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Vorticity and vortex-core states in type-ll superconductors
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The origin of the vortex-core states swave andd,2_y2-wave superconductors is investigated by means of
some selected numerical experiments. By relaxing the self-consistency condition in the Bogoliubov—-de Gennes
equations and tuning the order parameter in the core region, it is shown that the suppression of the superfluid
density in the core is not a necessary condition for the core states to form. This excludes “potential well” types
of interpretations for the core states. The topological defect in the phase of the order parameter, however, plays
a crucial role. This fact is explained by considering the effect of the vortex supercurrent on the Bogoliubov
quasiparticles and illustrated by comparing conventional vortices to multiply quantized vortices and vortex-
antivortex pairs. The core states are also found to be extremely robust against random disorder of the phase.
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I. INTRODUCTION by a detailed numerical solution of the BdG equations for

The vortices govern the electromagnetic response omultiply quantized vortice$? The vortex-core states are usu-
type-Il superconductors and have been extensively studiedlly thought of as Andreev bound states, i.e., standing waves
both experimentally and theoretically.A vortex is formed resulting from the multiple Andreev reflection at the normal-
from a core of radius,~ & where the superfluid density is Superconductor boundary in the cdré:*314This interpreta-
gradually suppressed¢é the superconducting coherence tion suggests that the suppression of the superfluid density in
length, and it is surrounded by a supercurrent that screens tiiee core is the main reason for the formation of the core
magnetic field on a length of ordar, the penetration depth. states. The vanishing of the superfluid density in the core,
The vortices are strong inhomogeneities of the superconduckowever, plays no role in Volovik's argument. Instead, the
ing condensate, and they scatter the quasiparticles in sevestructure of the vortex-core energy spectrum in the approach
different ways?® In particular, the vortices can capture Bogo- of Ref. 11 is entirely determined by the winding number of
liubov excitations into low-energy localized states. the vortex, which measures the strength of the supercurrent

The vortex-core states play an important role in the thercirculating around it. This result seems difficult to reconcile
modynamic and transport properties in the mixed state. Fowith the Andreev-bound state picture. In particular, the pecu-
example, when vortices move in an applied electric field, thdiar dependence of the spectrum of core states on vortfcity
core states interact with the lattice and are thus responsiblan hardly be attributed to the order-parameter suppression
for the dissipation of energy. These states are also affected ®Jone. Hence it is of interest to identify the roles played by
localized perturbations, and they contribute to the pinning othe supercurrent, on the one hand, and by the order-
vortices by defects or impurities. Recently, mesoscopic suparameter suppression, on the other hand, in the formation of
perconducting disks have attracted much atterftibonthese  the vortex-core states.
systems a “giant-vortex state” can be stabilized, in which a Based on numerical and analytical solutions of the micro-
single vortex at the center of the sample carries the wholeécopic BdG equations, we show that the structure of the
magnetic flux. In such a case the core states are the malpund-state spectrum iswave andd-wave vortices is de-
low-energy excitations and are expected to play a dominariermined by a topological constraint that the circulating su-
role. Furthermore, the strong dependence of the vortex-corgerfluid imposes to Bogoliubov quasiparticles, consistently
energy spectrum on the applied magnetic field opens intemwith Volovik’s result. The suppression of the order parameter
esting perspectives for applicatiohs. in the core plays a minor quantitative role, slightly changing

In sswave superconductors the vortex-core bound statethe energy of the states with small angular momenta. This
were predicted long ago, based on approximate solutions dmplies, in particular, that a complete self-consistent treat-
the microscopic Bogoliubov—de Genn@dG) equations;”  ment of the order-parameter profile is, in general, not neces-
and subsequently observed in NbSising scanning tunnel- sary, unless one is interested in detailed quantitative predic-
ing spectroscopy. The early analytical results were con- tions. These results suggest that the mechanism leading to
firmed by a complete numerical solution of the BdG quasiparticle localization in vortices is quite different from
equations. Extended quasiparticle excitations in the mixed other localization mechanisms in condensed matter.
state were often studied within the quasiclassical
approact?:1° Although this approximation is considered in- Il. TOPOLOGY OF VORTICES AND BdG EQUATIONS
accurate near the vortex core, it was used by \Volovik to
argue that the number of branches of core states crossing the A vortex is a topologically stable defect of the supercon-
Fermi energy as a function of angular moment(gonsid-  ducting order paramete¥ (r)=A(r)eX".15 It is character-
ered as a continuous variaplie equal to the winding num- ized by a winding number, a topological invariant defined
ber of the vortex! This prediction was confirmed recently as
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1 Although the gauge transformation removes the phase of
v= Z% Vx-d. (1) the order parameter, it does not eliminate the supercurrent
from the problem. In the radial equation, the supercurrent

The integral runs along a closed path around the vortex axishows up as a central potential containing a repulsive term
[4| counts the number of2rotations of the phasg(r) along  (v/2p)?, as well as a term gv/ p?, which is either attractive
the path. Clearlyv is invariant under all continuous distor- or repulsive: if »<O (supercurrent flowing counter-
tions of the phase. Except near surfaces or interfacesy-  clockwise, corresponding to a positive magnetic field along
responds to the magnetic fluk carried by the vortex ac- thez axis) this term is attractivérepulsive for the electrons
cording to®=v®d, with ®,=h/2e the superconducting flux (holeg that move like the superfluifu>0). Therefore, the
quantum. Another characteristics of the vortex is the shape agfupercurrent acts on the electron and hole parts of the BdG
the order-parameter modulusr) in the vicinity of the vor-  excitations in different ways, and tends to decrease the an-
tex axis, where it is constrained to vanish. gular momentum of the former and to increase the angular

For an isolated axisymmetric vortex insawave super- momentum of the latteffor »<<0 andu>0). This effect of
conductor one haA(r,8,z)=A(r) and x(r, 8,z)=v6, where  the supercurrent on the BdG excitations is central to under-
v is the winding number consistently with Eql). The stand the formation of the core statesee Sec. Il B. Fur-
modulusA(r) vanishes as— 0, and approaches the constantthermore, the strength of the supercurrent fixes the parity of
valueA,, atr>r,, wherer .~ &<\ in type-ll superconduct- the vortex-states angular momentum in B4, which is half
ors. The excitation spectrum of the vortex is determined byan odd integer for odd and integer for evew. Whenv is

the Bogoliubov—de Genng8dG) equations, odd, the flux carried by the vortex is not a multiple of the
R flux carried by the quasiparticle, hence a topological frustra-
h W u u tion which translates into a branch cut discontinuity—
v _i )\ = v’ (2 removed by the gauge transformation in E8)—in the an-

gular wave function.
whereﬁzl/Zn(p—eA)z—EF andu (v) is the electror(hole) Equation(2) possesses the well-known particle-hole sym-

wave function of the excitation. In order to solve Eg)one ~ MeWY (U.v,E)—(v",~u’,-E). Looking at the wave func-
usually eliminates the phasgof the order parameter from tONS in Ed.(3), one sees that in the radial equation this
the off-diagonal terms by performing the gauge transformaSymmetry becomesiu, i, Y-,8) = (—p, 4o, =9, —¢): the
tion A—A—(/2e)V y. The order parameter changes ac-VOrtex-core energy spectrum is invariant under the simulta-
cording toW — We X and thus becomes reThis transfor-  N€OUS Inversion of angular momentum and energy. Furt_her-
mation is achieved by writing the wave functions as more, it is clear_from Eq5) th_at the_spectrum is also invari-
ant under the simultaneous inversiongofand v.
{u(r) } |:eikzzei(;¢+y/2)0l//+(r/§) }

v (I’) - eikzzei(“‘“/z)"t//_(rlg)

The phase #/2)6 in Eq. (3) is an Aharonov-Bohm phase,  self-consistent solutions of the BdG equations for the
reflecting the fact that the gauge functioéxcarries asin-  order-parameter profile and the energy spectrum of an iso-
gular magnetic field at the origh?. Furthermore, the quan- lateds-wave vortex were already reported, both in the singly
tum numberu must be such that the total phase accumulate@uantized and multiply quantizet cases. The purpose of
by the electron and hole upon a 2otation around the origin  this section is to repeat these calculations without achieving

3)
IIl. ISOLATED S-WAVE VORTEX

is consistent with the enclosed flux, i.e., the self-consistency in\(r), in order to clarify the role
. played by the detailed form a(r) and by the winding num-
m=n+ > n integer. (4)  berwvin the formation of the core states. Analytical solutions

for the singly quantized vortex also exfstWe will discuss

Inserting Eq.(3) into Eq. (2) solves for theg andz depen- ~ @n analytical solution that is valid for a(lhteggn values ofv
dencies and leads to the radial equations for the real fun@nd that emphasizes the key role of the winding number.
tions .

L. u(p) + p) U= (p) = eslp) (52) A- Numerical results
The BdG equation&b) were solved numerically using the
1 > 1d [uxW2)]? Bessel-function expansion described in Ref. 9. Besides its
= - d_p2 - ;d_p + T -1 (5b winding number and order-parameter profile, an isolated vor-
tex in a continuum free-electron model is characterized by
Hereg=k:¢ and we have introduced the dimensionless varithe bulk parameterg=k:&¢ and 6=A../ Ex. Physical values of
ablesp=r/¢, e=E/Eg, and 8(p)=A(pé)/Er. For simplicity g range from~1 in high-T, materials to 10—1in conven-
we restricted, in Eq(5b), to the two-dimensional case by tional superconductors. Simulations were performed dor
putting k,=0. The vector potentiah was also omitted since between 1 and 10Gthe computational effort increases rap-
it is small in the core region compared to the gauge fielddly with increasingg). The parameterg and é are in prin-
(h12€)V x when A> £5 Indeed A~ (v®y/4m\?)r, and the ciple related by the BCS relatiog=~fivg/ wA.., i.e., gé
ratio of A to the gauge field is thus of ordér/\)2. =~2/. For eachy, values ofs between 0.1 and 10 times the
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FIG. 2. Local density of states for the systems shown in Fig. 1:
conventional singly quantized vortdleft), vortex without normal
core(centey, and normal core without supercurrdnight). A ther-
mal broadening was used wilgT=A,./10.

FIG. 1. Subgap energy spectrum of a singly quantigedave
vortex as a function of angular momentuym for various order-
parameter profiles in the core: nearly self-consistent préfilack
circles, “no-core” profile (white circleg, and steplike profile
(squares The triangles show the energy spectrum of a normal reeven when the vortex has no normal core. In particular, the
gion analogous to a vortex core embedded in a uniform supercorrumber of branches crossing the Fermi energy is always 1, in
ductor (no supercurrent agreement with Volovik’s theorem.

We have seen that suppressing the normal core, keeping

BCS value were considered. The reported conclusions appQnly the supercurrent, does not change the core states quali-
to the whole domain of parameters investigated. Below wdatively. We may now do the converse: in order to suppress
present results fog=10 and 5=2/(wg).}” For the order- the supercurrent and keep only the core, we set the phase of

parameter profile the following form was us&d: the order parameter to zefice., »=0 in Egs.(3)~(5)] and we
use the profile Eq(6) with v=1 andr.=¢ The resulting

Fo\M order parameter no longer describes a vortex, since the wind-

Alr)= A, tanh( — ) . (6)  Ing number vanishes, but just a normal region embedded in a
V]yre uniform superconductor. The resulting spectr{irrangles in

Fig. 1) is qualitatively different from the spectrum of a singly

This functional form withr.=¢ is in good qualitative agree- quantized vortex. Consistent with Volovik’s result, no branch
ment with the self-consistent results of Ref. 12. By tuningof core states cross the Fermi level, and therefore no low-
the value ofr; one can study the effect of the gap profile onenergy states exist, although multiple Andreev reflections
the vortex-core spectrum. In particular, the limit—0 cor- ~ are, in principle, possible in this system. The suppression of
responds to a vortex with no normal cottn the remainder the order parameter slightly decreases the pairing energy of
of this paper, we use the expressioormal coreas a syn- the |0W-|,LL| electron and hole excitations of the uniform su-
onym for suppression oA(r) in the vortex corg According ~ Perconductor and gives rise to two shallow branches of states
to the Andreev-reflection picture, one may expect that reducbear the gap edges.
ing the core radius will increase the energy separation be- Figure 2 compares the local density of staleSOS) of a
tween the vortex-core energy levels and eventually push th&ingly quantized vortex with and without normal core. As
core states outside the energy gap into the continuum &N be inferred from Fig. 1, the effect of the normal core is
re—0. mainly to raise the peak at the vortex center, without chang-

The spectra of subgap states for a singly quantized vorteld the structure of the LDOS. The energy of the peak is also
(v=-1) and for gap profiles corresponding tg=¢ andr, clolse.r to the Fermi energy when the normal core is present.
=0 are shown in Fig. 1. The eigenvalues are displayed as Bhis is due to the core-induced energy change at jow
function of the angular quantum number At energies out- Indeed, since only states with+v/2=0 contribute to the
side the superconducting gap, the BAG states form a cor-POS atr=0 [see Eq(A1)], we have
tinuum not shown in the figure. The spectrum obtained for a i
steplike profileA(r)=A..6(r — &), which is often used in ana- N(O,E) = 2 JE- E,u:-(v/Z)] (r=<0), (7)
lytical calculations, is also displayed for comparison. The '
spectra are similar in all three cases, except for small differwhere the index corresponds to the various eigenvalues at
ences at low values dfu|. These differences have a rather fixed u. Figure 2 also shows the LDOS of a normal core
simple explanation: the corresponding eigenstates are comvithout supercurrent. In this case there is no zero-bias peak,
centrated close to the vortex axtee maximum of the wave but two sharp peaks nearAt corresponding to the two
function lies roughly at positiofu|/g in units of §); thus the  branches in Fig. 1. These peaks disappear beyond a distance
pairing energy of the states witp| <g is lowered when the of order¢ and the LDOS becomes that of the uniform super-
order parameter gets suppressed<at. It is clear from the conductor forr > ¢&. In contrast, for a true vortex the pertur-
figure, however, that the spectrum retains its general shageation to the bulk DOS extends to distances much larger than

134513-3



C. BERTHOD PHYSICAL REVIEW B 71, 134513(2005

B. Supercurrent and pairing energy

As already mentioned, the velocity field due to the super-
current changes the angular momenta of the electron and
hole parts of the BdG excitations in opposite ways. As a
result, a phase difference of7/2) is induced between the
radial wave functions of the electron and hole. This phase
difference is at the origin of the strong dependence of the
vortex-core spectra om One possible way to solve the BdG
equations is to treat the modulus of the order parameter per-
turbatively, while taking full account of the phase. For a
vanishing modulus, Eqg5a decouple and the radial wave
functions assume the simple form

Y2(p) = A1 n(gV1 £ ep),

whereJ is the Bessel function. The eigenvaluesnust be
determined from the boundary condition at the border of a
normalization disk of radiu®, and they form a continuum
for each value ofju asR— «. The v(7/2) phase shift can be
easily seen from the asymptotic behaviorJgfx),

=] e )7 e
s ~ m(X) WXCOX m 22 (X m)u

i

remembering that.=n+(v/2) with integern. The first-order

FIG. 3. Energy spectra for multiply quantizedvave vortices.  perturbation theory in gives the energies of the core states
The black circles correspond to vortices having a normal core givery g

by Eq. (6), and the white circles correspond to vortices without

normal core. The dashed vertical lines delimit the redjair< |v|g fR

e ,=e+2| dopdlp)yl(p) v (p).

where the levels are sensitive to the profile of the order parameter. u 0
Because of the phase shift, the pairing matrix element is

&, irrespective of the core radius, due to the highu| states  qualitatively different for even and odd valueswofFor even

in Fig. 1. v and smalle, ° and y° are either in phase or out of phase
The vortex-core spectra and the LDOS of multiply quan-by 7, and the integrand is thus either positive or negative,

tized s-wave vortices|»|>1 were calculated in Ref. 12, us- leading to a maximal pairing energy of ord&g. For oddw,

ing the self-consistent order-parameter profile. The numbe@n the contrary, the integrand oscillates about zero and the

of branches crossingr was |v| as expected. We have re- resulting pairing energy is minimal. This mechanism is illus-

peated these calculations using the profile @ywith both  trated in Fig. 4, using the exact eigenstates rather tfan

r.=¢ andr,=0. The results displayed in Fig. 3 show again The solutionsy. as well as the integrand of the pairing ma-

that the order-parameter profile does not qualitatively chang#ix element are displayed for the lowest allowed valuguof

the core states. The overall shape of the spectra is determin@@d for winding numberg=-1 and -2. The numerical val-

by the strength of the supercurrent, which is proportional taues of the kinetic and pairing energies, defined as

the winding number. For odd, there is a branch crossing the o _

Fermi energy atu=0, while for evenv there is no such ouin = YrlLloh) = (L)

branch. In addition, other branches cross zero energy at

higher angular momenta. The profile &fr) affects the core

states with|u|<|v|g. Except for small quantitative differ- are also indicated.

ences, the LDOS computed with and without the normal core The analysis of the numerical results at all angular mo-

are therefore very similar, as for the singly quantized vortexmenta shows that the energy eigenvalues in Figs. 1 and 3 are
From Figs. 1 and 2 one sees that the presence of thdominated by the pairing energy. Due to the cancellation of

supercurrent is a necessary and sufficient condition to havihe electron and hole contributions, the kinetic term remains

low-energy stategwhile the normal core is ngtand from  small and has a weak dependence. The structure of the

Fig. 3 one sees that the topological frustration, which is onlyeigenvalue spectra and, in particular, the occurrence of low-

present for oddv, is a necessary condition to have low- energy states at high angular momentum|f¢r- 1, can thus

energyand low-|u| states, i.e., a zero-bias peak in the LDOSbe qualitatively understood by considering the evolution of

at the core center. In order to build a consistent explanatiothe pairing matrix element withw. With increasingu, an

of the origin of the vortex-core states, it is thus necessary tadditional phase shift appears between the radial electron and

understand the effect of the circulating superfluid on the BdGhole wave functions at short distandes can be seen from

excitations. the functionsy2(p), the phase shift always tends tar/2

€pair= 2<';b+| 51 Vo),
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A2 |V|1_”‘ m
AE mn1p~ = i ola
Er 2 w+2]y

(v odd). (9)

For even values ob there is always a large gap at=0,
which is given byAE,_o=A..7/(1+gdpc) in this model. It
should be noted that the preseriabsencgof this large gap

for even (odd v is due to the absencgresencg of the
flux-induced topological frustration and does not depend on
the order-parameter profile; however, the width of this gap
does depend on the order-parameter profile through the ef-
fective core radiug,. Using p.~ |v|* and assuming the BCS
relationgo=2/ holds, we find tha\E,,, is also a decreas-
ing function of |,

71,2

AE o= A—(——
w0 e s 2ol

(v even, (10

in good agreement with the numerical results in Fig. 3.

IV. ISOLATED D-WAVE VORTEX

rl/&

Within the BdG theory, there is an important qualitative
FIG. 4. Electron(¢) and hole(y) BdG amplitudes for the  difference between the core spectra of isolated vortices in
lowest angular momentum in the singlpp) and doubly(bottom  g.wave ands-wave superconductors. The energy spectrum of
quantized vortex wittrc=¢. The integrand of the pairing matrix g.\vave vortices is discretéut looks continuous in experi-
element, p tantip/\[#]) "4 (p)y(p), is displayed in the bottom ents” hecause of small inter-level spacing and thermal
panels. broadening while numerical calculations suggest that the
energy spectrum is continuous in ttkevave casé? although
asymptotically, but it is a function of for p<u/g]. This  there are conflicting opinions in this resp&The numerical
has the effect of increasing the matrix element toward itSsolutions of thed-wave vortex lattice problem also point to a
maximum value ofA.. For the lower branch in the=-2  continuous spectrum of extended quasiparticle sFAEA
spectrum in Fig. 3, there is @>0 such that the total phase complete analytical solution would be useful to address this
shift is close to t7/2), and the matrix element thus nearly issue. The main difficulty comes from the nonlocality of the
vanishes. d-wave gap operator: gauge-invariant generalizations of the
In the Appendix, we derive an approximate solution forlattice d-wave gap to the continuum model are rather
the bound states of thewave vortex. To lowest order in complicatec?® In this section, the dependence of the core

nvlgp. the eigenvalues are found to be energy spectrum on the gap profile and vortex winding num-
ber is investigated numerically in tltewave case. The issue
E, _ —(uvigpy) + 2m+ 1 +v)(m/2) © ﬁfe rl.)eound versus extended core states is not directly relevant
A 1+9dpc Instead of a continuum model we consider a two-

dimensional nearest-neighbor lattice model. The vortex order
wherem is any integer such thaE,|<A. andp. is some parameter is taken to be
effective core radius in units of. For v=-1, gé=2/#, and

pc.=1, one recovers the famous Caroli-de Gennes—Matricon 1A(|Rij|)cos(27ij)e“"’ii if [r,-r;|=a
finding® namely, that for each: there is a unique solution W(rj,r)=14
within the gap(m=0) with energyEM~,u(Ai/EF). 0 otherwise,

The termv(7/2) in Eq. (8) can be traced back to the . L .
phase difference discussed abdgee the Appendix Only wherleri denotes a Iatt|ce_ siteq is the lattice par_ameter,
for odd values ofv does the term in parentheses disappeaBiJ=§(rifr1)=.|Rij|(C059ij ,sinfy), ri—rj=a(cosz,sin7),
for somem, hence a branch of bound states crosses the Ferr@"dA(r) is given by Eq.(6). This model order parameter is
level at x=0, contributing to the low-energy LDOS in the consistent with the self-consistent resdlAs in the s-wave
core. In this case the gap between the lowest-energy excit&2se, the small readjustments brought about by the self-
tions in the core iSAE,u:ilIZZ(Aozo/EF)[WZV/ZPC(W-l-ZpC)]! consistency have_ practlcally_no effect on the vortex spec-
where p. itself is a function ofr. The »-dependence of trum._ The LDO_S in the core is calculated using the Green’s
AE,-,1, may be estimated by demanding that the “hole” in function formalism
A(r) in Eqg. (6) and in the model calculation of the Appendix

2 .
have identical volumes, namelyp2. We then obtainp? N(ri,E) == — Im G;(E+il). (11)
=2l f5dxq1-tanl x)=~|v2* with «=0.78. Hence .
AE, .., is a decreasing function ¢ The Green'’s function is given by the Gorkov equations
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v=-1 v=-2 v=-3

— Eq.(6),r.=2a
- Eq' (6)’ rc=0

LDOS along the (1,1) direction

N(O, E)

(20,20)
N

-1 0 1 -1 0 1 -1 0 1

FIG. 6. LDOS along the nodal direction forwave vortices of
increasing winding numbers. The curves show the LDOS at all sites
between(0, 0) and (20, 20, and are offset vertically for clarity.

smallerM X M system(M =51) with the vortex at the center.
With this method the finite-size effects do not contaminate
. _ _ _ the free propagator, and a good spectral resolution can be
) 1 0 1 ) achieved. The hopping integral is setttobA., (a value typi-
E/A. cal for highT, materialg and the energy broadening I3
=A,/50.
FIG. 5. Local density of states in the core @fvave vortices The LDOS calculated at the vortex center witk 2a and
with increasing winding numbers. The solid lines correspond tOrC=0 and for various winding numbers is displayed in Fig. 5.
vortices having a normal core given by E6), and the dashed lines The LDOS for a “normal core” of radiusawithout super-
correspond to vortices without normal core. The cas® corre- current is also shown and denoted:as0. One can see sev-
sponds to a normal core without supercurrent. The arrows show thgral striking similarities with thes-wave vortex. FOM =1
displacement of the peak maxima when the system size increas e suppression of the order parameter has a very smaII’ effect
from M=41toM=51. The bulk DOS is shown in gray and provides on the LDOS in the core. This is confirmed by the case
a common scale to compare the spectra at diffevehlote that the -0. which shows that a Ioc.:al suppressiondf) is unable to
bulk coherence peaks are not locatecEat+A,, due to the large . '
value of the chemical potential=t. induce Iow-ene_rgy state¢The _small .flat DOS aE=0 for
v=0 andv=-2 is probably a finite-size effeét) For »=0,
there is a transfer of spectral weight from high to low energy
Gij(w) =Gf(w) + X Gh(w)S(w)Gjj(w) (128 atE=~A., resulting in two sharp states near the gap edges.
ki Increasing the system size fravh=41 toM =51, these states
Kt ) fshe}rpen while moving to slightly Iow_er binding energy, as
G(w) = iz e (12 indicated by the small arrows in _the flggre. At convergence,
b N2 w— g these states would presumably lie within the bulk gap, as in
the ss-wave case. Fow|= 1, one observes a strong even-odd
effect. Vortices with oddv have a zero-bias conductance
peak (ZBCP), which is absent in even vortices. The ZBCP
sharpens with increasing system size, but its energy is well
with N? the number ofk points ande, the dispersion. The converged at the system size considered. [Bpe 2, there
details ofe, are not important in the context of this study. are additional states at high energy, which are the analogs of
However, the presence of a van Hove singularity in the gaphe high-energy states near0 in thes-wave casdsee Fig.
region provides additional spectral weight, which might beg). One can observe that the sensitivity of the peaks to sys-
unequally distributed among the various peaks in the spectrgem size increases with energy, suggesting that the states at
thus complicating their interpretation. In order to avoid suchhigher energy are less localized.
difficulties, the simple nearest-neighbor forme,= In the neighborhood of the vortex axis, the LDOS has
—2t(cosk,a+coskya) - u is used, with the chemical potential many characteristics in common with the LDOS sfvave
set tou=t so that the van Hove singularity does not influ- vortices. In Fig. 6, one can see that in the case-1 the
ence the spectra in the gap region. Ei®) is solved by first  ZBCP at the core center splits into two symmetric peaks at
computingGﬁ(w) for a large systeniN=1024, taking ad- larger distances, very much like the high angular momentum
vantage of the translational invariance in EtRb). Then the  electron-hole excitations in thewave caselcompare Fig.
inhomogeneous terns;;(») and G;;(w) are calculated on a 2). These excitations have been the focus of a recent self-

Sii(w) = 2 W(r, r)GR(= o)W (r,r) (129
K
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consistent calculatiof?. In the doubly quantized vortex, the A LT TEEKKL LS TR
two peaks near the gap edges vanish slowly as the distance iz 3:?;;;;; FEEER i:;‘;‘ II:I‘;::g;E";:;‘
from the core increases, while a ZBCP develops, which is d e AR dd e T AARAREEEVRTIAARN
maximum at a distance=5y2a. The latter again decom- NN 2P AR BN NS 2 A AN I PSS AN
poses into two symmetric excitations at larger distances. The AR NS S S e R R A AR AR S
hb Wh ahaTala

resulting LDOS is thus very similar to that of a doubly quan-
tized sswave vortex(see Fig. 4 of Ref. 12 and can be T T T T T T T T T T T T
readily interpreted on the basis of Fig. 3. A similar analysis bla=(-20,-20)| b/a =(-10,-10)| b/a=(-2,-2)
shows that all of the features of tlsevave vortex withy=

-3 (Fig. 4 of Ref. 12 can be distinguished in the LDOS of
the v=-3 d-wave vortex(Fig. 6). The LDOS exhibits some
anisotropy around the vortex, but the differences between the
nodal and antinodal directions are small. In particular, all the
features discussed in Fig. 6 are also present in the antinodal
direction.

0,0)

V. PERTURBATIONS OF THE

LDOS along the (1,1) direction

L
e

ORDER-PARAMETER PHASE — NN\

(15, 15)
The results of the previous sections suggest that the core PR R Y I P S . -
states have a topological origin. An implication of this is that -1 0 1 _lE/OA 1 -1 0 1

the states must not be suppressed by changes in the phase of
the 0rd9f parameter, as long as these changes preserve thq:IG. 7. LDOS along the nodal directigfindicated by a thick
topological defect. Conversely, the core states should bgay jine in the top patfor a vortex-antivortex pair in a-wave
strongly affected by the interaction with an antivortex, sincesyperconductor for various vortex-antivortex separations. The anti-
the latter annihilates the effect of the topological defect onyortex (white dot, only visible at the shortest distaniat position
orbits larger than the vortex-antivortex distance. In this sech with respect to the vortetblack do}. The order-parameter phase
tion, we investigate the effects of some perturbations of then the region of the vortex centéexcluding thed,z_y> symmetry
phase field on the core states irdavave superconductor, factor for clarity is represented in the form of a small arrow on
starting with the perturbation induced by a nearby antivortexeach bond of the square lattice.

The order parameter for a vortex-antivortex pair was
taken as the normalized product of the order parameters asets an upper bound for the size of the aforementioned re-
sociated with each constituefite., two vortices with wind-  gion. On the other hand, a clear splitting of the ZBCP at site
ing numbers 1 and -1 ang=2a). The vortex is located at (0, 0) occurs forb=19a or less, which sets a lower bound to
the origin and the antivortex at posititvx (=b,-b). In Fig. 7 27a. These numbers can be compared with the spatial exten-
is shown the LDOS at the vortex center and along the diagsion of the core states. In thewave vortex the latter is
onal, in the direction opposite to the vortex-antivortex direc-typically € =2E;/(kgA,,) for a state aE=0 [see Eq.(A3)].
tion. The phase field around the vortex is also displayed. FoUsing Ec=5t (the position of the Fermi energy with respect
b=20a, the LDOS is similar to the LDOS of an isolated to the bottom of the band in the calculationk-=7/(2a),
singly quantized vortex(Fig. 6). However, although the and t=5A. one obtains¢~32a, which falls within the
phase field is barely modified by the antivortex in the regionbounds deduced from the numerical simulations. Thus, al-
where the LDOS is calculated, the latter is considerablythough the typical localization radius of the bound states
broadened: the height of the ZBCP is only 71% of the cormight be different ind-wave ands-wave superconductot$,
responding height in the isolated vortex, while the gap inteone may conclude that the LDOS in the vortex core “feels”
grated spectral weight is conserved within 2%. Note also thathe presence of an antivortégr another vortex in a vortex
the ZBCP is already split at si{@, 1), unlike in the isolated lattice) at any distance shorter than the extension of the
case where this splitting occurs first at sife 2). Reducing  bound states.
the vortex-antivortex distandé=10a), the ZBCP at sit€0, The sensitivity of the LDOS to perturbations of the phase
0) also splits. At the same time, the energy separation bethat preserve the topological defect was studied by randomly
tween the two states away from the core center is increasedisordering the phase field, i.e., replacing the order param-
Finally, at b=2a the ZBCP disappears completely and theeter ¥ of the isolated vortex byPe* wherex is a random
LDOS resembles the LDOS of =0 “vortex” (see Figs. 5 Gaussian variable centered @t0 with varianceW (full
and 2. width at half maximum The resulting LDOS is displayed in

The spectra in Fig. 7 show that the formation of the coreFig. 8. At W=7/8 andW=/4, the spectra are practically
states is a nonlocal process: the LDOS at a particular sitanchanged with respect to the ordered case. No new structure
depends on the phase winding in a region much larger thais induced in the spectra up to the strongest disorder consid-
the core radius,. In fact the height of the ZBCP 40, 0 ered. At W==/2, though, the ZBCP is reduceut not
reaches 95% of its value in the isolated vortex for vortex-broadenefl and the energy separation between the two
antivortex separations as large-a30a (b=50a). This value electron-hole excitations away from the core is decreased.
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because this approximation neglects the topological defect

SEEES N TR se this ne | .

# A ESTN T ?‘,«:\jﬂ& rrCAERLE assoua_ted .Wlth the phase wmt;hng. A comparison of the r_|ght
STt e RN A panels in Figs. 7 and 8 unambiguously shows that the micro-
I\i\j\ igii’,}{ 1\5\‘:: :‘, ;’5,:;;; :‘{‘?“ 4, % S scopic details of(r) are much less relevant to the formation
OSSR e e of the vortex LDOS than the “macroscopic” phase winding.

TR A T This is further evidenced by the qualitative differences be-
e I LA B e e o e e o tween everr and oddy vortices. The mechanism described
W=m/8 W=n/4 W=n/2 in Sec. Il B provides a natural explanation to these results,

since the interference between the electron and the hole,
©,0) which is responsible for the formation of the bound states, is
a global property of the wave function and is not destroyed
~—7\~— by local perturbations of(r). The issue of self-consistency

WWW in the order parametefmodulus and phagéds one of the
wwm major obstacles to a complete analytical calculation of the

vortex-core LDOS. Nevertheless, the results of the present

MMM

W :

AV AR AV AN e SNV study suggest that the LDOS calculated from the simplest

MMM possible “trial” order parameter, i.e., a uniform modulus
_,-/\_/./\_\

N\ — ] A(r,6)=A. and a geometric phasgr, §)=v#6, should ex-
P\ n N N hibit all the characteristic features of the exact solutigm

. . P P R N N interesting exception might be the case where subdominant
order parameters of different symmetries are brought about
E/A by the self-consistengy.
In the presence of several topological defects, the winding

quantized vortex subject to random phase disoMkcharacterizes v in Eq. (1) depends on the number of defects contained in

the strength of disorder. The phase field in the core region is showwe p"?‘th of integration. Based on the analysis in Sec. V, we
in the top part. The spectra corresponding to the ordered (ise te€ntatively argue that the structure of the vortex core LDOS

is determined primarily by the average vorticity in the region
occupied by the core states. This statement was checked by

This might be attributed to the loss of rotational symmetry,li%?ségg:%np%ea ;/ha:(;%le?; \é?gixzagrﬂisg:;\éirgeﬁ t(r:](()anlljgtggtli?]ns.

which leads to a stronger interaction between angular mo; re of av=—-1 vortex w tudied. The antivortex w
mentum eigenstates, and to a redistribution of spectr tpe core of av=- _0 exwas studied. The antivortex was
weight. We note that the integrated LDOS is conserve ocated at positio=(~b, ~b) as in Fig. 7. For smal(b/a
within 3% at all sites and for all disorder strengths consid- 2) and large(b/a=20) vortex-antivortex sgparatlons the
ered. LDOS was found to be close to that of an isolated vortex.
Nearb=>5a the spectrum was similar to the topmost case in
Fig. 5, corresponding t@=0. Finally, in the other regions
V1. DISCUSSION the LDOS exhibited intermediate shapes. In this geometry
) o ) the vorticity is —1 in the regiom<b\s’§ and +1 in the region
The numerical results reported in Figs. 2 and 5 imply that, b\2, so that the average vorticity in a region of radRis
the suppression of the moduldsr) of the order parameter g 7=1-4b/R)? if by2<R and -1 ifby2>R. Thus[7[~1
in the core can be safely ignored when discussing the mechgs; smail and largeb, whereags[~0 for b~ R/2.
nism of formation of the vortex states & andd-wave su- In the normal state of the superconducting cuprates, the
perconductors. The main reason is the small magnitude Qfghayior of the high-frequency optical conductigitand the
the supercondgctlng gap ywth respect to the Ferm_l energy: gresence of a large Nernst sigiiahave been generally at-
local suppression oA(r) is a very weakperturbation for ip ted to vortex excitations, in the form of unbound vortex-
excitations at the Fermi surface, which does not provide gntivortex pairs. Recently, L& argued that such vortices
substantial gain of pairing energy for a localized Bogoliubovpaye to pe “cheap,” i.e., must be free of core states in order
excitation(unless the localization radius is smaller than theiq have a formation energy comparable to the thermal energy
core radius, which, in turn, costs a large kinetic enrgy . T_ Experimentally, there is indeed convincing evidence
Making use of Eq.(8) with »=0, one can see that a local fom scanning tunneling microscopdSTM)3-33  and
suppression oA(r) can induce low-energy states in the limit \nR34.35measurements that the core states are suppressed at
A./Ee> (ker )™, which is never attained in the BCS super- T<T_ in the cuprates, pointing to a failure of the simple
conductors for which../Eg~ 2/ m(Kker )™ d-wave BCS theory in the superconducting state. Lee pointed
Thus the origin of the bound states must be searched igut that a straightforward extension of the BCS theory that
the phasex(r) of the order parameter. Far from the vortex, includes phase fluctuations is unable to produce “cheap” vor-
the slow variation of(r) is known to induce a small density tices in the normal state. This argument relies on the assump-
of states in the gap by the Doppler-shift efféttThe tion that the average vortex-core LDOS in a vortex-
Doppler-shift approximation is not valid in the core region antivortex soup is similar to the LDOS of an isolated vortex.
because there the superfluid velocity is too large, but alsés Fig. 7 shows, however, the vortex-core states can be very

LDOS along the (1,1) direction

|
—
o
—

|
—
o
—

|
—
(=)
—

FIG. 8. LDOS along the nodal direction fordiwave singly-

=0) are shown in grey for comparison.
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efficiently suppressed in a “BCS” vortex-antivortex pair, the vortex-core spectrum. The radial wave function is written
even when the vortex-antivortex separation is much largeas

than the core radius. It is likely that the same phenomenon

also occurs in more sophisticated models of the Higlsu- Y:(p) = ReH .1,2(9:p)f+(p), (A1)

perconductors. A systematic investigation of the core energyyhereg, =gy1+e andH,(x)=J,(x) +iY,(x) with J andY the

as a function of the vortex density in a state of fluctuatinggessel functions of the first and second kind, respectively.
vortex-antivortex pairs would thus be helpful to elucidate thegqyation(s) becomes

nature of the normal state in the cuprates.
In this study, the effect of the order-parameter symmetry . 1 { d? (l H’) d

R —+2—i _
dp®> \p "H./dp

H=
on the properties of the vortex states was left aside and the ~ ~ ¢? }fi * 5(“’)|_|_+fI =0.
emphasis was put on the similarities of the LDOSsirand h (A2)
d-wave vortices, which illustrates the key role of the vortic-
ity in both cases. It is well known that a subdominant orderH ., ,,(g.p) is abbreviated a#i,, andH,=dH,/dp. At this
parameter can induce qualitative changes in the LDOS ofoint we make two simplificationsi) We consider a square
BCS vorticess® Furthermore, the delicate question of the gap profile:8(p)=66(p—p.). As shown in the main text, the
spatial extension of the core states in theave caséexpo-  yortex-core spectrum is only weakly influenced by the de-
nentially localized or extendgdvas not addressed. These taijls of 5(p). (i) We use the approximations
issues are a good mativation to search for a realistic analyti-
cal solution of the BdG equations for vortices in supercon-
ductors with nonlocal pairing.

}+2H—;~2i
o H O:

+

VIl. CONCLUSION He _ /%eﬂmﬁz(l g g_>e+i(g+_g—)f’_
In the BCS theory, the superconducting state is character- 9= Pe 20:9-

ized by a complex order parameter, with a modulM$)  These expressions were obtained from the asymptotic form
related to the superfluid density and a phg$e related to  of the Bessel functions

the supercurrent. Although the electronic states bound to vor-

tices have often been attributed to the suppression of the H. (x) ~ /iei[x+(n2/2x)—(n+1/2)ﬂ'/2] (x> n)

superfluid density in the core region, it was found that the " X '

bound states are completely formed when this suppression js . ) . L
overlooked, which confirms an earlier finding based on th y gxpandlng to first order ip./g and v/g. ApprOX|mat|on
quasiclassical approximatidh.In order to explain the for- (ii) is therefqre inadequate 1{/2>g. Furthermore, in
mation of the core states, a mechanism was proposed thtcﬁe second_llr)e,' the; _term proportional tpplWas eva_luated
relies on the influence that the vortex supercurrent exerts ofit P=Pc: This is justified for the cglculatlon of th_e eigenval-
the Bogoliubov excitations. In short, the Bogoliubov excita-UeS: Since the latter are determined by matching the wave

: ; : functions atp=p.. Note also that this approximation will
tions localize onto vortices because thgpology of the P=Pc Aml2) § .
latter—not the normal core—gives to the electron and holé)reak down ifp,<< 1. The factore®""™)in the expression for

components the possibility to avoid one another and to minin=/Hz iS the consequence of the phase shift discussed in

icesec. Il B. With these simplifications E¢A2) can be solved

carrying more than one flux quantum, as well as of vortex-£Xactly. We restrict the analysis to subgap states with.
the solution is simplyf; (p) =A. whereA, are real

antivortex pairs, are consistent with this idea. The propose@‘t P=pc , )
mechanism of localization results from the particular form ofconstants. Ap= p, the solution can be written as

the coupling mediated by the supercurrent betvyeen the elec- f7(p) = B,€(@79:)rrdgkip=po) (A3)
tron and hole components and is therefore unique to super- -
conductors. with q=g(¢+3)"% k=g(¢-3)"% (=3(1+8+y?-£?)"2 and
y=8(9,+9-)ur/29,9-p.]. The B, are complex numbers
ACKNOWLEDGMENTS and they are related by
14/ 2
| am grateful to H. Beck, @. Fischer, B. Giovannini, S. G. B-_ [9-e- IV4g" - 1ei[(g+—g_)pc-y(w/2)]_ (Ad)
Sharapov, and R. P. Tiwari for stimulating discussions. B, g, O-livy
Introducing the solution§; andf; into Eq.(A1) and match-
APPENDIX: APPROXIMATE SOLUTION ing the wave function and its derivative @t p. one obtains
FOR THE S-WAVE VORTEX .
In thi di imate solution of the BdG eo1- e+ (97 gVSJ(¥e 1) (A5)
n this appendix an approximate solution of the A (G- 9@ +Y) — (Y~ Y]’

equations for an isolated vortex insavave superconductor

is derived. This solution differs somewhat from those givenwith s=+, J,=J,:,/2(d:pc), andY.=Y ,4,5(d:pc). Equations

in Refs. 6 and 7 and applies to vortices of arbitrary winding(A4) and (A5) provide the relation between the coefficients
numberv. The purpose here is to highlight the rolebn A, andA_, as well as the eigenvalue equation
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; [( ) 7T:| —e+ P+ -g? (A6) e E —tan Y(uv/gpe) + (2m+ 1 + v)(7/2)
an - - - - = [ 1 = —_
SR (Y RN = 5 A [1+(urlgpd®T 72+ gop,
_ ~(pvigpo) + 2m+ 1 +v)(7/2) ' (A7)
where 1+9gdp.
_Stay B B_/A_ wherem s any integer such th3E| <A., and the second line
1 as a=tan argB+/A+. is valid to first order inuv/gp.. We have checked numeri-

cally that the eigenvalues resulting from E¢&6) and (A7)

are in excellent agreement at all Equation(A7) correctly
In Eqg. (A6) 9., ¥, and  are all functions ofe. In order to  accounts for the qualitative difference between oddnd
make Eq.(A6) more tractable, we note thgt~; andg.  evenw vortices. Due to the approximations made, however,
~(g since 5, v, ande are small numbers. Takingzé and  the validity of Egs.(A6) and (A7) is limited to the region
g.=g in Eq. (A5) we obtainBs/A;=1 and thereforex=0.  |uv|<g, and the zero-energy states|at=g in Fig. 3 are
Equation(A6) can then be solved to first order én not reproduced.
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