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Coulomb repulsion among the many electrons in a metal is in a balance, which can be toppled by even a
weak electron-phonon attractive interaction. Therefore neglecting the Coulomb term from the BCS reduced
Hamiltonian has little effect onTc. This is shown by a field-theoretic argument, an analysis based on the
Bogoliubov model potential and a direct numerical calculation. Detailed knowledge about electrons and
phonons for various materials can be incorporated into the BCS theory through a refined treatment of the
self-consistent gap equation. Consequently the universal ratio 3.5 in the BCS theory is replaced by a range of
values varying from 3.51 for Ga to 4.76 for Hg. It is found that the phonon cutoff frequency is much lower than
the Debye frequency. Extraordinarily highTc could be expected if all phonons were involved in pairing
electrons in a BCS superconductor.
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I. INTRODUCTION

There have been varying views concerning the effect of
Coulomb repulsion on superconductivity. According to
Bardeen, Cooper, and SchrieffersBCSd the criterion for su-
perconductivity is that the attractive phonon interaction
dominates the Coulomb interaction.1 This view was tested
numerically by Pines.2 On the other hand, from the Bogoliu-
bov model potential, it was found that Coulomb repulsion
has little effect on Tc, the transition temperature of
superconductors.3 It is interesting that superconductivity may
arise even with an entirely repulsive interaction, when this
interaction is perturbed by an attractive interaction over a
narrow range of phonon frequencies.3 Which view should we
follow?

There also have been varying views concerning the range
of phonon frequencies involved in the electron-phonon inter-
action. BCS introduced the so-called average phonon fre-
quencyv which is also known as the cutoff frequencyvc
because phonons stop pairing electrons when their frequen-
cies exceedvc.

1 However a liberty is often taken in the re-
cent literature to letvc equal vD, the Debye frequency.3,4

Should we follow this view?
There was no Coulomb term in the Hamiltonian in the

original formalism of the canonical transform, which was
introduced by Fröhlich and serves as the basis of the BCS
theory.5 In this transform the first order term of the electron-
phonon interaction is cancelled. The second order term of
this interaction perturbs the Bloch energy of the electrons to
give 2D, the superconductive energy gap. We find that the
formalism of the canonical transform is almost unchanged
when we add the Coulomb term to the Hamiltonian. Now
perturbed is not the Bloch energy but the energy of electrons
with Coulomb repulsion. The energy gap itself remains al-
most the same. This reflects the fact that in a metal the Cou-
lomb repulsion between electrons is in a balance, which may
be toppled by even a weak electron-phonon interaction.

To test the above view of ours, we solve numerically the
BCS self-consistent equation with and without Coulomb re-
pulsion. The Coulomb interaction is screened with a variable
screening radius. We find that superconductivity is almost

unaffected by the Coulomb repulsion. In particular in our
calculation 2D /kBTc always stays exactly the same when the
screening radius varies, wherekB is the Boltzmann constant.
This explains why the BCS theory has been so successful
without the Coulomb interaction.

In our calculation we use the electric conductivity of the
metal to calibrate the strength of the electron-phonon inter-
action. We then vary the phonon cut-off frequencyvc until D
matches its experimental value. Our approach is justified be-
cause the calculated 2D /kBTc, which is beyond our control,
also matches its experimental value. We find that on average
the error in 2D /kBTc is less than 9% for 12 superconductive
metals, including Hg and Pb. This enables us to predictTc
from the experimentally observedD, or vice versa, fairly
accurately.

We also find that the phonon cutoff frequency is much
lower than the Debye frequency: on averagevc/vD=0.15 for
the 12 superconductive metals. Apparently in BCS supercon-
ductors only a fraction of phonons is actually involved in
pairing electrons, in accord with the view of a recent publi-
cation that superconductivity is frustrated when normal and
umklapp scattering coexist.6 If we were to letvc=vD then
the transition temperature would become extraordinarily
high, e.g.,Tc=980 K for Sn. This appears to indicate room to
raise Tc considerably if the frustration effect of umklapp
scattering could somehow be eased.

II. CANONICAL TRANSFORM WITHOUT COULOMB
REPULSION

For the convenience of the reader we outline the major
steps of the canonical transform by Fröhlich.5 We start from
the Hamiltonian without Coulomb repulsion

H = He + Hp + He-p. s1d

Here He and Hp are electron and phonon Hamiltonians, re-
spectively, andHe-p the Hamiltonian of the electron-phonon
interaction. We introduce the following general operator ex-
pansionssee the Appendixd:
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e−SHeS= H + fH,Sg +
1

2
ffH,Sg,Sg + ¯ , s2d

fH ,Sg=HS−SH. If we let

fHe + Hp,Sg + He-p = 0 s3d

then by substituting Eqs.s1d and s3d into Eq. s2d, and ne-
glecting high order terms, we find

e−SHeS= He + Hp +
1

2
fHe-p,Sg, s4d

where the first order term of the electron-phonon interaction
is cancelled.

In order to evaluate Eq.s4d we appeal to second quanti-
zation, where the Hamiltonians are of the following form:

He = o
k,s

ekak,s
+ ak,s, s5d

Hp = o
q,l

"vq,lscq,l
+ cq,l + 1/2d, s6d

He-p = − i o
k,s,q,l

Mq,lak+q,s
+ ak,ssc−q,l

+ + cq,ld. s7d

a+ anda are electron generation and destruction operators,e
and k electron energy and wave vector,s spin, c+ and c
phonon generation and destruction operators, andv and q
phonon frequency and wave vector. Note that in Eq.s7d an
electron has the same spin before and after being scattered by
a phonon andl identifies phonon polarization. We neglect the
slight dependence of the matrix elementMq,l on k.1 We are
reminded that harmonic phonons are assumed in Eq.s7d in
order to convert atomic displacement intoc+c+.

According to Eq.s7d we have

k0uak+q,sHe-pak,s
+ cq,l

+ u0l = − iMq,l , s8d

k0uak+q,sc−q,lHe-pak,s
+ u0l = − iMq,l , s9d

u0l being the electron and phonon vacuum. Substituting Eq.
s3d into Eqs.s8d and s9d, we find through Eqs.s5d and s6d
that

k0uak+q,sSak,s
+ cq,l

+ u0l =
− iMq,l

ek+q − ek − "vq,l
, s10d

k0uak+q,sc−q,lSak,s
+ u0l =

− iMq,l

ek+q − ek + "vq,l
. s11d

Equationss10d and s11d mean that we have

S= o
k,s,q,l

− iMq,l

ek+q − ek − "vq,l
ak+q,s

+ ak,scq,l

+ o
k,s,q,l

− iMq,l

ek+q − ek + "vq,l
ak+q,s

+ ak,sc−q,l
+ , s12d

which leads through Eq.s7d and the fermion and boson per-
mutation relations to

fHe-p,Sg = − o
k,k8,s,s8,q

Vk,qak+q,s
+ ak8−q,s8

+ ak8,s8ak,s s13d

with

Vk,q = o
l

2"vq,lMq,l
2

s"vq,ld2 − sek+q − ekd2 . s14d

It is interesting that in Eq.s13d the phonon generation and
destruction operators do not appear explicitly, i.e., we have
virtual phonons which are emitted and then absorbed by the
electrons but cannot be observed directly.

In the BCS theory the electrons are in pairs, with opposite
momentum and spin, so that in Eq.s4d the operatore−SHeS

becomes

HBCS= 2o
k

ekbk
+bk − o

k,q
Vk,qbk+q

+ bk s15d

which is known as the BCS reduced Hamiltonian, where

bk = a−k,↓ak,↑, bk
+ = ak,↑

+ a−k,↓
+ s16d

are pair generation and destruction operators,↑ and↓ spins.
In Eq. s15d the electron term is also inb, which vanishes
when applied to single electrons. WhenT.0, we have to
replace the first summation in Eq.s15d with the standard
electron Hamiltonian in Eq.s5d in order to take into account
the energy of single electrons.1 It is no longer necessary to
have the phonon HamiltonianHp explicitly involved in Eq.
s15d when phonons become virtual.

III. CANONICAL TRANSFORM WITH COULOMB
REPULSION

Now we replace Eq.s1d with

H = He + Hp + He-p + HCol, s17d

where HCol is the Hamiltonian of Coulomb repulsion. We
also replace Eq.s3d with

fHe + Hp + HCol,Sg + He-p = 0. s18d

Consequently Eq.s4d becomes

e−SHeS= He + HCol + Hp +
1

2
fHe-p,Sg s19d

and Eq.s15d becomes

HBCS+ HCol = 2o
k

ekbk
+bk − o

k,q
sVk,q − Uqdbk+q

+ bk s20d

with2

Uq =
e2

4pe0

V−1

q2 + q0
2 . s21d

Here q0 measures the screening radius,e is the electron
charge, ande0 vacuum permitivity. We have adopted the SI
unit system where the Coulomb interaction ise2/4pe0r be-
tween two electrons at distancer. Equations21d arises from
a Fourier integration overq which is continuous. We convert
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this integration into the summation in Eq.s20d over discrete
q and this leads to the factorV−1 in Eq. s21d, which is the
inverse of the total volume of the metal, to replacedq in the
integration.

Equations20d appears to suggestVk,q.Uk as the criterion
for superconductivity. However, if we replace Eq.s1d with
Eq. s17d, and replace Eq.s5d with

He + HCol = o
k

ẽkak
+ak , s22d

ẽk being the electron energywith Coulomb repulsion, then
we find through the canonical transform in the previous sec-
tion

H̃BCS= 2o
k

ẽkbk
+bk − o

k,q
Ṽk,qbk+q

+ bk s23d

which is almost identical to Eq.s15d, with

Ṽk,q = o
l

2"vq,lMq,l
2

s"vq,ld2 − sẽk+q − ẽkd2 s24d

which too is almost identical to Eq.s14d.
In the above argument Eq.s22d is introduced as a reason-

able assumption, namely,He+HCol has eigenfunctions, which
are orthogonal to each other withẽk as their eigenvalue.
There could be some technical difficulty if we try to calcu-
late ẽk from first principles. However, we are mainly inter-

ested in how muchẽk is perturbed byṼk,q rather than the
actual values ofẽk. It is apparent from Eq.s24d that, when

we evaluateṼk,q, we have to evaluate bothẽk andẽk+q at the
same time. It is not an issue thatẽk may differ from the
Bloch energyek by an infinity, since it will be cancelled in
Eq. s24d. The issue here is that the dispersion relation, which
relates the electron energy and momentum, could be slightly
distorted in the presence of the Coulomb repulsion, so that
ek+q−ek in Eq. s14d may differ slightly fromẽk+q− ẽk in Eq.
s24d for the same value ofq. In this respect Coulomb repul-
sion may have little effect on superconductivity.

The unimportance of Coulomb repulsion, with respect to
its effect on superconductivity, could be explained as fol-
lows: attraction due to electron-phonon interaction, though
weak, is sufficient to topple the balance of the Coulomb

force among the many electrons in a metal. As a resultṼ and
V are almost identical in Eqs.s24d and s14d, which are de-
rived with and without the Coulomb Hamiltonian, respec-
tively.

IV. BOGOLIUBOV MODEL POTENTIAL

Equations20d leads to the self-consistent gap equation

Dskd = o
q

sVk,q − Uqd
Dsk + qd
2Esk + qd

, s25d

whereD measures the superconductive energy gap,E=sD2

+e2d1/21. Equations25d can also be written as

Dsed = Ns0d E Vse8 − ed
Dse8d
2Ese8d

de8

− Ns0d E Use8 − ed
Dse8d
2Ese8d

de8. s26d

e represents energy relative to the Fermi surface andNs0d the
density of states.1

In order to solve Eq.s26d analytically, Bogoliubov de-
vised a model potential, where

Vse8 − ed = HV, ue8 − eu , "vc,

0, otherwise,
J s27d

whereas

Use8 − ed = HU, ue8 − eu , "vB,

0, otherwise,
J s28d

vB is known as the Coulomb cutoff frequencyssee Fig. 1d.3
It is also assumed thatDsed takes only two values. Further-
more, it is assumed that, whenDsed=D1, values ofe ande8
are such thatVse8−ed=V and Use8−ed=U. On the other
hand, whenDsed=D2, we are supposed to haveVse8−ed=0
andUse8−ed=U.3 As a result, we find from Eq.s26d a pair of
algebraic equations

FD1

D2
G = Fsl − mdI1 − mI2

− mI1 − mI2
GFD1

D2
G , s29d

wherel=Ns0dV, m=Ns0dU,

I1 =E
0

"vc de8

se82 + D1
2d1/2 = sinh−1S"vc

D1
D , s30d

I2 =E
"vc

"vB de8

se82 + D2
2d1/2 < lnSvB

vc
D . s31d

Equations30d is exact. Equations31d tells us thatI2 becomes
larger the larger the ratiovB/vc.

Equations29d has a nontrivial solution only when

U1 − sl − mdI1 mI2

mI1 1 + mI2
U = 0 s32d

which means

FIG. 1. Bogoliubov model potential, whereUq and Vk,q are
modeled byU and V, which distribute uniformly whenue8−eu
,vB andvc, respectively.sad V dominates whenue8−eu,vc. sbd U
always dominates.

COULOMB REPULSION ANDTc IN BCS THEORY OF… PHYSICAL REVIEW B 71, 134512s2005d

134512-3



I1 = Sl −
m

1 + mI2
D−1

. s33d

WhenvB@vc, Eq. s33d is reduced toI1=l−1, or

D1 = "vc/sinhf1/Ns0dVg s34d

which is exactly the expression for the energy gap function
in the BCS theory without Coulomb repulsion. Apparently
the value ofU has little effect onD1 when the Coulomb
cutoff frequency of BogoliubovvB is large enough. It is
interesting thatD1 may arise even with the entirely repulsive
potential in Fig. 1sbd.

In Ref. 3 the Bogoliubov model potential is used to dis-
cuss the effect of Coulomb repulsion onTc. The discussion is
essentially based on the relation 2D1/kBTc=3.5, with the ap-
parent consequence that the Coulomb repulsion has little ef-
fect onTc. On the other hand, the ratiovB/vc is shown not to
have significant effect on the isotope coefficient.3

V. MATRIX ELEMENT AND ADIABATIC PARAMETER

Now we evaluateVk,q in Eq. s14d, in order to solve the
self-consistent gap equations25d numerically. The expres-
sion for the matrix element

Mq,l = q̃lS N"

2Mvql
D1/2E

V0

ck+q,s
* sr dfVsr d − Vs0dgck,ssr ddr

s35d

is well known.7,8 HereV is the atomic potential,c’s electron
wave functionssBloch functionsd, M atomic mass,N number
of atoms in unit volume,Slq̃l

2=q2, r coordinates in real
space, andV0 the Wigner-Seitz cell. WhenV is symmetric
with respect to the atomic site, Eq.s35d can be evaluated
analytically to give7,8

o
l

2"vqluMq,lu2 =
"2q2sdVd2

NM
F2std. s36d

Fstd=3ssint−t costd /t3, t=r0q, r0 radius ofV0 sassumed
to be sphericald, anddV=Vsr0d−Vs0d atomic potential mea-
sured from the atom site. Letting

j = q/2kF, s37d

kF being the Fermi momentum, for a spherical Fermi surface
we havekF=s3p2Z/V0d1/3, V0=s4p /3dr0

3, Z the valency, so
that t=2kFr0j=s18pZd1/3j=3.84Z1/3j.

We parametrize the electron energy in the usual way:9

ek = ÎsvFp1d2 + sv2p2d2, s38d

where the momentump is measured from the Fermi surface,
with p1 and p2 normal and parallel to it,vF is the Fermi
velocity. We may understand thatp1, p2, and vF are found
with or without Coulomb repulsion. In the former case we
should replaceek with ẽk. Equations38d applies above the
Fermi surface, but can be easily extended toek below it.10,11

For a spherical Fermi surfacep1="sk−kFd andp2=0, kF be-
ing the Fermi wave number, so that

ek+q − ek = "vFqx s39d

near the Fermi surface,x=j+cosu, u being the angle be-
tween k and q. In the Debye phonon modelvql =vDq, vD
being the sound velocity, giving

s"vq,ld2 − sek+q − ekd2 = "2vF
2q2sd2 − x2d, s40d

where

d =
vD

vF
=

kF

2qD

"vD

eF
= S p

16
D1/3TD

TF
. s41d

qD is the Debye wave number,eF=s" /2dvFkF, TD and TF

Debye and Fermi temperatures. We see from Table I thatd
,10−3, which is known as the adiabatic parameter in the
literature.12 In more realistic models the sound velocity may
depend onq so thatd may not be constant. By substituting
Eqs.s36d and s40d into Eq. s24d, we find

Vk,q =
sdVd2

NMvF
2

F2s3.84Z1/3jd
d2 − x2 . s42d

dV andd are defined in Eqs.s36d and s41d, respectively.

VI. ATOMIC POTENTIAL

In order to evaluate Eq.s42d we have to knowdV. Car-
botte and Dynes utilized tabulated data of the Heine-
Abarenkov pseudopotential to estimatedV and calculated the
electric resistivityr and energy gapD susing the Eliashberg
formalismd separately.13,14 However, we do not have to cal-
culatedV explicitly. According to Mott and Jones8 the resis-
tivity of a metal is given by the following formula:

TABLE I. Calculated physical properties and corresponding ex-
perimental values for a range of superconducting elements.

D0
a,b U0

b d c vc/vD 2Ds0d /kBTc
d

Zn 1.19s1.20d 6840 1.50 0.167 3.63s3.20d
Cd 0.26s0.75d 5040 1.20 0.245 3.70s3.20d
Hg 0.81s8.25d 4900 0.44 0.124 4.76s4.60d
Al 1.37 s1.70d 6300 1.81 0.183 3.54s3.30d
Ga 3.96s1.65d 5960 1.51 0.096 3.51s3.50d
In 0.25 s5.25d 5420 0.62 0.203 3.92s3.60d
Tl 0.23 s3.68d 5260 0.48 0.164 3.92s3.57d
Sn 1.26s5.75d 5440 1.25 0.158 3.70s3.50d
Pb 0.70s13.7d 5670 0.60 0.160 4.56s4.38d
V 14.0 s8.00d 7930 1.20 0.068 3.95s3.40d
Nb 4.90s15.3d 7270 1.04 0.107 4.25s3.80d
Ta 3.36s7.00d 8110 0.90 0.095 3.95s3.60d

aValues ofDs0d bracketed.
bIn 10−4 eV.
cIn 10−3.
dExperimental data bracketed.
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r =
12psdVd2

NMvF
2

kBTr

"e2vD
2 I . s43d

kB is the Boltzmann constant,Tr the temperaturesroom tem-
peratured whenr is measured,e electronic charge, and

I =E
0

jD

F2s3.84Z1/3jdj3dj, s44d

where

jD = qD/2kF = 1/s4Zd1/3, s45d

qD being the Debye cutoff momentum. Combining Eqs.s42d
and s43d, we find

Vk,q =
1

12pI

"e2rvD
2

kBTr

F2s3.84Z1/3jd
d2 − x2 s46d

which can be readily evaluated.

VII. SELF-CONSISTENT GAP EQUATION WITHOUT
COULOMB REPULSION

We drop Uq from Eq. s25d and integrate the resultant
equation in a phonon sphere of radiusq. We use Eq.s46d to
evaluateVk,q. After some algebra, we find

Dsed =
D0

2pI
E

0

jc

F2s3.84Z1/3jdj2dj

3 E
j−1

j+1 Dse + 4eFjxd
Ese + 4eFjxd

dx

d2 − x2 , s47d

whereI is defined in Eq.s44d,

D0 = "e2nrvD
2 /2kBTr, s48d

n=ZN being the number of electrons in unit volume.
We see from Table I that the value ofD0 is often close to

measured values ofD. In order to understand the physical
reason of this, we integrateVk,q in Eq. s46d over the first
phonon Brillouin zone, and find

o
q

Vk,q =
D0

2pI
E

0

jD

F2s3.84Z1/3jdj2djE
j−1

j+1 dx

d2 − x2 s49d

which can be compared with Eq.s47d. We have

E
j−1

j+1 dx

d2 − x2 =
2

1 − j2 s50d

whend!1. We also have

E
0

jD

F2s3.84Z1/3jd
j2dj

1 − j2 < pI , s51d

whereI is given by Eq.s44d. Combining Eqs.s49d–s51d we
find

o
q

Vk,q < D0 s52d

which tells us thatD0 is a parameter to measure the strength
of electron-phonon interaction. It is apparent from Eq.s48d

that strong electron-phonon interaction arises from numerous
free electronsslargend scattered frequently by atomsslarge
rd that move quicklyslargevDd to facilitate pairing.

VIII. ITERATION ALGORITHM

We solve Eq.s47d through iteration. In each of the itera-
tions we have to varyjc in order to letDs0d match its ex-
perimental value. This means that we have to integrate Eq.
s47d many times with varyingjc. The resultantDsed, with
correct Ds0d, is substituted into the right-hand side of Eq.
s47d for the next round of iteration. This process is repeated
until iteration makes little difference inDsed fon average
,Ds0d310−7g.

It is actually quite laborious to integrate Eq.s47d, not only
because the integration is 2D, but also because the second
integration in Eq.s47d exists in the sense of the Cauchy
principal value,15 whose numerical evaluation is particularly
demanding around the two poles of 1/sx2−d2d. We evaluate
the Cauchy principal value semianalytically. The integrand
D /E is assumed to be linear in small intervals ofx, and is
integrated analytically. This saves us enormous computer
time.

In order to check our numerical result, we notice that in
first iteration, when we setD=D0, the Cauchy principal value
in Eq. s47d has an analytical form

E D0

ÎD0
2 + se + 4eFjxd2

dx

d2 − x2

=
D0/2d

ÎD0
2 + se + 4eFjdd2

ln
2Asxd
ux − du

−
D0/2d

ÎD0
2 + se − 4eFjdd2

ln
2Bsxd
ux + du

+ C, s53d

whereC is the integration constant

Asxd = D0
2 + se + 4eFjddse + 4eFjxd

+ ÎD0
2 + se + 4eFjdd2ÎD0

2 + se + 4eFjxd2,

Bsxd = D0
2 + se − 4eFjddse + 4eFjxd

+ ÎD0
2 + se − 4eFjdd2ÎD0

2 + se + 4eFjxd2.

The solution based on Eq.s53d is virtually identical to the
full numerical solution of Eq.s47d in first iteration. It can be
seen from Fig. 2 that prominent features ofDsed have already
emerged from first iteration: further iterations improve the
accuracy of solution but retain the physics.

IX. GAP FUNCTION WITHOUT COULOMB REPULSION

One prominent feature ofDsed lies in its structure: it has a
peak flanked by two negative dips. For tin the distance be-
tween the peak and one dip is,4 meV sFig. 2d compared
with "vD=17 meV. As a result, the curve ofde /dE, which
represents the tunneling density of states, also has a structure
featuring a dip, similar to the characteristic dip in the tunnel-
ing experiment data.16 IndeedDsed is also structured in the
numerical solutions for the Eliashberg equation.16–18
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Another prominent feature is thatvc/vD!1 s0.148 on
average for the 12 metals in Table Id. This is somewhat puz-
zling because, assuming thatD /E varies slowly over the
range of phonon frequencies, we can integrate Eq.s25d
swithout Uqd over the first Brillouin zone and findDs0d
<D0/2 strue in many cases in Table Id. Specifically, if we let

Dsk + qd
Esk + qd

=
Dskd
Eskd

s54d

then Eq. s25d becomesEskd=s1/2dSqVk,q, which leads
through Eq.s52d to

Ds0d = s1/2do
q

Vk,q < D0/2, s55d

whereq runs over the first phonon Brillouin zone: Eq.s45d is
assumedsi.e., vc/vD not smalld. However D /E is by no
means slowly varying but has the shape of a sharp peak, as is
shown in Fig. 3, in contrast to the assumption in Eq.s54d. It
is also clear from Fig. 3 that, whene=0, the peak ofD /E
samples the extremely large and positive values ofVk,q fpro-
portional to 1/sd2−x2d, see Eqs.s24d and s40dg that would
have been cancelled by the equally large but negative values

of Vk,q at x,D, hadD /E been slowly varying. As a result
Ds0d will vastly exceed its experimental value unless
vc/vD!1. On the other hand, whene.0, the peak ofD /E
may sample the negative values ofVk,q, and this leads to the
dips and extended negative wings ofDsed in Fig. 2.

X. Tc WITHOUT COULOMB REPULSION

In order to justify the values ofvc/vD in Table I we solve
the following self-consistent equation

Dse,Td =
D0

2pI
E

0

jc

F2s3.84Z1/3jdj2dj

3 E
j−1

j+1

tanh
Ese + 4eFjx,Td

2kBT

3
Dse + 4eFjx,Td
Ese + 4eFjx,Td

dx

d2 − x2 s56d

for T.0, which is identical to Eq.s47d, save an additional
factor tanhsE/2kBTd in the integrand.1 Now D and E are
marked asDse ,Td andEse ,Td fDsed andEsed imply T=0g.

We also solve Eq.s56d through iteration. We findjc at
T=0 ssee Sec. VIIId and it is kept unchanged thereafter.1 We
let T increase in small steps and use convergedDse ,Td to
start iteration at the nextT. We find Tc through a quadratic
curve fit onceDs0,Td,0.01Ds0d. We find reasonably accu-
rateTc saverage error,0.3 K, Fig. 4d and 2Ds0d /kBTc sav-
erage error 8.9%, Table Id. In particular the large measured
values 4.6 and 4.38 for Hg and Pb have been calculated
fairly successfully given the simplicity of the model.

The ratio 2Ds0d /kBTc=3.5 is one of the great triumphs of
the BCS theory. On the other side of the coin, one could be
lured to believe that the BCS theory is incapable of produc-
ing other ratios for elements such as Hg and Pb unless some
new physics is introduced. Now we see that the BCS theory
is capable of producing other ratios provided that a refined
treatment is introduced. In this treatment we do not average
Vk,q over the phonon spectrum. We also adjust the adiabatic

FIG. 2. Dsed curve for Sn atT=0. The temperature curve of
Ds0d is shown in the inset.

FIG. 3. Factors of the integrand in Eq.s25d or s47d in first
iteration swhen D=D0d, D0 and d are evaluated for SnsTable Id,
with j=q/2kF=0.05. Upper: values of 1/sd2−x2d sproportional to
Vk,qd. Lower: values ofD0/E, with the shape of a peak, whose
position shifts whene varies. Apparently the position of this peak
determines the sign and value of the integrand.

FIG. 4. Experimental and theoretical values ofTc found from
Ds0d, D0, and d in Table I. On average the difference between
theory and experiment,0.3 K.
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parameter,d, and cutoff frequencyvc in accordance with the
experimental data of the elements. Therefore we are allowed
to incorporate more comprehensive knowledge about the
electrons and phonons into the BCS theory. Indeedd is the
ratio between the Debye and Fermi velocities, see Eq.s41d,
of which the latter is all we need to know about the electrons
when we assume a Fermi sea. On the other hand, the Debye
velocity is all we need to know about Debye phonons. We
follow BCS to cut the phonon frequency off atvc to take into
account the hitherto unnoticed frustration effect of umklapp
scattering.6 In a more realistic phonon model we may not
have the simple relationvq,l =vDq so that, according to Eqs.
s40d ands41d, d may not be a constant. This could be used to
introduce further refined treatment to the BCS theory.

XI. Tc WITH COULOMB REPULSION

When the Coulomb repulsion is included, we use Eq.s20d
to derive the self-consistent equation which, atT=0, is iden-
tical to Eq.s47d apart from the following additional term

U0E
0

jB j2

j2 + j0
2djE

j−1

j+1 Dse + 4eFjxd
Ese + 4eFjxd

dx s57d

on its right-hand side, where

U0 =
e2

4pe0

kF

s2pd2 s58d

whose values can be found in Table I. WhenT.0 we add
Eq. s57d, with an additional factor tanhsE/2kBTd in the inte-
grand, to the right-hand side of Eq.s56d.

We solve the self-consistent equation, with Coulomb re-
pulsion, for tin. We again use the iteration method, where the

value ofjc is again varied to letDs0d match the experimental
data, as we did in Sec. VIII. We varyj0 in expressions57d to
test the effect of screening. The iteration solution converges
well whenj0ù0.1. We see from Table II thatj0 has no effect
on Tc. In expressions57d the value ofjB is always fixed at
betweenjD and 10jD, which is large compared withjc, for
the reason that there is no upper limit for the phonon fre-
quency in the Coulomb interaction. We see from Table III
that jB also has no effect onTc.

XII. DEBYE CUTOFF FREQUENCY

In the recent literature a liberty is often taken to replace
the phonon cutoff frequencyvc in Eq. s27d with the Debye
cutoff frequencyvD. That amounts to replacingjc in Eq.
s47d with jD in Eq. s45d. In Eq. s47d the integration with
respect toj is roughly proportional tojc

3, which in turn is
proportional tovc

3. If we replacevc with vD then the gap
function will be enlarged by a factorsvD /vcd3. Consequently
we will have

Tc < svD/vcd3Tc
exp, s59d

Tc
exp being the experimental critical temperature. In tin

svD /vcd3=254 or Tc<940 K sTable IId. Indeed we findTc

TABLE II. Effect of Coulomb screening onTc andvc.

j0
a vc/vD Tc

b j0
a vc/vD Tc

b

0.1 0.168 3.64 0.6 0.160 3.64

0.2 0.164 3.64 0.7 0.159 3.64

0.3 0.162 3.64 0.8 0.159 3.64

0.4 0.161 3.64 0.9 0.159 3.64

0.5 0.160 3.64 ` 0.158 3.64

ajB=jD.
bFor Snsexperimental value=3.72, in Kd.

TABLE III. Effect of Bogoliubov cutoff frequency in Coulomb
interaction onTc andvc.

jB
a vc/vD Tc

b jB
a vc/vD Tc

b

1 0.160 3.64 6 0.164 3.64

2 0.163 3.64 7 0.164 3.64

3 0.164 3.64 8 0.164 3.64

4 0.164 3.64 9 0.164 3.64

5 0.164 3.64 10 0.164 3.64

aIn jD sj0=0.5d.
bFor Snsexperimental value=3.72, in Kd.

TABLE IV. Properties calculated for superconducting elements
whenvc is replaced byvD.

Ds0da 2Ds0d /kBTc Tc
b Tc

c

Zn 2830 5.67 590 190

Cd 600 5.13 140 40

Hg 6700 5.47 1440 2180

Al 3040 5.62 640 190

Ga 11550 5.78 2350 1230

In 1680 5.72 350 400

Tl 2120 5.80 430 1020

Sn 4810 5.74 980 940

Pb 5270 5.51 1120 1760

V 51980 4.86 12550 17110

Nb 21470 5.01 5020 7760

Ta 18200 5.29 4040 5230

aIn 10−4 eV.
bIn K.
cFrom Eq.s59d, in K.

FIG. 5. Dsed of Sn without umklapp scattering. The temperature
curve ofDs0d is in the inset.
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=980 K for tin when we usejD to replacejc in Eq. s47d. The
gap functionDsed then turns out to have many peaks with an
erroneous 2Ds0d /kBTc value of 5.74sFig. 5d. Data for other
metals are listed in Table IV.

XIII. CONCLUSIONS

It has been shown in a field theoretic argument that inclu-
sion of the repulsive Coulomb interaction between electrons
does not result in weakening of the attractive electron-
phonon interaction. What is affected is the dispersion relation
of the electrons which has insignificant effect onTc. Direct
numerical calculation also demonstrates thatTc remains un-
changed when the strength of Coulomb screening radius is
varied. The BCS theory has been generalized to include con-
sideration of the adiabatic parameter,d, which reflects essen-
tial information about the electron and phonon model em-
ployed. Also included in consideration is the phonon cutoff
frequency vc which is much lower than the Debye fre-
quency, consistent with the view in Ref. 6 that superconduc-
tivity is frustrated once umklapp scattering occurs. This
modest extension of BCS theory brings handsome reward in
that the well-known ratio 3.5 is replaced by a range of more
realistic ratios, varying from 3.51 for Ga to 4.76 for Hg. It is
also rewarding to realize that there is room to raiseTc sig-
nificantly if the frustration effect of umklapp scattering could
somehow be eased or lifted.
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APPENDIX

We prove the following operator expansion formula:

e−SHeS= H + o
n=1

`
1

n!
CnsH,Sd sA1d

by analogy to the Taylor series, where

sA2d

is the n-fold commutation relation,fA,Bg=AB−BA. When
we use the definition exps±Sd=Sns±Sdn/n! to expande−SHeS

and collect all the terms where the total number ofS is n, we
find

e−SHeS= H + o
n=1

`

o
m=0

n
s− 1dm

m!sn − md!
SmHSn−m. sA3d

EquationsA1d follows if we can prove

1

n!
CnsH,Sd = o

m=0

n
s− 1dm

m!sn − md!
SmHSn−m. sA4d

Apparently Eq.sA4d is valid whenn=1. If this is also the
case for arbitraryn then

1

sn + 1d!
Cn+1sH,Sd =

1

n + 1
F 1

n!
CnsH,Sd,SG

=
1

n + 1o
m=0

n
s− 1dm

m!sn − md!
sSmHSn−m+1 − Sm+1HSn−md

=
1

n + 1o
m=0

n
sn + 1 −mds− 1dm

m!sn + 1 −md!
SmHSn+1−m +

1

n + 1o
m=0

n
sm+ 1ds− 1dsm+1d

sm+ 1d!sn + 1 −m− 1d!
Sm+1HSn+1−m−1

= o
m=0

n
n + 1 −m

n + 1

s− 1dm

m!sn + 1 −md!
SmHSn+1−m + o

m=1

n+1
m

n + 1

s− 1dm

m!sn + 1 −md!
SmHSn+1−m

= o
m=0

n+1
s− 1dm

m!sn + 1 −md!
SmHSn+1−m. sA5d

The induction is complete.
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