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We present a systematic study of spin dynamics in a superconducting ground state, which itself is a doped
Mott insulator and can correctly reduce to an antiferromagneticsAFd state at half-filling with an AF long-range
order sAFLROd. Such a doped Mott insulator is described by a mean-field theory based on the phase string
formulation of thet-J model. We show that the well-known spin wave excitation in the AFLRO state at
half-filling evolves into a resonancelike peak at a finite energy in the superconducting state, which is located
around the AF wave vectors. The width of such a resonancelike peak in momentum space decides a spin
correlation length scale which is inversely proportional to the square root of doping concentration, while the
energy of the resonancelike peak scales linearly with the doping concentration at low doping. These properties
are consistent with experimental observations in the high-Tc cuprates. An important prediction of the theory is
that, while the total spin sum rule is satisfied at different doping concentrations, the weight of the resonancelike
peak does not vanish, but is continuously saturated to the weight of the AFLRO at zero-doping limit. Besides
the low-energy resonancelike peak, we also show that the high-energy excitations still track the spin wave
dispersion in momentum space, contributing to a significant portion of the total spin sum rule. The fluctuational
effect beyond the mean-field theory is also examined, which is related to the broadening of the resonancelike
peak in energy space. In particular, we discuss the incommensurability of the spin dynamics by pointing out
that its visibility is strongly tied to the low-energy fluctuations below the resonancelike peak. We finally
investigate the interlayer coupling effect on the spin dynamics as a function of doping, by considering a bilayer
system.
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I. INTRODUCTION

The measurement of spin dynamics in the cuprate super-
conductors is uniquely important. This is because the spin
degrees of freedom constitute the predominant part of the
low-lying electronic degrees of freedom, i.e., 1−d per site, as
compared to the charge degrees of freedom at small hole
concentration,d per site. Such a large imbalance between the
spin and charge numbers are usually regarded as a key indi-
cator that the underlying system is a doped Mott insulator.1

On general grounds, the corresponding spin dynamics is ex-
pected to be distinctly different from a conventional BCS
superconductor. The latter is based on the Fermi-liquid de-
scription in which the elementary excitations are quasiparti-
cles that carry both charge and spin. An extreme case is at
half-filling, where the whole charge degrees of freedom get
frozen at low energy and only the spin degrees of freedom
remain intact in the cuprates, whose dynamics is well char-
acterized by the Heisenberg model.2

Experimentally, anomalous properties of spin dynamics
have been observed throughout the cuprate family. The par-
ent compound at half-filling is a Mott insulator in which
spins form antiferromagnetic long-range ordersAFLROd be-
low a Néel temperatureTN. The elementary excitation is a
gapless bosonic Goldstone mode, i.e., the spin wave in the
ordered phase. AFLRO and the spin-wave excitation disap-
pear beyond some critical concentration of holes introduced
into the system. Except for some residual signature of spin
waves at high energies, the low-lying spin-wave-type excita-
tion is completely absent once the system becomes a super-
conductor. It is replaced by a resonancelike peak at a doping-
dependent energy around the AF wave vectorQAF=sp ,pd,

as observed first in the optimally doped YBCO compound,3,4

where the dynamic spin susceptibility function measured by
inelastic neutron scattering shows a sharp peak atvres
=41 meV, whose width is comparable to the resolution limit
of the instruments. A similar resonancelike peak has also
been observed in the underdoped YBCO compounds5 swhere
the resonancelike peak persists into the pseudogap phase
above the superconducting transitiond, and Tl-based6 and
Bi-based7 compounds. In the LSCO compound, although no
such sharp peak has been found, the low-lying spin excita-
tion is nonetheless non-spin-wave-like, which may be still
regarded as a very broad peak in energy space.8 With much
sharper linewidth in momentum space, doping-dependent in-
commensurate splittings aroundQAF have been clearly iden-
tified in LSCO.9,10 Similar incommensurability, even though
not as prominent as in LSCO, has been also established in
underdoped YBCO recently.11–13

Theoretically, a great challenge is how to naturally con-
nect the spin dynamic at half-filling with that in the super-
conducting phase in which the doping concentration can be
as low as a few percent per Cu site. That is, although the
low-energy, long-wavelength behavior may change qualita-
tively in the superconducting phase, the number of spins in
the background is still quite close to half-filling, which far
exceeds the number of doped holes. Physically it is very hard
to imagine that theshort-range, high-energyspin correla-
tions would be changed completely by a few percent to 10%
doping. However, in a BCS superconductor, the upper spin
energy scale is usually set by the Fermi energye f,

14 such that
in the local spin susceptibility one has to integrate over the
frequency up toe f in order to recover the correct sum rule of
1−d spin per site. Normallye f is much larger thanJ. Thus,
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why there should be a gigantic increase in the upper spin
energy in the doped case, compared to the half-filling, poses
a serious challenge to any approach based on thed-wave
BCS-type theory in which the spin dynamic is solely contrib-
uted by quasiparticle excitations. Experimentally the upper
energy scale exhibited in the dynamic spin susceptibility is
set by,2J sJ is the superexchange couplingd at half-filling,
in consistency with the prediction by the Heisenberg model,
and is slightly reduced in the optimal-doped superconducting
phase.8 No trace of any other new high-energy scale has ever
been reported in the doped regime in spin channels.

As for the low-energy feature, like the resonancelike peak
structure observed in the experiments, theoretical proposals
are ranged from the random-phase approximation fluctua-
tions in the particle-hole channel within the framework of
BCS14 or generalized BCS theories15,16 to some novel
mechanism of the so-calledp mode in the particle-particle
channel in the SOs5d theory,17 which is coupled to the
particle-hole channel in the superconducting phase. An im-
portant question, not being properly addressed yet, is what is
the connection, if any, of such a resonancelike spin mode
with the spin wave in the zero-doping limit. Namely, how a
few percent of doped holes can continuously reshape a spin-
wave excitation into a nonpropagating local mode, with an
AFLRO turning into short-range spin correlations. This ques-
tion and the previous high-energy one constitute two of most
fundamental issues in an approach based on doped Mott in-
sulators.

In this paper, we put forward a systematic description of
the evolution of spin dynamics as a function of doping in a
doped-Mott-insulator superconductor. It is described by a
bosonic resonating-valence-bondsRVBd mean-field theory18

based on the phase-string formulation19 of the t-J model. At
half-filling, the mean-field theory reduces to the Schwinger-
boson mean-field state,20 which well characterizes AFLRO
and spin-wave excitations in the ground state. At finite dop-
ing, the mean-field theory depicts how the spin dynamics is
influenced by the doping effect in going into the supercon-
ducting state. In particular, we show how a resonancelike
peak centered aroundQAF emerges out of spin waves from
the AFLRO phase. A unique prediction for experiment is that
the weight of the resonancelike peak continuously evolves
into that of the AFLRO in the zero-doping limit. On the other
hand, the total weight of the dynamic susceptibility function,
which extends slightly over,2J in energy, still satisfies the
sum rule that the total spin number is 1−d per site.

In this unified mean-field description, doping-dependent
resonancelike energy and spin correlation length are quanti-
tatively determined. Besides the low-energy resonancelike
peak structure nearQAF, there still exists a high-energy spec-
trum whose envelope roughly tracks the spin-wave disper-
sion as a residual effect in the superconducting phase. We
also consider some leading fluctuational effect beyond the
mean-field theory on the line shape of the spectral function,
and discuss the incommensurability and its visibility in this
framework. We finally introduce the interlayer superex-
change coupling and investigate how the spin dynamics
changes in the even and odd channels for a double-layer
system. Comparisons with the experimental measurements,
mostly by inelastic neutron scattering, are made.

The remainder of the paper is organized as follows. In
Sec. II, a systematic study of spin dynamics in the bosonic
RVB mean-field state for the single-layer system is pre-
sented. In Sec. III fluctuational effects beyond the mean-field
theory, due to the charge density fluctuations, are discussed.
In Sec. IV, the interlayer coupling for a bilayer system is
considered. Finally, a summary is given in Sec. V.

II. SPIN DYNAMICS IN MEAN FIELD DESCRIPTION

A. Bosonic RVB state at half-filling

Spin dynamics of the cuprates at half-filling is well-
described by the two-dimensionals2Dd AF Heisenberg
model. Although a conventional spin-wave theory is quite
successful in understanding the low-lying excitation spec-
trum of the Heisenberg Hamiltonian, to make the theory ap-
plicable or modifiable to the cases without AFLRO, like at
finite temperatures or in doped regimes, we shall use the
Schwinger-boson formulation as our starting point at half-
filling.

The mean-field theory20 based on the Schwinger-boson
formulation can characterize the AFLRO and spin-wave ex-
citation fairly well in the ground state. Its mean-field wave
function under the Gutzwiller projection will have the same
form21 as the variational bosonic RVB wave functions pro-
posed by Liang, Doucot, and Anderson.22 The latter can pro-
duce very accurate variational energies as well as the AF
magnetization for the Heisenberg model, indicating that the
state correctly capturesboth long-range and short-range spin
correlations. Such an approach is thus called bosonic RVB
description, which is to be generalized to finite doping in the
next section. In the following, we briefly review some basic
equations of the bosonic RVB mean-field theory at half-
filling.

In the Schwinger-boson formulation, the spin operators
can be expressed by the Schwinger-boson operatorbis as
follows:

Si
+ = s− 1dibi↑

† bi↓ s1d

snote that a staggered sign factors−1di is explicitly intro-
duced here in contrast to the original definition20d, and Si

−

=sSi
+d†, while Si

z=ossbis
† bis. The Schwinger bosons satisfy

the constraintosbis
† bis=1. The mean-field state is character-

ized by the bosonic RVB order parameter

D0
s = o

s

kbisbj−sl, s2d

which leads to the following effective Hamiltonian, obtained
from the half-filling t-J sHeisenbergd model:

Hs = −
JD0

s

2 o
ki j ls

bis
† bj−s

† + H.c. + const +lSo
is

bis
† bis − ND ,

s3d

where the last term involves a Lagrangian multiplierl to
enforce the global constraint of total spinon number,
oisbis

† bis=N.

W. Q. CHEN AND Z. Y. WENG PHYSICAL REVIEW B71, 134516s2005d

134516-2



The mean-field Heisenberg Hamiltonians3d can be
straightforwardly diagonalized by the Bogoliubov transfor-
mation

bis = o
k

vkssidsukgks − vkgk−s
† d s4d

as

Hs = o
ks

Ekgks
† gks. s5d

Here, vkssid=1/ÎNeisk·r i, and the coherent factors,uk and
vk, are given by

uk =
1
Î2
Î l

Ek
+ 1, vk =

sgnsjkd
Î2

Î l

Ek
− 1, s6d

wherejk =−JD0
sscoskxa+coskyad and

Ek = Îl2 − jk
2. s7d

Finally, in a self-consistent manner, the RVB order parameter
D0

s and the Lagrangian multiplierl are determined by the
following self-consistent equations:

uD0
su2 =

1

2N
o
k

jk
2

JEk
coth

bEk

2
, s8d

2 =
1

N
o
kÞ0

l

Ek
coth

bEk

2
+ nBC

b , s9d

in which nBC
b is the contribution from the Bose condensation

of the Schwinger bosons, leading to an AFLRO, which hap-
pens if Ek becomes gapless. Note thatb=1/T and the
AFLRO disappearssnBC

b =0d at a finite temperatureT.

B. Bosonic RVB description at finite doping

Although AF correlations at half-filling are well captured
by the mean-field HamiltonianHs in Eq. s3d, the doping ef-
fect on the spin background is a highly nontrivial issue.

Based on the phase-string formulation,19 which is an exact
reformulation by sorting out the most singular doping effect,
i.e., the phase string effect in thet-J model, a generalized
mean-field Hamiltonian describing the spin degrees of free-
dom can be obtained18 as follows:

Hs = −
JDs

2 o
ki j ls

bis
† bj−s

† eisAij
h

+ H.c. + const

+ lSo
is

bis
† bis − s1 − ddND . s10d

Compared to the half-filling case,Hs in Eq. s10d differs
from Eq. s3d mainly by the emergence of a gauge fieldAij

h

defined on the nearest-neighboringsNNd link si j d, satisfying
the following constraint:

o
ki j lPc

Aij
h = p o

lPVc

nl
h, s11d

wherec is a, say, counterclockwise-oriented close loop and
Vc is the area enclosed byc. On the right-hand sidesrhsd of

Eq. s11d, nl
h denotes the number operator of doped holes at

site l. Therefore the doping effect explicitly enters in Eq.s10d
through the gauge fieldAij

h as if each hole carries a fictitious
p fluxoid as seen by spinons inHs. In Eq. s10d, the bosonic
RVB order parameter is given by

Ds = o
s

ke−isAij
h
bisbj−slNN s12d

for NN sitesi and j . At half filling, because there is no hole,
it is obvious thatAij

h =0, andDs reduces back toD0
s defined in

Eq. s2d.
Note that the doping concentrationd also entersHs

through the Lagrangian multiplierl which implements the
global conditionoisbis

† bis=s1−ddN. But at low doping, the
effect of missing spins represented by such a term will be far
less dramatic than the topological gauge fieldAij

h. The latter
reflects the singular phase string effect19 induced by the hop-
ping of doped holes on the AF spin background.

Corresponding toHs in Eq. s10d, the spin operators in the
phase string formulation19 read

Si
+ = s− 1dieiFi

h
bi↑

† bi↓, s13d

Si
−=sSi

+d†, andSi
z=ossbis

† bis, respectively. Compared to the
Schwinger-boson formulation in Eq.s1d, an extra phaseFi

h

appears in Eq.s13d, which satisfiesFi
h−F j

h=2Aij
h si j Pspin

sitesd and ensures the spin rotational symmetry of the effec-
tive Hamiltonians10d.

Equations10d is by nature a gauge model; but in the su-
perconducting ground state, due to the Bose condensation of
bosonic holons in the bosonic RVB theory,18 the spin Hamil-
tonianHs will become quite simplified asAij

h can be approxi-
mately treated as describing a uniform flux with a strength

o
h

Aij
h = pd. s14d

Then we can introduce the following Bogoliubov transfor-
mation to diagonalize Eq.s10d, just like Eq.s4d in diagonal-
izing Eq. s3d,

bis = o
m

vmssidsumgms − vmgm−s
† d. s15d

With a standard procedure, we obtain

Hs = o
ms

Emgms
† gms, s16d

with the spinon spectrum

Em = Îl2 − jm
2 . s17d

In this scheme,jm andvmssid=vm−s
* sid are eigenvalues and

eigenfunctions of the following equation:

jmvmssid = −
JDs

2 o
j=NNsid

eisAij
h
vmss jd s18d

and the coherent factors,um andvm, are given by
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um =
1
Î2
Î l

Em
+ 1, vm = sgnsjmd

1
Î2
Î l

Em
− 1. s19d

Finally, l and Ds can be determined by the self-consistent
equations

uDsu2 =
1

2NJ
o
m

jm
2

Em
coth

bEm

2
, s20d

2 − d =
1

N
o
mÞ0

l

Em
coth

bEm

2
+ nBC

b . s21d

HerenBC
b is the contribution of the condensation of spinons,

if an AFLRO exists like in the half-filling case.
The above mean-field formulation is essentially the same

as the one outlined in Ref. 18. For simplicity and clarity, here
we have not explicitly included an approximate doping-
correction factor in Eq.s20d s<1−2dd as we will be mainly
concerned with the evolution of spin dynamics at low dop-
ing. Such additional corrections from doped holes can be
always incorporated by simply replacing the superexchange
coupling J with a doping-dependentJef f which is quickly
reduced at higher doping concentrations. A spin feedback
effect from the hopping term is not included either, which
results in a shift ofl to lm in Em,18 without qualitatively
changing the physical consequences.

C. Spin dynamics in superconducting ground state

1. Excitation spectrum Em

According to the mean-field scheme outlined above, we
can numerically determine the mean-field “spinon” spectrum
Em defined in Eq.s17d.

As an example, we solve the eigenequations18d and self-
consistent equationss20d and s21d at doping concentration
d=0.125. The chemical potentiall is found to be 1.819J
while the RVB order parameterDs is 0.993. In contrast, at
half-filling, the results arel=2.316J andD0

s=1.158.
In Fig. 1, the density of statessDOSd of the spectrumEm

for d=0.125 is shown in the main panel, while the half-
filling case is plotted in the inset for comparison. The figure

shows that the two spectra are qualitatively very different. At
half-filling, the spectrum is continuous and gapless, with a
large density of states at the maximal energy which is
slightly above 2J. In the superconducting state, the spectrum
becomes discretized levels. These discrete levels are due to
the fact that the spectrumjm as the solution of Eq.s18d has a
Hofstadter spectrum as the result of the vector potentialAij

h

given in Eq.s14d. Note that the distribution of the Landau-
level-like structure in Fig. 1 remains uneven, which reflects
the fact that the average density of states increases with en-
ergy, as seen at half-filling. The maximal energy is slightly
less than 2J at d=0.125.

It is important to note that there is a gap between the
lowest discrete level and zero energy, which is,0.265J for
d=0.125. There will no more spinon Bose condensation
nBC

b Þ0 such that the AFLRO no longer exists.

2. Dynamic spin susceptibility

After diagonalizing the effective HamiltonianHs, the spin
susceptibility can be obtained straightforwardly. Due to the
spin rotational invariance,18 one may only consider the
ẑ-component susceptibility, which can be derived based on
the Matsubara Green’s function −kTtSj

zstdSi
zs0dl. With the

standard procedure outlined in Ref. 18, the imaginary part of
the dynamic spin susceptibility at zero temperature is given
by

x9sQ,vd =
p

8 o
mm8

Cmm8sQdSl2 − jmjm8

EmEm8
− 1D

3sgnsvddsuvu − Em − Em8d, s22d

where

Cmm8sQd ;
1

N
o
i j

eiQsxi−x jdvmssidvms
* s jdvm8s

* sidvm8ss jd.

s23d

The discrete energy levels ofEm illustrated in Fig. 1 will
show up inx9sQ ,vd. We plot the positions of these peaks in
x9sQ ,vd in energy and momentum space, as well as the full
width at half maximumsFWHMd in momentum space, in
Fig. 2. The momentum scan in Fig. 2sad is along thesp ,qd
direction and is along the diagonalsq,qd in Fig. 2sbd. One
sees that each discrete energy corresponds to a finite width in
momentum as depicted by a finite bar.

For comparison, the spin-wave peak positions at half-
filling are shown as dotted curves in Fig. 2. Atd=0.125,
although the spin excitations are no longer propagating
modes, as evidenced by the flatsdispersionlessd small bars at
discrete energies, the envelope of the overall spectrum at
high energies still approximately tracks the dispersion of the
spin wave at half-filling, with a slightly softened spin-wave
velocity. Note that there are actually some more peaks at
even higher energies than in Fig. 2, but their weight is much
reduced due to the coherent factors inx9sQ ,vd ssee the local
spin susceptibility belowd.

Figure 2 clearly depicts how the spin excitations in the
superconducting state continuously evolve from the spin-

FIG. 1. The density of statessDOSd of the mean-field spinon
spectrumEm at dopingd=0.125. Inset: the DOS in the AF state at
half-filling.
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wave picture at half-filling. The remnant high-energy spin
wave signature at finite doping is a very unique feature in
this approach. Recently, such a high-energy spin wave fea-
ture has been reported23 in an underdoped YBa2Cu3O6.5
compound.

In the following, we turn our attention to the lowest peak
in Fig. 2, which has the largest weight as marked by the
darkest FWHM bar.

3. Resonancelike peak around AF wave vectorQAF

Let us consider two special momenta,Q0=s0,0d and
QAF=sp ,pd. For Q=Q0, with the relationoivmssidvm8s

* sid
=dmm8, we haveCmm8sQ0d=1/Ndmm8 such that

x9sQ0,vd =
p

8N
o
m
Sl2 − jm

2 − Em
2

Em
2 Dsgnsvddsuvu − 2Emd = 0.

Namely, there is no signature ofx9sQ ,vd at the ferromag-
netic momentumQ0.

At the AF momentumQAF, one has

Cmm8sQAFd =
1

N
o
i j

s− 1di−jvmssidvms
* s jdvm8s

* sidvm8ss jd.

s24d

In the eigenequations18d, it can be easily shown that for any
given statem there is a corresponding statem̄ with the rela-
tion jm=−jm̄ and vmssid=s−1divm̄ssid. Then Eq.s24d is re-
duced to

Cmm8sQAFd =
1

N
o
i j

vmssidvms
* s jdvm̄8s

* sidvm̄8ss jd =
1

N
dmm̄8

and the dynamic spin susceptibility atQAF can be simplified
to

x9sQAF,vd =
p

4N
o
m
S jm

2

Em
2 Dsgnsvddsuvu − 2Emd. s25d

The numerical result ofx9sQAF,vd at d=0.125 is shown
in Fig. 3 by the solid curve. The dotted curve is calculated at
half-filling, which diverges as 1/v2 at v→0, in consistency
with the spin-wave theory. Thus, in the superconducting
phase, a resonancelike peak appears atQAF with a finite en-
ergyEg=0.53J at 0.125stwice bigger than that ofEm shown
in Fig. 1d. Note that higher energysharmonicd peaks in
x9sQAF,vd are greatly reduced in strength in Fig. 3 due to
the coherence factorjm

2 /Em
2 in Eq. s25d. So only the lowest

peak atEg is clearly exhibited aroundQAF.
We further plot the resonancelike peak energyEg as a

function of hole concentration in Fig. 4. At small doping,Eg
is linearly proportional tod, Eg=3.3dJ, which is extrapolated
to zero at half-filling, where the gapless spin wave is recov-
ered. Note that in the present approach, the superconducting
ground state is extrapolated tod=0+. A more careful study of
the low-doping regimesbeyond the mean-field approxima-
tion in the phase string modeld has revealed that the AF state
actually will survive up to a finite doping concentration,d

FIG. 2. The dispersive behavior of the spin excitation in the
superconducting statesd=0.125d, in comparison with the spin-wave
dispersion at half-fillingsdashed curved. The peak positions ofx9 in
Q andv space are shown along differentQ directions:sad along the
diagonal direction,Q=sq,qd; sbd along Q=sp ,qd. The solid bars
mark the widths of the peaks in the momentum spacessee textd.

FIG. 3. Dynamic spin susceptibilityx9fQAF=sp ,pd ,vg in the
superconducting phase withd=0.125ssolid curved. Eg denotes the
position of the resonancelike peak. The dotted curve is for the AF
state at half-filling. Inset: the evolution of the resonance peak at
various dopings.
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,xc.0.043.24 In that case, one finds24 that Eg vanishes at
d=xc following a square root behavior:Eg~Îd−xc as d
→xc, as shown by the dashed curve in Fig. 4.

The momentum profile of the resonancelike peak atEg is
shown in a three-dimensional plot in Fig. 5 atd=0.125. It
shows an intrinsic broadening ofx9sQ ,Egd in momentum
aroundQAF, which can be well fit by a Gaussian distribution
function

x9sQ,Egd ~ expS−
sQ − QAFd2

2s2 D . s26d

The results for different hole concentrations are given in Fig.
6sad along the diagonal momentaQ=sq,qd. One can adjusts
to make all data well collapse onto a single Gaussian func-
tion of Eq. s26d as shown in the inset of Fig. 6sad. The ob-
tained broadenings turns out to be nicely scaled linearly
with Îd fsee in Fig. 6sbdg. Similar plots can be done along
different Q scans centered atQAF and generally one hass
~Îd in all directions.

If we neglect the small anisotropy along different momen-
tum directions centered atQAF and perform a Fourier trans-
formation to Eq.s26d, we obtain the real-space correlation

x9sR,vd ~ expS−
s2R2

2
D ; expS−

R2

j2 D s27d

with j=Î2/s. Thus the spin-spin correlation function decays
exponentially with the distance in the superconducting
phase. This is consistent with a spin gapEg opening up in the
spin excitation spectrum. In Fig. 7,j is well fit by the solid
curve

j = aÎ 2

pd
. s28d

In the inset, the experimental result obtained in LSCO9 is
presented for comparison. The general trend ofj /a~1/Îd in
both the experiment and theory is quite telling.

In Sec. III, we shall further discuss the momentum profile
and longer spin correlation lengths atlower energies, related
to those seen in the LSCO compound,9,10 when the fluctua-
tion effect is considered.

4. Local susceptibility and spin sum rule

The local spin susceptibilityxL9svd is also an important
quantity. It is defined by

FIG. 4. The doping dependence of the resonancelike peak en-
ergyEg. The straight line illustrates the linear doping dependence at
small d. The dashed curve shows aEg~Îd−xc behavior if the AF
state survives at a finite dopingxc, as shown in Ref. 24.

FIG. 5. Momentum distribution ofx9sQ ,vd at v=Eg sd
=0.125d.

FIG. 6. sad Momentum distri-
bution of x9sQ ,Egd, scanned
along the diagonal directionQ
=sq,qd at various hole concentra-
tions. The intensities are normal-
ized at the maximums. The inset
shows that the data in the
main panel can be well fit into a
Gaussian function expf−sQ
−QAFd2/2s2g, with s being scaled
as linearly proportional toÎd, as
shown insbd.
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xL9svd =E d2Q

s2pd2x9sQ,vd,

which describes the on-site spin-spin correlation. Based on
Eq. s22d, one obtains

xL9svd =
p

8 o
mm8

Kmm8S l2

EmEm8
− 1Dsgnsvddsuvu − Em − Em8d,

s29d

where

Kmm8 ;
1

N
o

i

uvmssidu2uvm8ssidu2. s30d

The numerical results ofxL9svd at d=0.125 andd=0 are
presented in Fig. 8 by the solid and dashed curves, respec-
tively. The low-energy parts in both cases are similar to those
seen inx9sQ ,vd aroundQAF sFig. 3d, as the AF correlations
are dominant at low energies. At high energies, more excita-
tions which in momentum space disperse away fromQAF, as
shown in Fig. 2, are clearly present inxL9svd. We see that the
main band extends up to,2.3J at half-filling, while is

slightly reduced to around,2.1J at d=0.125. These upper-
bound spin excitations are expected to be seen near the Bril-
louin zone boundaryssee Fig. 2d.

Although the intensity of each peak is physically not very
meaningful, the weight of the peak is. The reason is that
there is a sum rule about the local dynamic spin susceptibil-
ity:

Wtotal ;E dvf1 + nsvdgxL9svd = ksSi
zd2l, s31d

where the Bose distributionnsvd=1/sebv−1d. It means that
the total weight of the spin susceptibility is related to an
averaged spin number per site. At half-filling, it is obvious
that ksSi

zd2l is exactly 1/4. At finite doping,ksSi
zd2l should be

reduced tos1−dd /4.
In the bosonic RVB mean-field state, the total weight can

be calculated by

Wtotal =
1

4N
o
is

kbis
† bisls1 + kbis

† bisld. s32d

By using kbis
† bisl=s1−dd /2, we haveWtotal=

1
8s1−dds3−dd.

At half-filling, the total weight is 3/8 as compared to the
exact result 1 /4. The discrepancy is due to the relaxation of
the no double occupancy to a global level in the Schwinger-
boson mean-field theory.20 In Fig. 9, the doping dependence
of Wtotal is shown with the exact resultsdashed lined rescaled
at d=0.

We also show the integrated weight of the resonancelike
peak in Fig. 9ssolid curves with full squaresd, defined by

Wpeak; E
peak

dvf1 + nsvdg xL9svd. s33d

At d=0.125, the weight of the peak is about 0.09, while the
total weight is about 0.314, i.e., nearly 1/3 of the total
weight is concentrated on the resonancelike peak. In Fig. 9,
one can see that with the increase of doping concentration,
Wpeak actually gets slightly increased, whereasWtotal is re-
duced. Namely, the resonancelike peak in the superconduct-

FIG. 7. The relation between the spin correlation lengthj /a and
the hole concentrationd. The solid curve is 2/pÎd. The inset is the
experimental results given in Ref. 9.

FIG. 8. Local susceptibilityxL9svd in the superconducting phase
ssolid curved with d=0.125, and at half-fillingsdashed curved. Inset:
the evolution of the lowest peaksthe resonance peakd at different
dopings.

FIG. 9. The spin spectral weight vs doping. Open squares: the
total weight; closed squares: the weight of the resonancelike peak
aroundQAF; closed triangles: the weight of the AFLRO peak at
half-filling. The dashed line is the total weight from the exact sum
rule, which is rescaled to coincide with the mean-field value atd
=0 in order to compare the doping dependence.
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ing phase will become even more prominent approaching the
optimal doping from the underdoping. On the other hand, as
the doping concentration is reduced to zero,Wpeak does not
simply vanish. Instead, it approaches to a finite value which
precisely coincides with the weight of the delta function at
v=0 andQ=QAF in the dynamic spin structure function at
half-filling, which represents the AFLRO. Earlier on, we
have seen that atd→0 bothEg and the widths of the peak
in momentum space go to zero. So the resonancelike peak
continuously crosses over to the AFLRO at half-filling.

III. SPIN DYNAMICS BEYOND MEAN-FIELD
APPROXIMATION

So far our discussions on spin dynamics have all been
based on a generalized mean-field theory, characterized by
the RVB order parameterDs f Eq. s12dg. Such a mean-field
theory works quite well at half-filling over a wide range of
temperatures,J/kBd in describing various ranges of spin-
spin correlations. In particular, the nearest-neighborsnnd spin
correlation is directly related toDs by

kSi ·Sjlnn = −
3

8
uDsu. s34d

It thus provides an important justification for the doped case:
Since spin-spin correlations, especially short-ranged ones,
should not be “washed out” immediately by the holes at
small doping, the nn RVB pairingDs and thus the present
mean-field state underpinned by the RVB order parameter is
expected to persist over a finite range of doping, so long as
the spin correlation length is no less than the nn distance
si.e., the lattice constantd. In general, the effective Hamil-
tonian s10d is only valid within a low-doping regime ofDs

Þ0 which defines a pseudogap regime in the phase string
model. Since a spin gap opens at finite doping in this regime,
as shown in the last section, the amplitude fluctuation of the
RVB parameter usually is not very important.

Furthermore, we note that even within such a pseudogap
phase characterized by a finiteDs, the effective RVB descrip-
tion is not a usual mean-field theory beyond the half-filling.
Generally speaking, the effective spinon Hamiltonians10d is
a gauge model, in which the topological gauge fieldAij

h de-
scribesp fluxoids bound to holes according to Eq.s11d.
Namely, this is not a spinon-only model and the hole-doping
effect enters the Hamiltonian viaAij

h, which represents the
nontrivial frustration on the spin degrees of freedom from the
motion of holes. In the previous section, the effect ofAij

h has
been treated in a mean-field approximation. In the following,
we shall discuss how to go beyond this mean-field level.

A. Fluctuations induced by the density fluctuations of
holes

To examine the effect of fluctuations inAij
h on spin dy-

namics beyond the mean-field approxiamtion, one has to first
deal with the hole density fluctuations. In the phase string
model, the hole degrees of freedom is also dependent18 on
the spin degrees of freedom. The nature of such mutually
entangled charge and spin degrees of freedom is expected to

make the theory quite nontrivial in a general case.
In the superconducting phase, a uniform holon

condensation18 makes the topological gauge fieldAij
h simpli-

fied as it may be treated as describing a uniform flux,

namely,Aij
h < Āij

h, with Āij
h determined by

o
C

Āij
h = po

lPC

n̄l
h = po

lPC

d s35d

for an arbitrary loopC according to Eq.s11d. In the previous
section, we have found that the spin dynamics in the super-

conducting phase is qualitatively modified by suchĀij
h as

compared to the AFLRO state at half-filling.
However, the ideal Bose-Einstein condensation in treating

Aij
h as Āij

h is only an approximate description of the holon
condensation in the superconducting phase. In reality, one
can expect all kinds of hole density fluctuations. The fluctua-

tion of Aij
h, i.e., dAij

h ;Aij
h −Āij

h, will be tied to the density
fluctation of the holes according to Eq.s11d as follows:

o
C

dAij
h = po

lPC

dnl
h = po

lPC

snl
h − dd. s36d

In the following, we shall examine the effect ofdAij
h on the

spin susceptibility previously obtained in the mean-field ap-
proximation.

Since holons are condensed in the superconducting phase,
we may still reasonably neglect, to leading order of approxi-
mation, the dynamic fluctuations indAij

h and only focus on
the static spatial fluctuations. As a Bose condensate is com-
pressible, impurities and lattice distortions can all lead to
some microscopic spatial inhomogeneity of the hole distri-
bution, and below we introduce an approximate scheme to
simulate dAij

h related to a microscopically inhomogeneous
distribution of holes.

We first smear eachp fluxoid bound to a hole within a
finite size sFig. 10 shows one configurationd, representing
some characteristic length scale of coherence for a bosonic

FIG. 10. A way to introduce the gauge-field fluctuations related
to the holon density. The open circle denotes a holon. Thep fluxoid
bound to the holon is smeared to the shadow area which is smaller
than the whole lattice.
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holon, which should be still much larger than the average
hole-hole distance to reflect the holon condensation. Then
put these smearedp fluxoids randomly on the lattice. If the
smearing size of eachp fluxoid is infinite, then the problem
reduces back to the case of ideal Bose condensation with
dAij

h =0. For finite sizes of fluxoids, there generally exist in-
trinsic fluctuations in the flux distribution ofAij

h, which we
use to simulate the fluctuations related to the hole distribu-
tion. Since it is static, with each of such a configuration of
nonuniform fluxes, we can follow the steps in the last section
to get a nonuniform mean-field solution and determine a dy-
namic spin susceptibility. The dynamic spin susceptibility at
QAF, averaged over the random configurations, is presented
in Fig. 11, and the local susceptibilityxL9svd is shown in the
inset. The result is calculated in a 16316 lattice with eachp
flux being smeared within a 14314 lattice size, with more
than 10,000 configurations being averaged.

For comparison, the mean-field results are plotted as
dashed curves in Fig. 11. The main effect of such fluctuations
in Aij

h is to cause the broadening of the resonancelike peak as
well as high-energy peaks in energy space, although the peak
positions, likeEg, essentially do not change. Since in the
mean-field case the discrete levels are composed of degener-
ate Landau levels ofjm, a broadening due to lifting up the
degeneracies by the fluctuations inAij

h can be easily under-
stood. So the above simple-minded approach to treatdAij

h

provides some valuable insight into the fluctuation issue in
the framework of the bosonic RVB theory. A realistic treat-
ment with a more accurate profile of the line shape in the
dynamic spin susceptibility is beyond the scope of this work.

B. Incommensurability in momentum space

The bosonic RVB mean-field state is based on the phase
string formulation19 of the t-J model, in which the short-
distance singular part of the phase string effect introduced by
the hopping of holes has been “gauged away” such that the
Hamiltonian in the new formalism is free of such singulari-
ties and thus becomes perturbatively treatable. But when one
considers the physical quantities like the dynamic spin sus-
ceptibility, such a singular effect should still be present in the

correlation function and has to be incorporated carefully. It
has been shown previously25 that the leading order contribu-
tion of such a singular effect to the dynamic spin suscepti-
bility is simply represented by the incommensurate shifting
of the momentumQ in Cmm8sQd defined in Eq.s23d by
dQx= ±2pg anddQy= ±2pg stakinga=1d with g.d. How-
ever, since the momentum width of the resonancelike peak in
the mean field is given bys=Îpd, the incommensurability
does not explicitly show up in the dynamic spin
susceptibility25 and the resonancelike peak still looks like
one peak centered atQAF, as illustrated in the top panel of
Fig. 12.

Now, due to the above-discussed fluctuational effect, the
resonancelike peak is broadened with some of its weight
shifting towards lower energies, shown in Fig. 11. The cor-
responding width for these new low-lying modes in momen-
tum space will be reduced toosi.e., the spin-spin correlation
lengths are enhanced at energies lower thanEgd such that the
incommensurability may become manifested in the dynamic
spin susceptibility gradually with the decrease of the energy.
Indeed, by using the same simulation used in Fig. 11, the
incommensurate peaks do show up in the modifiedx9sQ ,vd
with incorporating the incommensurate shifting,25 as v is
lowered below Eg, which is illustrated in Fig. 12 atd
=0.125.

Therefore the incommensurability in the dynamic spin
susceptibility function is an intrinsic property of the phase
string effect,25 but its visibility crucially depends on spin
fluctuations with longer correlation lengths at low energies.
Such low-lying spin excitations, induced by the charge den-

FIG. 11. x9sQAF,vd with incorporating the fluctuations induced
by the charge degrees of freedom. The doping is at 0.125, and the
inset shows the local susceptibilityxL9svd in the same situation.

FIG. 12. The incommensurate structure is generally presented in
x9sQ ,vd due to the phase string effectsRef. 25d, but its visibility
depends on the energy. The broad commensurate peak atv=Eg

,0.53J at d=0.125 is actually composed of four peakssdashed
curvesd, which becomes visibly “split” in momentum space asv is
lowered belowEg, when the fluctuational effect is included, where
the individual peak width is reducedsor spin correlation length is
enhancedd.
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sity fluctuations discussed above, are usually most prominent
in the single-layer case, applicable to the LSCO compound.
In contrast, the charge density fluctuations are expected to be
weaker in the bilayer systems such as the YBCO compound,
where the interlayer coupling will prefer the uniform distri-
bution of the holons as to be discussed in the next section.

IV. BOSONIC RVB DESCRIPTION WITH INTERLAYER
COUPLING

For a bilayer system, thet−J model can be generalized as

Ht−J
bilayer= − t o

ki j lls
cils

† cjls − t'o
is

ci1s
† ci2s + H.c. +Jo

ki j ll
SilSjl

+ J'o
is

Si1 ·Si2, s37d

in which the additional subscript,l =1,2, is thelayer index.
By introducing an additional bosonic RVB order parameter

D'
s ; o

s

kbi1sbi2−sl, s38d

and the Bogoliubov transformation

bils = o
mk

vmkssi,ldsumkgmks − vmkgmk−s
† d s39d

with k=±, the mean-field spinon Hamiltonian can be diago-
nalized in the holon condensed phase in a procedure similar
to Sec. II as given in the Appendix. We find

vmkssi,ld =
1
Î2

fsgnsjmdkglvmssid, s40d

umk=Î1

2
S l

Emk
+ 1D , s41d

vmk= sgnsjmkdÎ1

2
S l

Emk
− 1D , s42d

and the spinon energy spectrum

Emk= Îl2 − ujmku2, s43d

in which

jmk= sgnsjmdSujmu +
kJ'D'

s

2
D . s44d

In the above,jm andvmssid are the solution of Eq.s18d, as
the counterparts ofjmk and vmkssi , ld, respectively, in the
single layer case. Finally, the self-consistent equations of the
RVB order parameters and the Lagrangian multiplierl are
given by

uDsu2 =
1

4NJ
o
mk

jmjmk

Emk
coth

bEmk

2
, s45d

D'
s = −

1

2N
o
mk

sgnsjmdkjmk

Emk
coth

bEmk

2
, s46d

2 − d =
1

2N
o
mk

l

Emk
coth

bEmk

2
. s47d

Figure 13 shows the results obtained by the self-consistent
equations as functions of doping concentrationssolid linesd
at J'=0.1J, while the values ofDs andl in the single layer
case are plotted by the dashed lines for comparison, which
only change slightly with the introduction of the interlayer
couplingJ'=0.1J.

In the inset of Fig. 13, the doping dependence ofD'
s is

shown at variousJ'’s: J'=0.10J, 0.11J, and 0.12J. We note
that D'

s is comparable with the interlayer pairingDs at half-
filling, e.g., 0.765 versus 1.157 even thoughJ'=0.1J is quite
small. This may be attributed to the fact that the in-plane
spin-spin correlation lengthj is very large at half-filling,
which diverges at zero temperature. As the consequence, spin
mismatches between the two layers will involve a large re-
gion determined byj, costing a big energy. This effectively
enhances the interlayer AF correlations and thus the inter-
layer RVB pairingD'

s .
Away from half-filling, as shown in Sec. II, the in-plane

spin-spin correlation length decreases monotonically with
the hole concentration, which results in the reduction of the
inflated interlayer AF correlations. Due to the competitive
nature betweenDs and D'

s sone spin cannot be part of two
RVB pairs at the same timed, with the decrease ofj, D'

s will
diminish much faster thanDs, as shown in the main panel of
Fig. 13 as well as the inset for differentJ'’s.

A. Spinon spectrum: Bonding and antibonding states

According to Eqs.s43d ands44d, we find that with a finite
D'

s , the original spinon spectrumEm in the single-layer case
is split into two branches, a bonding stateEm+ and an anti-
bonding stateEm−.

The DOS of the spinon spectrum at half-filling is shown
in the inset of Fig. 14. Atd=0, jm reduces to jq=
−JDsscosqxa+cosqyad. The ground state still has an AFLRO

FIG. 13. The doping dependence ofD'
s , Ds, l. The solid line is

at J'=0.1J, the dashed line is the result in the single layer case. The
inset is the doping dependence ofD'

s at differentJ'’s: solid line,
J'=0.10J; dashed line,J'=0.11J, and dotted line,J'=0.12J.
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such thatl=maxsujq·kud=s2JDs+J'D'
s /2d. The DOS of the

bonding states is the same as the single-layer case atv→0,
while the antibonding states open a gap =minsEm−d
=2ÎJDsÎJ'D'

s ,0.60J at J'=0.1J as shown by the dashed
curve in the inset of Fig. 14. This gap is approximately the
same as the gap in the dynamic spin susceptibility in the
even channelssee belowd as observed by neutron scattering,
which is about 70 meV in magnitude.26,27

The main panel of Fig. 14 shows the DOS of the spinon
spectrum atd=0.125 andJ'=0.1J in the superconducting
phase. Compared to the spinon spectrum in the single-layer
case with the Hofstadter-like structure illustrated by dotted
lines in Fig. 14, there are bilayer splittings between the
branches of the bondingssolid linesd and antibonding
sdashed linesd states, given byEm−−Em+. BecauseJ'D'

s is
much smaller thanl, the splitting is most visible at the low-
est energy level wherejm is the closest tol, as shown in the
figure. In the following, we study how this bilayer splitting
effect is manifested in the dynamic spin susceptibility.

B. Dynamic spin susceptibility

In the bilayer case, the imaginary part of the spin suscep-
tibility x9fsQ ,q'd ,vg depends not only on in-plane wave
vector Q, but also on thec-axis wave vectorq'. It can be
shown that

x9fsQ,q'd,vg = xo9sQ,vdsin2sq'/2d + xe9sQ,vdcos2sq'/2d,

s48d

wherexo,e9 is the imaginary part of the spin susceptibility in
the channels with odd and even symmetries, respectively,
obtained from the retarded versions of the Matsubara Green’s
functions defined by

xosi, j ;td = − kTtfSi1
z std − Si2

z stdgfSj1
z s0d − Sj2

z s0dgl, s49d

xesi, j ;td = − kTtfSi1
z std + Si2

z stdgfSj1
z s0d + Sj2

z s0dgl. s50d

With the same procedure as in Sec. II C, we can obtainxo9
andxe9 at zero temperature straightforwardly as follows:

xo9sQ,vd =
p

32 o
mm8kk8

Cmm8sQdf1 − sgnsjmjm8dkk8g

3 Sl2 − jmkjm8k8

EmkEm8k8
− 1Ddsv − Emk− Em8k8d,

s51d

xe9sQ,vd =
p

32 o
mm8kk8

Cmm8sQdf1 + sgnsjmjm8dkk8g

3 Sl2 − jmkjm8k8

EmkEm8k8
− 1Ddsv − Emk− Em8k8d.

s52d

According to Sec. II C 3,Cmm8sQAFd=1/Ndmm̄8 such that

xo9sQAF,vd =
p

8N
o
mk

jmk
2

Emk
2 dsv − 2Emkd, s53d

xe9sQAF,vd =
p

16N
o
mk

Sl2 + jmkjm−k

EmkEm−k
− 1D

3dsv − Emk− Em−kd. s54d

The above expressions clearly show thatxo9sQAF,vd is solely
contributed by a pair of spinon excitations both from the
bonding or antibonding states, whilexe9sQAF,vd is contrib-
uted by a pair of spinon excitations, one from the bonding
state and the other from the antibonding state. Compared to
Eq. s25d, one can see thatxo9sQAFd is very similar to
x9sQAF,vd in the single-layer case.

We present the numerical results atJ'=0.1J and d
=0.125 in Fig. 15sad and d=0 in the inset for comparison.
The solid curve represents the odd mode while the dashed
curve is for the even mode. From the main panel of Fig.
15sad, one sees that the single resonancelike peak in the
single-layer case is replaced by a double-peak structure cor-
responding to the lowest bonding and antibonding states, re-
spectively. In contrast, in the even channel, there is only one
peak whose center is just in the middle of the double peaks
in the odd channel. We also calculate the local spin suscep-
tibility by integrating over the in-plane wave vectorQ,
which is given in Fig. 15sbd. Two figures look quite similar.

The doping dependences of the energies of these peaks
are plotted in Fig. 16, where the closed squares mark the
double peaks in the odd channel and the open squares de-
scribe the peak in the even channel. One finds that the dop-
ing dependences for the three peaks are very different. Asd
tends to zero, the lowest peak in the odd channel behaves
like the resonancelike peak and reduces to the gapless spin
wave mode at half-filling, while the peak at a higher energy
in the same channel moves to high energy and reaches
1.190J finally.

At last, we consider the effect of the holon fluctuations in
the bilayer case by using the same method introduced in Sec.

FIG. 14. The DOS of spinons atd=0.125 in the bilayer case.
The solid line is for the bonding state, the dashed line for the anti-
bonding state, and the dotted line denotes the single layer case for
comparison. The inset shows the bilayer case at half filling: the
solid curve is for the odd channel and the dashed curve is for the
even channel.
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III, and the results are plotted in Fig. 17, in which the solid
curve is in the odd channel while the dashed curve is in the
even channel. However, we point out that the interlayer cou-
pling should be even more sensitive to the in-plane charge
density fluctuations because the nonlocal phase factor in-
volved in D'

s fsee Eq.sA7d in the Appendixg, which is not
considered in Fig. 17. Generally speaking, the in-plane flux
fluctuations due to the charge fluctuations will strongly frus-
trate the interlayer coupling. Thus, in the bilayer system, the
former should be suppressed more, as compared to the
single-layer case, by the interlayer coupling. More studies
along this line will be conducted in the future.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied the spin dynamics in the
superconducting state of a doped Mott insulator, which is
described by the phase string model. In this model, the spin
degrees of freedom are characterized by the bosonic RVB
mean-field state, which can continuously evolve into the
AFLRO state in the zero-doping limit, where the correct spin
wave excitations are recovered.

Our study has systematically shown how the low-lying
spin-wave excitations at half-filling are reshaped into non-
propagating modes in the superconducting phase by the mo-
tion of doped holes, via the phase string effect. We have
found that the resonancelike peak near the AF wave vectors
in the superconducting phase has its dominant spectral
weight, at small doping, originated from that of the AFLRO
at half-filling. That is, with the opening up a spin gap at finite
doping, the low-lying spectral weight, including that of the
condensed spinons, is pushed upward to a finite characteris-
tic energy of the resonancelike peak, which is linearly pro-
portional to the doping concentration at small doping. We
have analyzed the momentum broadening of the resonance-
like peak, which decides a characteristic spin-spin correlation
length, inversely proportional to the square root of doping
concentration, or the average hole-hole distance.

Our results have also clearly illustrated that the high-
energy part of the dynamic spin susceptibility near the Bril-

FIG. 15. sad Dynamic spin susceptibility in the bilayer system at
QAF and d=0.125. The solid line is for the odd channel and the
dashed line is for the even channel. The inset is for the half-filling
case.sbd The local spin susceptibility. The solid curve is for the odd
channel, and the dashed curve is for the even channel.

FIG. 16. The energies of the peaks shown in Fig. 15sad as func-
tions of doping. Closed squares: the double peaks in the odd chan-
nel; open squares: the peak in the even channel. Inset: the difference
between the peak in the even channel and the lower energy one in
the odd channel.

FIG. 17. xo,e9 sQAF,vd with incorporating the in-plane holon
fluctuations, simulated in the same way as in Fig. 11. The odd
mode: solid curve; the even mode: dashed curve.
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louin zone boundary remains essentially the same at half-
filling and at small doping, with the high-energy spin-wave
signature still present in the superconducting phase. It re-
flects that fact that the local and high-energy AF correlations,
within the length scale of the average hole-hole distance,
have not been drastically changed by the motion of the holes.
This is in sharp contrast to the prediction based on a Fermi-
liquid-like theory, where the Fermi energy will serve as the
natural high-energy cutoff in the spin susceptibility function.
Our theory suggests that one must combine both the low-
lying and high-energy spin excitations in order to correctly
understand the nature of the spin dynamics in the high-Tc
cuprates.

The fluctuational effects beyond the mean-field theory
have also been examined. In the phase string model, the
characteristic fluctuations will come from the density fluc-
tuation of holons, which result in the local fluctuations of
fluxes attached to holons but seen by spinons. The influence
of such fluctuational effect on the spin degrees of freedom
has been found to generally cause the broadening of the reso-
nancelike peak in energy space, making the emergence of
some low-lying weight below the resonancelike peak. This
type of fluctuation is intrinsic and is believed to be important
for the single-layer systems like the LSCO compound. In
particular, we have found that the spin-spin correlation
lengths of these low-lying modes are generally longer than
the “norm” one discussed in the mean-field theory. As a con-
sequence, the incommensurability of the spin dynamics at
low energies will show up, which is an intrinsic effect of the
phase string model but is usually not visible when the width
of each peak is too broad in momentum space, as in the
“norm” mode at the resonancelike peak.

We have further investigated the interlayer effect on the
spin dynamics by considering a bilayer system. At half-
filling, the spin excitation spectrum remains the same in the
odd channel as the single-layer one at low energy, while a
gap is opened up in the even channel, with the magnitude
consistent with the experiment. Then we have shown a sys-
tematic evolution of the spin excitations, in both odd and
even channels, with doping. In the superconducting phase,
the effect of the interlayer coupling is most important for the
low-lying resonancelike peak nearQAF. A prediction for the
odd channel is that there will be a second peak with a smaller
amplitude emerging at a higher energy, lying between the
main resonancelike peak in the odd channel and the peak in
the even channel, nearQAF. However, both this second peak
in the odd channel and the peak in the even channel will be
sensitive to the fluctuationsbetweenthe two layers, which
are not included in our mean-field treatment.

Finally, we point out that in the present approach, our
main efforts have been focused on the effective Hamiltonian
Hs, which describes the spinon degrees of freedom in the
phase string model. The charge degrees of freedom are de-
scribed by a holon Hamiltonian,Hh, in the phase string
model, which is not considered explicitly as the holons are
simply assumed to be Bose condensed in the superconduct-
ing phase, and two degrees of freedom are thus decoupled in
this sense; but due to the mutual topological gauge fields in
the phase string model, the condensed holons can feel an
excitation from the spinon degrees of freedom and do re-

spond to it, as discussed in Ref. 28. As a matter of fact, such
a response will result in a loose confinement of spinons to
allow only theS=integer types of spin excitations. We have
considered the effect ofHh within the RPA and ladder-
diagram approximations and found that the results presented
in this work are not changed essentially, due to the fact that
the interactions introduced byHh are of logarithmic type and
the spinons excitations are localized in space in the super-
conducting phase. Due to the length of the paper, we shall
present these results in a separate paper. Lastly, we remark
that the superconducting phase is not stable in the phase
string model when the doping concentration is very low
s,0.04d where the spin ordered phase will persist, with the
doped holes being localized, which have been discussed in
Ref. 24 recently.
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APPENDIX: BOSONIC RVB MEAN-FIELD THEORY FOR
THE BILAYER SYSTEM

In the following, we generalize the bosonic RVB mean-
field theory for the single-layer case19 to a bilayer system as
described by the generalizedt-J model s37d.

We start with the phase string decomposition for the
single-layer case19 with explicitly introducing a layer indexl
for each layersl =1,2d:

cils = hil
†bilseiQils

string
, sA1d

whereeiQils
string

tracks the in-plane phase string effect, defined
by

Qils
string=

1

2
sFil

b − sFil
hd, sA2d

with

Fil
b ; o

jÞi

uis jdSo
a

anjla
b − 1D , sA3d

and

Fil
h ; o

jÞi

uis jdnjl
h . sA4d

The exchange term in the phase string formulation reads

HJ
bilayer= −

J

2 o
ki j l,l

sD̂i j ,l
s d†D̂i j ,l

s −
J'

2 o
i

sD̂ii ,'
s d†D̂ii ,'

s ,

sA5d

where the in-plane RVB pair order parameter

D̂i j ,l
s = o

s

e−isAij ,l
h

bilsbjl−s, sA6d

and the interlayer RVB pair order parameter
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D̂ii ,'
s = o

s

e−iss/2dsFi1
h −Fi2

h dbi1sbi2−s. sA7d

In the single-layer case, the hopping term contributes to an
additional feedback effect18 on the spin degrees of freedom,
besides the phase string effect; but it does not qualitatively
and quantitatively change the main results of the spin dy-
namics. Similarly, the interlayer hopping term is not consid-
ered here due to the same reason.

In the superconducting state, due to the holon
condensation,18 the in-plane gauge fieldAij ,l

h can be treated as
describing a uniform fluxfcf. Eq. s14dg. On the other hand,
the phase difference betweenFi1

h andFi2
h for two layers may

be considered as a constant in the holon condensation case,
i.e., Fi1−Fi2=f, so that it can be gauged away. Then it is
natural to introduce the following RVB order parameters:

Ds ; Ko
s

e−isAij ,l
h

bilsbil−sL , sA8d

D'
s ; Ko

s

bi1sbi2−sL . sA9d

The superexchange term including the interlayer coupling is
thus reduced to

Hs = −
JDs

2 o
ki j lsl

bils
† bjl−s

† eisAij
h

−
J'D'

s

2 o
is

bi1s
† bi2s

† + H.c.

+ const +lSo
ils

bils
† bils − 2s1 − ddND . sA10d

To diagonalize this Hamiltonian, we introduce the general-
ized Bogoliubov transformation

bils = o
mk

vmkssi,ldsumkgmks − vmkgmk−s
† d, sA11d

wherek=±. By requiring

fHs,gmksg = Emkgmks andfHs,gmks
† g = − Emkgmks

† ,

sA12d

we find

sl − Emkdumkssi,ld = −
JDs

2 o
j=NNsid

vmk−s
* s j ,ldeisAij

h

−
J'D'

s

2
vmk−s

* si,l8d, sA13d

sl + Emkdvmkssi,ld = −
JDs

2 o
j=NNsid

umk−s
* s j ,ldeisAij

h

−
J'D'

s

2
umk−s

* si,l8d, sA14d

where l8 denotes the layer different froml. We obtain the
solution

umkssi,ld = umkvmkssi,ld, vmkssi,ld = vmkvmkssi,ld,

sA15d

with

umk
2 − vmk

2 = 1, sA16d

andvmkssi , ld satisfies

jmkvmkssi,ld = −
JDs

2 o
j=NNsid

vmk−s
* s j ,ldeisAij

h

−
J'D'

s

2
vmk−s

* si,l8d. sA17d

The spinon spectrum is given by

Emk= Îl2 − jmk
2 sA18d

and

umk=Î1

2
S l

Emk
+ 1D , sA19d

vmk= sgnsjmkdÎ1

2
S l

Emk
− 1D . sA20d

According to Eq.s18d, one has

vmkssi,ld =
1
Î2

fsgnsjmdkglvmssid, sA21d

jmk= sgnsjmdSujmu +
kJ'D'

s

2
D , sA22d

wherejm andvmssid are the solutions of Eq.s18d.
Finally, the self-consistent equations of the RVB order

parameters and the Lagrangian multiplierl can be obtained
as follows:

uDsu2 =
1

4NJ
o
mk

jmjmk

Emk
coth

bEmk

2
, sA23d

D'
s = −

1

2N
o
mk

sgnsjmdkjmk

Emk
coth

bEmk

2
, sA24d

2 − d =
1

2N
o
mk

l

Emk
coth

bEmk

2
. sA25d
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