is more accurate than considering the loss of a
strip with overall dimensions, especially for vertical dis-
tances of the order of the thickness of the stips.

The effect of varying the vertical distance between strips
can be illustrated by the results shown in Fig. 13sbd, where
we plot theqsid curves for matrices with a fixeddx/a=0.2
and several vertical distancesdy/a. The main features in this
figure are the same as in Fig. 9. The kinks corresponding to
the external strips penetration are clearly seen. The figure
shows that the loss for lowdy/a slightly increases with ver-
tical separation fori ù0.2 and decreases for loweri, as can
be seen from the slope ati =0.2. Compared to Fig. 9, this
increase inq with increasingdy/a for moderatei is enhanced
since the electromagnetic behavior of each row is similar to
that for a strip with aspect ratio 3a/b=60, which is higher
thana/b for Fig. 9. Considering a further increase ofdy/a,
the loss gradually decreases down to 1/ns,y times the loss for
a horizontal array ofns,x strips due to the decrease in the
magnetic coupling.

D. Comparison with existing analytical limits and
experimental results

1. Double thin strip

We present the sheet current densityK scurrent density
integrated over the thicknessd for a two-strip horizontal array
with a/b=100, dx/a=2, and dx/a=0.2 in Figs. 14sad and
14sbd, respectively, at several normalized current values. In
both figures, solid lines correspond to our numerical calcu-
lations, while dashed lines are for the analytical solutions
found by Ainbinder and Maksimova for a double thin strip.18

As can be seen in the figure, the analytical profiles clearly
agree with the numerical ones, which can be used as a check
of our calculations.

2. Comparison with experimental data

Many experiments showed that the transport ac loss in
multifilamentary tapes with densely packed filaments is very

FIG. 12. Current frontssthick linesd and Ac−Asr d level curves
as magnetic flux lines for a 333 matrix array of strips with aspect
ratio a/b=20, dy/a=0.2 anddx/a=0.2 sad anddx/a=1 sbd. In both
cases the array carries a transport currentI =0.6Ic. The Ac−Asr d
variation between level curves for both cases is the same.

FIG. 13. Normalized ac loss as a function of normalized current
amplitude. Solid lines correspond to a 333 matrix array of strips
with a/b=20 and several strip separations. Insad matrices have the
same vertical separationdy/a=0.2 and several horizontal ones
dx/a=0,0.2,2 ,̀ in the arrow direction, whereas insbd separations
aredx/a=0.2 anddy/a=0.2,0,2 ,̀ in the arrow direction.
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similar to that for an ellipse or a thin strip, depending on the
overall geometry,6,46–48being this effect consistent with the
numerical data and discussion in Sec. III C.

More interesting is the measured ac loss for tapes with
filaments in matrixlike arrangements, obtained by biaxial
rolling. In Ref. 22 there is shown both experimental and
numerical data forQsId curves, which present a kink and are
slightly lower than those for a thin strip for a certain current
range. Some kinks in experimental data can also be seen in
Ref. 29 for the 536 matrix curve with the lowest frequency.
These experimental data are in agreement with the calculated
results of Sec. III C.

The calculated data can also be compared to the experi-
mental ac loss for two interacting tapes. In Refs. 9 and 11 it
is shown that the ac loss of the interacting tapes, either ar-
ranged vertically or horizontally, decreases with the strip
separation down to a half of the loss for an independent tape.
A similar feature is observed in Ref. 10. This behavior is
theoretically predicted in Secs. III B and III A for linear ar-
rays of strips. Moreover, in Ref. 11 it is observed that when
the two tapes are placed horizontally, the ac loss for low
distances is lower than when they are placed vertically. As
discussed in Secs. III A 1 and III B 1, this is due to the fact
that arrays with low separation behave similarly to the over-
all, the horizontal array has a higher width-to-thickness as-
pect ratio and the loss for strips decreases with the aspect
ratio.

IV. CONCLUSIONS

In this paper we have presented a numerical model to
calculate electromagnetic properties of infinitely long super-
conductors in the critical-state model carrying a transport
alternating current. The model has been applied to calculate

the current profiles, the magnetic flux lines, and the ac loss
for horizontal, vertical, and matrix arrays of rectangular
strips with dimensions 2a32b assuming a constant critical-
current density.

We have found that with increasing the strip distance, the
current profile and the magnetic field progressively changes
from the overall behavior to the uncoupled filament behavior,
being this transition slower for vertical arrays. Moreover, the
distance required to uncouple the strips is much higher for
the transport case than when the array is immersed in a uni-
form ac field.

The normalized ac lossq=2pQ/m0Ic
2 as a function of the

normalized current amplitudei = Im/ Ic presents some kinks,
which correspond to full penetration of the external strips.
For horizontal arrays ati below the first kink,q decreases
monotonically with increasing strip separation. This trend
also holds for vertical and matrix arrays except forns,xa/b
.20 and low horizontal and vertical separations, for which
the trend is reversed fori above a certain value much lower
than that of any kink. Furthermore, if the strip separation is
high enough andi is not very low, the normalized ac loss can
be significantly lower than that for the thin strip and, conse-
quently, any single rectangular strip. Numerical results also
show that whendx/a and dy/a are small enoughsdx/a
ø0.2 anddy/aø0.2d, the loss is close to that for a strip with
aspect rations,xa/ns,yb, being ns,x and ns,y the numbers of
strips in the horizontal and vertical directions, respectively.

The effect of varying the number of strips in a horizontal
or vertical array has been studied as well. For a horizontal
array, the loss fori below the first kink decreases with in-
creasing the number of strips, although fori above the first
and subsequent kinks the loss for higherns,x overcomes that
for lower ns,x. This is the same trend as for vertical arrays
with high strip separation. However, for lower vertical sepa-
rations, the loss monotonically increases with increasingns,y.
Furthermore, the normalized loss for an even number of
strips andi very close to 1 is lower than for an odd number
of strips, beingqsi .1d minimum for two strips.

Since many of the important issues such as magnetic cou-
pling and finite size of the strips are incorporated in our
model, the presented results may be used in the design of the
filament arrangements in actual superconducting tapes in or-
der to reduce the ac loss in them.
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APPENDIX

In this Appendix we calculate the vector potential gener-
ated by a current elementAz

jsr d and the coefficientsCjl ap-
pearing in Eqs.s13d ands16d that are used for calculating the
internal energy and the loss. The vector potentialAz

jsr d is
also used for calculating the magnetic flux lines.

FIG. 14. Sheet current profiles for a horizontal array of two
strips witha/b=100,dx/a=2 sad anddx/a=0.2 sbd, andi =0.1, 0.2,
0.4, 0.6, and 0.8 in the arrow direction. Solid lines correspond to
our numerical results, while dashed lines correspond to the analyti-
cal formulas in Ref. 18 for a double thin strip.
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Vector potential generated by a current element

Let us consider an infinite rectangular bar along thez
direction, centered at the origin, dimensions 2t32d in the x
andy directions, respectively, and carrying a uniform current
I. The vector potential in the gauge= ·A=0 generated by the
bar is in thez direction and can be calculated from Eq.s2d as

Abarsx,y;t,dd = −
m0I

8ptd
ffsx − t,y − dd − fsx − t,y + dd − fsx

+ t,y − dd + fsx + t,y + ddg, sA1d

where the functionfsu,vd is defined as

fsu,vd =
1

2
F− 3uv + uv lnsu2 + v2d + u2 arctanSv

u
D

+ v2 arctanSu

v
DG . sA2d

Then, the vector potential generated by a current element is
Az

jsr d=Abarsx−xj ,y−yj ;a/nx,b/nyd, wheresxj ,yjd is the cen-
tral position of the element.

Calculation of coefficientsCjl

The coefficientsCjl are defined as the vector potential per
unit current generated by the elementj averaged in elementl
volume. It follows according to this definition:

Cjl =
1

4tldl
E

xl−xj−tl

xl−xj+tl

dxE
yl−yj−dl

yl−yj+dl

dy

Abarsx,y;tj,djd/I j , sA3d

wheresxl ,yld andsxj ,yjd are the central positions of the ele-
ments, 2tl 32dl and 2tj 32dj, their dimensions, andI j is the
current flowing through the elementj . After inserting Eq.
sA1d in Eq. sA3d, we obtain by direct integration

Cjl =
− m0

32ptjtldjdl
fgsxl − xj + tl,yl − yj + dl ;tj,djd + gsxl − xj

+ tl,yl − yj − dl ;tj,djd − gsxl − xj − tl,yl − yj + dl ;tj,djd

+ gsxl − xj − tl,yl − yj − dl ;tj,djdg, sA4d

beinggsu,v ; t8 ,d8d defined as

gsu,v;t8,d8d = Fsu − t8,v − d8d − Fsu − t8,v + d8d

− Fsu + t8,v − d8d + Fsu + t8,v + d8d
sA5d

with

Fsu8,v8d = −
25

48
u82v82 −

1

48
sv84 + u82 − 6u82v82dlnsu84 + v82d

+
u83v8

6
arctanSv8

u8
D +

u8v83

6
arctanSu8

v8
D . sA6d

We note that the coefficients fulfill the relationCjl =Clj .
The validity of this relation can be easily justified by the
fourfold integral obtained from inserting Eq.s2d in sA3d.
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