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Spin dynamics in a doped-Mott-insulator superconductor
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We present a systematic study of spin dynamics in a superconducting ground state, which itself is a doped
Mott insulator and can correctly reduce to an antiferromagriéfg state at half-filling with an AF long-range
order (AFLRO). Such a doped Mott insulator is described by a mean-field theory based on the phase string
formulation of thet-J model. We show that the well-known spin wave excitation in the AFLRO state at
half-filling evolves into a resonancelike peak at a finite energy in the superconducting state, which is located
around the AF wave vectors. The width of such a resonancelike peak in momentum space decides a spin
correlation length scale which is inversely proportional to the square root of doping concentration, while the
energy of the resonancelike peak scales linearly with the doping concentration at low doping. These properties
are consistent with experimental observations in the Aigbuprates. An important prediction of the theory is
that, while the total spin sum rule is satisfied at different doping concentrations, the weight of the resonancelike
peak does not vanish, but is continuously saturated to the weight of the AFLRO at zero-doping limit. Besides
the low-energy resonancelike peak, we also show that the high-energy excitations still track the spin wave
dispersion in momentum space, contributing to a significant portion of the total spin sum rule. The fluctuational
effect beyond the mean-field theory is also examined, which is related to the broadening of the resonancelike
peak in energy space. In particular, we discuss the incommensurability of the spin dynamics by pointing out
that its visibility is strongly tied to the low-energy fluctuations below the resonancelike peak. We finally
investigate the interlayer coupling effect on the spin dynamics as a function of doping, by considering a bilayer
system.
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I. INTRODUCTION as observed first in the optimally doped YBCO compoifid,
The measurement of spin dynamics in the cuprate Supeyyhere the dynamic spin susceptibility function measured by

conductors is uniquely important. This is because the spiff€lastic neutron scattering shows a sharp peakwgl

degrees of freedom constitute the predominant part of thg 41 meV, whose width is comparable to the resolution fimit

low-lying electronic degrees of freedom, i.e., & per site, as of the instruments. A similar resonancelike peak has also
compared to the charge degrees of freedom at small hol@€en observed in the underdoped YBCO compotiwlsere
concentrationg per site. Such a large imbalance between the be resc;nancehke p%ak persists  into ”:je _Ifisbe“d%gapdphase
spin and charge numbers are usually regarded as a key indiP°ve the superconducting transifiomnd Tl-based an

cator that the underlying system is a doped Mott insufator. I-based compounds. In the LSCO compound, although no

On general grounds, the corresponding spin dynamics is e uch sharp peak has been found, the low-lying spin excita-

pected to be distinctly different from a conventional BCS. o 'S nonetheless non-spin-wave-like, which may be still

regarded as a very broad peak in energy spatéh much

superconductor. The latter is based on the Fermi-liquid deéharper linewidth in momentum space, doping-dependent in-

scription in which the elementary excitations are quasiparticommensurate splittings arouk have been clearly iden-

cles that carry both charge and spin. An extreme case is &fied in LSCO%10 Similar incommensurability, even though
half-filling, where the whole charge degrees of freedom gehot as prominent as in LSCO, has been aiso established in
frozen at low energy and only the spin degrees of freedon@mderdoped YBCO recenthy13
remain intact in the cuprates, whose dynamics is well char- Theoretically, a great challenge is how to naturally con-
acterized by the Heisenberg model. nect the spin dynamic at half-filling with that in the super-
Experimentally, anomalous properties of spin dynamicsconducting phase in which the doping concentration can be
have been observed throughout the cuprate family. The paas low as a few percent per Cu site. That is, although the
ent compound at half-filling is a Mott insulator in which low-energy, long-wavelength behavior may change qualita-
spins form antiferromagnetic long-range ord8FLRO) be-  tively in the superconducting phase, the number of spins in
low a Néel temperaturd@y. The elementary excitation is a the background is still quite close to half-filling, which far
gapless bosonic Goldstone mode, i.e., the spin wave in thexceeds the number of doped holes. Physically it is very hard
ordered phase. AFLRO and the spin-wave excitation disapto imagine that theshort-range high-energyspin correla-
pear beyond some critical concentration of holes introducetions would be changed completely by a few percent to 10%
into the system. Except for some residual signature of spioping. However, in a BCS superconductor, the upper spin
waves at high energies, the low-lying spin-wave-type excitaenergy scale is usually set by the Fermi enesgl# such that
tion is completely absent once the system becomes a supeén-the local spin susceptibility one has to integrate over the
conductor. It is replaced by a resonancelike peak at a dopindrequency up tas in order to recover the correct sum rule of
dependent energy around the AF wave ve@qg=(m, ), 1-6 spin per site. Normally; is much larger thad. Thus,
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why there should be a gigantic increase in the upper spin The remainder of the paper is organized as follows. In
energy in the doped case, compared to the half-filling, poseSec. I, a systematic study of spin dynamics in the bosonic
a serious challenge to any approach based ondthe&ve RVB mean-field state for the single-layer system is pre-
BCS-type theory in which the spin dynamic is solely contrib-sented. In Sec. Il fluctuational effects beyond the mean-field
uted by quasiparticle excitations. Experimentally the uppekheory, due to the charge density fluctuations, are discussed.
energy scale exhibited in the dynamic spin susceptibility iSn Sec. 1V, the interlayer coupling for a bilayer system is

set by~2J (J is the superexchange couplingt half-filling,  considered. Finally, a summary is given in Sec. V.
in consistency with the prediction by the Heisenberg model,

and is slightly reduced in the optimal-doped superconducting
phase® No trace of any other new high-energy scale has ever |I. SPIN DYNAMICS IN MEAN FIELD DESCRIPTION
been reported in the doped regime in spin channels.

As for the low-energy feature, like the resonancelike peak
structure observed in the experiments, theoretical proposals Spin dynamics of the cuprates at half-filling is well-
are ranged from the random-phase approximation fluctuadescribed by the two-dimensiondRD) AF Heisenberg
tions in the particle-hole channel within the framework of model. Although a conventional spin-wave theory is quite
BCS' or generalized BCS theoris'® to some novel successful in understanding the low-lying excitation spec-
mechanism of the so-callest mode in the particle-particle trum of the Heisenberg Hamiltonian, to make the theory ap-
channel in the S@) theory!” which is coupled to the plicable or modifiable to the cases without AFLRO, like at
particle-hole channel in the superconducting phase. An imfinite temperatures or in doped regimes, we shall use the
portant question, not being properly addressed yet, is what iSchwinger-boson formulation as our starting point at half-
the connection, if any, of such a resonancelike spin modéilling.
with the spin wave in the zero-doping limit. Namely, how a  The mean-field theo?) based on the Schwinger-boson
few percent of doped holes can continuously reshape a spifflormulation can characterize the AFLRO and spin-wave ex-
wave excitation into a nonpropagating local mode, with arcitation fairly well in the ground state. Its mean-field wave
AFLRO turning into short-range spin correlations. This quesfunction under the Gutzwiller projection will have the same
tion and the previous high-energy one constitute two of mosform?! as the variational bosonic RVB wave functions pro-
fundamental issues in an approach based on doped Mott iposed by Liang, Doucot, and Anders®The latter can pro-
sulators. duce very accurate variational energies as well as the AF

In this paper, we put forward a systematic description ofmagnetization for the Heisenberg model, indicating that the
the evolution of spin dynamics as a function of doping in astate correctly capturdsothlong-range and short-range spin
doped-Mott-insulator superconductor. It is described by aorrelations. Such an approach is thus called bosonic RVB
bosonic resonating-valence-boffB) mean-field theo?  description, which is to be generalized to finite doping in the
based on the phase-string formulatiof thet-J model. At next section. In the following, we briefly review some basic
half-filling, the mean-field theory reduces to the Schwinger-equations of the bosonic RVB mean-field theory at half-
boson mean-field staf8,which well characterizes AFLRO filling.
and spin-wave excitations in the ground state. At finite dop- In the Schwinger-boson formulation, the spin operators

ing, the mean-field theory depicts how the spin dynamics igan be expressed by the Schwinger-boson opetatons
influenced by the doping effect in going into the supercon-follows:

ducting state. In particular, we show how a resonancelike _

peak centered aroun@,e emerges out of spin waves from S=(- 1)|biTTbi1 (1)
the AFLRO phase. A unique prediction for experiment is that ) o o

the weight of the resonancelike peak continuously evolvednote that a staggered sign factorl)' is explicitly intro-
into that of the AFLRO in the zero-doping limit. On the other duced here in contrast to the original definifi®n and §
hand, the total weight of the dynamic susceptibility function,=(S")", while §=X,0b b;,. The Schwinger bosons satisfy
which extends slightly over-2J in energy, still satisfies the the constrain, b b, =1. The mean-field state is character-

A. Bosonic RVB state at half-filling

sum rule that the total spin number is &per site. ized by the bosonic RVB order parameter
In this unified mean-field description, doping-dependent
resonancelike energy and spin correlation length are quanti- 5= 2 (bi,bi-y), 2

tatively determined. Besides the low-energy resonancelike

Frﬁ?r:( Sjrr]lécstgrgnr:/eeeli(p;gz trr(l)irgehls;I![realﬁlf;stﬁer“ggif_r\:ve;% sd'?:F;erhich leads to the following effective Hamiltonian, obtained
. . : : rom the half-filling t-J (Heisenberyy model:

sion as a residual effect in the superconducting phase. We
also consider some leading fluctuational effect beyond the JAS

mean-field theory on the line shape of the spectral function, Hy=-="-2> bl bl +H.c.+ constﬁ(E b bi, - N),

and discuss the incommensurability and its visibility in this (ijyo io

framework. We finally introduce the interlayer superex- (3)

change coupling and investigate how the spin dynamics

changes in the even and odd channels for a double-layevhere the last term involves a Lagrangian multiplierto

system. Comparisons with the experimental measurementenforce the global constraint of total spinon number,
mostly by inelastic neutron scattering, are made. 3,0t bi,=N.

lo
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The mean-field Heisenberg Hamiltonia8) can be Eg. (11), n|h denotes the number operator of doped holes at
straightforwardly diagonalized by the Bogoliubov transfor- sitel. Therefore the doping effect explicitly enters in E40)

mation through the gauge fieléli'} as if each hole carries a fictitious
7 fluxoid as seen by spinons K. In Eq. (10), the bosonic
- ; + A
by = 2 ko) (U Yo = Vi Vo) (4)  RVB order parameter is given by
k
. Ah
as As= 2 <e_mAij bi()'bj—l)'>NN (12)
- f
Hs= kEU Bi¥ieo Yo ®) for NN sitesi andj. At half filling, because there is no hole,

. it is obvious thatA{}zo, andAS® reduces back tag defined in
Here, wy,(i)=1/VN€&*"i, and the coherent factors, and Eq. (2).

v, are given by Note that the doping concentratiod also entersHg
through the Lagrangian multipliex which implements the
=X e =598 N, 6 global condition;, b, by, =(1-&)N. But at low doping, the
V2 VE V2 Ex effect of missing spins represented by such a term will be far

less dramatic than the topological gauge fiald The latter
reflects the singular phase string eff@éhduced by the hop-
E, = VA2 -— gﬁ_ (7) ping of doped holes on the AF spin background.
Corresponding tdds in Eq. (10), the spin operators in the
Finally, in a self-consistent manner, the RVB order parametephase string formulatidf read
Aj and the Lagrangian multipliex are determined by the

where & =-JAj(cosk,a+cosk,a) and

following self-consistent equations: S=(- 1)iei<b‘hb;rybuy (13)
1 : E -
A== Sic coth& (8) S=(S"", andszzEUcrbiTUbig, respectively. Compared to the
2N° T JE 2 Schwinger-boson formulation in E@l), an extra phasé"

appears in Eq(13), which satisfiesb~d"'=2A7 (ij e spin
1 A BE« siteg and ensures the spin rotational symmetry of the effec-
2==2 E COth7 +Ngc, (9 tive Hamiltonian(10).

k#0 =k Equation(10) is by nature a gauge model; but in the su-
in which n3.. is the contribution from the Bose condensation Perconducting ground state, due to the Bose condensation of
of the Schwinger bosons, leading to an AFLRO, which hapPosonic holons in the bosonic RVB thedfjthe spin Hamil-
pens if E, becomes gapless. Note th#=1/T and the tonianHswill become quite simplified a8} can be approxi-
AFLRO disappear$ngc=0) at a finite temperaturg. mately treated as describing a uniform flux with a strength

B. Bosonic RVB description at finite doping > A!} =7d. (14)
0

Although AF correlations at half-filling are well captured

by the mean-field HamiltoniaHs in Eq. (3), the doping ef-  Then we can introduce the following Bogoliubov transfor-

fect on the spin background is a highly nontrivial issue.  mation to diagonalize Eq10), just like Eq.(4) in diagonal-
Based on the phase-string formulati@which is an exact izing Eq. (3),

reformulation by sorting out the most singular doping effect,
i.e., the phase string effect in thel model, a generalized By = 2 W) (UnYime = U Vi) (15)
mean-field Hamiltonian describing the spin degrees of free- m e

dom can be obtainé@as follows:
With a standard procedure, we obtain

JAS h
Hs=-=—2> bl bl &7 +H.c.+ const
T2 <JE> e Hs = 2% EnmYing Y (16)
mo
+N > bl b, — (1 - 9N]. 10
(% obio = (1=0) ) (10 with the spinon spectrum
Compared to the half-filling caséls in Eq. (10) differs E. = Vr}\z_ grzn_ (17)

from Eq. (3) mainly by the emergence of a gauge fieﬂlﬁl
defined on the nearest-neighboriddN) link (ij), satisfying  In this schemeg&,, and wm(,(i):w:n_a(i) are eigenvalues and

the following constraint: eigenfunctions of the following equation:
> Aj=m >, (11) 1
Ghee 120, §mwma(l)=—7 > €M) (18)
j=NN(G)

wherec is a, say, counterclockwise-oriented close loop and
Q. is the area enclosed iy On the right-hand sidéhs) of  and the coherent factors,, andv,, are given by
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0.3 - - ' shows that the two spectra are qualitatively very different. At

half-filling, the spectrum is continuous and gapless, with a

large density of states at the maximal energy which is

slightly above 2. In the superconducting state, the spectrum

becomes discretized levels. These discrete levels are due to

6 1 2 the fact that the spectrugy, as the solution of Eq18) has a
Hofstadter spectrum as the result of the vector potewﬂal

H 1 given in Eq.(14). Note that the distribution of the Landau-
15 2

§=0.125

o
o
T
DOS

DOS (arb. units)
o

level-like structure in Fig. 1 remains uneven, which reflects
the fact that the average density of states increases with en-
0.0 , , ergy, as seen at half-filling. The maximal energy is slightly
0.0 0.5 1.0 .0 less than 2 at §=0.125.
EN It is important to note that there is a gap between the
FIG. 1. The density of statedOS) of the mean-field spinon lowest discrete Ieve_zl and zero energy, whichi8.265) for .
spectrumE,, at dopings=0.125. Inset: the DOS in the AF state at 5;0-125- There will no more spinon Bose condensation
half-filling. ngc# 0 such that the AFLRO no longer exists.

1 1 2. Dynamic spin susceptibility
A A
Up=—"7=1/—+1, vp=sgrné&)—=+/——-1. (19 After diagonalizing the effective Hamiltonidr, the spin
3’2 E 32 E iy . .
A m A m susceptibility can be obtained straightforwardly. Due to the

Finally, A and AS can be determined by the self-consistentSPin rotational invarianct, one may only consider the
z-component susceptibility, which can be derived based on

equations _ :

, the Matsubara Green’s function(F;S{(7)S7(0)). With the
IAS2= LE &n coth@“ (20) standard procedure outlined in Ref. 18, the imaginary part of
2NJ“ Y En 2’ the dynamic spin susceptibility at zero temperature is given

by
_is A BEm . 1 . N2 = &b
2_5_N2 E—COIhT+nBC. (21 X”(va):_z Crrr (Q) &_1
m#0 =m 8mn¥ EnEnv
Here ngc is the contribution of the condensation of spinons, X sgn)&(w| - Ep— Eny), (22)

if an AFLRO exists like in the half-filling case.

The above mean-field formulation is essentially the samavhere
as the one outlined in Ref. 18. For simplicity and clarity, here 1
we have not explicitly included an approximate doping- == iQ(xi=xj) Do (D (Do (i),
correction factor in Eq(20) (=1-25) as we will be mainly Cont (Q) N% ¢ o0 () @y 1) o)
concerned with the evolution of spin dynamics at low dop- (23)
ing. Such additional corrections from doped holes can be
always incorporated by simply replacing the superexchange The discrete energy levels &, illustrated in Fig. 1 will
coupling J with a doping-dependeni,; which is quickly — show up iny"(Q, w). We plot the positions of these peaks in
reduced at higher doping concentrations. A spin feedbacl”(Q,w) in energy and momentum space, as well as the full
effect from the hopping term is not included either, whichwidth at half maximum(FWHM) in momentum space, in
results in a shift ofA to \, in En,'® without qualitatively  Fig. 2. The momentum scan in Fig(a is along the(,q)

changing the physical consequences. direction and is along the diagon@,q) in Fig. 2(b). One
sees that each discrete energy corresponds to a finite width in
C. Spin dynamics in superconducting ground state momentum as depicted by a finite bar.

For comparison, the spin-wave peak positions at half-
filing are shown as dotted curves in Fig. 2. A£0.125,
According to the mean-field scheme outlined above, welthough the spin excitations are no longer propagating
can numerically determine the mean-field “spinon” spectrunmodes, as evidenced by the fidispersionlegssmall bars at
E,, defined in Eq(17). discrete energies, the envelope of the overall spectrum at
As an example, we solve the eigenequati®® and self-  high energies still approximately tracks the dispersion of the
consistent equation€0) and (21) at doping concentration spin wave at half-filling, with a slightly softened spin-wave
6=0.125. The chemical potential is found to be 1.819 velocity. Note that there are actually some more peaks at
while the RVB order parametek® is 0.993. In contrast, at even higher energies than in Fig. 2, but their weight is much
half-filling, the results are.=2.316) and Aj=1.158. reduced due to the coherent factorgQ, w) (see the local
In Fig. 1, the density of statd®0S9) of the spectrunk,,  spin susceptibility below
for 6=0.125 is shown in the main panel, while the half- Figure 2 clearly depicts how the spin excitations in the
filling case is plotted in the inset for comparison. The figuresuperconducting state continuously evolve from the spin-

1. Excitation spectrum E,

134516-4
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25 T 150 — r T . T
S A S 100} 1
1.5} > ':
. £
2 ‘ A
Yot 5
L 50| .
(o]
0.5+ —_—— -
ol
0.0 (@)
. . 0
0 n 2n
q 0 4
25 FIG. 3. Dynamic spin susceptibility’[Qar=(7,7), ] in the
a=aq) superconducting phase wih+0.125(solid curve. Ey denotes the
20l ] ' , position of the resonancelike peak. The dotted curve is for the AF
e Y state at half-filling. Inset: the evolution of the resonance peak at
- —f— various dopings.
15} :
2 / ! | 1 L ke .
w 10l | | / F Comr (Qap) = NE -1 Jwma(')wma(l)wm’a(|)wm’a(])-
i “"x :’Vl‘ ]
l‘"‘-‘ ! (24
’ L ! In the eigenequatiofiL8), it can be easily shown that for any
ool () given statem there is a corresponding statewith the rela-
0 T 2 tion &,=-¢&5 and wy,, (i) =(-1)'wm,(i). Then EQq.(24) is re-
q duced to

FIG. 2. The dispersive behavior of the spin excitation in the 1 o .
superconducting staté=0.129, in comparison with the spin-wave Crnm (Qap) = NE o) @y () 0y o (D 07 o)) = N5mﬁv
dispersion at half-fillingdashed curve The peak positions of” in !

Q andw space are shown along differe@tdirections:(a) along the
diagonal directionQ=(q,q); (b) along Q=(,q). The solid bars
mark the widths of the peaks in the momentum sp@ee texk

and the dynamic spin susceptibility @ can be simplified
to

" m 52
wave picture at half-filling. The remnant high-energy spin X'(Qar, @) =mz (E_r;)“Q'gr(“’)‘("(k"| —2Ey). (25
wave signature at finite doping is a very unique feature in moem
this approach. Recently, such a high-energy spin wave fea- The numerical result of”(Qar, w) at =0.125 is shown
ture has been report€ddin an underdoped YBE€u;Os5 in Fig. 3 by the solid curve. The dotted curve is calculated at
compound. half-filling, which diverges as 14 at w— 0, in consistency

In the following, we turn our attention to the lowest peak with the spin-wave theory. Thus, in the superconducting
in Fig. 2, which has the largest weight as marked by thephase, a resonancelike peak appea® gtwith a finite en-

darkest FWHM bar. ergy E4=0.53) at 0.125(twice bigger than that oE,, shown
in Fig. 1. Note that higher energyharmonig peaks in
3. Resonancelike peak around AF wave vectQhr X' (Qar,w) are greatly reduced in strength in Fig. 3 due to

Let us consider two special moment@,=(0,0) and the coherence facta? /E2 in Eq. (25). So only the lowest

Que=(mr, 7). For Q=Q,, with the reIationZiwm,,(i)w;,v(i) peak atk, is clearly exhibited aroun@ .

= - We further plot the resonancelike peak enefgyas a
= Gy, We haveCy (Qo)=1/Ndyyy such that function of hole concentration in Fig. 4. At small dopirE,

\2— &2 _E2 is linearly proportional tas, E4=3.35J, which is extrapolated
Y'(Qoyw) = 12 (#)Sgdw)éqaﬂ -2E,)=0. to zero at half-filling, where the gapless spin wave is recov-
8N, Er, ered. Note that in the present approach, the superconducting
ground state is extrapolated &&0*. A more careful study of
Namely, there is no signature qf(Q,w) at the ferromag- the low-doping regimegbeyond the mean-field approxima-
netic momentunQ,, tion in the phase string moddhas revealed that the AF state
At the AF momentunQ g, one has actually will survive up to a finite doping concentratiof,

134516-5



W. Q. CHEN AND Z. Y. WENG PHYSICAL REVIEW B71, 134516(2009

1.0 :
150 | // - ,,,,,,

0.8} 1 — E‘——"F/\ \ _—

06} AR ~ 100 [ //t /j/ T
w” o4l S o 1 g 5 / /’"'."&\\ - :

0.2} / o 1 /,"/l/lll"l,!,’.‘“\}\\\\ 2

0.0 . ' c % ’%gg.::& T

00 X, 0.1 0.2 o
)

FIG. 4. The doping dependence of the resonancelike peak en- o )
ergy Eg. The straight line illustrates the linear doping dependence at FIG. 5. Momentum distribution ofy"(Q,w) at w=E, (4
small 5. The dashed curve showsEgx \6-X. behavior if the AF =0.123.
state survives at a finite doping, as shown in Ref. 24.

2 2
<x.=0.043%* In that case, one findsthat E, vanishes at X Rw) eXp<_ 2 > - exp<— ?) (@)
6=x, following a square root behaviolE,xs-x, as &
— X, as shown by the dashed curve in Fig. 4. with £=12/¢. Thus the spin-spin correlation function decays

The momentum profile of the resonancelike peakgis  exponentially with the distance in the superconducting
shown in a three-dimensional plot in Fig. 5 &0.125. It phase. This is consistent with a spin gapopening up in the
shows an intrinsic broadening of'(Q,Ey) in momentum  spin excitation spectrum. In Fig. Z,is well fit by the solid
aroundQr, which can be well fit by a Gaussian distribution curve
function

2
—0.)2 _.. |2
VIQE)  ex _%)_ 26 £=ay (28)

) ) ) _ . In the inset, the experimental result obtained in LEEG@
The results for (_1|fferent hole concentrations are givenin F'gpresented for comparison. The general trend/afx 1/1/5in
6(a) along the diagonal momen@=(q,q). One can adjust  poth the experiment and theory is quite telling.
to make all data well collapse onto a single Gaussian func- |n sec. 111, we shall further discuss the momentum profile
tion of Eq.(26) as shown in the inset of Fig(&. The ob- 41 |onger spin correlation lengthslawer energies, related

tained_broadeningr turns out to be nicely scaled linearly g those seen in the LSCO compotid,when the fluctua-
with & [see in Fig. €)]. Similar plots can be done along tjon effect is considered.

different Q scans centered &,r and generally one has
=6 in all directions.

If we neglect the small anisotropy along different momen-
tum directions centered &, and perform a Fourier trans- The local spin susceptibility| (w) is also an important
formation to Eq.(26), we obtain the real-space correlation quantity. It is defined by

4. Local susceptibility and spin sum rule

(@ Rescaled by Eqn. (26) (b) 1
] 0.8 F/ ] FIG. 6. (8) Momentum distri-
] ) 1 bution of x'(Q,E,), scanned
Q=(g,q) s 1 i ! directi
8 ; / J 06l / 1 along the dl_agonal directior
5. ; ’ ’ 1 =(qg,q) at various hole concentra-
Z\m m\ 1 o b ] tions. The intensities are normal-
g / . = \\ 1 04l - ] ized at the maximums. The inset
=0 //D D\x 1 L4 1 shows that the data in the
/// \ :\X ] _/ ] main panel can be well fit into a
/\//D D\\A ] 0.2t 4 Gaussian  function  eXp(Q
//,A// \ \\ \ ] / ] ~Qar)?/20%], with o being scaled
Y;Xﬁ A& / \ LN ‘k\&/ ] / ] as linearly proportional to/s, as
ocA7n-d o8 L LSSy S 0_8 i L L shown in(b).
0.4 n 1.6n 0 0.2 0.4 0.6
q V5
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3 . . .
FIG. 9. The spin spectral weight vs doping. Open squares: the

FIG. 7. The relation between the spin correlation lergfth and total weight; closed squares: the weight of the resonancelike peak
the hole concentratiod. The solid curve is 245, The inset is the aroundQag; closed triangles: the weight of the AFLRO peak at
experimental results given in Ref. 9. half-filling. The dashed line is the total weight from the exact sum
rule, which is rescaled to coincide with the mean-field valué at
=0 in order to compare the doping dependence.

14 dZQ !
(2m) slightly reduced to arouné-2.1J at §=0.125. These upper-
which describes the on-site spin-spin correlation. Based oROUNd spin excitations are expected to be seen near the Bril-

Eqg. (22), one obtains louin zone boundarysee Fig. 2
Although the intensity of each peak is physically not very

v 772 A2 meaningful, the weight of the peak is. The reason is that
xi(w) = 8 ~ Kt E.E. 1)sgnw)&l|e| - En = Em), there is a sum rule about the local dynamic spin susceptibil-
m ity:
(29
where Wtotalzfdw[1+n(w)])(ﬁ(w):<($z)2>y (31
1 ) . here the Bose distribution(w)=1/(e?*-1). It means that
Koy =— 3w ()2 30 where :
i Nz [0} o) (30 the total weight of the spin susceptibility is related to an

) , averaged spin number per site. At half-filling, it is obvious
The numerical results of () at 6=0.125 and5=0 are  that((S)?) is exactly 1/4. At finite doping((S)?) should be
presented in Fig. 8 by the solid and dashed curves, respegsquced to(1-8)/4.
tively. The low-energy parts in both cases are similar to those |, the bosonic RVB mean-field state, the total weight can
seen iny"(Q, ) aroundQxr (Fig. 3), as the AF correlations o c4culated by
are dominant at low energies. At high energies, more excita-
tions which in momentum space disperse away ff@gg, as _1 + +
shown in Fig. 2, are clearly presentjfi(w). We see that the Wiotal= 4N% (0igb1 ) (1 +{bighic).. (32)
main band extends up te-2.3J at half-filling, while is
By using (b] bi,)=(1-8)/2, we haveW,y,=:(1-8)(3-9).

25 . : At half-filling, the total weight is 3/8 as compared to the
E exact result 1/4. The discrepancy is due to the relaxation of
20F T 8=0 §=0 ¢ ] the no double occupancy to a global level in the Schwinger-
2 | 870128 0.06 0.08 boson mean-field theo®.In Fig. 9, the doping dependence
'§ 15| 0.(\>2 0/104 / A 1 of Wigia iS sShown with the exact resultiashed lingrescaled
! f ‘ (. —
. ; / \ | \ at 6=0.
g 10l WAWAVAN / \ 1 We also show the integrated weight of the resonancelike
= 00 0.2 04 peak in Fig. 9(solid curves with full squargsdefined by
"% 5f E, - ,
& vaeakE do[1 +n(w)] x{(w). (33
ol ) }\ A [UVI\ ~ peak
0 1 w/d 2 3 At 6=0.125, the weight of the peak is about 0.09, while the

total weight is about 0.314, i.e., nearly 1/3 of the total
FIG. 8. Local susceptibility/ (w) in the superconducting phase Wweight is concentrated on the resonancelike peak. In Fig. 9,
(solid curve with 6=0.125, and at half-fillingdashed curyeInset: ~ one can see that with the increase of doping concentration,
the evolution of the lowest pealthe resonance peplat different ~ Weq actually gets slightly increased, wheredgy, is re-
dopings. duced. Namely, the resonancelike peak in the superconduct-
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ing phase will become even more prominent approaching the
optimal doping from the underdoping. On the other hand, as
the doping concentration is reduced to zéfd,,, does not
simply vanish. Instead, it approaches to a finite value which
precisely coincides with the weight of the delta function at
=0 andQ=Q,r in the dynamic spin structure function at

half-filling, which represents the AFLRO. Earlier on, we %%%%
e e oot o S0 e e ook | L G
continuously crosses over to the AFLRO at half-filling. ://%V///%%%

ll. SPIN DYN,:gIL(;SOi:EJSTTODNMEAN-FIELD %%%%

So far our discussions on spin dynamics have all been
based on a generalized mean-field theory, characterized by
the RVB order parameteks [ Eq. (12)]. Such a mean-field
theory works quite well at half-filling over a wide range of
temperature(~J/kg) in describing various ranges of spin-
spin correlations. In particular, the nearest-neighbay spin
correlation is directly related tds by

FIG. 10. A way to introduce the gauge-field fluctuations related
to the holon density. The open circle denotes a holon.F flaxoid
bound to the holon is smeared to the shadow area which is smaller
than the whole lattice.

_ 3. make the theory quite nontrivial in a general case.
(S - Span=- §|A E (34) In the superconducting phase, a uniform holon
condensatiolf makes the topological gauge fiekﬂ simpli-
It thus provides an important justification for the doped casefied as it may be treated as describing a uniform flux,
Since spin-spin correlations, especially short-ranged ONeSiamelv A~ AN with A" determined b
should not be “washed out” immediately by the holes at VA=A ) y
small d_oping, the nn R\_/B pairind® and thus the present _ EKH =7 ﬁrz ) (35)
mean-field state underpinned by the RVB order parameter is C
expected to persist over a finite range of doping, so long as . ) .
the spin correlation length is no less than the nn distancor an arbitrary loopC according to Eq(11). In the previous
(i.e., the lattice constantin general, the effective Hamil- Section, we have found that the spin dynamics in the super-
tonian (10) is only valid within a low-doping regime oAS  conducting phase is qualitatively modified by suéﬁu as
# 0 which defines a pseudogap regime in the phase stringopmpared to the AFLRO state at half-filling.
model. Since a spin gap opens at finite doping in this regime, However, the ideal Bose-Einstein condensation in treating
as shown in the last sec_tion, the amplitude fluctuation of thgq{} as Aif} is only an approximate description of the holon
RVB parameter usually is not very important. condensation in the superconducting phase. In reality, one
Furthermore, we note that even within such a pseudogagan expect all kinds of hole density fluctuations. The fluctua-
fon 1o not  sual meanfield theory beyond the half-flmg, O O Al 1€ 9A) <A} ~A. will be tied t0 the densiy
Generally speaking, the effective spinon Hamiltonia@) is fluctation of the holes according to E.1) as follows:
a gauge model_, in which the topological gauge fiAlpde- D 5Aﬂ =7 éhlh: > (n|h‘ 5. (36)
scribes 7 fluxoids bound to holes according to E€L1). C leC eC
Namely, this is not a spinon-only model and the hole-doping _ ) h
effect enters the Hamiltonian viall, which represents the N the following, we shall examine the effect 6R; on the
nontrivial frustration on the spin degrees of freedom from theSPIn susceptibility previously obtained in the mean-field ap-
motion of holes. In the previous section, the effecN}fhas proximation. _ .
been treated in a mean-field approximation. In the following, Since holons are condensed in the superconducting phase,

we shall discuss how to go beyond this mean-field level. We may still reasonably neglect, to leading order of approxi-
mation, the dynamic fluctuations im{} and only focus on

the static spatial fluctuations. As a Bose condensate is com-
pressible, impurities and lattice distortions can all lead to
some microscopic spatial inhomogeneity of the hole distri-
To examine the effect of fluctuations N} on spin dy- bution, and below we introduce an approximate scheme to
namics beyond the mean-field approxiamtion, one has to firimulate 5A,-'} related to a microscopically inhomogeneous
deal with the hole density fluctuations. In the phase strindglistribution of holes.
model, the hole degrees of freedom is also depentlent We first smear eachr fluxoid bound to a hole within a
the spin degrees of freedom. The nature of such mutualljinite size (Fig. 10 shows one configuratipnrepresenting
entangled charge and spin degrees of freedom is expected $ome characteristic length scale of coherence for a bosonic

leC leC

A. Fluctuations induced by the density fluctuations of
holes
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SPIN DYNAMICS IN A DOPED-MOTT-INSULATOR.. PHYSICAL REVIEW B 71, 134516(2005

80 T
‘ a
5=0.125
7 60l :’5_‘ | | Q:(n+qx, ) Q, %
g = QAF
£
8 40t ; =
G
(j‘% —~~
— 20 4
= ]
0 L -
1 2 >
olJ
FIG. 11. ¥"(Qar, w) With incorporating the fluctuations induced
by the charge degrees of freedom. The doping is at 0.125, and the
inset shows the local susceptibilify in the same situation.
pibiligy (w) " ®=0.21J
holon, which should be still much larger than the average -28m 0 28z
hole-hole distance to reflect the holon condensation. Then qx
put these smearet fluxoids randomly on the lattice. If the
smearing size of eachr fluxoid is infinite, then the problem FIG. 12. The incommensurate structure is generally presented in

reduces back to the case of ideal Bose condensation witQ'(Q,w) due to the phase string effed®ef. 25, but its visibility
5Ai*}:0. For finite sizes of fluxoids, there generally exist in- depends on the energy. The broad commensurate peak Ej,
trinsic fluctuations in the flux distribution o@f} which we  ~0.53] at §=0.125 is actually composed of four peafdashed
use to simulate the fluctuations related to the hole distribueurves, which becomes visibly “split” in momentum space @ss
tion. Since it is static, with each of such a configuration oflowered belowEy, when the fluctuational effect is included, where
nonuniform fluxes, we can follow the steps in the last sectiorihe individual peak width is reduce@r spin correlation length is
to get a nonuniform mean-field solution and determine a dyenhancep

namic spin susceptibility. The dynamip spir! susc'eptibility atc rrelation function and has to be incorporated carefully. It
.QA':.’ averaged over the randoml qqntlgurgtlons, IS presente as been shown previoudhthat the leading order contribu-
in Fig. 11, and the local susceptibilifyf (w) is shownin the 45 of sych a singular effect to the dynamic spin suscepti-
inset. The result is calculated in a ¥@.6 lattice with eachr  ijity is simply represented by the incommensurate shifting
flux being smeared within a 2414 lattice size, with more ¢ the momentumQ in Cn,(Q) defined in Eq.(23) by
than 10,000 configurations being averaged. Q= +27g and 0Q, = +2g (takinga=1) with g= 5. How-

For comparison, the mean-field results are plotted ag,er, since the momentum width of the resonancelike peak in
dashed curves in Fig. 11. The main effect of such fluctuationg, o mean field is given by=+7s, the incommensurability

in A? is to cause the broadening of the resonancelike peak YPoes not explicity show up in the dynamic spin
well as high-energy peaks in energy space, although the pealysceptibilitg> and the resonancelike peak still looks like
posmor)s, like Eg, essentlally do not change. Since in the jnq peak centered ,, as illustrated in the top panel of
mean-field case the discrete levels are composed of degen?_rl-g_ 12

ate Landau levels ofy, a broadening due fo lifting up the ~ “Now, due to the above-discussed fluctuational effect, the
degeneracies by the flgctuatlonsAﬁ can be easily under- regonancelike peak is broadened with some of its weight
stood. So the above simple-minded approach to t'_%\%t _shifting towards lower energies, shown in Fig. 11. The cor-
provides some valuable insight into the fluctuation issue INesponding width for these new low-lying modes in momen-
the framework of the bosonic RVB theory. A realistic treat- ¢, space will be reduced tdae., the spin-spin correlation
ment with a more accurate profile of the line shape in thqengths are enhanced at energies lower Barsuch that the
dynamic spin susceptibility is beyond the scope of this Work-incommensurability may become manifested in the dynamic
spin susceptibility gradually with the decrease of the energy.
Indeed, by using the same simulation used in Fig. 11, the
incommensurate peaks do show up in the modifit@ , w)

The bosonic RVB mean-field state is based on the phasgith incorporating the incommensurate shifti#fgas o is
string formulatiod® of the t-J model, in which the short- lowered belowE, which is illustrated in Fig. 12 at
distance singular part of the phase string effect introduced by 0.125.
the hopping of holes has been “gauged away” such that the Therefore the incommensurability in the dynamic spin
Hamiltonian in the new formalism is free of such singulari- susceptibility function is an intrinsic property of the phase
ties and thus becomes perturbatively treatable. But when orstring effect?® but its visibility crucially depends on spin
considers the physical quantities like the dynamic spin susfluctuations with longer correlation lengths at low energies.
ceptibility, such a singular effect should still be present in theSuch low-lying spin excitations, induced by the charge den-

B. Incommensurability in momentum space
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sity fluctuations discussed above, are usually most prominen 4
in the single-layer case, applicable to the LSCO compound.
In contrast, the charge density fluctuations are expected to b
weaker in the bilayer systems such as the YBCO compound
where the interlayer coupling will prefer the uniform distri-

bution of the holons as to be discussed in the next section.

IV. BOSONIC RVB DESCRIPTION WITH INTERLAYER
COUPLING

For a bilayer system, thie-J model can be generalized as

bilayer _
HersYe = 4(% ¢l oCito — MZ Cl1,Cizo + H.C. +J<Z>| SiS;
il ior ij

+3,2 81" S, (37)

in which the additional subscript=1,2, is thelayer index.

arb. units

0.02 0.04 0.06 0.08 0.1 0.12 0.14
6

FIG. 13. The doping dependence®f, Ag, \. The solid line is
atJ, =0.1J, the dashed line is the result in the single layer case. The

By introducing an additional bosonic RVB order parameter j,qqt is the doping dependence &% at differentd,'s: solid line,

AS = X (bip,bio-y), (39

and the Bogoliubov transformation

Bile = 2 Omiolis]) UnidVimke = Vmic¥inico) (39
mk

J, =0.10J; dashed lineJ, =0.11J, and dotted lineJ, =0.12].

1w A\ E
2—5:5N§}——cmhéiﬁ. (47)

mk Emk 2

Figure 13 shows the results obtained by the self-consistent
equations as functions of doping concentratisalid lineg

with k=%, the mean-field spinon Hamiltonian can be diago-at J, =0.1], while the values ofA® and X in the single layer
nalized in the holon condensed phase in a procedure similgfase are plotted by the dashed lines for comparison, which

to Sec. Il as given in the Appendix. We find

1
Omi(1,1) = E[Sgr@m)k]'wmo(i), (40)

(41)

11
Umk= SOM&m) 5(%_ 1)1 (42)

mk

and the spinon energy spectrum

Emk= \“"}\2 - |§mklzv (43
in which
kJ, A3
Enk= Sgr(§m)<|§m| + %) . (44)

In the above g, and w,,(i) are the solution of Eq(18), as

the counterparts of,,, and wy,(i,l), respectively, in the

only change slightly with the introduction of the interlayer
couplingJ, =0.1J.

In the inset of Fig. 13, the doping dependenceAdf is
shown at varioud  's: J, =0.10J, 0.11J, and 0.13. We note
thatAS is comparable with the interlayer pairing at half-
filling, e.g., 0.765 versus 1.157 even thouhh=0.1J is quite
small. This may be attributed to the fact that the in-plane
spin-spin correlation lengtly is very large at half-filling,
which diverges at zero temperature. As the consequence, spin
mismatches between the two layers will involve a large re-
gion determined by, costing a big energy. This effectively
enhances the interlayer AF correlations and thus the inter-
layer RVB pairingAs .

Away from half-filling, as shown in Sec. Il, the in-plane
spin-spin correlation length decreases monotonically with
the hole concentration, which results in the reduction of the
inflated interlayer AF correlations. Due to the competitive
nature betweer® and A5 (one spin cannot be part of two
RVB pairs at the same timewith the decrease af, AS will
diminish much faster thaas, as shown in the main panel of
Fig. 13 as well as the inset for differedt’s.

single layer case. Finally, the self-consistent equations of the

RVB order parameters and the Lagrangian multipNeare
given by

1 E
|AS|2 - _E gmgmk COthB mk

, 45
ANJIE Eng 2 49
1 S k E
Ai - _ ﬁz gr(ém) fmk coth Bzmk' (46)
mk mk

A. Spinon spectrum: Bonding and antibonding states

According to Eqs(43) and(44), we find that with a finite
A3, the original spinon spectrui,, in the single-layer case
is split into two branches, a bonding stdg,. and an anti-
bonding stateée,, .

The DOS of the spinon spectrum at half-filling is shown
in the inset of Fig. 14. Até=0, &, reduces to¢,=
—-JAS(cosg.a+cosqya). The ground state still has an AFLRO
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03 : ' = ' With the same procedure as in Sec. Il C, we can objgin
S and y; at zero temperature straightforwardly as follows:
025t 2 |8=0 .
8=0.125 = 1
g / Xo(Qu0)= o X Con(QUL = Sgriném kK]
z 02y Q 0 02040608 1 | mn kk’
5 = 2
. )\ _g Ik’
g 015 i X (ﬂ_].) 5((,0_Emk_ Em’k’)1
8 EmiEmrie
o o1t (51)
0.05} | i { ;
E } s E Q w)= 3_2 2 Crnmr (Q)[1 + sgM&mém KK ]
I L \ | lT(kk,
0 m
0 0.5 2 X
E/J )\ - g kg !
X <& - 1) 8= Epy—Epr).
FIG. 14. The DOS of spinons at=0.125 in the bhilayer case. EmiEnmir
The solid line is for the bonding state, the dashed line for the anti- (52)

bonding state, and the dotted line denotes the single layer case for
comparison. The inset shows the bilayer case at half filling: the According to Sec. Il C 3C,1(Qar)=1/N&m such that
solid curve is for the odd channel and the dashed curve is for the

4 g
even channel. Xa(Qap, ) = 2 21K S = 2B, (53
8N4 E2,

such thath =max(|&,[)=(2JA%+J, AT /2). The DOS of the

bonding states is the same as the single-layer case-&d, Y N+ Enidmk

while the antibonding states open a gap =(&jp) Xe(Qar, @) = ﬁ%( E 1)
=2\JAS\J, AS ~0.60J at J, =0.1] as shown by the dashed mk A EmiEm

curve in the inset of Fig. 14. This gap is approximately the X 8@ = Epi= Emi)- (54)

same as the gap in the dynamic spin susceptibility in th
even channelsee belowas observed by neutron scattering, contributed by a pair of spinon excitations both from the

which is about 70 meV in magnitudé&?2’ ) . ) : : .
The main panel of Fig. 14 shows the DOS of the spinonbondlng or antibonding states, Whij{(Qar, ®) is contrib-

spectrum ats=0.125 andJ, =0.1J in the superconducting uted by a pair of spinon excitations, one from the bonding

: ; : ) ate and the other from the antibonding state. Compared to
phase. Compared to the spinon spectrum in the single Iayfq. (25), one can see thay!(Que) is very similar to

case with the Hofstadter-like structure illustrated by dotted—, in the single-|
lines in Fig. 14, there are bilayer splittings between theX’ (Qar, @) in the single- ayer case.
We present the numerical results at=0.1 and &

branches of the bondindgsolid lines and antibonding S . ) .
(dashed linesstates, given by, —E,.. Becausel,AS is =0.125 in Fig. 1%a) and =0 in the inset for comparison.

much smaller tham, the splitting is most visible at the low- The solid curve represents the odd mode while the dashed
est energy level wherg, is the closest ta,, as shown in the CUTve is for the even mode. From the main panel of Fig.

figure. In the following, we study how this bilayer splitting 19(@&, One sees that the single resonancelike peak in the
effect is manifested in the dynamic spin susceptibility. single-layer case is replaced by a double-peak structure cor-
responding to the lowest bonding and antibonding states, re-

B. Dynamic spin susceptibility spectively. In contrast, in the even channel, there is only one
peak whose center is just in the middle of the double peaks
in the odd channel. We also calculate the local spin suscep-
tibility by integrating over the in-plane wave vect®,
which is given in Fig. 18). Two figures look quite similar.
The doping dependences of the energies of these peaks
X'1(Q,q.), ] = Xa(Q,w)sirf(q, /12) + x2(Q,w)co(q, /2), are plotted in Fig. 16, where the closed squares mark the
(48) double peaks in the odd channel and the open squares de-
scribe the peak in the even channel. One finds that the dop-
where x, . is the imaginary part of the spin susceptibility in ing dependences for the three peaks are very differenti As
the channels with odd and even symmetries, respectivelyends to zero, the lowest peak in the odd channel behaves
obtained from the retarded versions of the Matsubara Greenlike the resonancelike peak and reduces to the gapless spin
functions defined by wave mode at half-filling, while the peak at a higher energy
Xalio]i7) = — (T LS5 (7) Szz(T)][%Zl(o) B %22(0)]% (49) Iln.ltghoi fisr?anll]; channel moves to high energy and reaches
At last, we consider the effect of the holon fluctuations in
Xe(i,; 1) = =(TLS1(7D) + S2(DI[S1(0) + S5(0)]). (50)  the bilayer case by using the same method introduced in Sec.

“The above expressions clearly show tRAQ r, w) is solely

In the bilayer case, the imaginary part of the spin suscep!
tibility x"[(Q,q,),w] depends not only on in-plane wave
vector Q, but also on thec-axis wave vectoq, . It can be
shown that
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FIG. 17. nge(QAF,w) with incorporating the in-plane holon
fluctuations, simulated in the same way as in Fig. 11. The odd
mode: solid curve; the even mode: dashed curve.

I, and the results are plotted in Fig. 17, in which the solid
curve is in the odd channel while the dashed curve is in the
even channel. However, we point out that the interlayer cou-
pling should be even more sensitive to the in-plane charge
density fluctuations because the nonlocal phase factor in-
volved in AS [see Eq.(A7) in the Appendiy, which is not
considered in Fig. 17. Generally speaking, the in-plane flux
fluctuations due to the charge fluctuations will strongly frus-
trate the interlayer coupling. Thus, in the bilayer system, the
former should be suppressed more, as compared to the
single-layer case, by the interlayer coupling. More studies

FIG. 15. (a) Dynamic spin susceptibility in the bilayer system at ajong this line will be conducted in the future.

Qar and 6=0.125. The solid line is for the odd channel and the

dashed line is for the even channel. The inset is for the half-filling V. CONCLUSIONS AND DISCUSSIONS

case.(b) The local spin susceptibility. The solid curve is for the odd

channel, and the dashed curve is for the even channel.
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FIG. 16. The energies of the peaks shown in Figalas func-

In this paper, we have studied the spin dynamics in the
superconducting state of a doped Mott insulator, which is
described by the phase string model. In this model, the spin
degrees of freedom are characterized by the bosonic RVB
mean-field state, which can continuously evolve into the
AFLRO state in the zero-doping limit, where the correct spin
wave excitations are recovered.

Our study has systematically shown how the low-lying
spin-wave excitations at half-filling are reshaped into non-
propagating modes in the superconducting phase by the mo-
tion of doped holes, via the phase string effect. We have
found that the resonancelike peak near the AF wave vectors
in the superconducting phase has its dominant spectral
weight, at small doping, originated from that of the AFLRO
at half-filling. That is, with the opening up a spin gap at finite
doping, the low-lying spectral weight, including that of the
condensed spinons, is pushed upward to a finite characteris-
tic energy of the resonancelike peak, which is linearly pro-
portional to the doping concentration at small doping. We
have analyzed the momentum broadening of the resonance-
like peak, which decides a characteristic spin-spin correlation

tions of doping. Closed squares: the double peaks in the odd chatength, inversely proportional to the square root of doping
nel; open squares: the peak in the even channel. Inset: the differené@ncentration, or the average hole-hole distance.
between the peak in the even channel and the lower energy one in Our results have also clearly illustrated that the high-

the odd channel.

energy part of the dynamic spin susceptibility near the Bril-
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louin zone boundary remains essentially the same at halfspond to it, as discussed in Ref. 28. As a matter of fact, such
filling and at small doping, with the high-energy spin-wave a response will result in a loose confinement of spinons to
signature still present in the superconducting phase. It reallow only theS=integer types of spin excitations. We have
flects that fact that the local and high-energy AF correlationsconsidered the effect oH, within the RPA and ladder-
within the length scale of the average hole-hole distancegiagram approximations and found that the results presented
have not been drastically changed by the motion of the holesy this work are not changed essentially, due to the fact that
This is in sharp contrast to the prediction based on a Fermite interactions introduced by, are of logarithmic type and
liquid-like theory, where the Fermi energy will serve as theyne gpinons excitations are localized in space in the super-

natural high-energy cutoff in the spin susceptibility f“nCtiO”'conducting phase. Due to the length of the paper, we shall

Oyr theory_suggests tha‘g one must cqmbme both the IOV"f)resent these results in a separate paper. Lastly, we remark
lying and high-energy spin excitations in order to correctly

. e that the superconducting phase is not stable in the phase
gggre;tségnd the nature of the spin dynamics in the fiigh- string model when the doping concentration is very low
The fluctuational effects beyond the mean-field theory(<0'04) where the spin ordered phase will persist, with the

have also been examined. In the phase string model, tHdoped holes being localized, which have been discussed in
characteristic fluctuations will come from the density fluc- Ref- 24 recently.

tuation of holons, which result in the local fluctuations of

fluxes attached to holons but seen by spinons. The influence ACKNOWLEDGMENTS

of such fluctuational effect on the spin degrees of freedom
has been found to generally cause the broadening of the resp-
nancelike peak in energy space, making the emergence q.fh
some low-lying weight below the resonancelike peak. Thisth
type of fluctuation is intrinsic and is believed to be important
for the single-layer systems like the LSCO compound. In )
particular, we have found that the spin-spin correlatior/ T ENDIX: BOS?EE:;\L/ABYI\QEA’\:(-FE}S THEORY FOR
lengths of these low-lying modes are generally longer than SYS
the “norm” one discussed in the mean-field theory. As a con- |n the following, we generalize the bosonic RVB mean-
sequence, the incommensurability of the spin dynamics &eld theory for the single-layer ca$eo a bilayer system as
low energies will show up, which is an intrinsic effect of the described by the generalizédl model (37).

phase string model but is usually not visible when the width  \We start with the phase string decomposition for the
of each peak is too broad in momentum space, as in theingle-layer casé with explicitly introducing a layer indek

We acknowledge helpful discussions with G. Aeppli, W. J.
Buyers, Z. C. Gu, B. Keimer, T. Li, X. L. Qi, and Y. Zhou.
is work was partially supported by the grants of NSFC,
e Grant No. 104008 and SRFDP from MOE of China.

“norm” mode at the resonancelike peak. for each layerl=1,2):
We have further investigated the interlayer effect on the .
spin dynamics by considering a bilayer system. At half- Ciiy = hiby €10 ° (A1)

filling, the spin excitation spectrum remains the same in the o string _ . !
odd channel as the single-layer one at low energy, while avheree®is " tracks the in-plane phase string effect, defined
gap is opened up in the even channel, with the magnitudgy

consistent with the experiment. Then we have shown a sys- 1

tematic evolution of the spin excitations, in both odd and @ﬁtjf‘”g: (P2 - oDy, (A2)
even channels, with doping. In the superconducting phase, 2

the effect of the interlayer coupling is most important for the,yity

low-lying resonancelike peak ne@,r. A prediction for the

odd channel is that there will be a second peak with a smaller Pr = 0i(i)(2 an]bloz - 1>, (A3)
amplitude emerging at a higher energy, lying between the j#i a

main resonancelike peak in the odd channel and the peak in

the even channel, ne&,c. However, both this second peak and
in the odd channel and the peak in the even channel will be o= g(inh Ad
sensitive to the fluctuationsetweenthe two layers, which il Eal ()N (A4)

are not included in our mean-field treatment. _ _ )
Finally, we point out that in the present approach, our The exchange term in the phase string formulation reads
main efforts have been focused on the effective Hamiltonian _ J o J ) R
Hs, which describes the spinon degrees of freedom in the — H§™'=—>3 (AF )TAS -2 (A7 )TAS |,
phase string model. The charge degrees of freedom are de- 26 20 '
scribed by a holon Hamiltoniartd,, in the phase string (A5)
model, which is not considered explicitly as the holons are ) )
simply assumed to be Bose condensed in the supercondud¥here the in-plane RVB pair order parameter
ing phase, and two degrees of freedom are thus decoupled in ~s ioAl
this sense; but due to the mutual topological gauge fields in ijl = e 11551 6 Dji -7 (A6)
the phase string model, the condensed holons can feel an 7
excitation from the spinon degrees of freedom and do reand the interlayer RVB pair order parameter
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Aﬁi = gi(2) @ll (DIZ)b i160i2—g- (A7) Unko (1) = Umi@mie (1), Ui (i) = 0migwmis(i,1)

o (A15)
In the single-layer case, the hopping term contributes to an
additional feedback effetton the spin degrees of freedom, with
besides the phase string effect; but it does not qualitatively
and quantitatively change the main results of the spin dy- u -2 =1, (A16)
namics. Similarly, the interlayer hopping term is not consid-
ered here due to the same reason. and o, (i,1) satisfies

In the superconducting state, due to the holon

condensatiof? the in-plane gauge fieIAih- | can be treated as

" : : . JAg x 0 oAl
describing a uniform flufcf. Eq. (14)]. On the other hand, Emi@mi(i,1) = ey E Omico(J,1) e
the phase difference betwedf, and®?, for two layers may J=NNG)
be considered as a constant in the holon condensation case, J LAS
i.e., ®,;-d;,=¢, so that it can be gauged away. Then it is 5 @i S0,17). (A17)
natural to introduce the following RVB order parameters:
AS= <2 e—ierir}ylb" by > (Ag)  The spinon spectrum is given by
Emic= VA2 = & (A18)

SL = <2 bilobi2—0'> . (Ag)

and

The superexchange term including the interlayer coupling is

thus reduced to Unk= ,%(EL + 1), (A19)

JAS h mk
= 2 bllo' jl= (J' IGAij l LE bllo’ I20’+ H.c.

e 2 (ij)ol 7~
+ const +x(2 bl by, - 2(1 - 5)N>. (A10) omic=S9Mémid \ 5| £ 1) (A20)

m
ilo

To diagonalize this Hamiltonian, we introduce the general-According to Eq.(18), one has
ized Bogoliubov transformation

. 1 .
bite = 2 i) Unik¥mko = VmnicVinieo) . (ALD) Omiglis1) = ,_E[Sgr@m)k]'wmg(l), (A21)
mk N
wherek==. By requiring
t + kJ AS
s Ymkol = EmkYmko s Ymkod = 7 EmkYmko+ mk= m )
[Hs Yol =E and[Hg, Y] =~ E Emic= SOén)| [éql + (A22)
(A12)
we find where&,, and o,,(i) are the solutions of EJq18).
n Finally, the self-consistent equations of the RVB order
_ = 28s * 1) aioAl parameters and the Lagrangian multipllecan be obtained
(N = EmidUnmig (i, 1) 2 j:%(i)vmk_ﬂ(l,l)e ) as follows:
Ui (1), (A13) INEE 2 mémk o o, PEmk (A23)
ANJI Emk 2
JA . . h
N+ Endumio(i,) = === 2 Unieo(j,DE
L~ o 1S k E
2 ]:NN(I) Ai: _2 gr(gm) gmk COthﬂ mk, (A24)
JJ_AL * 2N mk Emk 2
5 Umic S0, (A14)
wherel’ denotes the layer different from We obtain the 2-6= iz coth—= BEmk (A25)
solution 2N’ Emk 2
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