PHYSICAL REVIEW B 71, 134512(2005

Coulomb repulsion and T, in BCS theory of superconductivity
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Coulomb repulsion among the many electrons in a metal is in a balance, which can be toppled by even a
weak electron-phonon attractive interaction. Therefore neglecting the Coulomb term from the BCS reduced
Hamiltonian has little effect off.. This is shown by a field-theoretic argument, an analysis based on the
Bogoliubov model potential and a direct numerical calculation. Detailed knowledge about electrons and
phonons for various materials can be incorporated into the BCS theory through a refined treatment of the
self-consistent gap equation. Consequently the universal ratio 3.5 in the BCS theory is replaced by a range of
values varying from 3.51 for Ga to 4.76 for Hg. It is found that the phonon cutoff frequency is much lower than
the Debye frequency. Extraordinarily high could be expected if all phonons were involved in pairing
electrons in a BCS superconductor.
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I. INTRODUCTION unaffected by the Coulomb repulsion. In particular in our

There have been varying views concering the effect of@lculation 2/kgT. always stays exactly the same when the
Coulomb repulsion on~ superconductivity. According to SCreening radius varies, whekg is the Boltzmann constant.
Bardeen, Cooper, and Schrieff@CS) the criterion for su- This explains why the BCS theory has been so successful
perconductivity is that the attractive phonon interactionwithout the Coulomb interaction.
dominates the Coulomb interactidriThis view was tested In our calculation we use the electric conductivity of the
numerically by Pined.On the other hand, from the Bogoliu- metal to calibrate the strength of the electron-phonon inter-
bov model potential, it was found that Coulomb repulsionaction. We then vary the phonon cut-off frequenrgyuntil A
has little effect on T, the transition temperature of matches its experimental value. Our approach is justified be-
superconductordlt is interesting that superconductivity may cause the calculatedAZkgT,, which is beyond our control,
arise even with an entirely repulsive interaction, when thisalso matches its experimental value. We find that on average
interaction is perturbed by an attractive interaction over ghe error in 2/kgT, is less than 9% for 12 superconductive
narrow range of phonon frequencie#/hich view should we metals, including Hg and Pb. This enables us to predict
follow? from the experimentally observefl, or vice versa, fairly

There also have been varying views concerning the rangaccurately.
of phonon frequencies involved in the electron-phonon inter- We also find that the phonon cutoff frequency is much
action. BCS introduced the so-called average phonon frédower than the Debye frequency: on averagéwy=0.15 for
quencyw which is also known as the cutoff frequenay ~ the 12 superconductive metals. Apparently in BCS supercon-
because phonons stop pairing electrons when their frequesiuctors only a fraction of phonons is actually involved in
cies exceedv..! However a liberty is often taken in the re- pairing electrons, in accord with the view of a recent publi-
cent literature to letw, equal wp, the Debye frequendy?  cation that superconductivity is frustrated when normal and
Should we follow this view? umklapp scattering coexiétlf we were to letw.=wp then

There was no Coulomb term in the Hamiltonian in thethe transition temperature would become extraordinarily
original formalism of the canonical transform, which was high, e.g.,T.=980 K for Sn. This appears to indicate room to
introduced by Frohlich and serves as the basis of the BC&ise T, considerably if the frustration effect of umklapp
theory? In this transform the first order term of the electron- scattering could somehow be eased.
phonon interaction is cancelled. The second order term of
this interaction perturbs th(_e Bloch energy of the .eIectrons 10 || CANONICAL TRANSEORM WITHOUT COULOMB
give 2A, the superconductive energy gap. We find that the REPULSION
formalism of the canonical transform is almost unchanged
when we add the Coulomb term to the Hamiltonian. Now For the convenience of the reader we outline the major
perturbed is not the Bloch energy but the energy of electronsteps of the canonical transform by FrohlicWe start from
with Coulomb repulsion. The energy gap itself remains al-the Hamiltonian without Coulomb repulsion
most the same. This reflects the fact that in a metal the Cou-
lomb repulsion between electrons is in a balance, which may H=Hg+H,+Hqp. (1)
be toppled by even a weak electron-phonon interaction.

To test the above view of ours, we solve numerically theHere H, andH, are electron and phonon Hamiltonians, re-
BCS self-consistent equation with and without Coulomb re-spectively, antH,., the Hamiltonian of the electron-phonon
pulsion. The Coulomb interaction is screened with a variablenteraction. We introduce the following general operator ex-
screening radius. We find that superconductivity is almospansion(see the Appendijx
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e SHeS=H +[H,S]+%[[H,S],S]+ 2 HepSI== 2 Vi@iqo-qododke (13
k.k',o0",q
[H,S]=HS-SH. If we let with
[He+Hy,S]+ Hap= 0 3 2wq Mg
AR Vig=2 o, (14
then by substituting Eqg1) and (3) into Eq. (2), and ne- I (hwg))® — (€cq ~ €

glecting high order terms, we find It is interesting that in Eq(13) the phonon generation and

I 1 destruction operators do not appear explicitly, i.e., we have
e He = He+Hp + E[Hep’s]v (4 virtual phonons which are emitted and then absorbed by the
electrons but cannot be observed directly.

where the first order term of the electron-phonon interaction In the BCS theory the electrons are in pairs, with opposite

is cancelled. momentum and spin, so that in E@) the operatoeSHeS
In order to evaluate Eq4) we appeal to second quanti- becomes

zation, where the Hamiltonians are of the following form:
. Hecs= 22 ey = 25 Vi gbicigbi (15)
He= 2 €3 % or (5) k K.q
k,o

which is known as the BCS reduced Hamiltonian, where

Hp= 2 ﬁqu(chlcq’, +1/2), (6) b =ay 8, by = a:,Tatk,i (16)
q,l

are pair generation and destruction operatorand | spins.
. + + In Eq. (15 the electron term is also ib, which vanishes
Hep:_'kz qu,lak+q,oakya(C—q,l *Cq)- (") when applied to single electrons. Whar=0, we have to
o4 replace the first summation in E@l5) with the standard
a" anda are electron generation and destruction operators, electron Hamiltonian in Eq5) in order to take into account
and k electron energy and wave vecter, spin, ¢ andc  the energy of single electroAdt is no longer necessary to
phonon generation and destruction operators, arahd q have the phonon Hamiltoniai,, explicitly involved in Eq.
phonon frequency and wave vector. Note that in &).an (15 when phonons become virtual.
electron has the same spin before and after being scattered by
a phonon and identifies phonon polarization. We neglect the
slight dependence of the matrix elemewt,, onk.! We are [ll. CANONICAL TRANSFORM WITH COULOMB
reminded that harmonic phonons are assumed in(Bgn REPULSION
order to convert atomic displacement irtec”*.

According to Eq.(7) we have Now we replace Eq(1) with

<O|ak+q’(,H&pa;’(rC;’||0> - _ iMq’l, (8) H = He+ Hp + He_p + HC0|’ (17)
where H¢,, is the Hamiltonian of Coulomb repulsion. We
<0|ak+q,ac—q,lHe~pa;,g—|0> ==iMgy, 9 also replace Eq.3) with
|0) being the electron and phonon vacuum. Substituting Eq. [He+Hp+Heon Sl + Hep = 0. (18)
gﬁ()'ﬂmto Egs.(8) and (9), we find through Eqs(5) and (6) Consequently Eq4) becomes
. 1
-iM — S — —
(Ol 551100 = “_ o OHETH Hoot HptplHep S (19
’ ’ €k+q ~ €k T ﬁqu
and Eq.(15) becomes
+ B IM | + +
(Olaysq,oC-qiSEO=—""TT—. (1D Hecs+ Heol= 22 kb = X (Vieg = Ug)bie,gbi (20)
g~ &t ﬁqu k k.q
Equations(10) and(11) mean that we have with?
—-iMyg, e ot
S= > +a§+q,gak,gcq,l Ug=——>5 3 (22)
k,o.q. €k+q ~ €k ﬁwq,l dmen Q-+ o
> —iMy, . + Here gy measures the screening radigsjs the electron
* BcrqofkoCqlr (120 charge, ands, vacuum permitivity. We have adopted the SI

ool Ekiq— & Tho
kogl Herg o unit system where the Coulomb interactionefd4mre,r be-

which leads through Ed7) and the fermion and boson per- tween two electrons at distanceEquation(21) arises from
mutation relations to a Fourier integration oveg which is continuous. We convert
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this integration into the summation in E@O) over discrete (@ v-u
g and this leads to the fact®@™! in Eq. (21), which is the
inverse of the total volume of the metal, to replattgin the ha, — hap
integration. e-¢
Equation(20) appears to sugge¥f ;> U, as the criterion
for superconductivity. However, if we replace BEd) with V-U
Eq. (17), and replace Eq(5) with ha. — hay

He+ Heol = 2 Gayay, (22)
k

~ ; : : FIG. 1. Bogoliubov model potential, whetd, and V, 4 are
€ being the electron energyith Coulomb repulsion, then modeled byU and V, which distribute uniformly wherje' ~ e

we find through the canonical transform in the previous sec_ wg anda, respectively(a) V dominates whee' — e < g, (b) U

tion always dominates.
Hpcs= 2> &bib - > vk,qb;+qbk (23 Ae)
k kq A :Nofv'— ———de’
(9 =NO) | V(¢' - pde
which is almost identical to Eq15), with A(E)
€
=N(0) | U(e' —e)=——-d¢€'. 26
- Do M, » ( )f (e E)2E(e’) € (26)
“a [ (ﬁwq,|)2 — (€+q -&)° € represents energy relative to the Fermi surfaceN(®l the
_ _ o density of states.
which too is almost identical to Eq14). In order to solve Eq(26) analytically, Bogoliubov de-
In the above argument E(R2) is introduced as a reason- vised a model potential, where
able assumption, nameld.+H¢, has eigenfunctions, which )
are orthogonal to each other wi# as their eigenvalue. V(e - €) V, |€-d<ta, 27)
There could be some technical difficulty if we try to calcu- 0, otherwise,
late &, from first principles. However, we are mainly inter-
) ) —~ whereas
ested in how mucf, is perturbed byVy 4 rather than the
actual values oE,. It is apparent from Eq(24) that, when U(e - o= U, |€ -¢€<thog, 29)
we evaluatevy o, we have to evaluate bo# and,. at the 0, otherwise,

same time. It is not an issue that may differ from the wg is known as the Coulomb cutoff frequenésee Fig. 1.3

Bloch energye, by an infinity, since it will be cancelled in >
Eqg. (24). The issue here is that the dispersion relation, WhichIt IS a'?". assumed thal(e) takes only two values. Furth,er-
ore, it is assumed that, whe\{e)=A;, values ofe and e

relates the electron energy and momentum, could be slightl , ,

distorted in the presence of the Coulomb repulsion, so that'® Such that/(e'-€)=V and U(¢’'~¢)=U. On tr/me other
€c+q— & IN EQ. (14) may differ slightly fromé.,—¢ in Eq. hand, V‘/’hem(f);AZ' we are supposed to haWe’ —¢) =0
(24) for the same value df. In this respect Coulomb repul- andU(e’—€)=U.*As aresult, we find from Eq26) a pair of

sion may have little effect on superconductivity. algebraic equations
_ The unimportance of Co_u!omb repulsion, With respect to |:A1:| [()\ - wl, _M|2HA1}
its effect on superconductivity, could be explained as fol- = , (29
lows: attraction due to electron-phonon interaction, though A; —uply —pla LA
weak, is sufficient to topple the balance of the ~C0U|0mbwhere)\=N(O)V, ©=N(0)U,
force among the many electrons in a metal. As a régalhd hog de’ 5
V are almost identical in Eq$24) and (14), which are de- |1:f _je :sinh‘l<—w°) (30)
rived with and without the Coulomb Hamiltonian, respec- (e2+ADY2 Ay )
tively.
| —fﬁwB de (“’B> 31
IV. BOGOLIUBOV MODEL POTENTIAL 2 hog (2 +A)V2 " we)’ 3D

Equation(20) leads to the self-consistent gap equation Equation(30) is exact. Equatioii31) tells us thai, becomes
larger the larger the ratieg/ w,.
Ak +q) Equation(29) has a nontrivial solution only when

, (25)
2E(k +0q) ‘1—0\—#)'1 ul,
el 1+ul;

AK) =2 (Vig—Ug)
! =0 (32

where A measures the superconductive energy d&p(A?
+¢€2)1/2%, Equation(25) can also be written as which means
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-1
|1=(>\— £ ) . (33)
1 + ILLI 2
When wg> w, Eq.(33) is reduced td;=\"1, or
A; = hawdsin{1/N(0)V] (34)

which is exactly the expression for the energy gap function

in the BCS theory without Coulomb repulsion. Apparently
the value ofU has little effect onA; when the Coulomb
cutoff frequency of Bogoliubowg is large enough. It is
interesting that\; may arise even with the entirely repulsive
potential in Fig. 1b).

In Ref. 3 the Bogoliubov model potential is used to dis-
cuss the effect of Coulomb repulsion dpn The discussion is
essentially based on the relatiod ZkgT,=3.5, with the ap-

parent consequence that the Coulomb repulsion has little ef-V

fect onT.. On the other hand, the raties/ w. is shown not to
have significant effect on the isotope coefficiént.

V. MATRIX ELEMENT AND ADIABATIC PARAMETER

Now we evaluateVy 4 in Eq. (14), in order to solve the
self-consistent gap equatidi25) numerically. The expres-
sion for the matrix element

1/2
My, q'<2qu|> f Yierq.o (D) = V(0) ] (1) dr

(39)

is well known!8 HereV is the atomic potentiak/’s electron
wave functiongBloch functiong, M atomic massN number
of atoms in unit volume2|ﬁ|2=q2, r coordinates in real
space, and), the Wigner-Seitz cell. Whe is symmetric
with respect to the atomic site, E¢35) can be evaluated
analytically to givé®

ﬁ2q2( 5V)2

2
NM F<(7).

2 2hag| Mg P = (36)

|

F(n)=3(sinT—rcosn)/ 7, 7=ryq, o radius of(), (assumed
to be spherica) and 5V=V(ry) -V(0) atomic potential mea-
sured from the atom site. Letting

£=0/2kg, (37)

ke being the Fermi momentum, for a spherical Fermi surface

we havekg=(372Z/Q)Y3, Qo=(4=/3)r3, Z the valency, so
that 7= 2ker &= (1872) /3¢ =3.847%3¢
We parametrize the electron energy in the usual vay:

€ = \“J’(UFpl)z +(v2P2)?, (39)

where the momenturp is measured from the Fermi surface,
with p; and p, normal and parallel to ity is the Fermi
velocity. We may understand thag, p,, andvg are found
with or without Coulomb repulsion. In the former case we
should replaces, with €. Equation(38) applies above the
Fermi surface, but can be easily extendedgtdelow 1011
For a spherical Fermi surfaqg=#(k—kg) andp,=0, ke be-
ing the Fermi wave number, so that
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TABLE I. Calculated physical properties and corresponding ex-
perimental values for a range of superconducting elements.

AP Ug? 8¢ wdwp  2A(0)/kgT
Zn 1.19(1.20 6840 1.50 0.167 3.683.20
Cd 0.26(0.79H 5040 1.20 0.245 3.78.20
Hg 0.81(8.25 4900 0.44 0.124 4.764.60
| 1.37 (1.70 6300 1.81 0.183 3.543.30
Ga 3.96(1.65 5960 1.51 0.096 3.513.50
In 0.25(5.25 5420 0.62 0.203 3.923.60
Tl 0.23(3.68 5260 0.48 0.164 3.923.57)
Sn 1.26(5.79 5440 1.25  0.158 3.7(8.50
Pb 0.70(13.7) 5670 0.60 0.160 4.564.39
14.0(8.00 7930 1.20 0.068 3.983.40
4.90(15.3 7270 1.04 0.107 4.283.80
Ta 3.36(7.00 8110 0.90 0.095 3.983.60
A/alues of A(0) bracketed.
bIn 107* eV.
In 1073,
dExperimental data bracketed.
€k+q ~ €k ~ ﬁUFqX (39)

near the Fermi surfaces=£+cosé, 6 being the angle be-
tweenk andg. In the Debye phonon modeb, =vpd, vp
being the sound velocity, giving

(hwq))? = (kg — €)*= h2oEg(8% = Xx), (40
where
5=v_o=ﬁ@=<z>”3b_ 1)
UE 2qD €E 16 TF

gp is the Debye wave numbeg-=(A/2)veke, Tp and T
Debye and Fermi temperatures. We see from Table | &hat
~1073, which is known as the adiabatic parameter in the
literature®? In more realistic models the sound velocity may
depend org so thaté may not be constant. By substituting
Egs.(36) and (40) into Eq. (24), we find

(8V)? F2(3.84713¢)
NMv2 & -x°

kaq = (42)

8V and § are defined in Eq936) and(41), respectively.

VI. ATOMIC POTENTIAL

In order to evaluate Eq42) we have to knowsy. Car-
botte and Dynes utilized tabulated data of the Heine-
Abarenkov pseudopotential to estimal and calculated the
electric resistivityp and energy gap (using the Eliashberg
formalism separately®'* However, we do not have to cal-
culate 8V explicitly. According to Mott and Joné&she resis-
tivity of a metal is given by the following formula:
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_ 127(8V)? KgT

P NMoZ #etvd

kg is the Boltzmann constari,, the temperaturéroom tem-
peratur¢ whenp is measurede electronic charge, and

(43)

ép
| = f F2(3.84713¢) £d¢, (44)

0
where
& = o/ 2ke = 1/(42)3, (45)

gp being the Debye cutoff momentum. Combining E@k2)
and (43), we find

_ 1 hePpud F(3.842%%)
K97 127 keT,  F-X

(46)

which can be readily evaluated.

VII. SELF-CONSISTENT GAP EQUATION WITHOUT
COULOMB REPULSION

We drop U, from Eg. (25 and integrate the resultant

equation in a phonon sphere of radysWe use Eq(46) to
evaluateV, ,. After some algebra, we find

&
Ae) = % f F2(3.84713¢) £2d¢
0

“LA(e+4
y f (e+4ecéx) dx ., (47)
1 E(e+derén) &~ x
wherel is defined in Eq(44),
Ao =1€npvd/2KsT,, (48

n=ZN being the number of electrons in unit volume.
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that strong electron-phonon interaction arises from numerous
free electronglarge n) scattered frequently by atontkrge
p) that move quickly(largeuvp) to facilitate pairing.

VIII. ITERATION ALGORITHM

We solve Eq.(47) through iteration. In each of the itera-
tions we have to vary; in order to letA(0) match its ex-
perimental value. This means that we have to integrate Eq.
(47) many times with varyingé.. The resultantA(e), with
correct A(0), is substituted into the right-hand side of Eq.
(47) for the next round of iteration. This process is repeated
until iteration makes little difference iA(e) [on average
<A0)x107].

It is actually quite laborious to integrate Eg.7), not only
because the integration is 2D, but also because the second
integration in Eq.(47) exists in the sense of the Cauchy
principal valuel® whose numerical evaluation is particularly
demanding around the two poles of(29- 6%). We evaluate
the Cauchy principal value semianalytically. The integrand
A/E is assumed to be linear in small intervalsxpfand is
integrated analytically. This saves us enormous computer
time.

In order to check our numerical result, we notice that in
first iteration, when we séf=A,, the Cauchy principal value
in Eq. (47) has an analytical form

f A dx
VAZ + (e + deréx)? =%

~ Ay26 2
A2+ (etdegd? Ix- 4
Ay26 2B(X) c sy

VAZ+ (- degés)?  |x+ )

We see from Table | that the value af is often close to  WhereC is the integration constant

measured values af. In order to understand the physical
reason of this, we integraté, , in Eq. (46) over the first

phonon Brillouin zone, and find
A e

é
— 0 2 1/3 2 X
%Vk'q"szo F2(3.842%%) £2d¢ PR (49)

which can be compared with E7). We have

ff” dx 2 (50)
pq =X 1-8
when é<1. We also have
ép 2d
f F2(3.84Z”3§)§—§2 ~l, (51)
0 1-¢

wherel is given by Eq.(44). Combining Egs(49—51) we
find

> Vieg = Ao (52
q

AX) = Af + (e+ 4eréd) (e + AepéX)

+VAZ+ (e+ 4€c£0)P A2+ (e+ deptn)?,

B(X) = A3+ (e — 4eréd) (e + depéX)

+VAZ+ (€— 4ep£0) VAL + (e + dertx)?.

The solution based on E@53) is virtually identical to the
full numerical solution of Eq(47) in first iteration. It can be
seen from Fig. 2 that prominent features\gk) have already
emerged from first iteration: further iterations improve the
accuracy of solution but retain the physics.

IX. GAP FUNCTION WITHOUT COULOMB REPULSION

One prominent feature &(¢) lies in its structure: it has a
peak flanked by two negative dips. For tin the distance be-
tween the peak and one dip is4 meV (Fig. 2 compared
with Awp=17 meV. As a result, the curve dfe/dE, which
represents the tunneling density of states, also has a structure
featuring a dip, similar to the characteristic dip in the tunnel-

which tells us that\, is a parameter to measure the strengthing experiment dat& IndeedA(e) is also structured in the

of electron-phonon interaction. It is apparent from E4p)

numerical solutions for the Eliashberg equattéri®
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g 1.0[ lstiteration___. A©) ]
@ Final result ____ \ \
2 os
P
)
=
] 00
2 -0.5

-1.0 . . .

-0.002 -0.001 0.000 0.001 0.002
Normalized energy s/er

FIG. 2. A(e) curve for Sn atT=0. The temperature curve of
A(0) is shown in the inset.

Another prominent feature is thad./wp<<1 (0.148 on
average for the 12 metals in Table This is somewhat puz-
zling because, assuming thAYE varies slowly over the
range of phonon frequencies, we can integrate &%)
(without Ug) over the first Brillouin zone and find(0)
=~ A,/ 2 (true in many cases in Tablg Specifically, if we let

Ak+q) _Ak)
Ek+q) E(K)

then Eg. (25 becomesE(k)=(1/2)%4V\ 4, Which leads
through Eq.(52) to

A0) = (1/2) 2 Vi g = Ag/2,
q

(54)

(55)

whereq runs over the first phonon Brillouin zone: Bg5) is
assumed(i.e., w./wp not smal). However A/E is by no

means slowly varying but has the shape of a sharp peak, as is

shown in Fig. 3, in contrast to the assumption in Esf). It
is also clear from Fig. 3 that, whe#=0, the peak ofA/E
samples the extremely large and positive valueg,of [pro-
portional to 1/(5°-x?), see Eqs(24) and (40)] that would

PHYSICAL REVIEW B 71, 134512(20095

- - & - - Experimental

—— Theoretical

Critical Temperature Tc

0 1 1 1 1 1 1 1 1 1
Zn Cd Hg Al Ga In Tl Sn Pb V Nb Ta

FIG. 4. Experimental and theoretical valuesTeffound from
A(0), Ag, and & in Table I. On average the difference between
theory and experiment 0.3 K.

of Vi 4 at x<A, had A/E been slowly varying. As a result
A(0) will vastly exceed its experimental value unless
w./ wp<<1. On the other hand, whes>0, the peak ofA/E
may sample the negative values\Gf,, and this leads to the
dips and extended negative wingsX&fe) in Fig. 2.

X. T WITHOUT COULOMB REPULSION

In order to justify the values ab./ wp in Table | we solve
the following self-consistent equation

&
A(eT) = zA_7:| f F2(3.842" %) £dé
0

et E(e+ deréx,T

have been cancelled by the equally large but negative values

6x10°

4x10°
2x10°

o]

_2x105ﬁ

1.5

1.0 A
0.5
0.0

€ = 404, e=0

-0.5
—.004

—.002 0 .002 z

FIG. 3. Factors of the integrand in E5) or (47) in first
iteration (when A=Ag), Ay and § are evaluated for SiiTable ),
with £€=g/2ke=0.05. Upper: values of 16°-x?) (proportional to
Vi.¢)- Lower: values ofAy/E, with the shape of a peak, whose
position shifts where varies. Apparently the position of this peak
determines the sign and value of the integrand.

A(e+ 4eéx,T) dx
E(e+ 4eeéx, T) 82— %2

(56)

for T>0, which is identical to Eq(47), save an additional
factor tanE/2kgT) in the integrand. Now A and E are
marked asA(e,T) andE(e, T) [A(e) andE(e) imply T=0].

We also solve Eq(56) through iteration. We find,. at
T=0 (see Sec. VIl and it is kept unchanged thereaftaie
let T increase in small steps and use convergéd, T) to
start iteration at the next. We find T, through a quadratic
curve fit onceA(0,T)<0.01A(0). We find reasonably accu-
rate T. (average errox0.3 K, Fig. 4 and 2A(0)/kgT, (av-
erage error 8.9%, Tablg.lIn particular the large measured
values 4.6 and 4.38 for Hg and Pb have been calculated
fairly successfully given the simplicity of the model.

The ratio 2(0)/kgT.=3.5 is one of the great triumphs of
the BCS theory. On the other side of the coin, one could be
lured to believe that the BCS theory is incapable of produc-
ing other ratios for elements such as Hg and Pb unless some
new physics is introduced. Now we see that the BCS theory
is capable of producing other ratios provided that a refined
treatment is introduced. In this treatment we do not average
Vi,q over the phonon spectrum. We also adjust the adiabatic
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TABLE Il. Effect of Coulomb screening oifi; and wc.

&° wcl wp ch foa wcl wp ch

0.1 0.168 3.64 0.6 0.160 3.64

0.2 0.164 3.64 0.7 0.159 3.64

0.3 0.162 3.64 0.8 0.159 3.64

0.4 0.161 3.64 0.9 0.159 3.64

0.5 0.160 3.64 o0 0.158 3.64
%= ép.

bFor Sn(experimental value=3.72, in)K

parameterg, and cutoff frequencw, in accordance with the
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1.5

A(O)\

Normalized gap A(g)/A(0)

-1.0
-0.04

-0.02 0.00 0.02
Normalized energy &/er

0.04

FIG. 5. A(e) of Sn without umklapp scattering. The temperature
curve of A(0) is in the inset.

experimental data of the elements. Therefore we are allowe¥p!U€ Ofé: is again varied to leA(0) match the experimental
to incorporate more comprehensive knowledge about th8ata, aswe did in Sec. VIIl. We vaig in expression(57) to

electrons and phonons into the BCS theory. Indéésl the
ratio between the Debye and Fermi velocities, see(Ed),

test the effect of screening. The iteration solution converges
well when&,=0.1. We see from Table Il th@t has no effect

of which the latter is all we need to know about the electrons®n Te- In expression57) the value ofég is always fixed at
when we assume a Fermi sea. On the other hand, the Debgtweenép and 1@, which is large compared with,, for
velocity is all we need to know about Debye phonons. Wi he reason that there is no upper limit for the phonon fre-

follow BCS to cut the phonon frequency off @t to take into

quency in the Coulomb interaction. We see from Table Il

account the hitherto unnoticed frustration effect of umklappthat s also has no effect off.

scatterind® In a more realistic phonon model we may not
have the simple relatiom,=vpq so that, according to Egs.
(40) and(41), § may not be a constant. This could be used to

introduce further refined treatment to the BCS theory.

XI. T, WITH COULOMB REPULSION

When the Coulomb repulsion is included, we use @€)
to derive the self-consistent equation whichTat0, is iden-
tical to Eq.(47) apart from the following additional term

B g2 S A(e+ depéx)
Uo| 5 dé - (57)
0o £+& Jen E(e+4deéx)
on its right-hand side, where
& Kk
. (58)

0~ 4rey (21)°

whose values can be found in Table I. WHER-0 we add
Eq. (57), with an additional factor tar{i/2kgT) in the inte-
grand, to the right-hand side of E(6).

We solve the self-consistent equation, with Coulomb re-
pulsion, for tin. We again use the iteration method, where the

TABLE lll. Effect of Bogoliubov cutoff frequency in Coulomb
interaction onT, and w.

& ¢l wp ch & wcl wp ch

1 0.160 3.64 6 0.164 3.64

2 0.163 3.64 7 0.164 3.64

3 0.164 3.64 8 0.164 3.64

4 0.164 3.64 9 0.164 3.64

5 0.164 3.64 10 0.164 3.64
an & (£=0.5.

bFor Sn(experimental value=3.72, in)K

Xll. DEBYE CUTOFF FREQUENCY

In the recent literature a liberty is often taken to replace
the phonon cutoff frequency, in Eq. (27) with the Debye
cutoff frequencywp. That amounts to replacing, in Eg.
(47) with & in Eq. (45). In Eq. (47) the integration with
respect toé is roughly proportional t(fg’, which in turn is
proportional t0w§. If we replacew, with wp then the gap
function will be enlarged by a factdwp/ w)®. Consequently

we will have

Te = (wplwe) * TSP, (59
TP being the experimental critical temperature. In tin
(wp/ wr)3=254 or T,~940 K (Table ll). Indeed we findT,

TABLE IV. Properties calculated for superconducting elements
when w, is replaced bywp.

A(0)3 2A(0)/kgT, TP TS

Zn 2830 5.67 590 190
Cd 600 5.13 140 40
Hg 6700 5.47 1440 2180
Al 3040 5.62 640 190
Ga 11550 5.78 2350 1230
In 1680 5.72 350 400
Tl 2120 5.80 430 1020
Sn 4810 5.74 980 940
Pb 5270 5.51 1120 1760
\Y 51980 4.86 12550 17110
Nb 21470 5.01 5020 7760
Ta 18200 5.29 4040 5230

4n 10 eV.

bIn K.

®From Eq.(59), in K.
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=980 K for tin when we usé€, to replaceé. in Eq.(47). The APPENDIX
gap functionA(e) then turns out to have many peaks with an
erroneous 2&(0)/kgT, value of 5.74(Fig. 5). Data for other

metals are listed in Table IV.

We prove the following operator expansion formula:

XIll. CONCLUSIONS e SHeS=H + >, n—llcn(H,S) (A1)
It has been shown in a field theoretic argument that inclu- =L
sion of the repulsive Coulomb interaction between electrons i
does not result in weakening of the attractive electronPy analogy to the Taylor series, where
phonon interaction. What is affected is the dispersion relation C,(H,S)=[[...[H.5],5], ...,S]
of the electrons which has insignificant effect ©n Direct [ — (A2)

numerical calculation also demonstrates thatemains un-

changed when the strength of Coulomb screening radius i i . . oAb
varied. The BCS theory has been generalized to include coﬁ% then frcl)lddc?mmutatlorgrt_eIEatlirg[é/, E:]_AB BAde\_/\S/':eQ
sideration of the adiabatic paramet&rwhich reflects essen- W€ Use the definition expS)=X,(+5)"/n! to expan e

tial information about the electron and phonon model em-2nd collect all the terms where the total numbe&as n, we

ployed. Also included in consideration is the phonon cutofffind
frequency w. which is much lower than the Debye fre-

quency, consistent with the view in Ref. 6 that superconduc- c N (-pm

tivity is frustrated once umklapp scattering occurs. This €SHeS=H+ >, X — — —STHS™™.  (A3)

modest extension of BCS theory brings handsome reward in n=1 m=o M!(n—m)!

that the well-known ratio 3.5 is replaced by a range of more

realistic ratios, varying from 3.51 for Ga to 4.76 for Hg. It is Equation(Al) follows if we can prove

also rewarding to realize that there is room to raisesig-

nificantly if the frustration effect of umklapp scattering could 1 n (- "

somehow be eased or lifted. —C,H,9 = E — = gHS™M (A4)
n! m=o Mi(n—m)!
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1 ¢ (HS)—LFC(HS)S}
(n+ D T T et ™ T

1 & (=pm
2()

T n+ 1= mi(n-m)!

(STHS™™ ! - S™IHS™)

n

_ 1 . (M 1-mD" o crm, L s (m+ 1)(= 1)
n+1:5 m(n+1-m)! n+1:5(m+1I(n+1-m-1)!

gMiggri-m-1

n+1

gty S M LT

_i n+l-m (-1
min+1lmi(n+1-m)!

+1-m
& n+l mi(n+1-m)! SHS

n+l

— E (_ 1)m

——————G"HS™™,
mo M(n+ 1 -m)!

(A5)

The induction is complete.
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