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Quench dynamics of a superfluid Fermi gas
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With an eye toward the interpretation of so-called “cosmological” experiments performed on the low-
temperature phases OHe, in which regions of the superfluid are destroyed by local heating with neutron
radiation, we have studied the behavior of a Fermi gas subjected to uniform variations of an attractive BCS
interaction parametex. In *He, the quenches induced by the rapid cooling of the “hot spots” back through the
transition may lead to the formation of vortex loops via the Kibble-Zurek mechanism. A consideration of the
free energy available in the quenched region for the production of such vortices reveals that the Kibble-Zurek
scaling law gives at best a lower bound on the defect spacing. Further, for quenches that fall far outside the
Ginzburg-Landau regime, the dynamics on the pair subspace, as initiated by quantum fluctuations, tends
irreversibly to a self-driven steady state with a gap=ec(e2MO*~1)~12 |n weak coupling, this is only half
the BCS gap, the extra energy being taken up by the residual collective motion of the pairs.

DOI: 10.1103/PhysRevB.71.134514 PACS nuni®er67.57.-z, 03.75.Ss

[. INTRODUCTION lation length and relaxation time, respectively, a@ﬁ is a
constant quench rate. The argument rests on the generic phe-
It is widely believed that the vacuum immediately follow- nomenon known as “critical slowing down” near second-
ing the Big Bang proceeded from a state of high symmetryorder phase transitions, which for finite-time quenches will
through a series of symmetry-breaking phase transitions dufeave the system with a “frozen” value of the order parameter
ing the subsequent expansion and cooling of the universecorrelation length as it crosses the critical line.
For sufficiently rapid expansion, the spatial extent of any In this connection, we are interested principally in the
order parameters emerging at such transitions would havigterpretation of a certain group of experimérton low-
been limited by the causal horizon. On this basis, it wagemperaturéHe, in which samples of the superfluid A and B
proposed that the early universe spontaneously acquired Ry1ases are bombarded with neutrons. These trigger the pro-
domain structure characterized by independently directed ouction of localized “hot spots” with effective temperatures
der parameters in each domain. The frustrated dynamics 1610°—10)T.. The detailed dynamical evolution of these hot

sulting from such a structure may have left behind measurSPO!S IS & matter of some debdté, however, it is generally
able traces in the form of topological defects. agreed that they cool quite rapidly on the scale of the quasi-

If we imagine, with Kibble? the simplest case corre- particle scattering rate. This leads to quench processes very

: : ~like those envisioned by Kibble, and it has been argtitreat
sponding to the breaking of a globa(1) gauge symmetry, it fhe induced vorticity, unambiguously observed in Ref. 6, and

'i then clea}r, pr(cj)wded we trleat the _flelds.classmglly, tha nferred on calorimetric grounds in Ref. 5, is directly associ-
these domains adopt uncorrelate(l) orientations. At junc- o1 with the Kibble-Zurek mechanism.

tions between three or more such domains, it will sometimes  There are, however, a number of fundamental difficulties
occur that theU(1) phase of the order parameter winds by ith this interpretation. The validity of the time-dependent
2w about a filamentary region corresponding to theGinzburg-LandaUTDGL) equation, upon which the Zurek
symmetry-unbroken state. In light of the topological con-estimates are based, requires that the quasiparticle inelastic
straint of quantized circulation in the new phase, this circumscattering ratg(greatly exceed the gap frequency/#, a
stance may be viewed as the “trapping” of a vortex core bysondition which in*He holds only over a rather narrow strip
the frustrated dynamics. According to this picture, the initialof width ~10°kgT, about the critical curve. As such, the
domain structure resolves itself very quickly into a tangle ofdynamics in this region consists in the motion of an order
vortex loops moving in the background of the new phase. parameter that is strongly overdamped by frequent quasipar-
As suggested by Zurekone can test this idea by looking ticle collisions. The Ruutu experimeftare performed at
for topological defects following controlled quenches in con-temperatures much lower thaR, and the corresponding
densed matter systems likele, which exhibits exactly the quenches pass far outside this region; one may therefore ex-
kind of U(1) symmetry breaking invoked by Kibble. Al- pect the order parameter to obey a collisionless analog of
though subsequent te&tm this system failed to show any these equations in which the long-wavelength components,
vortex formation associated with uniform pressure quenchedamped out near,, make a substantial contribution. Further-
through the lambda-line, the basic idea continues to motivatenore, the TDGL equations explicitly fail to account for the
new experiments;’ conservation of energy, which is likely to impose rather
So far, only one testable, quantitative output of the Kibblestrong constraints on the dynamics regardless of proximity to
hypothesis has emerged, namely, the expected defect spacithg transition.
d after the quench. Zurek estimatebat this should scale as In the following, we attempt to build a coherent physical
d~ & (7ol T0)M4, where &, and 7, are the equilibrium corre- picture of these quench phenomena by transplanting the rel-
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evant physics to the more tractable degenerate Fermi gas. In AT

Sec. Il we study the thermodynamics of a finite-time quench T~
from the normal to the superfluid state of such a gas, with
special attention given to the energy available for defect for-
mation. We find that in order for the Kibble-Zurek scaling
relation to hold, the conditions of the quench must be such
that the interior of the quenched region remains thermally
isolated from its environment during the entire process, and
further that the system must cool all the way back to the
ambient temperature. Both of these assumptions are ques-
tionable in the case of neutron-irradiatdde. Section IlI
derives the zero-temperature dynamics that ensue from the A
sudden variation of the interaction parametdrom zero to
some finite(attractive value. For a uniform quench, quan-
tum fluctuations in the off-diagonal field avalanche into
large, semiclassical oscillations of the order parameter,
which tend at long times to a steady state. This state, while
not the BCS ground state, is nevertheless characterized by a
finite gapA..= ec(€?NO*-1)712 with e the usual BCS cut-
offparameter; in weak coupling this is half the BCS gap. The
gap is smaller than that of BCS because of residual collective
motion of the pairs, which prevents full condensation.

FIG. 1. Adiabatic vs finite-time quenchesg) For adiabatic pas-
sage through the transition curve, the slope of the isentrope jumps
Il. THERMODYNAMICS OF A SHALLOW QUENCH discontinuously from zero at critical coupling. Thus, the superfluid
emerges at a steadily increasing temperat(beFor a finite-time

10 (i e .. . . " passage, the system falls out of equilibrium upon crossing the first
thus far*?while differing in their approach to the question thick dashed line; this delays the slope discontinuity until the sys-

of energy transport aWay from a. hot spot, have !n CommOQem intersects the dashed line on the other side.
the notion that the region left behind must evolve in effective

isolation from its immediate environment. Such a feature is a . i .
requirement of the condition that the choice of order param{uré- Regardless, excepting the speed with which the quench

eter inside the cooling hot spot be made independently o Performed, one would not expect the physics to depend

that in the surrounding liquid. The spontaneous generation of€Y much on the details of the approach to the critical line.
vortices, if indeed it occurs, must therefore draw its energy Ve Proceed by considering a degenerate Fermi gas sub-

from within the quenched region itself. In this section weJ€Ct t0 the BCS reduced Hamiltonian:

The two most prominentHe quench scenarios proposed

identify the source of this energy and assess its consequences 2242
for the Kibble-Zurek scenario by a consideration of the rel- H=> (— - ,u) (‘:E'aék,a— A éLéLék/iék,T. (1)
evant thermodynamic functions. a \ 2M kK’

In the standard, and experimentally usually most relevant, , , ,
analysid? of Fermi gas-superfluid transitions, thermal con-We have kept only those terms associated with Cooper pair

tact with a reservoir is tacitly assumed. Thus, if the tempera-scattering’ and neglect scattering away from or into the pair
ture is made to drop very slowly from the normal stateSubspace. Thus, left to itself the system can never approach a
through the transition, the superfiuid expels any condensdfe equilibrium; however, at ultralow temperatures far from
tion energy spontaneously. We will take a different route-the transition, the relaxation time scale is so long that this is
first, by treating the gas as thermally isolated, and second, b/ reasonable first approximation. As discussed above, we

tuning instead of temperature, the attractive interaction pashall assume that the coupling can be tuned, as by a
rameter itself. Feshbach resonanégthis opens up the very real possibility

At first sight this might seem a poor model for the for e_xperimental investiggtion o_f guench phenomena along
quenching of @He hot spot. However, upon closer inspec- the lines of the present discussion. -
tion there is a close analogy between these two apparentl% Let us first explore the situation for slow variation of
distinct paths to the superfluid state. This consists of a kindN€ interaction parameter close to the transition. By taking
of “duality” between the matrix elements that are tuned, andne entropy S=S(T,A) and tracing the adiabat through
the phase space available for the scattering of Cooper paifge transition line[i.e., following the curve for which
which causes the instability. Within a given hot spot, thedS= (9S/dT)[\&T+ (9S/N)[roh=0], we can determinéT as
distribution of excited quasiparticles acts to block this phasé function of \. For this purpose, consider a close-up on a
space, which opens up very rapidly upon cooling back to th@oortion of the phase diagram in tfe\ plane [Fig. 1(@)],
ambient temperature. Thus, we surmise that the dynamicthereTc(A):.31EFe‘2”2ﬁ /mkeN (Ref. 14 separates the nor-
situation would be little changed if instead the matrix ele-mal and superfluid phases. For the normal Fermi gas in equi-
ments themselves were varied suddenly at a given temperéibrium, the entropySe T for the low temperatures of inter-
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est; thus, for quasistatic variation of, the normal state S S 5 , 1| ox
remains at constant temperature. Upon crossing the critical Pranb 27°kgN(0) T| xa'(x) - 5|t

line, however, the resulting superfluid must emerge with a

slightly elevated temperaturg&+ ST to accommodate the In the T— T, limit, A2~[87k3/7{(3)]TA(1-T/T,), so
condensation energy. The possibility arises that this energghat

will heat the nascent superfluid back into the normal state.

However, this is not a problem as long as the temperature X _ _ 8

increase ST for a small variation O\ is smaller than aT. 7§(3)k§TC’

(aT¢/IN) 6N, which indeed proves to be the case.

Beginning with the combinatorial expression for the en- IX 8

tropy of a Fermi system T W

B'c
S=-2kg >, [y In fi+ (1= f)In(L - )] and we obtain
k

and changing the sums to integrals, we obtain, after some Xz; ~ 588, (6)

algebraic manipulation and integration by parts, the follow- 1+ 743)

ing expression fofS in the superconducting state: 12

Thus, upon traversing the critical line, the superfluid must

choose a “compromise temperatuf@’=T+ y(JT/J\) N, in-

termediate between the new valueTefand the temperature

whereN(0) is the Fermi surface density of statés,is the T of the normal liquid from which it started.

gap, andf=1/(e’F+1) with E=\e?+A2, Now let us imagingFig. 1(b)] a slight generalization of
Following the mathematical treatment of superconductinghe preceding argument in whick is made to vary at a

thermodynamics developed by Mihlschletfalve define the constant finite rateq-('gl through the transition, and define

S=2kAN(0)T J ’ de[(ﬁA)Zé -2BIn(1 - f)] . (2

functions the associated “quench parameter” or “reduced coupling”
5 (= ‘ 1\ 1 €=0ON/\.=t/ 7o, wheresA=\.—\ is the deviation from criti-
ax) =- —f duln(1 +e‘”\’”2+x) +x<|n y\&_ _) -, cal coupling. If, following Zurek, we allow that ned, the

TJ 2) 3 correlation length and velocity assume the scaling forms

(3) &=ée " and uU=uge*™, and thus that-= rye ™!, then the sys-
tem “freezes out” at a timé=(f)= 77y before emerging

©f - finally at the same temperature a distadgt) from A\, on
a’'(x) =f de— +In yvX, (4) the other side. This new state presumably contains a number
- E of trapped vortex loops.
where the dimensionless variables=(e/m)8 and x From this picture, it is clear that the energy required to

= (A% 7B and y=.57... is the Euler-Mascheroni con- create these loops must d_erive from the* freg energy (_jiffer-
ence between the superfluid state3 andT . This energy is

stant. Thus defineda(x) and a’(x) are regular functions ) ! .
evidently an overestimate predicated on the total freeze-out

from which the logarithmic singularities have been explicitly fth d . iabl - i iah
subtracted. A number of properties of these functions ar@' (nermodynamic variables atn reality, we might expect

tabulated in Ref. 15; for our purposes, we need only tha to increase somewhat during this process; however, the
a(0)=a’(0)=0 andaﬁ(’o)_zg(s) ’ condition of total freeze-out does allow us at least to put an
= = =403).

. . upper bound on the defect density.

The entropy, as expressed in terms of these functions, g .

becomes The relevant changes in the free energy density figar
can be calculated from the Hellmann-Feynman theorem for

the thermodynamic potenti&

S= Zﬂ'zkéN(O)T{ 1+3xa’(x) —a(x)] - gx} (5)

Q) JH
For a small incremené\ beyond the critical curve, the pro- Mty < (9)\> - E UevicU vier (1= 201 (1 = 2fie)
portion 6T/ 6T by which the superfluid must heat itself to
compensate the condensation energy is simply whereuy, v, are the usual BCS coefficients arising from the
JS JS average. Since the gapjp=AZ.uw.(1-2f,), we have
x = lim {(— — )/( — )] Q1 IN=—A%/\2, or
Al AP aT |y X A2
The relevant derivatives are, from E), Q-0 = ‘J d)\'ﬁ, (7)
. 0
B ZﬁkéN(O)T{Xd'(X) = which is valid for any thermodynamic potentt&lFor con-
JTe 2 |dT, ;
venience we choose the Helmholtz free energy at constant
and temperature, again using the n@arexpression foA:
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AFg, 27 5
—>0 = ——N(0)K§[Tc(Ac + N) - T2 8
v =7 NOKITO+ ) -TP ®)
If we start from T in the normal state, then clearlij(A;
+ON)=T+(dTe/ IN) ON.
The energy available to vortex production is thag
=AF (T —AF¢(T), or

4

%MN(O)(kBT)Z kol | "2, (9)

31E

log
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guenched region, requiring perfect isolation and cooling, and
reasonable proximity to the critical line.

IIl. QUENCHING AND ORDER PARAMETER DYNAMICS

In this section, we develop a theory for the order param-
eter dynamics following a “deep,” uniform quench through
the superfluid transition in a Fermi gas. It is hoped that such
considerations can shed light on quenching phenomena in-
duced in®He in the context of so-called cosmological experi-
ments. These involve the rapid decrease in effective tempera-
ture of a small region of the superfluid that has been heated

where \; has been expressed as a function of the startinppack into the normal state by neutron irradiation and subse-

temperaturd, a=x(2-x)[272/7£(3)] is a numerical prefac-

qguently cools through the diffusion(anomalous or

tor ~1.9, ande is the value ofe at freeze-out. An estimate of otherwisé®') of quasiparticles. By ‘deep,’ we mean that the

the initial defect density requires a comparison of E).

reduced temperaturédT/T, calculated at freeze-outtl),

with the energy density of a particular vortex distribution, towhich for the estimated quench times®ide yields values in
which there are two principal contributions: that associatedhe range from 1 to 16, is much larger than that corre-
with the suppression al in the core, and the kinetic energy sponding to the range over which the relaxation time scale is
of superflow about it. Only the latter can be expected tocomparable to or greater the “gap frequendy'%, a condi-
contribute substantially for distances somewhat larger thafion necessary to the validity of the TDGL description; as

the core dimension. For a vortex loop of radidsthis is

€~ 2mpy(h?/mP)d log(d/a), with a the dimension of the

core. The energy density of a vortex line per voludteis

mentioned in Sec. I, this is given byT/T,~ 10>,
From the above description, it is clear that the neutron-
induced quenches itHe occur under highly inhomogeneous

just €. /d3, which gives a lower bound on the Zurek length conditions; however, we are concerned here with the sponta-

scaled of the form

gt <2ﬂ2ps(T)>1’2 Vlog d/a <E>1/2. a0
m\ aN(0) Tllo keT |2\ 7
81|99 31E,

neous emergence of a length scale which in this context has
been predicted to be much smaller than the dimension of the
quench itself:® Within the TDGL picture, upon which the
prevailing theory of these quench phenomena is founded,
collisions between thermal quasiparticles maintain local
equilibrium and are therefore the dominant time scale. The

The superfluid density near the transition grows linearly asnotion of the order parameter is overdamped, killing contri-
ps(T)=2p[1-T/T(Ac+6N)], or, expressed in terms of more butions from the longest length scales; by contrast, in the

appropriate variables,

€

)
I
(.31EF

where e<|log(kgT/.31E)[™>. The combination (%/m)

ps(€T)=2p 1

e+

X[pIN(0)]¥2~#ve/kgT; hence, up to logarithmic factors

and dimensionless constants of order 1, we have

1/4
d>@<3) . (11)
kBT ’To

For quenches ir’He near the transition curvé.e., for
T~T,), this is of course the coherence length This im-

gives a lower bound to the defect spacing; it requideghat

the quenched region does not expel any energy to its su

deep quench scenarié/A is the largest time scale in the
problem, and the long-wavelength fluctuations which freeze
out in the Kibble-Zurek picture may here play a vital role.
Therefore, in what follows we focus exclusively on these
long-wavelength coherent dynamics. In particular, we show
that the Fermi gas is unstable to even the smallest long-
wavelength fluctuations, and that the ensuing dynamics leads
to a steady state with a finite value of the gap.

A. Pseudospin representation, and initial conditions

Visualization of the order parameter dynamics following
the sudden turn-on of a pairing potential is perhaps the chief
difficulty of our problem. This can be mitigated to a large
extent by making use of an analogy, noticed by Andef$on,

plies that for such quenches the Kibble-Zurek scaling |av\p§tween a BCS system on the pair subspace and a one-

dimensional lattice of spins. That is, for each distikctve
gan identify operators as,(k)=1-n,-n, o.(k=clch,

— _1 .
roundings and2) that the temperature of the liquid just after @do-(K)=c_,c, wherea.(k) =3[oy(k) £ioy(k)], and theo;

(namely, the ambient temperature of the liquidoth of

obey the SU?2) commutator algebra[oi(k),o;(K")]

these assumptions are dubious, and their violation tendsid €j01(k). Expressed in terms of pseudospin degrees of
strongly to decrease the free energy available to vortice§teedom, the BCS reduced Hamiltoniel) assumes the form

Further, for quenches induced in the superfluid at much
lower temperatures, the prefactor will be somewhat larger
than &, tending once again to suppress vortex production.

H=-2 ok -\ o (Ko (K). (12
k k#k'

We are led to conclude that the Kibble mechanism dependshe normal statgN) corresponds in this description to a
rather precariously on the availability of free energy in thedomain wall centered at the Fermi energy, with occupied
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states below the Fermi surface pointing along the negative- To illustrate the general idea, let us consider the full mani-
direction. This is clearly degenerate with respect to globafold of states, which can be generated by operating on the
rotations about the axis; for A>0 the BCS ground state normal state “domain wall” with appropriately defined spin-
breaks this degeneracy and lowers the total energy by rotaf-/2 rotation operators. Let us fix tikey axes and denote the
ing the spins into the new effective field, and interpolatingvarious possible symmetry-breaking directionsdaythe de-
smoothly between the up and down orientations &t + viation fromX. In terms of these conventions, our states be-
We begin by writing the appropriate operator equations otcome
motion, which are obtained from the usual Bloch relations
ifioi(K)=[o;(k) ,H]. These yield

W (6 ) =11 exv[— i—¢krrz(k)]exp{— i—ﬁkoy(k)] IN).
. - )\ Kk 2 2
== {[ s ox(k'>]oy<k> ¥ ay<k>[ D ax(k'>]

K #k K #k (14)
- [ > ‘Ty(k')]‘fx(k)_‘fx(k)[ > ‘Ty(k')]}’ Expanding the exponentials imy, and then applying the
k' #k k' #k z-rotation operators yields
o= Loy -~ a0 3 i) % _ g sin
X 5 TN 48 02 y =]1 1 cos— - €%sin_Tio, (K] IN), (15)
K’ #k K 2 2
| 2 oK) ok L, (13)
K £k where we have used the fact that the wave function is de-

fined only up to an overall phase. This coincides with
B N the usual BCS wave function whety=¢ for all k and
('ry(|<):7€kgx(k)4rg oK) > oy (k') Hk:.tan‘l(A/ek), prgvidedA is choien sglf—consistently to
K £k satisfy A=\N(P|[Z,0(K)]|¥), where (k) is the x operator

rotated bye.
+ [ by ‘Tx(k')]‘fz(k)} To a good approximation, we may restrict ourselves
K'#k to states with particle-holép-h) symmetry, so thatd(e,)
It remains to consider the rather delicate question of ini=~6(-&) and ¢(e)=-¢(-¢) for all k. The direction
tial conditions. A complete quantum-mechanical descriptiorPf symmetry breaking for a state of the for(@4) obey-
requires taking the expectation value of the above operatdPg this symmetry is thug=(1/2N)Zy¢y. The inner product
equations with respect fg/{(t=0")), the total wave function between any such stafe(¢)) and a rotated version of
immediately following the variation ok from zero to some itself [¥(¢')), is easily calculated as(¥(¢)|¥(¢'))
finite value att=0. In the sudden approximation this is just =(¥(¢)|exg—(i/2)5¢Z,a,(K) 1| ¥(#))=cogN(5¢/2), which
the normal state, implying that the off-diagonal effective for largeN is practically zero. This is becausethe two states
field «(Z,0y(K)) vanishes, and thus that the pseudospins perin question can be connected only by the simultaneous rota-
sist indefinitely in their original configuration. Since we tion of a macroscopic number of spins. The statement that
know the normal state to be unstable for-0, this cannot states of differentp belong to distinct Hilbert spaces should
possibly be correct. therefore be interpreted in this sense.
The difficulty stems from the global gauge symmetry of For concreteness, let us consider 20 direction, and
the normal state, and can be removed by taking as our initisdingle out the statdW,)=|V[6,=sgn(e)m/2,$=0]). A
wave function, instead of the normal state itself, its projec-complete basis on the pair subspace ¢sr0 can be con-
tion onto the Hilbert space appropriate to a particular direcstructed by acting onW,) with operators of the form
tion of symmetry breaking. In spirit, this is not unlike the exd(i/2)7oy(k’)], as long as we make sure to rotate p-h
problem of a single particle in the ground state of an externasymmetric partners together. Let us denote such a p-h sym-
potential that has been suddenly varied; the first step towardsetric rotation bym,; the projection of the normal state onto
the solution of its subsequent dynamics is the projection ofhe ¢=0 Hilbert space may therefore be expanded as
this initial state onto a basis appropriate to the new potential.
In much the same way, we generate the dynamics for a N o
“branch” of the many-body wave function along a given di- Py N) = (g + 2 aypmet )Wy,
rection of symmetry-breaking. As we shall see, this makes <k
sense when the number of palsparticipating in the wave
function is large, so that each directighrepresents a qua- where, in each sum, we must be careful not to repeat indices.
sidistinct Hilbert space, and the various branches therefortn this basis, all the coefficients equal 1/Z'he subscripts
evolve independently. Note in particular that negative eigentabel the associated eigenvalues of the off-diagonal operator
values of the off-diagonal field operator along thelirection  =¢oy(k), which are Znfor m=1,3, ... N whenN is odd, and
belong properly to thep+m sector, so that only positive m=0,2,... N for N even. Thus, the probability for a non-
expectation values contribute th zero, positive eigenvalue follows a distribution of the form
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S !
2NL(N/2 +mv2) T (N2 —mv2)t’

d
P(m) = d—tsy(k,t) =2As,(k,t) — 2¢5,(k,1), (16)

yielding a small but finite expectation value for the off- d
diagonal field~\N~%2 along this direction. d_tSZ(k't) =-2As/(k1),
States of the forni14) do not possess the full gauge sym-
metry of the Hamiltonian, and thus do not conserve particleand the assumption of p-h symmetry takes the form
number. As mentioned above, our starting state, and hence

the many-body state that evolves from it, must preserve S €iot) = Sdet),
this symmetry. It can in fact be restored at any time by

taking the superpositiofl/2m) [37d e /26>2X| yig( 6y, ), Sy(= €0t) = —s5y(&0 1),
where ¢=(1/2N)Z, ¢y, which is nothing but the usual

prescriptiod® for “projecting out” the N-particle subspace S,(— g,t) = —S,(€,1).

from a BCS wave function.

It is perhaps appropriate at this point to summarize thd\S @ consequence, the direction of symmetry-brealdng a

above discussion by appealing to a simpler, more intuitiveeonstant of the motion, in harmony with our earlier quantum-

picture of the quantum fluctuations. This picture gives somc@e‘zhg‘r"c""I re;a_somnlg. H_er(ljce, th;" dynam!cls m_aylbe Inter-
insight into the nature of these fluctuations without involving preted as evolving along independent semiclassical trajecto-

us in any mathematical complications. For a spin-1/2 systeri®S:

in an up or down eigenstate of, there is a component in the | WE ngte'ln g?‘ss'”g tha; tﬁe equations Off motﬁr?ﬁ) maél .
x-y plane associated with zero-point precession aboutzthe 150 e derived in terms of the interaction ot each pseudospin

axis. Thus, for a large group of such spins, the collectiveith @ local effective field, written(d/dos(k,t)=s(k,t)
(1), where the effective field takes the form

zero-point motion consists of a superposition of all possible?< H

configurations of these “extraX-y components, the bulk of PR o

which largely cancel out. There will, however, be a small HW(t) = 262+ 2AX.

minority that make an enormous contribution, so that there is Since we are interested here only in the gap dynamics, it

a nonzero expectation value along any given unit vector aproves convenient to collapse the three equations of motion

the origin of thex-y plane sufficient to drive the system away into one fors, alone. Taking an extra time derivative of the

from the normal state in that direction. component, and substituting into this the equation forythe
component, gives

B. Semiclassical equations of motion d?
_— o —5sd(k D) + 4es(kt) = deds, (k). (17)

Having discussed the nature of quantum fluctuations in dt
the immediate aftermath of the quench, let us now considef.0 eliminates, from this equation, we must combine the
the evolution of each branch of the total wave function, aris'andz components of Eq16) and fiﬁd away to express in
ing from equations of motion for the associated expectatioqerms ofs,. Combining \'Ne have
values of the pseudospin operators. Such equations constituté ' '
a semiclassical description of the pseudospins, expressing d
the self-consistent precession of each operator’s “axis of d_tfksz(k,t)’fA&&(k,t):O- (18)
quantization.”

All of the wave functions of interest consist of products of Integrating with respect to timéand doing thex part by
factors, one for eack; this has the advantage that expecta-party we obtain
tion values of operator products break into products of ex- 1 A
pectation values, provided the operators themselves are func- - =l , nA _ 2
tions of distinctk. When the number of paimd is large, we sdki0) =5k 0) + ekf drs (kA eks"(k’t)' (19

may identify terms as . 1 . . .
Noting thats,(k,0)=3sgr(e,), we obtain the desired equation

im A S (oK) =2 (o (k) = A upon substitution into Eq.19):

N—o

kK’ k d? 1 t .
aet Aeg + A?) [s(k,t) = 4A 5|6k| +f dt's(kt)A |.
and Xy (o, (k))—0, where again the direction of t
symmetry-breaking points by convention along thexis. In (20

al subseq_uent equations, we denote expegtation_ values of tlgreﬁe left-hand side is of course the harmonic oscillator equa-
pseudospin operators Byo;)=s. The semiclassical equa- tion, but with a time-dependent frequency. The right-hand

tions of motion are thugdropping factors of:), side consists of a driving term proportionalAarepresenting
d feedback from the aggregate of pseudospins in the mean-
d_ts"(k’t) = 2¢s,(k 1), I:glr? Equation(20), together with the self-consistency rela-
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2
A=nD sk ), (21) 2/ , 4e
k)= _ - (kK 23
” 7(K) n(n_l)gy”( e TR A
gives us the complete order parameter dynamics at the semi- q
classical level. an
There are two conserved quantities of note; in terms of the yo(K) = |Ek\AQF. (24)

effective field, the total energy on the pair subspace becomes , )
obtained by matching powers ofThese determine a,(k)

E=-2> [eksz(k,t) +A D, sx(k,t)sx(k',t)] uniquely, and automatically satisfy the self-consistency con-
k K’ £k straint. The first thing to note about these relations is that all
1 odd n coefficients vanish sincg;=0, and second, that the
=-2> [ﬂ(Sz(k,t) + —Asx(k,t)]. (22)  resulting gap varies as\(t)=NAgeN(0)eat?+O(t%). This
k 2 clearly demonstrates the instability of the pseudospin system
to even the smallegin this case quantupfluctuations.

This means in particular that We can expect this growth to carry the system very

d d 1 d 1 d quickly into the semiclassical regime, whefg,/A<1.
“E=-22 g s+ SATS + oS A | However, we must bear in mind that within this level of
dt K dt® 2 dt” 27dt A . ) S
description,A is built up from a large humber of individual
Applying the equations of motion we find pseudospin oscillations spanning a quasicontinuous range of
g g g frequencies. This suggests that at long times, even in the
a__ a g _ absence of dissipation, interference between these various
th - % [S‘(k't)th Adts‘(k't)] =0. contributions will lead to a nonequilibrium steady state char-

acterized by a static gap...
Hence, the semiclassical trajectories following from Eds. To establish the existence of such steady-state solutions,
(20) and (21) are energy conserving. The equations of mo-we must go back to the basic equations of motid6), and
tion also conserve mean particle number, which may be seegsk ourselves whether, by replacidgeverywhere in these

by summing ovek in the last equation of Eq¢16). equations with a static valua.,>0, it is possible to find
self-consistent solutions in the-co limit. Making this sub-
C. Early- and long-time behavior of solutions stitution, and carrying through the stefds)—19) as before,

] ) ] ) we arrive at an equation of motion fgg(k,t) of the form
Consider again a particular branch of the Fermi gas wave

function. The normal ground state corresponds, on the semi- d_z 2 _
classical level, to a domain wall with all spins pointing along {dt2 +aect AW)}S"(k’t) =20.]ed, (25
their local effective fields. The system would persist in this . .
state were it not for the presence of the small quantum flucVith general solutions
tuation att=0, which drives the precession of each pseu- %|€k|Aw . s
dospin at its natural frequenay, about a now slightly per- sdkt) = 52+A2[1 - pSin2Ve + A%t+5)].  (26)
turbed effective field. It is not difficult to see, on essentially k" S
geometric grounds, that such precession will tend to reinThe §, are arbitrary phase factors; since we are interested
force the initial fluctuation, leading to the growth of the off- only in timest>A>!, €.}, they are irrelevant to the actual
diagonal field. value of the gap, and are henceforth dropped. The dimen-
This can be demonstrated explicitly by solving the linear-sjonless parameterg depend on the precise details of the

ized version of Eq(20), which is valid at very early times: pseusospin trajectory over the entire course of its dynamical

& history. Despite our ignorance of these parameters, physi-
<_2 + 44)3(0(,'() =2|ed[Agr + A()]. cally there is little reason to believe that the trajectories of

dt two nearly degenerate pseudospins will differ appreciably if
The key point here is thako, the initial quantum fluctua- the system approaches a steady.state. Hencg we shall assume
tion in the gap, is determined at a level independent of th&hat the parameters, form a continuous function of.
semiclassical description; as such, it is not subject to the Substitution of these solutions into the self-consistency
self-consistency condition and therefore constitutes an “ex€duation(21) leads, when expressed in terms of appropriate
ternal” input to the semiclassical equationd(t) is  €Nergy integrals, to the gap equation
. . o . - [2A2

the self-consistent _contrlbut!o!n_ defmed_ lfk(/t) )\%ks,((k,t), 1 _ 1 IN[L+ (eg/A)2] + f\ 242 d—En(E)sin(ZEt).
and thus must satisfy the initial conditions0)=0, A(0) N(ON 2 AL E
=0. Absent any singular terms in these linearized equa- 27)
tions, their solutions are regular functions of time
and may be expanded abott0 ass(k,tH)=2_,yn(KIt"  As shown in the Appendix, foi(E) continuous the integral
hence,A(t) =AZ o[ ya(K) Jt". The initial conditions imply  term toends to zero as—«; thus, a self-consistent solution
%0(K), v1(k)=0. Substitution into the linearized equations re-emerges precisely in the long time limit of interest for a
veals a hierarchy of relations for>2 of the form value of the static gap
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30 ' ' ' The basic shape of the curve shown in in Fig. 2 appears to
be generic; there are a large number of high-frequency oscil-
lations and a slow decay to a constant value. All of the trends
noted in the previous section have been observed; particu-
larly interesting is the fact that the long-time value of the gap
corresponds rather well with E(R8) despite variation in the
initial fluctuation size over seven orders of magnitude. The
early t> behavior can also be seen, which shows that the
Py / early- and long-time behaviors derived above are indeed
o e seon connected by exact solutions of HQO).

0 4! Time Steps.

0 2x10° 4x10° 6x10°
Time Steps E. Related work

FIG. 2. Gap dynamics for 1000 pairs following a weak fluctua- [N the course of this work, the authors became aware of
tion (~1077) for a coupling parametéM(0)\=5. The curve appears the related unpublished calculations of Shuméhkand
black because of the high frequency of the oscillations on this scaldnore recently of Barankov, Levitov, and SpivaBBLS)*®
However, the envelope is clearly discernible and shows that thgegarding quench-induced dynamics in a BCS system. There
amplitude of the oscillations decreases monotonically during theare substantial qualitative differences between our own find-
approach to the asymptotic steady state. The inset depicts a close-iqgs and those of SBLS, despite the fact that both proceed
of the curve, making the gap oscillations visible. from identical semiclassical equations of moti¢t6). To

clarify the situation, we offer here an interpretation of their
_ 2 i results and an analysis of the discrepancies.
A.. = eclemor = 1) (28) Looking again at Eqs(20) and (21),pwe notice that they

In weak coupling this isgsce INOM or half the equilibrium  describe what is essentially a system of independent oscilla-
result. Physically, this solution represents a collective state afors subject to a universal driving force, which force just
motion, in which the pseudospins precess individually onhappens to be determined self-consistently by the oscillators
fixed cones about static local fields. The energy locked up itthemselves. For a linear, damped oscillator driven harmoni-
this motion cannot be expelled in the absence of collisionsgally and off resonance, the long-time solutions consist of
and the steady-state gap is thus somewhat less than the valpiere oscillations at the frequency of the driving force. This
it would have in equilibrium under otherwise identical con- suggests by analogy that the semiclassical equations of mo-
ditions. It should be noted that although this state is onlytion can exhibit solutions in which each pseudospin follows
partially condensed and exhibits phase fluctuations, it conthe motion of the gap, subject of course to the constraint of
tains no vortices. overall self-consistency. Such solutions would be separable

The structure of the gap equatid@7) suggests certain in energy and time:
trends in the dynamical behavior, which it may be useful to
enumerate. First, for weak coupling the gap oscillations are sk =AAD,
dominated by the cutofé:, and for strong coupling by the which is precisely thensatzproposed by SBLS.

gap parameter itself; second, the approach to the steady state Substitution into Eqs(20) and (21) yields immediately
is faster for deepefi.e., larger\) quenches; and third, the

(29)

ultimate steady state to which the system tends does not d_2 _ 2/ 3_
depend on the size of the initial fluctuation. All of these olt2A ae A A+2a7=0 (30
trends, in addition to the actual values of the steady-state
gap, have been checked by numerical integration, as dé&"
scribed in the following section. 123 A=0 (31)
k— .
k
D. Numerical integration of the semiclassical equations If we chooseA, such that 4ﬁ—2|6k|/Ak:C a constant inde-

The preceding sections address both initial conditions angendent ok, then each pseudospin obeys the same equation
the physical state at asymptotically long times, but not thedf motion. Thus, theansatz can indeed be made self-
intermediate behavior. In the absence of exact analytical exconsistent. Multiplying the first of these equations myand
pressions, we must resort to numerical integration of thentegrating ovet, we obtain
semiclassical equations of moti¢®0) and(21). These have _
been performed over a wide range of interaction parameters A%+ (A2-A2?=T?,
and initial fluctuation sizes. A typical output is shown in Fig. :

2, corresponding to a valu(0)A=5. To start things off, we WhereI'=A(0), A;=A(0), and we have choseG=-2A7,
introduce a tiny off-diagonal field and evolve away from the which yields for the self-consistency equation

normal state for a single time step; all subsequent evolution e

occurs self-consistently using the off-diagonal field produced 1-1> Lz =0.

by the pseudospins themselves in the previous time step. K 26+ A
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As discussed by SBLS, these equations clearly demorperature and does not expel any condensation energy to its
strate the existence of a class of periodic solutidi$). surroundings. Both of these requirements are questionable.
While consistent mathematically, physically they leave out Further, the reduced temperature at freeze-out far exceeds
an equally important class of solutions characterized by théhat at which the quasiparticle inelastic scattering ralyél
response of individual pseudospins at their natural frequerbecomes comparable to the gap frequency, a condition
cies, and the concomitant dephasing of the pseudospin orwhich should be well satisfied in the Ginzburg-Landau re-
entations with time. The nonlinearity of the semiclassicalgime on which the Kibble-Zurek scenario is based. This sug-
equations of motion, and the absence of substantial dampirgests that the dynamics following such a quench must be
in the zero-temperature limit, both indicate that these solutreated, to a first approximation, in the absence of collisions.
tions cannot be safely ignored. It is in fact extremely plau-Under these conditions, for a sudden turn-on of the interac-
sible on physical grounds, and clear from the analytical andion parameter, we demonstrate an absolute instability to uni-
numerical results in previous sections, that dephasing wilform quantum fluctuations already present in the normal
affect rather strongly both the frequency of the gap oscillastate. These subsequently amplify into large, semiclassical
tions and the nature of their long-time behavior, except peroscillations along each direction of symmetry breaking con-
haps for special choices of initial conditions. This consider-tained in the full wave function; even in the absence of col-
ation acquires even greater urgency in the limit of weaklisions, these oscillations eventually settle to a self-driven
coupling A/ec<1, in which case the majority of pseu- steady state with gap..=ec(€?NO*~1)"2 In weak cou-
dospins precess very far from resonance. In such a circunpling, this is half the BCS result, due to the persistence of
stance it is very difficult to see how the full pseudospin sys-ncoherent collective motion of the pairs.
tem, when subjected to a sudden perturbation of the type
described in Sec. lll A, could respond with such a high de-
gree of synchronicity. Indeed, the early-time solutions in Sec.
lll indicate otherwise, and appear to be inconsistent with The authors gratefully acknowledge support from NSF
those of SBLS. Grant No. DMR99-86199; we thank V. Shumenko for mak-

Thus, it is reasonable to locate the essential differenceisg available to us a copy of his thesis, and Boris Spivak for
between our own formulation of the quenching problem, anchis comments. G. L. W. wishes to thank Sahng-Kyoon Yoo
that of SBLS, in their respective approaches to the questiofor a critical conversation of the work in Sec. Il, Joseph Jun
of initial conditions. The former theory invokes latent quan-for his invaluable help with the numerical integration and
tum fluctuations of the normal state which, in the wake of thepreparation of figures, and Vladimir Lukic for numerous dis-
quench, provide a “kick” within each symmetry-broken Hil- cussions on all aspects of this work.
bert space. The sudden appearance of a finite, if minute,
off-diagonal field will of necessity introduce some small de-
gree of dephasing, leading inevitably to a nonequilibrium
steady state as described above. SBLS appear to assume than this Appendix we consider the asymptotic behavior of
complete absence of dephasing from the start. In the fulihe integral
space of possible initial conditions, this represents a rather
special class, which leads us to conclude that the associated B 9E) .
periodic behavior of the gap, while intriguing, is unlikely to 1(t) :f dE?stEt,
be observed. Finally, there is no discussion by SBLS of the A
apparent breaking of gauge symmetry within their theory s . .
irTFl)rF:\ediately aftergthe 3uer?ch. yrhe qu)e/nch by itself canng\é‘/'th A=A, B_zf\*"fé’fA?oa appearing in the gap equation
break this symmetry; instead, the system evolves simulta??)- 7 iS @ dimensionless function d&; without loss of
neously along each direction of symmetry breaking in such generality we may take it to vary with a dimensionless pa-
manner that the overall gauge symmetry remains unbrokerf@meterx=g- where Ec is an arbitrary constant with the
dimensions of energy. Sincgis by assumption a continuous
function ofx on the interva[EAC,Ac], it can, according to the
Weierstrass theorem, be approximated to any desired degree

We have studied the behavior of a Fermi gas followingof accuracy by a polynomial of finite degree. That is, for
the sudden turn-on of an attractive BCS interaction paramagiven error allowancee>0, there exist polynomials
eter, as a model for analogous processes that are thought Bu(X)=Stsa.x", such that
occur in the low-temperature superfluid phasesHé upon
exposure to neutron radiation. For values of the parameters IPu(¥) = n(x)| < e.
appropriate tdHe near the transition line, a study of the free
energy available for vortex generation in the wake of
quench reveals that the Kibble-Zurek scaling law gives, a

ACKNOWLEDGMENTS

APPENDIX

IV. CONCLUSIONS

Substituting such a polynomial fay, the integral in ques-
ion can be approximated by a weighted sum of integrals

best, a lower bound on the defect spacing. That is, thef the form

Kibble-Zurek law assumes that a maximum quantity of free 1 (B

energy is available for vortices, a condition requiring that the Ia(t) = _nf dEE"Lsin 2Et (A1)
quenched region cools all the way back to its original tem- EcJ/a
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with n integer. Making the variable substitutias 2Et, we

find In(t):(ZElct)nng}dzi“lsinz. There are two relevant

casesn>0, andn=0. In the first case, integration by parts
yields

1
2ELt

NOE [B™ ! cosBt- A"t cos At] + O(t™).

PHYSICAL REVIEW Br1, 134514(2005

For n=0, we have y(t)=Si(2Bt) - Si(2At), where S(x) is
the sine integral. These are known to have the asymptotic
property that §x)— 7 uniformly asx—o; hence we find
that I,(t) -0 ast— for all n=0. Since the polynomials
used to approximate(E/Ec) were of finite order, the result-
ing approximate expression fd(t) will vanish in the long
time limit. Further, since this result holds for any choicespf
we conclude thal(t) itself must vanish in the limit.
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