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With an eye toward the interpretation of so-called “cosmological” experiments performed on the low-
temperature phases of3He, in which regions of the superfluid are destroyed by local heating with neutron
radiation, we have studied the behavior of a Fermi gas subjected to uniform variations of an attractive BCS
interaction parameterl. In 3He, the quenches induced by the rapid cooling of the “hot spots” back through the
transition may lead to the formation of vortex loops via the Kibble-Zurek mechanism. A consideration of the
free energy available in the quenched region for the production of such vortices reveals that the Kibble-Zurek
scaling law gives at best a lower bound on the defect spacing. Further, for quenches that fall far outside the
Ginzburg-Landau regime, the dynamics on the pair subspace, as initiated by quantum fluctuations, tends
irreversibly to a self-driven steady state with a gapD`=eCse2/Ns0dl−1d−1/2. In weak coupling, this is only half
the BCS gap, the extra energy being taken up by the residual collective motion of the pairs.
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I. INTRODUCTION

It is widely believed that the vacuum immediately follow-
ing the Big Bang proceeded from a state of high symmetry
through a series of symmetry-breaking phase transitions dur-
ing the subsequent expansion and cooling of the universe.1

For sufficiently rapid expansion, the spatial extent of any
order parameters emerging at such transitions would have
been limited by the causal horizon. On this basis, it was
proposed that the early universe spontaneously acquired a
domain structure characterized by independently directed or-
der parameters in each domain. The frustrated dynamics re-
sulting from such a structure may have left behind measur-
able traces in the form of topological defects.

If we imagine, with Kibble,2 the simplest case corre-
sponding to the breaking of a globalUs1d gauge symmetry, it
is then clear, provided we treat the fields classically, that
these domains adopt uncorrelatedUs1d orientations. At junc-
tions between three or more such domains, it will sometimes
occur that theUs1d phase of the order parameter winds by
2p about a filamentary region corresponding to the
symmetry-unbroken state. In light of the topological con-
straint of quantized circulation in the new phase, this circum-
stance may be viewed as the “trapping” of a vortex core by
the frustrated dynamics. According to this picture, the initial
domain structure resolves itself very quickly into a tangle of
vortex loops moving in the background of the new phase.

As suggested by Zurek,3 one can test this idea by looking
for topological defects following controlled quenches in con-
densed matter systems like4He, which exhibits exactly the
kind of Us1d symmetry breaking invoked by Kibble. Al-
though subsequent tests4 in this system failed to show any
vortex formation associated with uniform pressure quenches
through the lambda-line, the basic idea continues to motivate
new experiments.5–7

So far, only one testable, quantitative output of the Kibble
hypothesis has emerged, namely, the expected defect spacing
d after the quench. Zurek estimates3 that this should scale as
d,j0stQ/t0d1/4, wherej0 and t0 are the equilibrium corre-

lation length and relaxation time, respectively, andtQ
−1 is a

constant quench rate. The argument rests on the generic phe-
nomenon known as “critical slowing down” near second-
order phase transitions, which for finite-time quenches will
leave the system with a “frozen” value of the order parameter
correlation length as it crosses the critical line.

In this connection, we are interested principally in the
interpretation of a certain group of experiments5,6 on low-
temperature3He, in which samples of the superfluid A and B
phases are bombarded with neutrons. These trigger the pro-
duction of localized “hot spots” with effective temperatures
s102–103dTc. The detailed dynamical evolution of these hot
spots is a matter of some debate;8–11 however, it is generally
agreed that they cool quite rapidly on the scale of the quasi-
particle scattering rate. This leads to quench processes very
like those envisioned by Kibble, and it has been argued10 that
the induced vorticity, unambiguously observed in Ref. 6, and
inferred on calorimetric grounds in Ref. 5, is directly associ-
ated with the Kibble-Zurek mechanism.

There are, however, a number of fundamental difficulties
with this interpretation. The validity of the time-dependent
Ginzburg-LandausTDGLd equation, upon which the Zurek
estimates are based, requires that the quasiparticle inelastic
scattering ratesgreatlyd exceed the gap frequencyD /", a
condition which in3He holds only over a rather narrow strip
of width ,10−5kBTc about the critical curve. As such, the
dynamics in this region consists in the motion of an order
parameter that is strongly overdamped by frequent quasipar-
ticle collisions. The Ruutu experiments6 are performed at
temperatures much lower thanTc, and the corresponding
quenches pass far outside this region; one may therefore ex-
pect the order parameter to obey a collisionless analog of
these equations in which the long-wavelength components,
damped out nearTc, make a substantial contribution. Further-
more, the TDGL equations explicitly fail to account for the
conservation of energy, which is likely to impose rather
strong constraints on the dynamics regardless of proximity to
the transition.

In the following, we attempt to build a coherent physical
picture of these quench phenomena by transplanting the rel-
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evant physics to the more tractable degenerate Fermi gas. In
Sec. II we study the thermodynamics of a finite-time quench
from the normal to the superfluid state of such a gas, with
special attention given to the energy available for defect for-
mation. We find that in order for the Kibble-Zurek scaling
relation to hold, the conditions of the quench must be such
that the interior of the quenched region remains thermally
isolated from its environment during the entire process, and
further that the system must cool all the way back to the
ambient temperature. Both of these assumptions are ques-
tionable in the case of neutron-irradiated3He. Section III
derives the zero-temperature dynamics that ensue from the
sudden variation of the interaction parameterl from zero to
some finitesattractived value. For a uniform quench, quan-
tum fluctuations in the off-diagonal field avalanche into
large, semiclassical oscillations of the order parameter,
which tend at long times to a steady state. This state, while
not the BCS ground state, is nevertheless characterized by a
finite gapD`=eCse2/Ns0dl−1d−1/2, with eC the usual BCS cut-
offparameter; in weak coupling this is half the BCS gap. The
gap is smaller than that of BCS because of residual collective
motion of the pairs, which prevents full condensation.

II. THERMODYNAMICS OF A SHALLOW QUENCH

The two most prominent3He quench scenarios proposed
thus far,9,10 while differing in their approach to the question
of energy transport away from a hot spot, have in common
the notion that the region left behind must evolve in effective
isolation from its immediate environment. Such a feature is a
requirement of the condition that the choice of order param-
eter inside the cooling hot spot be made independently of
that in the surrounding liquid. The spontaneous generation of
vortices, if indeed it occurs, must therefore draw its energy
from within the quenched region itself. In this section we
identify the source of this energy and assess its consequences
for the Kibble-Zurek scenario by a consideration of the rel-
evant thermodynamic functions.

In the standard, and experimentally usually most relevant,
analysis12 of Fermi gas-superfluid transitions, thermal con-
tact with a reservoir is tacitly assumed. Thus, if the tempera-
ture is made to drop very slowly from the normal state
through the transition, the superfluid expels any condensa-
tion energy spontaneously. We will take a different route;
first, by treating the gas as thermally isolated, and second, by
tuning instead of temperature, the attractive interaction pa-
rameter itself.

At first sight this might seem a poor model for the
quenching of a3He hot spot. However, upon closer inspec-
tion there is a close analogy between these two apparently
distinct paths to the superfluid state. This consists of a kind
of “duality” between the matrix elements that are tuned, and
the phase space available for the scattering of Cooper pairs
which causes the instability. Within a given hot spot, the
distribution of excited quasiparticles acts to block this phase
space, which opens up very rapidly upon cooling back to the
ambient temperature. Thus, we surmise that the dynamical
situation would be little changed if instead the matrix ele-
ments themselves were varied suddenly at a given tempera-

ture. Regardless, excepting the speed with which the quench
is performed, one would not expect the physics to depend
very much on the details of the approach to the critical line.

We proceed by considering a degenerate Fermi gas sub-
ject to the BCS reduced Hamiltonian:

H = o
k,a

S"2k2

2m
− mDĉk,a

† ĉk,a − lo
k,k8

ĉk↑
† ĉk↓

† ĉk8↓ĉk8↑. s1d

We have kept only those terms associated with Cooper pair
scattering, and neglect scattering away from or into the pair
subspace. Thus, left to itself the system can never approach a
true equilibrium; however, at ultralow temperatures far from
the transition, the relaxation time scale is so long that this is
a reasonable first approximation. As discussed above, we
shall assume that the couplingl can be tuned, as by a
Feshbach resonance;13 this opens up the very real possibility
for experimental investigation of quench phenomena along
the lines of the present discussion.

Let us first explore the situation for slow variation of
the interaction parameter close to the transition. By taking
the entropy S=SsT,ld and tracing the adiabat through
the transition line fi.e., following the curve for which
dS= us]S/]TduldT+ us]S/]lduTdl=0g, we can determinedT as
a function ofdl. For this purpose, consider a close-up on a
portion of the phase diagram in theT-l plane fFig. 1sadg,
whereTcsld=.31EFe−2p2"2/mkFl sRef. 14d separates the nor-
mal and superfluid phases. For the normal Fermi gas in equi-
librium, the entropyS~T for the low temperatures of inter-

FIG. 1. Adiabatic vs finite-time quenches.sad For adiabatic pas-
sage through the transition curve, the slope of the isentrope jumps
discontinuously from zero at critical coupling. Thus, the superfluid
emerges at a steadily increasing temperature.sbd For a finite-time
passage, the system falls out of equilibrium upon crossing the first
thick dashed line; this delays the slope discontinuity until the sys-
tem intersects the dashed line on the other side.
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est; thus, for quasistatic variation ofl, the normal state
remains at constant temperature. Upon crossing the critical
line, however, the resulting superfluid must emerge with a
slightly elevated temperatureT+dT to accommodate the
condensation energy. The possibility arises that this energy
will heat the nascent superfluid back into the normal state.
However, this is not a problem as long as the temperature
increase dT for a small variation dl is smaller than
s]Tc/]lddl, which indeed proves to be the case.

Beginning with the combinatorial expression for the en-
tropy of a Fermi system

S= − 2kBo
k

ffk ln fk + s1 − fkdlns1 − fkdg

and changing the sums to integrals, we obtain, after some
algebraic manipulation and integration by parts, the follow-
ing expression forS in the superconducting state:

S= 2kB
2Ns0dTE

−`

`

deFsbDd2 f

E
− 2b lns1 − fdG , s2d

whereNs0d is the Fermi surface density of states,D is the
gap, andf =1/sebE+1d with E=Îe2+D2.

Following the mathematical treatment of superconducting
thermodynamics developed by Mühlschlegel,15 we define the
functions

asxd = −
2

p
E

−`

`

du lns1 + e−pÎu2+xd + xSln gÎx −
1

2
D −

1

3
,

s3d

a8sxd =E
−`

`

de
f

E
+ ln gÎx, s4d

where the dimensionless variablesu;se /pdb and x
;sD2/p2db2, and g< .57. . . is the Euler-Mascheroni con-
stant. Thus defined,asxd and a8sxd are regular functions
from which the logarithmic singularities have been explicitly
subtracted. A number of properties of these functions are
tabulated in Ref. 15; for our purposes, we need only that
as0d=a8s0d=0 anda9s0d= 7

8zs3d.
The entropy, as expressed in terms of these functions,

becomes

S= 2p2kB
2Ns0dTH1 + 3fxa8sxd − asxdg −

3

2
xJ . s5d

For a small incrementdl beyond the critical curve, the pro-
portion dT/dTC by which the superfluid must heat itself to
compensate the condensation energy is simply

x = lim
l→lc

+
FS− U ]S

]Tc
U

T
DYSU ]S

]T
U

l

DG .

The relevant derivatives are, from Eq.s5d,

]S

]Tc
= 2p2kB

2Ns0dTFxa9sxd −
1

2
G ]x

]Tc

and

]S

]T
=

S

T
+ 2p2kB

2Ns0dTFxa9sxd −
1

2
G ]x

]T
.

In the T→Tc limit, D2<f8p2kB
2 /7zs3dgTc

2s1−T/Tcd, so
that

]x

]Tc
→ 8

7zs3dkB
2Tc

,

]x

]T
→ −

8

7zs3dkB
2Tc

,

and we obtain

x =
1

1 +
7zs3d

12

< .588, s6d

Thus, upon traversing the critical line, the superfluid must
choose a “compromise temperature”T* =T+xs]T/]lddl, in-
termediate between the new value ofTc and the temperature
T of the normal liquid from which it started.

Now let us imaginefFig. 1sbdg a slight generalization of
the preceding argument in whichl is made to vary at a
constant finite ratetQ

−1 through the transition, and define
the associated “quench parameter” or “reduced coupling”
e=dl /lc= t /tQ, wheredl=lc−l is the deviation from criti-
cal coupling. If, following Zurek, we allow that nearTc, the
correlation length and velocity assume the scaling forms
j=j0e−n andu=u0e1−n, and thus thatt=t0e−1, then the sys-
tem “freezes out” at a timet̂=tst̂d=Ît0tQ before emerging
finally at the same temperature a distancedlst̂d from lc on
the other side. This new state presumably contains a number
of trapped vortex loops.

From this picture, it is clear that the energy required to
create these loops must derive from the free energy differ-
ence between the superfluid states atT andT* . This energy is
evidently an overestimate predicated on the total freeze-out
of thermodynamic variables at −t̂. In reality, we might expect
T to increase somewhat during this process; however, the
condition of total freeze-out does allow us at least to put an
upper bound on the defect density.

The relevant changes in the free energy density nearTc
can be calculated from the Hellmann-Feynman theorem for
the thermodynamic potentialV

U ]V

]l
U

T,V,m
=K ]H

]l
L = − o

kk8

ukvkuk8vk8s1 − 2fkds1 − 2fk8d,

whereuk ,vk are the usual BCS coefficients arising from the
average. Since the gapD=lokukvks1−2fkd, we have
]V /]l=−D2/l2, or

Vs − Vn = −E
0

l

dl8
D2

l82 , s7d

which is valid for any thermodynamic potential.12 For con-
venience we choose the Helmholtz free energy at constant
temperature, again using the near-Tc expression forD:
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DFs−n

V
>

2p2

7zs3d
Ns0dkB

2fTcslc + dld − Tg2. s8d

If we start from T in the normal state, then clearlyTcslc

+dld=T+s]Tc/]lddl.
The energy available to vortex production is thusDE

=DFs−nsT*d−DFs−nsTd, or

DE

V
= aNs0dskBTd2Ulog

kBT

.31EF
U4

ê2, s9d

where lc has been expressed as a function of the starting
temperatureT, a=xs2−xdf2p2/7zs3dg is a numerical prefac-
tor ,1.9, andê is the value ofe at freeze-out. An estimate of
the initial defect density requires a comparison of Eq.s9d
with the energy density of a particular vortex distribution, to
which there are two principal contributions: that associated
with the suppression ofD in the core, and the kinetic energy
of superflow about it. Only the latter can be expected to
contribute substantially for distances somewhat larger than
the core dimension. For a vortex loop of radiusd, this is
eL,2p2rss"2/m2dd logsd/ad, with a the dimension of the
core. The energy density of a vortex line per volumed3 is
just eL /d3, which gives a lower bound on the Zurek length
scaled of the form

d ù
"

m
S2p2rSsTd

aNs0d D1/2 Îlog d/a

kBTUlog
kBT

.31EF
U2S tQ

t0
D1/2

. s10d

The superfluid density near the transition grows linearly as
rSsTd=2rf1−T/Tcslc+dldg, or, expressed in terms of more
appropriate variables,

rSse,Td = 2r
e

e + UlogS kBT

.31EF
DU−1 ,

where e! ulogskBT/ .31EFdu−1. The combination s" /md
3fr /Ns0dg1/2,"vF /kBT; hence, up to logarithmic factors
and dimensionless constants of order 1, we have

d ù
"vF

kBT
S tQ

t0
D1/4

. s11d

For quenches in3He near the transition curvesi.e., for
T,Tcd, this is of course the coherence lengthj0. This im-
plies that for such quenches the Kibble-Zurek scaling law
gives a lower bound to the defect spacing; it requiress1d that
the quenched region does not expel any energy to its sur-
roundings ands2d that the temperature of the liquid just after
the quench drops all the way back to its original temperature
snamely, the ambient temperature of the liquidd. Both of
these assumptions are dubious, and their violation tends
strongly to decrease the free energy available to vortices.
Further, for quenches induced in the superfluid at much
lower temperatures, the prefactor will be somewhat larger
than j0, tending once again to suppress vortex production.
We are led to conclude that the Kibble mechanism depends
rather precariously on the availability of free energy in the

quenched region, requiring perfect isolation and cooling, and
reasonable proximity to the critical line.

III. QUENCHING AND ORDER PARAMETER DYNAMICS

In this section, we develop a theory for the order param-
eter dynamics following a “deep,” uniform quench through
the superfluid transition in a Fermi gas. It is hoped that such
considerations can shed light on quenching phenomena in-
duced in3He in the context of so-called cosmological experi-
ments. These involve the rapid decrease in effective tempera-
ture of a small region of the superfluid that has been heated
back into the normal state by neutron irradiation and subse-
quently cools through the diffusionsanomalous or
otherwise10,11d of quasiparticles. By ‘deep,’ we mean that the
reduced temperaturedT/Tc calculated at freeze-outs±t̂d,
which for the estimated quench times in3He yields values in
the range from 1 to 10−2, is much larger than that corre-
sponding to the range over which the relaxation time scale is
comparable to or greater the “gap frequency”D /", a condi-
tion necessary to the validity of the TDGL description; as
mentioned in Sec. I, this is given bydT/Tc,10−5.

From the above description, it is clear that the neutron-
induced quenches in3He occur under highly inhomogeneous
conditions; however, we are concerned here with the sponta-
neous emergence of a length scale which in this context has
been predicted to be much smaller than the dimension of the
quench itself.10 Within the TDGL picture, upon which the
prevailing theory of these quench phenomena is founded,
collisions between thermal quasiparticles maintain local
equilibrium and are therefore the dominant time scale. The
motion of the order parameter is overdamped, killing contri-
butions from the longest length scales; by contrast, in the
deep quench scenario," /D is the largest time scale in the
problem, and the long-wavelength fluctuations which freeze
out in the Kibble-Zurek picture may here play a vital role.
Therefore, in what follows we focus exclusively on these
long-wavelength coherent dynamics. In particular, we show
that the Fermi gas is unstable to even the smallest long-
wavelength fluctuations, and that the ensuing dynamics leads
to a steady state with a finite value of the gap.

A. Pseudospin representation, and initial conditions

Visualization of the order parameter dynamics following
the sudden turn-on of a pairing potential is perhaps the chief
difficulty of our problem. This can be mitigated to a large
extent by making use of an analogy, noticed by Anderson,16

between a BCS system on the pair subspace and a one-
dimensional lattice of spins. That is, for each distinctk we
can identify operators asszskd;1−nk−n−k, s+skd;ck

†c−k
† ,

ands−skd;c−kck, wheres±skd= 1
2fsxskd± isyskdg, and thesi

are the 232 Pauli matrices. It is easily verified that these
obey the SUs2d commutator algebra fsiskd ,s jsk8dg
= idk,k8ei jl slskd. Expressed in terms of pseudospin degrees of
freedom, the BCS reduced Hamiltonians1d assumes the form

H = − o
k

ekszskd − l o
kÞk8

s−skds+sk8d. s12d

The normal stateuNl corresponds in this description to a
domain wall centered at the Fermi energy, with occupied
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states below the Fermi surface pointing along the negative-z
direction. This is clearly degenerate with respect to global
rotations about thez axis; for l.0 the BCS ground state
breaks this degeneracy and lowers the total energy by rotat-
ing the spins into the new effective field, and interpolating
smoothly between the up and down orientations at ±eC.

We begin by writing the appropriate operator equations of
motion, which are obtained from the usual Bloch relations
i"ṡiskd=fsiskd ,Hg. These yield

ṡzskd =
− l

" HF o
k8Þk

sxsk8dGsyskd + syskdF o
k8Þk

sxsk8dG
− F o

k8Þk

sysk8dGsxskd − sxskdF o
k8Þk

sysk8dGJ ,

ṡxskd =
ek

"
syskd −

l

"HszskdF o
k8Þk

sysk8dG
+ F o

k8Þk

sysk8dGszskdJ , s13d

ṡyskd =
− ek

"
sxskd +

l

"HszskdF o
k8Þk

sxsk8dG
+ F o

k8Þk

sxsk8dGszskdJ
It remains to consider the rather delicate question of ini-

tial conditions. A complete quantum-mechanical description
requires taking the expectation value of the above operator
equations with respect toucst=0+dl, the total wave function
immediately following the variation ofl from zero to some
finite value att=0. In the sudden approximation this is just
the normal state, implying that the off-diagonal effective
field ~koksxskdl vanishes, and thus that the pseudospins per-
sist indefinitely in their original configuration. Since we
know the normal state to be unstable forl.0, this cannot
possibly be correct.

The difficulty stems from the global gauge symmetry of
the normal state, and can be removed by taking as our initial
wave function, instead of the normal state itself, its projec-
tion onto the Hilbert space appropriate to a particular direc-
tion of symmetry breaking. In spirit, this is not unlike the
problem of a single particle in the ground state of an external
potential that has been suddenly varied; the first step towards
the solution of its subsequent dynamics is the projection of
this initial state onto a basis appropriate to the new potential.
In much the same way, we generate the dynamics for a
“branch” of the many-body wave function along a given di-
rection of symmetry-breakingf. As we shall see, this makes
sense when the number of pairsN participating in the wave
function is large, so that each directionf represents a qua-
sidistinct Hilbert space, and the various branches therefore
evolve independently. Note in particular that negative eigen-
values of the off-diagonal field operator along thef direction
belong properly to thef+p sector, so that only positive
expectation values contribute tof.

To illustrate the general idea, let us consider the full mani-
fold of states, which can be generated by operating on the
normal state “domain wall” with appropriately defined spin-
1/2 rotation operators. Let us fix thex̂, ŷ axes and denote the
various possible symmetry-breaking directions byf, the de-
viation from x̂. In terms of these conventions, our states be-
come

uCsuk,fkdl = p
k

expF−
i

2
fkszskdGexpF−

i

2
uksyskdGuNl.

s14d

Expanding the exponentials insy, and then applying the
z-rotation operators yields

=p
k
Hcos

uk

2
− eifk sin

uk

2
fisyskdgJuNl, s15d

where we have used the fact that the wave function is de-
fined only up to an overall phase. This coincides with
the usual BCS wave function whenfk=f for all k and
uk=tan−1sD /ekd, provided D is chosen self-consistently to
satisfy D=lkCufoks̃xskdguCl, wheres̃xskd is the x operator
rotated byf.

To a good approximation, we may restrict ourselves
to states with particle-holesp-hd symmetry, so thatusekd
=−us−ekd and fsekd=−fs−ekd for all k. The direction
of symmetry breaking for a state of the forms14d obey-
ing this symmetry is thusf=s1/2Ndokfk. The inner product
between any such stateuCsfdl and a rotated version of
itself uCsf8dl, is easily calculated askCsfd uCsf8dl
=kCsfd uexpf−si /2ddfokszskdg uCsfdl=cos2Nsdf /2d, which
for largeN is practically zero. This is becausethe two states
in question can be connected only by the simultaneous rota-
tion of a macroscopic number of spins. The statement that
states of differentf belong to distinct Hilbert spaces should
therefore be interpreted in this sense.

For concreteness, let us consider thef=0 direction, and
single out the stateuCxl= uCfuk=sgnsekdp /2 ,fk=0gl. A
complete basis on the pair subspace forf=0 can be con-
structed by acting onuCxl with operators of the form
expfsi /2dpsysk8dg, as long as we make sure to rotate p-h
symmetric partners together. Let us denote such a p-h sym-
metric rotation byp̂k; the projection of the normal state onto
the f=0 Hilbert space may therefore be expanded as

P̂f=0uNl = sa2N + o
uku,kF

a2N−2
k p̂k + ¯ duCxl,

where, in each sum, we must be careful not to repeat indices.
In this basis, all the coefficients equal 1/2N. The subscripts
label the associated eigenvalues of the off-diagonal operator
oksxskd, which are 2m for m=1,3, . . . ,N whenN is odd, and
m=0,2, . . . ,N for N even. Thus, the probability for a non-
zero, positive eigenvalue follows a distribution of the form
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Psmd =
1

2N−1

N!

sN/2 + m/2d ! sN/2 − m/2d!
,

yielding a small but finite expectation value for the off-
diagonal field,lN−1/2 along this direction.

States of the forms14d do not possess the full gauge sym-
metry of the Hamiltonian, and thus do not conserve particle
number. As mentioned above, our starting state, and hence
the many-body state that evolves from it, must preserve
this symmetry. It can in fact be restored at any time by
taking the superpositions1/2pde0

2pdfe−i/2fokszskducSsuk,fkdl,
where f=s1/2Ndokfk, which is nothing but the usual
prescription16 for “projecting out” the N-particle subspace
from a BCS wave function.

It is perhaps appropriate at this point to summarize the
above discussion by appealing to a simpler, more intuitive
picture of the quantum fluctuations. This picture gives some
insight into the nature of these fluctuations without involving
us in any mathematical complications. For a spin-1/2 system
in an up or down eigenstate ofsz, there is a component in the
x-y plane associated with zero-point precession about thez
axis. Thus, for a large group of such spins, the collective
zero-point motion consists of a superposition of all possible
configurations of these “extra”x-y components, the bulk of
which largely cancel out. There will, however, be a small
minority that make an enormous contribution, so that there is
a nonzero expectation value along any given unit vector at
the origin of thex-y plane sufficient to drive the system away
from the normal state in that direction.

B. Semiclassical equations of motion

Having discussed the nature of quantum fluctuations in
the immediate aftermath of the quench, let us now consider
the evolution of each branch of the total wave function, aris-
ing from equations of motion for the associated expectation
values of the pseudospin operators. Such equations constitute
a semiclassical description of the pseudospins, expressing
the self-consistent precession of each operator’s “axis of
quantization.”

All of the wave functions of interest consist of products of
factors, one for eachk; this has the advantage that expecta-
tion values of operator products break into products of ex-
pectation values, provided the operators themselves are func-
tions of distinctk. When the number of pairsN is large, we
may identify terms as

lim
N→`

l o
kÞk8

ksxskdl = lo
k

ksxsk,tdl = D,

and okÞk8ksyskdl→0, where again the direction of
symmetry-breaking points by convention along thex axis. In
all subsequent equations, we denote expectation values of the
pseudospin operators by12ksil;si. The semiclassical equa-
tions of motion are thussdropping factors of"d,

d

dt
sxsk,td = 2eksysk,td,

d

dt
sysk,td = 2Dszsk,td − 2eksxsk,td, s16d

d

dt
szsk,td = − 2Dsysk,td,

and the assumption of p-h symmetry takes the form

sxs− ek,td = sxsek,td,

sys− ek,td = − sysek,td,

szs− ek,td = − szsek,td.

As a consequence, the direction of symmetry-breakingf is a
constant of the motion, in harmony with our earlier quantum-
mechanical reasoning. Hence, the dynamics may be inter-
preted as evolving along independent semiclassical trajecto-
ries.

We note in passing that the equations of motions16d may
also be derived in terms of the interaction of each pseudospin
with a local effective field, writtensd/dtdssk,td=ssk,td
3Hkstd, where the effective field takes the form

Hkstd = 2ekẑ+ 2Dx̂.

Since we are interested here only in the gap dynamics, it
proves convenient to collapse the three equations of motion
into one forsx alone. Taking an extra time derivative of thex
component, and substituting into this the equation for they
component, gives

d2

dt2
sxsk,td + 4ek

2sxsk,td = 4ekDszsk,td. s17d

To eliminatesz from this equation, we must combine thex
andz components of Eq.s16d and find a way to expresssz in
terms ofsx. Combining, we have

d

dt
ekszsk,td + D

d

dt
sxsk,td = 0. s18d

Integrating with respect to timesand doing thex part by
partsd we obtain

szsk,td = szsk,0d +
1

ek
Et

dt8sxsk,t8dḊ −
D

ek
sxsk,td. s19d

Noting thatszsk,0d= 1
2sgnsekd, we obtain the desired equation

upon substitution into Eq.s19d:

F d2

dt2
+ 4sek

2 + D2dGsxsk,td = 4DF1

2
ueku +Et

dt8sxsk,t8dḊG .

s20d

The left-hand side is of course the harmonic oscillator equa-
tion, but with a time-dependent frequency. The right-hand
side consists of a driving term proportional toD representing
feedback from the aggregate of pseudospins in the mean-
field. Equations20d, together with the self-consistency rela-
tion
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D = lo
k

sxsk,td, s21d

gives us the complete order parameter dynamics at the semi-
classical level.

There are two conserved quantities of note; in terms of the
effective field, the total energy on the pair subspace becomes

E = − 2o
k
Fekszsk,td + l o

k8Þk

sxsk,tdsxsk8,tdG
= − 2o

k
Fekszsk,td +

1

2
Dsxsk,tdG . s22d

This means in particular that

d

dt
E = − 2o

k
Fek

d

dt
sz +

1

2
D

d

dt
sx +

1

2
sx

d

dt
DG .

Applying the equations of motion we find

d

dt
E = − o

k
Fsxsk,td

d

dt
D − D

d

dt
sxsk,tdG = 0.

Hence, the semiclassical trajectories following from Eqs.
s20d and s21d are energy conserving. The equations of mo-
tion also conserve mean particle number, which may be seen
by summing overk in the last equation of Eqs.s16d.

C. Early- and long-time behavior of solutions

Consider again a particular branch of the Fermi gas wave
function. The normal ground state corresponds, on the semi-
classical level, to a domain wall with all spins pointing along
their local effective fields. The system would persist in this
state were it not for the presence of the small quantum fluc-
tuation at t=0, which drives the precession of each pseu-
dospin at its natural frequencyek about a now slightly per-
turbed effective field. It is not difficult to see, on essentially
geometric grounds, that such precession will tend to rein-
force the initial fluctuation, leading to the growth of the off-
diagonal field.

This can be demonstrated explicitly by solving the linear-
ized version of Eq.s20d, which is valid at very early times:

S d2

dt2
+ 4ek

2Dsxsk,td = 2uekufDQF + Dstdg.

The key point here is thatDQF, the initial quantum fluctua-
tion in the gap, is determined at a level independent of the
semiclassical description; as such, it is not subject to the
self-consistency condition and therefore constitutes an “ex-
ternal” input to the semiclassical equations.Dstd is
the self-consistent contribution defined byDstd=loksxsk,td,
and thus must satisfy the initial conditionsDs0d=0, Ḋs0d
=0. Absent any singular terms in these linearized equa-
tions, their solutions are regular functions of time
and may be expanded aboutt=0 as sxsk,td=on=0

` gnskdtn;
hence,Dstd=lon=0fokgnskdgtn. The initial conditions imply
g0skd ,g1skd=0. Substitution into the linearized equations re-
veals a hierarchy of relations forn.2 of the form

gnskd =
2ueku

nsn − 1do
k8

gn−2sk8d −
4ek

2

nsn − 1d
gn−2skd s23d

and

g2skd = uekuDQF, s24d

obtained by matching powers oft. These determine allgnskd
uniquely, and automatically satisfy the self-consistency con-
straint. The first thing to note about these relations is that all
odd n coefficients vanish sinceg1=0, and second, that the
resulting gap varies asDstd=lDQFNs0deC

2 t2+Ost4d. This
clearly demonstrates the instability of the pseudospin system
to even the smallestsin this case quantumd fluctuations.

We can expect this growth to carry the system very
quickly into the semiclassical regime, whereDQF/D!1.
However, we must bear in mind that within this level of
description,D is built up from a large number of individual
pseudospin oscillations spanning a quasicontinuous range of
frequencies. This suggests that at long times, even in the
absence of dissipation, interference between these various
contributions will lead to a nonequilibrium steady state char-
acterized by a static gapD`.

To establish the existence of such steady-state solutions,
we must go back to the basic equations of motions16d, and
ask ourselves whether, by replacingD everywhere in these
equations with a static valueD`.0, it is possible to find
self-consistent solutions in thet→` limit. Making this sub-
stitution, and carrying through the stepss17d–s19d as before,
we arrive at an equation of motion forsxsk,td of the form

F d2

dt2
+ 4sek

2 + D`
2dGsxsk,td = 2D`ueku, s25d

with general solutions

sxsk,td =
1
2uekuD`

ek
2 + D`

2 f1 − hksins2Îek
2 + D`

2 t + dkdg. s26d

The dk are arbitrary phase factors; since we are interested
only in times t@D`

−1,eC
−1, they are irrelevant to the actual

value of the gap, and are henceforth dropped. The dimen-
sionless parametersh depend on the precise details of the
pseusospin trajectory over the entire course of its dynamical
history. Despite our ignorance of these parameters, physi-
cally there is little reason to believe that the trajectories of
two nearly degenerate pseudospins will differ appreciably if
the system approaches a steady state. Hence we shall assume
that the parametershk form a continuous function ofek.

Substitution of these solutions into the self-consistency
equations21d leads, when expressed in terms of appropriate
energy integrals, to the gap equation

1

Ns0dl
=

1

2
lnf1 + seC/D`d2g +E

D`

ÎeC
2+D`

2 dE

E
hsEdsins2Etd.

s27d

As shown in the Appendix, forhsEd continuous the integral
term toends to zero ast→`; thus, a self-consistent solution
emerges precisely in the long time limit of interest for a
value of the static gap

QUENCH DYNAMICS OF A SUPERFLUID FERMI GAS PHYSICAL REVIEW B71, 134514s2005d

134514-7



D` = eCse
2

Ns0dl − 1d−1/2. s28d

In weak coupling this iseCe−1/fNs0dlg, or half the equilibrium
result. Physically, this solution represents a collective state of
motion, in which the pseudospins precess individually on
fixed cones about static local fields. The energy locked up in
this motion cannot be expelled in the absence of collisions,
and the steady-state gap is thus somewhat less than the value
it would have in equilibrium under otherwise identical con-
ditions. It should be noted that although this state is only
partially condensed and exhibits phase fluctuations, it con-
tains no vortices.

The structure of the gap equations27d suggests certain
trends in the dynamical behavior, which it may be useful to
enumerate. First, for weak coupling the gap oscillations are
dominated by the cutoffeC, and for strong coupling by the
gap parameter itself; second, the approach to the steady state
is faster for deepersi.e., largerld quenches; and third, the
ultimate steady state to which the system tends does not
depend on the size of the initial fluctuation. All of these
trends, in addition to the actual values of the steady-state
gap, have been checked by numerical integration, as de-
scribed in the following section.

D. Numerical integration of the semiclassical equations

The preceding sections address both initial conditions and
the physical state at asymptotically long times, but not the
intermediate behavior. In the absence of exact analytical ex-
pressions, we must resort to numerical integration of the
semiclassical equations of motions20d ands21d. These have
been performed over a wide range of interaction parameters
and initial fluctuation sizes. A typical output is shown in Fig.
2, corresponding to a valueNs0dl=5. To start things off, we
introduce a tiny off-diagonal field and evolve away from the
normal state for a single time step; all subsequent evolution
occurs self-consistently using the off-diagonal field produced
by the pseudospins themselves in the previous time step.

The basic shape of the curve shown in in Fig. 2 appears to
be generic; there are a large number of high-frequency oscil-
lations and a slow decay to a constant value. All of the trends
noted in the previous section have been observed; particu-
larly interesting is the fact that the long-time value of the gap
corresponds rather well with Eq.s28d despite variation in the
initial fluctuation size over seven orders of magnitude. The
early t2 behavior can also be seen, which shows that the
early- and long-time behaviors derived above are indeed
connected by exact solutions of Eq.s20d.

E. Related work

In the course of this work, the authors became aware of
the related unpublished calculations of Shumenko17 and
more recently of Barankov, Levitov, and SpivaksSBLSd18

regarding quench-induced dynamics in a BCS system. There
are substantial qualitative differences between our own find-
ings and those of SBLS, despite the fact that both proceed
from identical semiclassical equations of motions16d. To
clarify the situation, we offer here an interpretation of their
results and an analysis of the discrepancies.

Looking again at Eqs.s20d and s21d, we notice that they
describe what is essentially a system of independent oscilla-
tors subject to a universal driving force, which force just
happens to be determined self-consistently by the oscillators
themselves. For a linear, damped oscillator driven harmoni-
cally and off resonance, the long-time solutions consist of
pure oscillations at the frequency of the driving force. This
suggests by analogy that the semiclassical equations of mo-
tion can exhibit solutions in which each pseudospin follows
the motion of the gap, subject of course to the constraint of
overall self-consistency. Such solutions would be separable
in energy and time:

sxsk,td = AkDstd, s29d

which is precisely theansatzproposed by SBLS.
Substitution into Eqs.s20d and s21d yields immediately

d2

dt2
D + S4ek

2 −
2ueku
Ak

DD + 2D3 = 0 s30d

and

1 − lo
k

Ak = 0. s31d

If we chooseAk such that 4ek
2−2ueku /Ak=C, a constant inde-

pendent ofk, then each pseudospin obeys the same equation
of motion. Thus, theansatz can indeed be made self-

consistent. Multiplying the first of these equations byḊ and
integrating overt, we obtain

Ḋ2 + sD2 − D0
2d2 = G2,

where G; Ḋs0d, D0;Ds0d, and we have chosenC=−2D0
2,

which yields for the self-consistency equation

1 − lo
k

ueku
2e2 + D0

2 = 0.

FIG. 2. Gap dynamics for 1000 pairs following a weak fluctua-
tion s,10−7d for a coupling parameterNs0dl=5. The curve appears
black because of the high frequency of the oscillations on this scale.
However, the envelope is clearly discernible and shows that the
amplitude of the oscillations decreases monotonically during the
approach to the asymptotic steady state. The inset depicts a close-up
of the curve, making the gap oscillations visible.
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As discussed by SBLS, these equations clearly demon-
strate the existence of a class of periodic solutionsDstd.
While consistent mathematically, physically they leave out
an equally important class of solutions characterized by the
response of individual pseudospins at their natural frequen-
cies, and the concomitant dephasing of the pseudospin ori-
entations with time. The nonlinearity of the semiclassical
equations of motion, and the absence of substantial damping
in the zero-temperature limit, both indicate that these solu-
tions cannot be safely ignored. It is in fact extremely plau-
sible on physical grounds, and clear from the analytical and
numerical results in previous sections, that dephasing will
affect rather strongly both the frequency of the gap oscilla-
tions and the nature of their long-time behavior, except per-
haps for special choices of initial conditions. This consider-
ation acquires even greater urgency in the limit of weak
coupling D /eC!1, in which case the majority of pseu-
dospins precess very far from resonance. In such a circum-
stance it is very difficult to see how the full pseudospin sys-
tem, when subjected to a sudden perturbation of the type
described in Sec. III A, could respond with such a high de-
gree of synchronicity. Indeed, the early-time solutions in Sec.
III indicate otherwise, and appear to be inconsistent with
those of SBLS.

Thus, it is reasonable to locate the essential differences
between our own formulation of the quenching problem, and
that of SBLS, in their respective approaches to the question
of initial conditions. The former theory invokes latent quan-
tum fluctuations of the normal state which, in the wake of the
quench, provide a “kick” within each symmetry-broken Hil-
bert space. The sudden appearance of a finite, if minute,
off-diagonal field will of necessity introduce some small de-
gree of dephasing, leading inevitably to a nonequilibrium
steady state as described above. SBLS appear to assume the
complete absence of dephasing from the start. In the full
space of possible initial conditions, this represents a rather
special class, which leads us to conclude that the associated
periodic behavior of the gap, while intriguing, is unlikely to
be observed. Finally, there is no discussion by SBLS of the
apparent breaking of gauge symmetry within their theory
immediately after the quench. The quench by itself cannot
break this symmetry; instead, the system evolves simulta-
neously along each direction of symmetry breaking in such a
manner that the overall gauge symmetry remains unbroken.

IV. CONCLUSIONS

We have studied the behavior of a Fermi gas following
the sudden turn-on of an attractive BCS interaction param-
eterl, as a model for analogous processes that are thought to
occur in the low-temperature superfluid phases of3He upon
exposure to neutron radiation. For values of the parameters
appropriate to3He near the transition line, a study of the free
energy available for vortex generation in the wake of a
quench reveals that the Kibble-Zurek scaling law gives, at
best, a lower bound on the defect spacing. That is, the
Kibble-Zurek law assumes that a maximum quantity of free
energy is available for vortices, a condition requiring that the
quenched region cools all the way back to its original tem-

perature and does not expel any condensation energy to its
surroundings. Both of these requirements are questionable.

Further, the reduced temperature at freeze-out far exceeds
that at which the quasiparticle inelastic scattering ratetqp

−1

becomes comparable to the gap frequencyD /", a condition
which should be well satisfied in the Ginzburg-Landau re-
gime on which the Kibble-Zurek scenario is based. This sug-
gests that the dynamics following such a quench must be
treated, to a first approximation, in the absence of collisions.
Under these conditions, for a sudden turn-on of the interac-
tion parameter, we demonstrate an absolute instability to uni-
form quantum fluctuations already present in the normal
state. These subsequently amplify into large, semiclassical
oscillations along each direction of symmetry breaking con-
tained in the full wave function; even in the absence of col-
lisions, these oscillations eventually settle to a self-driven
steady state with gapD`=eCse2/Ns0dl−1d−1/2. In weak cou-
pling, this is half the BCS result, due to the persistence of
incoherent collective motion of the pairs.
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APPENDIX

In this Appendix we consider the asymptotic behavior of
the integral

Istd =E
A

B

dE
hsEd

E
sin2Et,

with A=D` , B=eÎeC
2 +D`

2, appearing in the gap equation
s27d. h is a dimensionless function ofE; without loss of
generality we may take it to vary with a dimensionless pa-
rameterx= E

EC
where EC is an arbitrary constant with the

dimensions of energy. Sinceh is by assumption a continuous
function ofx on the intervalf A

EC
, A

EC
g, it can, according to the

Weierstrass theorem, be approximated to any desired degree
of accuracy by a polynomial of finite degree. That is, for
agiven error allowancee.0, there exist polynomials
PMsxd=Sn=0

M anx
n, such that

uPMsxd − hsxdu , e.

Substituting such a polynomial forh, the integral in ques-
tion can be approximated by a weighted sum of integralsIn
of the form

Instd =
1

EC
nE

A

B

dEEn−1 sin 2Et sA1d
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with n integer. Making the variable substitutionz=2Et, we
find Instd= 1

s2ECtdne2At
2Btdzzn−1 sinz. There are two relevant

cases:n.0, andn=0. In the first case, integration by parts
yields

Instd =
1

2EC
nt

fBn−1 cos2Bt − An−1 cos 2Atg + Ost−2d.

For n=0, we haveI0std=Sis2Btd−Sis2Atd, where Sisxd is
the sine integral. These are known to have the asymptotic
property that Sisxd→ p

2 uniformly as x→`; hence we find
that Instd→0 as t→` for all nù0. Since the polynomials
used to approximatehsE/ECd were of finite order, the result-
ing approximate expression forIstd will vanish in the long
time limit. Further, since this result holds for any choice ofe,
we conclude thatIstd itself must vanish in the limit.
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