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The origin of the vortex-core states ins-wave anddx2−y2-wave superconductors is investigated by means of
some selected numerical experiments. By relaxing the self-consistency condition in the Bogoliubov–de Gennes
equations and tuning the order parameter in the core region, it is shown that the suppression of the superfluid
density in the core is not a necessary condition for the core states to form. This excludes “potential well” types
of interpretations for the core states. The topological defect in the phase of the order parameter, however, plays
a crucial role. This fact is explained by considering the effect of the vortex supercurrent on the Bogoliubov
quasiparticles and illustrated by comparing conventional vortices to multiply quantized vortices and vortex-
antivortex pairs. The core states are also found to be extremely robust against random disorder of the phase.
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I. INTRODUCTION

The vortices govern the electromagnetic response of
type-II superconductors and have been extensively studied,
both experimentally and theoretically.1,2 A vortex is formed
from a core of radiusrc,j where the superfluid density is
gradually suppressed,j the superconducting coherence
length, and it is surrounded by a supercurrent that screens the
magnetic field on a length of orderl, the penetration depth.
The vortices are strong inhomogeneities of the superconduct-
ing condensate, and they scatter the quasiparticles in several
different ways.3 In particular, the vortices can capture Bogo-
liubov excitations into low-energy localized states.

The vortex-core states play an important role in the ther-
modynamic and transport properties in the mixed state. For
example, when vortices move in an applied electric field, the
core states interact with the lattice and are thus responsible
for the dissipation of energy. These states are also affected by
localized perturbations, and they contribute to the pinning of
vortices by defects or impurities. Recently, mesoscopic su-
perconducting disks have attracted much attention.4 In these
systems a “giant-vortex state” can be stabilized, in which a
single vortex at the center of the sample carries the whole
magnetic flux. In such a case the core states are the main
low-energy excitations and are expected to play a dominant
role. Furthermore, the strong dependence of the vortex-core
energy spectrum on the applied magnetic field opens inter-
esting perspectives for applications.5

In s-wave superconductors the vortex-core bound states
were predicted long ago, based on approximate solutions of
the microscopic Bogoliubov–de GennessBdGd equations,6,7

and subsequently observed in NbSe2 using scanning tunnel-
ing spectroscopy.8 The early analytical results were con-
firmed by a complete numerical solution of the BdG
equations.9 Extended quasiparticle excitations in the mixed
state were often studied within the quasiclassical
approach.2,10 Although this approximation is considered in-
accurate near the vortex core, it was used by Volovik to
argue that the number of branches of core states crossing the
Fermi energy as a function of angular momentumsconsid-
ered as a continuous variabled is equal to the winding num-
ber of the vortex.11 This prediction was confirmed recently

by a detailed numerical solution of the BdG equations for
multiply quantized vortices.12 The vortex-core states are usu-
ally thought of as Andreev bound states, i.e., standing waves
resulting from the multiple Andreev reflection at the normal-
superconductor boundary in the core.2,10,13,14This interpreta-
tion suggests that the suppression of the superfluid density in
the core is the main reason for the formation of the core
states. The vanishing of the superfluid density in the core,
however, plays no role in Volovik’s argument. Instead, the
structure of the vortex-core energy spectrum in the approach
of Ref. 11 is entirely determined by the winding number of
the vortex, which measures the strength of the supercurrent
circulating around it. This result seems difficult to reconcile
with the Andreev-bound state picture. In particular, the pecu-
liar dependence of the spectrum of core states on vorticity12

can hardly be attributed to the order-parameter suppression
alone. Hence it is of interest to identify the roles played by
the supercurrent, on the one hand, and by the order-
parameter suppression, on the other hand, in the formation of
the vortex-core states.

Based on numerical and analytical solutions of the micro-
scopic BdG equations, we show that the structure of the
bound-state spectrum ins-wave andd-wave vortices is de-
termined by a topological constraint that the circulating su-
perfluid imposes to Bogoliubov quasiparticles, consistently
with Volovik’s result. The suppression of the order parameter
in the core plays a minor quantitative role, slightly changing
the energy of the states with small angular momenta. This
implies, in particular, that a complete self-consistent treat-
ment of the order-parameter profile is, in general, not neces-
sary, unless one is interested in detailed quantitative predic-
tions. These results suggest that the mechanism leading to
quasiparticle localization in vortices is quite different from
other localization mechanisms in condensed matter.

II. TOPOLOGY OF VORTICES AND BdG EQUATIONS

A vortex is a topologically stable defect of the supercon-
ducting order parameterCsrd;Dsrdeixsrd.15 It is character-
ized by a winding numbern, a topological invariant defined
as
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n =
1

2p
R = x ·dl . s1d

The integral runs along a closed path around the vortex axis.
unu counts the number of 2p rotations of the phasexsrd along
the path. Clearlyn is invariant under all continuous distor-
tions of the phase. Except near surfaces or interfaces,n cor-
responds to the magnetic fluxF carried by the vortex ac-
cording toF=nF0 with F0=h/2e the superconducting flux
quantum. Another characteristics of the vortex is the shape of
the order-parameter modulusDsrd in the vicinity of the vor-
tex axis, where it is constrained to vanish.

For an isolated axisymmetric vortex in as-wave super-
conductor one hasDsr ,u ,zd;Dsrd andxsr ,u ,zd=nu, where
n is the winding number consistently with Eq.s1d. The
modulusDsrd vanishes asr →0, and approaches the constant
valueD` at r . rc, whererc,j!l in type-II superconduct-
ors. The excitation spectrum of the vortex is determined by
the Bogoliubov–de GennessBdGd equations,

S ĥ C

C! − ĥ!
DSu

v
D = ESu

v
D , s2d

whereĥ=1/2msp−eAd2−EF andu svd is the electronsholed
wave function of the excitation. In order to solve Eq.s2d one
usually eliminates the phasex of the order parameter from
the off-diagonal terms by performing the gauge transforma-
tion A→A−s" /2ed=x. The order parameter changes ac-
cording toC→Ce−ix and thus becomes real.6 This transfor-
mation is achieved by writing the wave functions as

Fusrd
vsrd G = Feikzzeism+n/2duc+sr/jd

eikzzeism−n/2duc−sr/jd G . s3d

The phase ±sn /2du in Eq. s3d is an Aharonov-Bohm phase,
reflecting the fact that the gauge function −1

2x carries a sin-
gular magnetic field at the origin.16 Furthermore, the quan-
tum numberm must be such that the total phase accumulated
by the electron and hole upon a 2p rotation around the origin
is consistent with the enclosed flux, i.e.,

m = n +
n

2
, n integer. s4d

Inserting Eq.s3d into Eq. s2d solves for theu and z depen-
dencies and leads to the radial equations for the real func-
tions c±:

±L±c±srd + dsrdc7srd = «c±srd s5ad

L± =
1

g2H−
d2

dr2 −
1

r

d

dr
+

fm ± sn/2dg2

r2 J − 1. s5bd

Hereg=kFj and we have introduced the dimensionless vari-
ablesr=r /j, «=E/EF, and dsrd=Dsrjd /EF. For simplicity
we restricted, in Eq.s5bd, to the two-dimensional case by
putting kz=0. The vector potentialA was also omitted since
it is small in the core region compared to the gauge field
s" /2ed=x when l@j.6 IndeedA,snF0/4pl2dr, and the
ratio of A to the gauge field is thus of ordersr /ld2.

Although the gauge transformation removes the phase of
the order parameter, it does not eliminate the supercurrent
from the problem. In the radial equation, the supercurrent
shows up as a central potential containing a repulsive term
sn /2rd2, as well as a term ±mn /r2, which is either attractive
or repulsive: if n,0 ssupercurrent flowing counter-
clockwise, corresponding to a positive magnetic field along
thez axisd this term is attractivesrepulsived for the electrons
sholesd that move like the superfluidsm.0d. Therefore, the
supercurrent acts on the electron and hole parts of the BdG
excitations in different ways, and tends to decrease the an-
gular momentum of the former and to increase the angular
momentum of the lattersfor n,0 andm.0d. This effect of
the supercurrent on the BdG excitations is central to under-
stand the formation of the core statesssee Sec. III Bd. Fur-
thermore, the strength of the supercurrent fixes the parity of
the vortex-states angular momentum in Eq.s4d, which is half
an odd integer for oddn and integer for evenn. Whenn is
odd, the flux carried by the vortex is not a multiple of the
flux carried by the quasiparticle, hence a topological frustra-
tion which translates into a branch cut discontinuity—
removed by the gauge transformation in Eq.s3d—in the an-
gular wave function.

Equations2d possesses the well-known particle-hole sym-
metry su,v ,Ed↔ sv* ,−u* ,−Ed. Looking at the wave func-
tions in Eq. s3d, one sees that in the radial equation this
symmetry becomessm ,c+,c−,«d↔ s−m ,c−,−c+,−«d: the
vortex-core energy spectrum is invariant under the simulta-
neous inversion of angular momentum and energy. Further-
more, it is clear from Eq.s5d that the spectrum is also invari-
ant under the simultaneous inversion ofm andn.

III. ISOLATED S-WAVE VORTEX

Self-consistent solutions of the BdG equations for the
order-parameter profile and the energy spectrum of an iso-
lateds-wave vortex were already reported, both in the singly
quantized9 and multiply quantized12 cases. The purpose of
this section is to repeat these calculations without achieving
the self-consistency inDsrd, in order to clarify the role
played by the detailed form ofDsrd and by the winding num-
bern in the formation of the core states. Analytical solutions
for the singly quantized vortex also exist.6,7 We will discuss
an analytical solution that is valid for allsintegerd values ofn
and that emphasizes the key role of the winding number.

A. Numerical results

The BdG equationss5d were solved numerically using the
Bessel-function expansion described in Ref. 9. Besides its
winding number and order-parameter profile, an isolated vor-
tex in a continuum free-electron model is characterized by
the bulk parametersg=kFj andd=D` /EF. Physical values of
g range from,1 in high-Tc materials to 10–104 in conven-
tional superconductors. Simulations were performed forg
between 1 and 100sthe computational effort increases rap-
idly with increasinggd. The parametersg andd are in prin-
ciple related by the BCS relationj<"vF/pD`, i.e., gd
<2/p. For eachg, values ofd between 0.1 and 10 times the
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BCS value were considered. The reported conclusions apply
to the whole domain of parameters investigated. Below we
present results forg=10 and d=2/spgd.17 For the order-
parameter profile the following form was used:18

Dsrd = D` tanhS r
Îunurc

Dunu

. s6d

This functional form withrc=j is in good qualitative agree-
ment with the self-consistent results of Ref. 12. By tuning
the value ofrc one can study the effect of the gap profile on
the vortex-core spectrum. In particular, the limitrc→0 cor-
responds to a vortex with no normal core.sIn the remainder
of this paper, we use the expressionnormal coreas a syn-
onym for suppression ofDsrd in the vortex core.d According
to the Andreev-reflection picture, one may expect that reduc-
ing the core radius will increase the energy separation be-
tween the vortex-core energy levels and eventually push the
core states outside the energy gap into the continuum as
rc→0.

The spectra of subgap states for a singly quantized vortex
sn=−1d and for gap profiles corresponding torc=j and rc

=0 are shown in Fig. 1. The eigenvalues are displayed as a
function of the angular quantum numberm. At energies out-
side the superconducting gap, the BdG states form a con-
tinuum not shown in the figure. The spectrum obtained for a
steplike profileDsrd=D`usr −jd, which is often used in ana-
lytical calculations, is also displayed for comparison. The
spectra are similar in all three cases, except for small differ-
ences at low values ofumu. These differences have a rather
simple explanation: the corresponding eigenstates are con-
centrated close to the vortex axissthe maximum of the wave
function lies roughly at positionumu /g in units ofjd; thus the
pairing energy of the states withumu,g is lowered when the
order parameter gets suppressed atr ,j. It is clear from the
figure, however, that the spectrum retains its general shape

even when the vortex has no normal core. In particular, the
number of branches crossing the Fermi energy is always 1, in
agreement with Volovik’s theorem.

We have seen that suppressing the normal core, keeping
only the supercurrent, does not change the core states quali-
tatively. We may now do the converse: in order to suppress
the supercurrent and keep only the core, we set the phase of
the order parameter to zerofi.e.,n=0 in Eqs.s3d–s5dg and we
use the profile Eq.s6d with n=1 and rc=j. The resulting
order parameter no longer describes a vortex, since the wind-
ing number vanishes, but just a normal region embedded in a
uniform superconductor. The resulting spectrumstriangles in
Fig. 1d is qualitatively different from the spectrum of a singly
quantized vortex. Consistent with Volovik’s result, no branch
of core states cross the Fermi level, and therefore no low-
energy states exist, although multiple Andreev reflections
are, in principle, possible in this system. The suppression of
the order parameter slightly decreases the pairing energy of
the low-umu electron and hole excitations of the uniform su-
perconductor and gives rise to two shallow branches of states
near the gap edges.

Figure 2 compares the local density of statessLDOSd of a
singly quantized vortex with and without normal core. As
can be inferred from Fig. 1, the effect of the normal core is
mainly to raise the peak at the vortex center, without chang-
ing the structure of the LDOS. The energy of the peak is also
closer to the Fermi energy when the normal core is present.
This is due to the core-induced energy change at lowm.
Indeed, since only states withm±n /2=0 contribute to the
LDOS at r =0 fsee Eq.sA1dg, we have

Ns0,Ed ~ o
i

dfE − Em=−sn/2d
i g sn ø 0d, s7d

where the indexi corresponds to the various eigenvalues at
fixed m. Figure 2 also shows the LDOS of a normal core
without supercurrent. In this case there is no zero-bias peak,
but two sharp peaks near ±D` corresponding to the two
branches in Fig. 1. These peaks disappear beyond a distance
of orderj and the LDOS becomes that of the uniform super-
conductor forr .j. In contrast, for a true vortex the pertur-
bation to the bulk DOS extends to distances much larger than

FIG. 1. Subgap energy spectrum of a singly quantizeds-wave
vortex as a function of angular momentumm for various order-
parameter profiles in the core: nearly self-consistent profilesblack
circlesd, “no-core” profile swhite circlesd, and steplike profile
ssquaresd. The triangles show the energy spectrum of a normal re-
gion analogous to a vortex core embedded in a uniform supercon-
ductor sno supercurrentd.

FIG. 2. Local density of states for the systems shown in Fig. 1:
conventional singly quantized vortexsleftd, vortex without normal
core scenterd, and normal core without supercurrentsrightd. A ther-
mal broadening was used withkBT=D` /10.
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j, irrespective of the core radiusrc, due to the high-umu states
in Fig. 1.

The vortex-core spectra and the LDOS of multiply quan-
tized s-wave vorticessunu.1 were calculated in Ref. 12, us-
ing the self-consistent order-parameter profile. The number
of branches crossingEF was unu as expected. We have re-
peated these calculations using the profile Eq.s6d with both
rc=j and rc=0. The results displayed in Fig. 3 show again
that the order-parameter profile does not qualitatively change
the core states. The overall shape of the spectra is determined
by the strength of the supercurrent, which is proportional to
the winding number. For oddn, there is a branch crossing the
Fermi energy atm=0, while for evenn there is no such
branch. In addition, other branches cross zero energy at
higher angular momenta. The profile ofDsrd affects the core
states withumu, unug. Except for small quantitative differ-
ences, the LDOS computed with and without the normal core
are therefore very similar, as for the singly quantized vortex.

From Figs. 1 and 2 one sees that the presence of the
supercurrent is a necessary and sufficient condition to have
low-energy statesswhile the normal core is notd, and from
Fig. 3 one sees that the topological frustration, which is only
present for oddn, is a necessary condition to have low-
energyand low-umu states, i.e., a zero-bias peak in the LDOS
at the core center. In order to build a consistent explanation
of the origin of the vortex-core states, it is thus necessary to
understand the effect of the circulating superfluid on the BdG
excitations.

B. Supercurrent and pairing energy

As already mentioned, the velocity field due to the super-
current changes the angular momenta of the electron and
hole parts of the BdG excitations in opposite ways. As a
result, a phase difference ofnsp /2d is induced between the
radial wave functions of the electron and hole. This phase
difference is at the origin of the strong dependence of the
vortex-core spectra onn. One possible way to solve the BdG
equations is to treat the modulus of the order parameter per-
turbatively, while taking full account of the phase. For a
vanishing modulus, Eqs.s5ad decouple and the radial wave
functions assume the simple form

c±
0srd = A±Jm±n/2sgÎ1 ± «rd,

whereJ is the Bessel function. The eigenvalues« must be
determined from the boundary condition at the border of a
normalization disk of radiusR, and they form a continuum
for each value ofm asR→`. Thensp /2d phase shift can be
easily seen from the asymptotic behavior ofJmsxd,

Jmsxd ,Î 2

px
cosFx − Sm+

1

2
Dp

2
G sx @ md,

remembering thatm=n+sn /2d with integern. The first-order
perturbation theory ind gives the energies of the core states
as

«m = « + 2E
0

R

drrdsrdc+
0srdc−

0srd.

Because of the phase shift, the pairing matrix element is
qualitatively different for even and odd values ofn. For even
n and small«, c+

0 andc−
0 are either in phase or out of phase

by p, and the integrand is thus either positive or negative,
leading to a maximal pairing energy of orderD`. For oddn,
on the contrary, the integrand oscillates about zero and the
resulting pairing energy is minimal. This mechanism is illus-
trated in Fig. 4, using the exact eigenstates rather thanc±

0.
The solutionsc± as well as the integrand of the pairing ma-
trix element are displayed for the lowest allowed value ofm
and for winding numbersn=−1 and −2. The numerical val-
ues of the kinetic and pairing energies, defined as

«kin = kc+uL+uc+l − kc−uL−uc−l

«pair = 2kc+uduc−l,

are also indicated.
The analysis of the numerical results at all angular mo-

menta shows that the energy eigenvalues in Figs. 1 and 3 are
dominated by the pairing energy. Due to the cancellation of
the electron and hole contributions, the kinetic term remains
small and has a weakm dependence. The structure of the
eigenvalue spectra and, in particular, the occurrence of low-
energy states at high angular momentum forunu.1, can thus
be qualitatively understood by considering the evolution of
the pairing matrix element withm. With increasingm, an
additional phase shift appears between the radial electron and
hole wave functions at short distancesfas can be seen from
the functionsc±

0srd, the phase shift always tends tonp /2

FIG. 3. Energy spectra for multiply quantizeds-wave vortices.
The black circles correspond to vortices having a normal core given
by Eq. s6d, and the white circles correspond to vortices without
normal core. The dashed vertical lines delimit the regionumu, unug
where the levels are sensitive to the profile of the order parameter.
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asymptotically, but it is a function ofm for r,m /gg. This
has the effect of increasing the matrix element toward its
maximum value ofD`. For the lower branch in then=−2
spectrum in Fig. 3, there is am.0 such that the total phase
shift is close to −sp /2d, and the matrix element thus nearly
vanishes.

In the Appendix, we derive an approximate solution for
the bound states of thes-wave vortex. To lowest order in
mn /grc the eigenvalues are found to be

Em

D`

<
− smn/grcd + s2m+ 1 +ndsp/2d

1 + gdrc
, s8d

wherem is any integer such thatuEmu,D` and rc is some
effective core radius in units ofj. For n=−1, gd=2/p, and
rc=1, one recovers the famous Caroli–de Gennes–Matricon
finding,6 namely, that for eachm there is a unique solution
within the gapsm=0d with energyEm<msD`

2 /EFd.
The termnsp /2d in Eq. s8d can be traced back to the

phase difference discussed abovessee the Appendixd. Only
for odd values ofn does the term in parentheses disappear
for somem, hence a branch of bound states crosses the Fermi
level at m=0, contributing to the low-energy LDOS in the
core. In this case the gap between the lowest-energy excita-
tions in the core isDEm=±1/2=sD`

2 /EFdfp2n /2rcsp+2rcdg,
where rc itself is a function of n. The n-dependence of
DEm=±1/2 may be estimated by demanding that the “hole” in
Dsrd in Eq. s6d and in the model calculation of the Appendix
have identical volumes, namelyprc

2. We then obtainrc
2

=2unue0
`dxxs1−tanhunu xd<unu2a with a=0.78. Hence

DEm=±1/2 is a decreasing function ofunu

DEm=±1/2 <
D`

2

EF

unu1−a

2

p2

p + 2unua
sn oddd. s9d

For even values ofn there is always a large gap atm=0,
which is given byDEm=0=D`p / s1+gdrcd in this model. It
should be noted that the presencesabsenced of this large gap
for even soddd n is due to the absencespresenced of the
flux-induced topological frustration and does not depend on
the order-parameter profile; however, the width of this gap
does depend on the order-parameter profile through the ef-
fective core radiusrc. Usingrc<unua and assuming the BCS
relationgd=2/p holds, we find thatDEm=0 is also a decreas-
ing function of unu,

DEm=0 < D`

p2

p + 2unua
sn evend, s10d

in good agreement with the numerical results in Fig. 3.

IV. ISOLATED D-WAVE VORTEX

Within the BdG theory, there is an important qualitative
difference between the core spectra of isolated vortices in
d-wave ands-wave superconductors. The energy spectrum of
s-wave vortices is discretesbut looks continuous in experi-
ments because of small inter-level spacing and thermal
broadeningd, while numerical calculations suggest that the
energy spectrum is continuous in thed-wave case,19 although
there are conflicting opinions in this respect.20 The numerical
solutions of thed-wave vortex lattice problem also point to a
continuous spectrum of extended quasiparticle states.21,22 A
complete analytical solution would be useful to address this
issue. The main difficulty comes from the nonlocality of the
d-wave gap operator: gauge-invariant generalizations of the
lattice d-wave gap to the continuum model are rather
complicated.23 In this section, the dependence of the core
energy spectrum on the gap profile and vortex winding num-
ber is investigated numerically in thed-wave case. The issue
of bound versus extended core states is not directly relevant
here.

Instead of a continuum model we consider a two-
dimensional nearest-neighbor lattice model. The vortex order
parameter is taken to be

Csr i,r jd = 51

4
DsuRi j udcoss2ti jdeinui j if ur i − r ju = a

0 otherwise,
6

where r i denotes a lattice site,a is the lattice parameter,
Ri j =

1
2sr i +r jd= uRi j uscosui j ,sinui jd, r i −r j =ascosti j ,sinti jd,

andDsrd is given by Eq.s6d. This model order parameter is
consistent with the self-consistent result.19 As in thes-wave
case, the small readjustments brought about by the self-
consistency have practically no effect on the vortex spec-
trum. The LDOS in the core is calculated using the Green’s
function formalism

Nsr i,Ed = −
2

p
Im GiisE + iGd. s11d

The Green’s function is given by the Gorkov equations

FIG. 4. Electronsc+d and holesc−d BdG amplitudes for the
lowest angular momentum in the singlystopd and doublysbottomd
quantized vortex withrc=j. The integrand of the pairing matrix
element, r tanhsr /Îunudunuc+srdc−srd, is displayed in the bottom
panels.
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Gijsvd = Gij
0svd + o

kl

Gik
0 svdSklsvdGljsvd s12ad

Gij
0svd =

1

N2o
k

eik·sr i−r jd

v − «k
s12bd

Si jsvd = o
kl

Csr i,rkdGlk
0 s− vdC*sr l,r jd s12cd

with N2 the number ofk points and«k the dispersion. The
details of«k are not important in the context of this study.
However, the presence of a van Hove singularity in the gap
region provides additional spectral weight, which might be
unequally distributed among the various peaks in the spectra,
thus complicating their interpretation. In order to avoid such
difficulties, the simple nearest-neighbor form«k=
−2tscoskxa+coskyad−m is used, with the chemical potential
set tom= t so that the van Hove singularity does not influ-
ence the spectra in the gap region. Eq.s12d is solved by first
computingGij

0svd for a large systemsN=1024d, taking ad-
vantage of the translational invariance in Eq.s12bd. Then the
inhomogeneous termsSi jsvd andGijsvd are calculated on a

smallerM 3M systemsM =51d with the vortex at the center.
With this method the finite-size effects do not contaminate
the free propagator, and a good spectral resolution can be
achieved. The hopping integral is set tot=5D` sa value typi-
cal for high-Tc materialsd and the energy broadening isG
=D` /50.

The LDOS calculated at the vortex center withrc=2a and
rc=0 and for various winding numbers is displayed in Fig. 5.
The LDOS for a “normal core” of radius 2a without super-
current is also shown and denoted asn=0. One can see sev-
eral striking similarities with thes-wave vortex. Forunuù1,
the suppression of the order parameter has a very small effect
on the LDOS in the core. This is confirmed by the casen
=0, which shows that a local suppression ofDsrd is unable to
induce low-energy states.sThe small flat DOS atE=0 for
n=0 andn=−2 is probably a finite-size effect.24d For n=0,
there is a transfer of spectral weight from high to low energy
at E<D`, resulting in two sharp states near the gap edges.
Increasing the system size fromM =41 toM =51, these states
sharpen while moving to slightly lower binding energy, as
indicated by the small arrows in the figure. At convergence,
these states would presumably lie within the bulk gap, as in
thes-wave case. Forunuù1, one observes a strong even-odd
effect. Vortices with oddn have a zero-bias conductance
peak sZBCPd, which is absent in even vortices. The ZBCP
sharpens with increasing system size, but its energy is well
converged at the system size considered. Forunuù2, there
are additional states at high energy, which are the analogs of
the high-energy states nearm=0 in thes-wave casessee Fig.
3d. One can observe that the sensitivity of the peaks to sys-
tem size increases with energy, suggesting that the states at
higher energy are less localized.

In the neighborhood of the vortex axis, the LDOS has
many characteristics in common with the LDOS ofs-wave
vortices. In Fig. 6, one can see that in the casen=−1 the
ZBCP at the core center splits into two symmetric peaks at
larger distances, very much like the high angular momentum
electron-hole excitations in thes-wave casescompare Fig.
2d. These excitations have been the focus of a recent self-

FIG. 5. Local density of states in the core ofd-wave vortices
with increasing winding numbers. The solid lines correspond to
vortices having a normal core given by Eq.s6d, and the dashed lines
correspond to vortices without normal core. The casen=0 corre-
sponds to a normal core without supercurrent. The arrows show the
displacement of the peak maxima when the system size increases
from M =41 toM =51. The bulk DOS is shown in gray and provides
a common scale to compare the spectra at differentn. Note that the
bulk coherence peaks are not located atE= ±D` due to the large
value of the chemical potentialm= t.

FIG. 6. LDOS along the nodal direction ford-wave vortices of
increasing winding numbers. The curves show the LDOS at all sites
betweens0, 0d and s20, 20d, and are offset vertically for clarity.
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consistent calculation.25 In the doubly quantized vortex, the
two peaks near the gap edges vanish slowly as the distance
from the core increases, while a ZBCP develops, which is
maximum at a distancer =5Î2a. The latter again decom-
poses into two symmetric excitations at larger distances. The
resulting LDOS is thus very similar to that of a doubly quan-
tized s-wave vortex ssee Fig. 4 of Ref. 12d, and can be
readily interpreted on the basis of Fig. 3. A similar analysis
shows that all of the features of thes-wave vortex withn=
−3 sFig. 4 of Ref. 12d can be distinguished in the LDOS of
the n=−3 d-wave vortexsFig. 6d. The LDOS exhibits some
anisotropy around the vortex, but the differences between the
nodal and antinodal directions are small. In particular, all the
features discussed in Fig. 6 are also present in the antinodal
direction.

V. PERTURBATIONS OF THE
ORDER-PARAMETER PHASE

The results of the previous sections suggest that the core
states have a topological origin. An implication of this is that
the states must not be suppressed by changes in the phase of
the order parameter, as long as these changes preserve the
topological defect. Conversely, the core states should be
strongly affected by the interaction with an antivortex, since
the latter annihilates the effect of the topological defect on
orbits larger than the vortex-antivortex distance. In this sec-
tion, we investigate the effects of some perturbations of the
phase field on the core states in ad-wave superconductor,
starting with the perturbation induced by a nearby antivortex.

The order parameter for a vortex-antivortex pair was
taken as the normalized product of the order parameters as-
sociated with each constituentsi.e., two vortices with wind-
ing numbers 1 and −1 andrc=2ad. The vortex is located at
the origin and the antivortex at positionb=s−b,−bd. In Fig. 7
is shown the LDOS at the vortex center and along the diag-
onal, in the direction opposite to the vortex-antivortex direc-
tion. The phase field around the vortex is also displayed. For
b=20a, the LDOS is similar to the LDOS of an isolated
singly quantized vortexsFig. 6d. However, although the
phase field is barely modified by the antivortex in the region
where the LDOS is calculated, the latter is considerably
broadened: the height of the ZBCP is only 71% of the cor-
responding height in the isolated vortex, while the gap inte-
grated spectral weight is conserved within 2%. Note also that
the ZBCP is already split at sites1, 1d, unlike in the isolated
case where this splitting occurs first at sites2, 2d. Reducing
the vortex-antivortex distancesb=10ad, the ZBCP at sites0,
0d also splits. At the same time, the energy separation be-
tween the two states away from the core center is increased.
Finally, at b=2a the ZBCP disappears completely and the
LDOS resembles the LDOS of an=0 “vortex” ssee Figs. 5
and 2d.

The spectra in Fig. 7 show that the formation of the core
states is a nonlocal process: the LDOS at a particular site
depends on the phase winding in a region much larger than
the core radiusrc. In fact the height of the ZBCP ats0, 0d
reaches 95% of its value in the isolated vortex for vortex-
antivortex separations as large as,70a sb=50ad. This value

sets an upper bound for the size of the aforementioned re-
gion. On the other hand, a clear splitting of the ZBCP at site
s0, 0d occurs forb=19a or less, which sets a lower bound to
27a. These numbers can be compared with the spatial exten-
sion of the core states. In thes-wave vortex the latter is
typically ,<2EF/ skFD`d for a state atE=0 fsee Eq.sA3dg.
Using EF=5t sthe position of the Fermi energy with respect
to the bottom of the band in the calculationsd, kF=p / s2ad,
and t=5D` one obtains,<32a, which falls within the
bounds deduced from the numerical simulations. Thus, al-
though the typical localization radius of the bound states
might be different ind-wave ands-wave superconductors,19

one may conclude that the LDOS in the vortex core “feels”
the presence of an antivortexsor another vortex in a vortex
latticed at any distance shorter than the extension of the
bound states.

The sensitivity of the LDOS to perturbations of the phase
that preserve the topological defect was studied by randomly
disordering the phase field, i.e., replacing the order param-
eter C of the isolated vortex byCeix wherex is a random
Gaussian variable centered atx=0 with varianceW sfull
width at half maximumd. The resulting LDOS is displayed in
Fig. 8. At W=p /8 andW=p /4, the spectra are practically
unchanged with respect to the ordered case. No new structure
is induced in the spectra up to the strongest disorder consid-
ered. At W=p /2, though, the ZBCP is reducedsbut not
broadenedd and the energy separation between the two
electron-hole excitations away from the core is decreased.

FIG. 7. LDOS along the nodal directionsindicated by a thick
gray line in the top partd for a vortex-antivortex pair in ad-wave
superconductor for various vortex-antivortex separations. The anti-
vortex swhite dot, only visible at the shortest distanced is at position
b with respect to the vortexsblack dotd. The order-parameter phase
in the region of the vortex centersexcluding thedx2−y2 symmetry
factor for clarityd is represented in the form of a small arrow on
each bond of the square lattice.
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This might be attributed to the loss of rotational symmetry,
which leads to a stronger interaction between angular mo-
mentum eigenstates, and to a redistribution of spectral
weight. We note that the integrated LDOS is conserved
within 3% at all sites and for all disorder strengths consid-
ered.

VI. DISCUSSION

The numerical results reported in Figs. 2 and 5 imply that
the suppression of the modulusDsrd of the order parameter
in the core can be safely ignored when discussing the mecha-
nism of formation of the vortex states ins- andd-wave su-
perconductors. The main reason is the small magnitude of
the superconducting gap with respect to the Fermi energy: a
local suppression ofDsrd is a very weakperturbation for
excitations at the Fermi surface, which does not provide a
substantial gain of pairing energy for a localized Bogoliubov
excitationsunless the localization radius is smaller than the
core radius, which, in turn, costs a large kinetic energyd.
Making use of Eq.s8d with n=0, one can see that a local
suppression ofDsrd can induce low-energy states in the limit
D` /EF@ skFrcd−1, which is never attained in the BCS super-
conductors for whichD` /EF<2/pskFrcd−1.

Thus the origin of the bound states must be searched in
the phasexsrd of the order parameter. Far from the vortex,
the slow variation ofxsrd is known to induce a small density
of states in the gap by the Doppler-shift effect.26 The
Doppler-shift approximation is not valid in the core region
because there the superfluid velocity is too large, but also

because this approximation neglects the topological defect
associated with the phase winding. A comparison of the right
panels in Figs. 7 and 8 unambiguously shows that the micro-
scopic details ofxsrd are much less relevant to the formation
of the vortex LDOS than the “macroscopic” phase winding.
This is further evidenced by the qualitative differences be-
tween even-n and odd-n vortices. The mechanism described
in Sec. III B provides a natural explanation to these results,
since the interference between the electron and the hole,
which is responsible for the formation of the bound states, is
a global property of the wave function and is not destroyed
by local perturbations ofxsrd. The issue of self-consistency
in the order parametersmodulus and phased is one of the
major obstacles to a complete analytical calculation of the
vortex-core LDOS. Nevertheless, the results of the present
study suggest that the LDOS calculated from the simplest
possible “trial” order parameter, i.e., a uniform modulus
Dsr ,ud;D` and a geometric phasexsr ,ud=nu, should ex-
hibit all the characteristic features of the exact solution.sAn
interesting exception might be the case where subdominant
order parameters of different symmetries are brought about
by the self-consistency.d

In the presence of several topological defects, the winding
n in Eq. s1d depends on the number of defects contained in
the path of integration. Based on the analysis in Sec. V, we
tentatively argue that the structure of the vortex core LDOS
is determined primarily by the average vorticity in the region
occupied by the core states. This statement was checked by
considering a variety of vortex and antivortex configurations.
For example, the effect of an=2 antivortex on the LDOS in
the core of an=−1 vortex was studied. The antivortex was
located at positionb=s−b,−bd as in Fig. 7. For smallsb/a
,2d and largesb/a*20d vortex-antivortex separations the
LDOS was found to be close to that of an isolated vortex.
Nearb=5a the spectrum was similar to the topmost case in
Fig. 5, corresponding ton=0. Finally, in the other regions
the LDOS exhibited intermediate shapes. In this geometry
the vorticity is −1 in the regionr ,bÎ2 and +1 in the region
r .bÎ2, so that the average vorticity in a region of radiusR
is n̄=1−4sb/Rd2 if bÎ2,R and −1 if bÎ2.R. Thus un̄u<1
for small and largeb, whereasun̄u<0 for b,R/2.

In the normal state of the superconducting cuprates, the
behavior of the high-frequency optical conductivity27 and the
presence of a large Nernst signal28 have been generally at-
tributed to vortex excitations, in the form of unbound vortex-
antivortex pairs. Recently, Lee29 argued that such vortices
have to be “cheap,” i.e., must be free of core states in order
to have a formation energy comparable to the thermal energy
,kBTc. Experimentally, there is indeed convincing evidence
from scanning tunneling microscopesSTMd30–33 and
NMR34,35measurements that the core states are suppressed at
T,Tc in the cuprates, pointing to a failure of the simple
d-wave BCS theory in the superconducting state. Lee pointed
out that a straightforward extension of the BCS theory that
includes phase fluctuations is unable to produce “cheap” vor-
tices in the normal state. This argument relies on the assump-
tion that the average vortex-core LDOS in a vortex-
antivortex soup is similar to the LDOS of an isolated vortex.
As Fig. 7 shows, however, the vortex-core states can be very

FIG. 8. LDOS along the nodal direction for ad-wave singly-
quantized vortex subject to random phase disorder.W characterizes
the strength of disorder. The phase field in the core region is shown
in the top part. The spectra corresponding to the ordered casesW
=0d are shown in grey for comparison.

C. BERTHOD PHYSICAL REVIEW B 71, 134513s2005d

134513-8



efficiently suppressed in a “BCS” vortex-antivortex pair,
even when the vortex-antivortex separation is much larger
than the core radius. It is likely that the same phenomenon
also occurs in more sophisticated models of the high-Tc su-
perconductors. A systematic investigation of the core energy
as a function of the vortex density in a state of fluctuating
vortex-antivortex pairs would thus be helpful to elucidate the
nature of the normal state in the cuprates.

In this study, the effect of the order-parameter symmetry
on the properties of the vortex states was left aside and the
emphasis was put on the similarities of the LDOS ins- and
d-wave vortices, which illustrates the key role of the vortic-
ity in both cases. It is well known that a subdominant order
parameter can induce qualitative changes in the LDOS of
BCS vortices.19 Furthermore, the delicate question of the
spatial extension of the core states in thed-wave casesexpo-
nentially localized or extendedd was not addressed. These
issues are a good motivation to search for a realistic analyti-
cal solution of the BdG equations for vortices in supercon-
ductors with nonlocal pairing.

VII. CONCLUSION

In the BCS theory, the superconducting state is character-
ized by a complex order parameter, with a modulusDsrd
related to the superfluid density and a phasexsrd related to
the supercurrent. Although the electronic states bound to vor-
tices have often been attributed to the suppression of the
superfluid density in the core region, it was found that the
bound states are completely formed when this suppression is
overlooked, which confirms an earlier finding based on the
quasiclassical approximation.11 In order to explain the for-
mation of the core states, a mechanism was proposed that
relies on the influence that the vortex supercurrent exerts on
the Bogoliubov excitations. In short, the Bogoliubov excita-
tions localize onto vortices because thetopology of the
latter—not the normal core—gives to the electron and hole
components the possibility to avoid one another and to mini-
mize their pairing energy. The spectral properties of vortices
carrying more than one flux quantum, as well as of vortex-
antivortex pairs, are consistent with this idea. The proposed
mechanism of localization results from the particular form of
the coupling mediated by the supercurrent between the elec-
tron and hole components and is therefore unique to super-
conductors.
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APPENDIX: APPROXIMATE SOLUTION
FOR THE S-WAVE VORTEX

In this appendix an approximate solution of the BdG
equations for an isolated vortex in as-wave superconductor
is derived. This solution differs somewhat from those given
in Refs. 6 and 7 and applies to vortices of arbitrary winding
numbern. The purpose here is to highlight the role ofn on

the vortex-core spectrum. The radial wave function is written
as

c±srd = ReHm±n/2sg±rdf±srd, sA1d

whereg±=gÎ1±« andHnsxd=Jnsxd+ iYnsxd with J andY the
Bessel functions of the first and second kind, respectively.
Equations5d becomes

±
1

g2F−
d2

dr2 − S1

r
+ 2

H±8

H±
D d

dr
G f± + dsrd

H7

H±
f7 = 0.

sA2d

Hm±n/2sg±rd is abbreviated asH±, andH±8=dH± /dr. At this
point we make two simplifications:sid We consider a square
gap profile:dsrd=dusr−rcd. As shown in the main text, the
vortex-core spectrum is only weakly influenced by the de-
tails of dsrd. sii d We use the approximations

1

r
+ 2

H±8

H±
< 2ig±

H7

H±
<Î g±

g7

e±inp/2S1 7 i
mn

rc

g+ + g−

2g+g−
De7isg+−g−dr.

These expressions were obtained from the asymptotic form
of the Bessel functions

Hnsxd <Î 2

px
eifx+sn2/2xd−sn+1/2dp/2g sx . nd,

by expanding to first order inm /g and n /g. Approximation
sii d is therefore inadequate form±n /2.g. Furthermore, in
the second line, the term proportional to 1/r was evaluated
at r=rc. This is justified for the calculation of the eigenval-
ues, since the latter are determined by matching the wave
functions atr=rc. Note also that this approximation will
break down ifrc!1. The factore±insp/2d in the expression for
H7 /H± is the consequence of the phase shift discussed in
Sec. III B. With these simplifications Eq.sA2d can be solved
exactly. We restrict the analysis to subgap states with«,d.
At r,rc the solution is simplyf±

,srd=A± whereA± are real
constants. Atr.rc, the solution can be written as

f±
.srd = B±eisq−g±dsr−rcde−ksr−rcd sA3d

with q=gsz+ 1
2

d1/2, k=gsz− 1
2

d1/2, z= 1
2s1+d2+g2−«2d1/2, and

g=dfsg++g−dmn /2g+g−rcg. The B± are complex numbers
and they are related by

B−

B+
=Îg−

g+

« − iÎ4z2 − 1

d − ig
eifsg+−g−drc−nsp/2dg. sA4d

Introducing the solutionsf±
, and f±

. into Eq.sA1d and match-
ing the wave function and its derivative atr=rc one obtains

Bs

As
= 1 −

fkJs + sq − gsdYsgsYs + iJsd
sq − gsdsJs

2 + Ys
2d − sYsJs8 − JsYs8d

, sA5d

with s=±, J±=Jm±n/2sg±rcd, andY±=Ym±n/2sg±rcd. Equations
sA4d and sA5d provide the relation between the coefficients
A+ andA−, as well as the eigenvalue equation
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tanFsg+ − g−drc − n
p

2
G =

− « + hÎd2 + g2 − «2

«h + Îd2 + g2 − «2
, sA6d

where

h =
d + ag

g − ad
, a = tan arg

B−/A−

B+/A+
.

In Eq. sA6d g±, g, andh are all functions of«. In order to
make Eq.sA6d more tractable, we note thatz< 1

2 and g±

<g sinced, g, and « are small numbers. Takingz= 1
2 and

g±=g in Eq. sA5d we obtainBs/As=1 and thereforea=0.
EquationsA6d can then be solved to first order in«

«

d
=

E

D`

<
− tan−1smn/grcd + s2m+ 1 +ndsp/2d

f1 + smn/grcd2g−1/2 + gdrc

<
− smn/grcd + s2m+ 1 +ndsp/2d

1 + gdrc
, sA7d

wherem is any integer such thatuEu,D` and the second line
is valid to first order inmn /grc. We have checked numeri-
cally that the eigenvalues resulting from Eqs.sA6d andsA7d
are in excellent agreement at allm. EquationsA7d correctly
accounts for the qualitative difference between odd-n and
even-n vortices. Due to the approximations made, however,
the validity of Eqs.sA6d and sA7d is limited to the region
umnu,g, and the zero-energy states atumu*g in Fig. 3 are
not reproduced.
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