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We show that the field dependence of the coherence lengthjsHd calculated within the weak-coupling BCS
theory for clean superconductors at low temperatures and high fields is qualitatively the same as theH
dependence of the vortex core sizerc recorded experimentally in a number of superconductors with high
Ginzburg-Landau parameterk. We argue thatH dependencies ofj and rc are weakened by scattering and
temperature and disappear in the dirty limit and asT→Tc. We find that the high-field slopedrc/dsH−1/2d for
clean materials at lowT’s is nearly material independent, and we provide an estimate of this nearly universal
slope, the prediction supported by the data available.
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I. INTRODUCTION

The coherence lengthj has first been introduced as a phe-
nomenological length scale in the near-Tc Ginzburg-Landau
sGLd description where it sets, among other things, the “vor-
tex core size”rc. Since the core, in fact, does not have a
sharp boundary, the sizerc cannot be unambiguously defined
and is commonly chosen “operationally convenient,” i.e., in
a way that varies from one experimental or theoretical situ-
ation to another. For example,rc may be defined as the ra-
dius of a circle where the persistent current is maximum,1

or—within the London approach—as the distance at which
the divergent London current density reaches the depairing
value, or assuming the core being a normal cylinder and
equating the core contribution to the vortex energy to
sHc

2/8pdprc
2 with Hc

2/8p being the condensation energy.2,3

Another example comes from the scanning tunneling work
where “the vortex core radius is arbitrary defined by that
distancerc from the vortex center for which the tunneling
current has decreased fromImax to 36% of Imax− Imin.”

4

Clearly, these procedures yield different values ofrc, al-
though all of them have the same order of magnitude.

A lot of experimental effort has been invested recently in
the study of the vortex core size; see the review by Sonier
and references therein.1 Notably, whatever the definition of
rc is adopted, the low temperaturerc is shown to decrease
with increasing field in a number of materials, such as
NbSe2, V3Si, LuNi2B2C, YBa2Cu3O7−d, and CeRu2, physical
characteristics of which have little to do with each other
sexcept all of them have a large GL parameterk=lL /jd. The
dependencesrcsHd for all tested materials are qualitatively
similar; for large fieldsrc,1/ÎH. Properties of the quasi-
particle spectrum inside and outside the coresswhere the
excitations may form narrow conducting bandsd are consid-
ered responsible for theH andT dependences ofrc.

In this paper we study the relation between experimen-
tally determinedrc and the coherence lengthj calculated
within the weak-coupling BCS theory for arbitraryT andH.
We argue that near the vortex centers where the order param-
eterD→0 and the field is practically uniform for largek’s,
one can use for determination ofj the same formal proce-
dure as that employed in the seminal work of Helfand and

WerthamersHWd on the upper critical fieldHc2sTd, the situ-
ation in whichD→0 and the field is uniform. This yields the
field dependence ofj, which agrees qualitatively with ob-
servedrcsHd.

A few examples of numerical solutions of the microscopic
equations of superconductivity show that theH dependence
of rc follows from the theory under very general
assumptions.6–8 Our approach can be applied to the problem
of rcsHd only in large fields of high-k materials; still, we
obtain our main results analytically, which has certain advan-
tages as compared to however powerful numerical tech-
niques, and enables one to make experimentally verifiable
predictions. For example, we show that theH dependence of
rc is weakened by scattering and disappears in the dirty
limit; also it vanishes asT→Tc. Besides,jsHd is weakly
affected by peculiarities of the Fermi surface, i.e., we expect
qualitatively the same dependence at low temperatures for
various clean materials, the high-field slopedrc/dsH−1/2d is
nearly universal.

We begin with the notion that within the microscopic
theory, at arbitrary magnetic fieldsH and temperaturesT, it
is not clear what exact value one should assign toj. The
difficulty comes from the fact thatj is not among the basic
input parameters of the theory; instead, it should be calcu-
lated, in general a very difficult if at all possible analytic
task. There is, however, a region at the second-order phase
transition from superconducting to normal state, the SN
boundary, where the theory can be linearized and, conse-
quently,j is well defined.

The linearization has been performed by HW in the work
of on the upper critical fieldHc2sT,td with t being the mean
scattering time on nonmagnetic impurities.5 They have
shown that atHc2, where the order parameterD goes to zero,
it satisfies for anyT a linear equation,

− j2sTdP2D = D, s1d

whereP= ¹ +2piA /f0 is the gauge-invariant gradient,A is
the vector potential, andf0 is the flux quantum. Formally,
the equation is equivalent to the Schrödinger equation for a
charge in uniform magnetic field; the fieldHc2 at which su-
perconductivity first nucleates in a bulk sample corresponds

PHYSICAL REVIEW B 71, 134505s2005d

1098-0121/2005/71s13d/134505s8d/$23.00 ©2005 The American Physical Society134505-1



to the lowest eigenvalue of this equation,Hc2=f0/2pj2.
This field sand jd is obtained by solving the basic self-
consistency equation of the theory

"

2pT
ln

Tc

T
= o

v=0

` S 1

v
−

2tS

b − S
D , s2d

where the functionSsT,j ,td can be written as

S=
2b

,q
E

0

`

dse−s2
tan−1 s,q

b
s3d

=o
j=0

`
j !

2j + 1
S−

,2q2

b2 D j

, s4d

b = 1 + 2vt, q2 = 2pHc2/f0 = j−2. s5d

Here,v=pTs2n+1d /", n is an integer,v is the Fermi veloc-
ity, and,=vt is the mean-free path. The power-series repre-
sentation ofS is obtained by formally expanding tan−1 and
then integrating overs. The evaluation ofS was performed
for the isotropic Fermi surface, i.e., for a Fermi sphere.

Thus, strictly speaking, the lengthj is defined only at the
SN phase boundaryHc2sTd, and the question remains
whether or not the same definition ofj is useful out of the
immediate vicinity ofHc2sTd. In fact, in a variety of situa-
tions ssmall samples, proximity systemsd the SN transition
may take place far from the bulkHc2sTd. To approach the
problem of the phase boundary in these systems, one has to
know jsH ,Td in a broad domain of theH−T plane away of
the bulkHc2sTd.

A method to evaluatejsH ,Td had been developed in Refs.
9 and 10. In principle, the method follows HW by utilizing
the fielduniformityand theD smallnessat the SN transition,
wherever it occurs. Below, we outline the method as applied
to the three-dimensionals3Dd isotropic case of a Fermi
sphere. Then, we consider two-dimensionals2Dd isotropic
materials, i.e., the Fermi cylinder. We find that away from the
critical temperatureTc of clean superconductors,jsH ,Td so
obtaineddecreaseswhenH increasestowardHc2; the effect
is suppressed by impurity scattering and is absent in the dirty
limit. We provide a closed-form equation forjsHd for the
zero-T clean case for both Fermi sphere and cylinder and
show that the results can be represented as

jsHd
jsHc2d

= US H

Hc2
D s6d

with U being an universal function.
We next argue that the same procedure can be applied to

the mixed state in applied fieldsH,Hc2 near the vortex core
centers in materials with largek=lL /j. This is because near
the centersDsrd→0 and the fieldsvarying on the scale of the
London penetration depthlLd can be taken asuniform. We
find our results onjsHd in qualitative agreement with the
data available onrcsHd, uncertainties of experimental proce-
dures of extractingrc notwithstanding.

II. FERMI SPHERE: Hc2„T… AND S„H ,j ,v ,ø…

Here we reproduce major points of thejsHd derivation for
the system near the second-order SN transition with the help
of the quasiclassical Eilenberger formalism.11 The main
equations of the theory read

tv · Pf = gsF + 2tDd − sG + 2vtdf , s7d

D

2pT
ln

Tc

T
= o

v=0

` S D

"v
− FD . s8d

Here,v is the Fermi velocity;fsr ,v ,vd andgsr ,v ,vd are the
Eilenberger Green’s functions with averages over the Fermi
surface, denoted asF=kfl andG=kgl.

In the normal phasef =0 andg=1. In a small vicinity of
the SN transition,uf u!1, whereasg can still be set unity in
linear approximation in f due to normalizationg=s1
− f f†d1/2 sfor the same reason we do not need here an equa-
tion for f†d. Equations7d can be linearized

ø · Pf = F̃ − bf , s9d

ø = vt, F̃ = F + 2tD/", b = 1 + 2vt. s10d

The solution of Eq.s9d is written as

f = sb + ø · Pd−1F̃ =E
0

`

dre−rsb+ø·PdF̃, s11d

or for the Fermi surface average

F =E
0

`

dre−rbke−rø·PF̃l. s12d

We now assume thatD, F, and F̃ satisfy Eq.s1d; then, uti-
lizing commutators of the operatorP in a uniform field and
the known properties of exponential operators,9 one can ma-
nipulate Eq.s12d to

Fsr,vd = Dsrd
2tS

b − S
, s13d

where

S= o
m,j=0

`
s− q2d j

j !s2m+ 2j + 1dF sm+ jd!
m!

G2S ,2

b2Dm+j

3p
i=1

m

fs2i − 1dq2 − j−2g, q2 =
2pH

f0
. s14d

After substitutingF of Eq. s13d in the self-consistency Eq.
s8d and cancelingDsrd, we obtain an implicit Eq.s2d for
jsH ,T,,d. It is easy to see that at the bulkHc2 where q2

=1/j2, the seriess14d reduces to the HW sums4d.
The double sums14d is, in fact, an asymptotic series and

is difficult to deal with when the goal is to solve Eq.s2d for
jsH ,T,,d. The situation simplifies greatly in the dirty limit:
S is an expansion in powers of,. Keeping only the terms
with m+ j =0,1, oneobtains
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S= 1 −
,2

3j2b2, ,4/j4 ! 1, ,4q4 ! 1. s15d

When substituted in the self-consistency Eq.s2d, this yields a
de Gennes-Maki dirty-limit result forjsT,,d and Hc2sTd.2
Since the fieldq2 does not enterS, the coherence length in
the dirty limit is field independent. In other words, in the
dirty limit, the coherence length at a givenT determined at
the bulk upper critical field, is the same at thisT for any H.

Formally similar situation takes place near the critical
temperatureTc where the truncations15d is justified by
smallness ofq2 andj−2 snot of ,d. We conclude thatnear Tc
the coherence length is field independent for any,. We then
expect the strongestH dependence ofj to exist at low tem-
peratures in clean materials.

Given the complexity of seriess14d, it is desirable to have
an integral representation forS better suited for analytic and
numerical work. This had been done in Ref. 10 for the 3D
case of a spherical Fermi surface. We refer the reader for
details of this nontrivial procedure and provide here the re-
sult sa similar procedure for the 2D case is described in Sec.
III and Appendix Bd

Ssu,sd = Îp ReE
0

`

ds
s1 − us2ds−1

s1 + us2ds erfcs, s16d

u =
,2q2

b2 , s =
1

2
S1 +

1

j2q2D; s17d

erfcs=s2/Îpdes
`dzexps−z2d ss here differs by the sign from

that used in Ref. 10d. Note thats=1 at Hc2; integration by
parts in s16d gives the HW integrals3d. One can check by
formally expanding the integrand in powers ofus2 and inte-
grating overs that the integrals16d can indeed be written as
the seriess14d ssee Appendix B in Ref. 10d. A similar expan-
sion for the 2D case is given in Sec. III.

III. FERMI CYLINDER

The calculations of the previous section cannot be done
for an arbitrary Fermi surface. Still, for some simple shapes
it is possible. The simplest of those is the Fermi cylinder
with the field parallel to the cylinder axis. Employing the
same procedure outlined for the Fermi sphere, we arrive at

S= o
m,n=0

`
s− 1dn2ms2m+ 2nd!

n!sm!d2 Su

4
Dm+n

s1 − sdm, s18d

whereu and s are defined in Eq.s17d; we use the notation
s1−sdm=s1−sds2−sd . . .sm−sd.12 The integral representa-
tion of this sum can be obtained in a manner similar to that
described in Ref. 10 for the 3D case,

Ssu,sd =
2

Îp
ReE

0

`

ds
s1 − us2ds−1

s1 + us2ds e−s2
s19d

ssee Appendix Ad. To verify this result we write

s1 − s2uds−1

s1 + s2uds = S1 − s2u

1 + s2u
Ds−1 1

1 + s2u

= o
m
Ss − 1

m
DS−

2us2

1 + us2Dm 1

1 + s2u

= o
m,n

s− 1dmm!ss − 1dm

sm!d2n!
2mums2m, s20d

wherem=m+n. Substituting this into Eq.s19d and integrat-
ing overs one obtainsS in the form s18d.

Having the quantitySsH ,j ,v ,,d for both 3D sFermi
sphered and 2DsFermi cylinderd, one can solve Eq.s2d for
jsH ,T,,d that, in general, can be done numerically. As
pointed out above, the most interesting is the situation atT
=0 in clean materials; this case can be treated analytically.

IV. CLEAN MATERIALS AT T=0

To deal with the divergence of lnsTc/Td in Eq. s2d we note
that the sum overv on the right-hand side is actually ex-
tended to the Debye frequencyvD. Then, we have for the
finite sum

o
v.0

vD 1

"v
<

1

2pT
ln

2"vDeg

pT
, s21d

where the neglected terms are of the orderT2/"2vD
2 and g

<0.577 is the Euler constant. Hence the divergent lnT in Eq.
s2d drops off. Since in the clean limitb<2vt and 2tS/ sb
−Sd<S/v we obtain instead of Eq.s2d in the zero-T limit

ln
2"vD

D0
= 2pTo

v.0

vD S

"v
→ E

0

vD dv

v
Ssu,sd. s22d

The integral at the right-hand side diverges logarithmically
with increasingvD, and so does the left-hand side; in other
words,vD should drop off the result. This integral is evalu-
ated in Appendix B for both 3D and 2D cases.

As a result we obtain an implicit equation forj

ln
"vq

D0a
+

cosspsd
4

FcS1 + s

2
D − cSs

2
DG +

cssd
2

= 0,

s23d

wherec is the Digamma function. The only difference be-
tween the 2D and 3D situations is in the numbera

a2D = Î2, a3D = e/Î2. s24d

Settings=1 in Eq. s23d one obtains

Hc2 =
f0

2pjc2
2 , jc2 =

"v

D0
Î2a

e−g/2. s25d
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This yields for the 3D case

Hc2s0d =
f0D0

2

2p"2v2e2+g, s26d

the value obtained variationally by Gor’kov13 and proven to
be exact by HW; in HW-reduced units it corresponds to
h*s0d=Hc2s0d /TcHc28 sTcd<0.72.5 For the 2D case, this gives
h*s0d<0.59, the result obtained by Bulaevskii.14

We now observe that material parameters enter Eq.s23d
only in the first term under the log sign. If one measures the
length in units ofjc2 and uses the reduced fieldh=H /Hc2,
then Eq.s23d takes the form independent of material param-
eters

lns2hegd +
cosspsd

2
FcS1 + s

2
D − cSs

2
DG + cssd = 0,

s =
1

2
S 1

hj*2 + 1D, j* =
j

jc2
. s27d

Hence, this equation defines a universal curvej*shd indepen-
dent of either material characteristicsvF ,D0 or the dimen-
sionality. Given this curve andHc2s0d, one can recoverjsHd
for a clean material atT=0.

The curvejsHd /jsHc2d=UsH /Hc2d is shown as a solid
line in Fig. 1 for 0.15,H /Hc2,1; the reason why the small
fields domain is not shown is given in Sec. V. Also shown are
results of numerical evaluation ofjsHd for a few values of
the impurity parameterl="v /2pTc,. The numerical calcu-
lation is done with the help of the self-consistency Eq.s2d for
arbitraryT andl; Ssj ,q2,v ,ld is evaluated using an explic-
itly real form given in Appendix C.

It is worth noting that the effect of raising temperature on
jsHd is qualitatively similar to that of the impurity scattering
ssee solid dots fort=T/Tc=0.5d; both suppress the field de-
pendence ofj. However, at low temperatures for reasonably
clean materials in a broad domain of high fields,jsHd is well
represented by the zero-T clean-limit curve; it is seen in Fig.
1sad that for l=0.25 this domain extends down toh<0.4.

Figure 1sbd shows the same results plotted against 1/Îh,
the quantity proportional to the intervortex spacing. In this
manner the data are often presented to examine possible con-
nection between the field dependence of the core sizercsHd
and other properties of the mixed state.1 Our result shows
that for materials on the clean side withl,1, the slope
dj* /dsh−1/2d for H→Hc2 is universal. In fact, using Eq.s27d
this slope atHc2 can be evaluated for the clean limit atT
=0

U dj*

dsh−1/2d
U

h=1
= 1 −

8

p2 < 0.189. s28d

We also observe that for real materials withlÞ0 and T
Þ0, j*shd becomes flat as the field decreases with the impu-
rity and temperature-dependent plateaus.

V. CORE SIZE

The above discussion ofjsHd applies at the SN second-
order phase transition where the field is uniform and the
order parameterD goes to zero. In fact, these conditions are
met in vortex cores of high-k type-II superconductors in high
fields. Indeed, in this case the field within the core of a size
j is practically uniform since it varies on a much larger scale
lL. Besides, when one approaches the vortex center,D→0.
To evaluatej in this situation, one can use the same formal-
ism as at the SN phase boundary; in other words, the above
procedure of evaluatingjsHd can be used to characterize the
size rc. In particular, the properties established forjsHd
should pertain also torcsHd. The most important features of
the H dependence ofj are as follows:sid this dependence is
weakened by scattering and disappears in the dirty limit;sii d
the H dependence ofj vanishes asT→Tc; siii d jsHd is
weakly affected by peculiarities of the Fermi surfacesi.e., we
expect qualitatively the same dependence for various mate-
rialsd; sivd in reduced variables, the dimensionless coherence
length j* =j /jc2 should be nearly universal function of the
reduced fieldh=H /Hc2 for clean materials in high fields and
low temperatures; andsvd for materials on the clean side
sl,1d the low-T slope dj* /dsh−1/2d is nearly universal in

FIG. 1. sColor onlined sad the normalized coherence lengthj*

=jsHd /jsHc2d vs h=H /Hc2. The solid line is calculated with the
help of Eq.s27d for the clean limit atT=0. The open symbols show
j*sl ,t ,hd for a few values of the scattering parameterl
="v /2pTc, and reduced temperaturest=0.1 shown in pairssl ,td
on the legend. The full symbols are for a clean material at an el-
evated temperature:sl ,td=s0.1,0.5d. sbd j* vs 1/Îh.
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high fieldssh→1d, but j becomesH independent in decreas-
ing fields. These features translated to the properties of the
core size can be checked experimentally.

One should put a note of caution on our claim of “univer-
sality.” This feature expressed in Eq.s27d, has been derived
for two simple Fermi surfaces, a sphere and a cylinder.15

Nevertheless, since the Fermi surface shape always enters
calculations of macroscopic parameters asj or lL via aver-
aging over the whole surface, one does not expect the fine
features of the surface to drastically alter our conclusionsex-
cept in special circumstances, e.g., when the local density of
states has sharp maxima at the surfaced. With this caveat we
will use the term “universality” in further discussion.

There is another drawback to our approach. When applied
to the SN phase boundary, say, of a proximity sandwich, the
field H in the jsHd dependence is the externally controlled
uniform applied fieldHa. Relating here the core size tojsHd,
we imply thatH is the field value at the vortex centerH0,
which is nearly constant within the core providedk@1.
However, the difficulty is that no reliable and generally ap-
plicable estimate ofH0 in terms ofHa is available, except
numerical results with a particular choice of parameters for
low-k and for high-Tc materials.6–8 Another exception is the
case of isolated vortices in the GL domain, whereH0
<2Hc1.

16 In a more interesting situation ofHa@Hc1, the
vortex fields are strongly overlapped and variations of the
actual field within the vortex lattice are weak relative to the
applied field; in fact, they are on the order ofHc1!Ha. Here
an error made by considering the field at the vortex axes as
equal to the applied field is small. In other words, relating the
vortex core sizercsHad to jsHad has a reasonable chance of
success only in large fieldsHa@Hc1 and improves asHa
→Hc2.

There is also a formal difficulty we encounter attempting
to extend the analysis to low fields. In fact, the curve shown
in Fig. 1 and generated by solving Eq.s27d shows oscillating
behavior if extended to fields belowh<0.15.17 Our numeri-
cal work for finitel andT shows that these oscillations are
washed out quickly with increasing scattering and/or tem-
perature and are hardly seen forl.0.25 si.e., in still rather
clean materialsd.

VI. COMPARISON WITH DATA

Relating the results obtained to information available on
the vortex core size, we focus on themSR data reviewed
recently by Sonier.1 This technique allows one to obtain the
field distributionhsrd within the vortex lattice. Then one can
calculate the current distribution and define the core radiusrc
as the distance from the vortex axis to the current maximum
in the nearest neighbor direction. This definition of the core
size is independent of a model one may choose to theoreti-
cally describe the distributionhsrd, the point stressed in Ref.
18. We will consider here the data on so definedrc.

The mSR data onhsrd can also be analyzed with the help
of the London model or its nonlocal version. For simplicity,
we consider here the standard London isotropic result

hsrd = Bo
G

eiG·r

1 + lL
2G2 , s29d

whereB is the magnetic induction and the sum is extended
over the reciprocal latticeG.

It is relevant for this discussion thatsad the London model
contains only one length scale, the penetration depthlL, and
sbd the model implies the constant order parameterD and
therefore breaks down at distances of the orderj. The latter
comes about formally in Eq.s29d since the sum is divergent
sthis is readily seen as the logarithmic divergence ofh when
r →0d. To mend this inherent shortcoming of the London
model, various cutoffs are commonly used, e.g., by introduc-
ing a factor exps−constG2j2d, which excludes distances
smaller thanj. Numerous efforts to fix the constant’s value
notwithstandingssee, e.g., Ref. 19d, in practice this constant
is used quite liberally depending on the application in ques-
tion. Other cutoffs basically suffer of similar uncertainties.20

Hence, thereliable results of the London model are only
those that are insensitive to the cutoff chosen. Still, one can
fit the datahsrd to a properly truncated sums29d and extract
the best-fit parameterslL and j along with theirH depen-
dence. Interestingly enough, the so extractedjsHd behaves as
a function ofH in nearly the same manner asrcsHd extracted
directly from the field distribution; it is found for a few ma-
terials that in high fieldsrc<j+C with a material dependent
constantC.1

We now consider the data onrcsHd for V3Si, NbSe2,
YNi2B2C, and CeRu2 provided in Refs. 18 and 21–23, re-
spectively, and summed up in the review by Sonier.1 All the
samples are high-quality single crystals and have large GL
parametersk; we assume them to be cleansthe available
scattering parameters arelsV3Sid<0.13 and lsNbSe2d
<0.15d. The reduced temperatures of themSR experiments
were low:<0.22, 0.33, 0.19, and 0.3, respectively. For each
material we have taken theHc2 at a corresponding tempera-
ture, calculatedjc2, and normalized the experimental core
radius to this value to obtainrc

* =rc/jc2. The results are plot-
ted in Fig. 2sad together with the theoreticalj* versus re-
duced fieldsh=H /Hc2. For reasons explained above we took
only the data points forh.0.15. We expect the experimental
rc

*shd and the theoreticalj*shd to be shifted by a material-,
temperature-, and purity-dependent constant:j*shd<rc

*shd
+Csl ,Td. Since the temperatures and impurity parameters in
different experiments were different, we do not expect these
shifts to be the same for the materials examined. In this
situation, we have chosen the constantsC so as to shift the
data points as close as possible to our curve ofj*shd. The
result is shown in Fig. 2sbd; the shifts needed are shown in
the panel legend. Although the shifts vary, the data for dif-
ferent materials land nicely in a vicinity of our curve. This
supports our guess of universality, a considerable ambiguity
of the procedure notwithstanding.

An interesting feature of the data and of the universal
curve j*s1/Îhd is seen in Fig. 2scd. The slope of this curve
starting with the values28d of <0.2 at h=1, increases to
about 0.4 in the domain 0.25,h,0.5 and then drops back
to about 0.2 nearh<0.15. In other words, the slope does not
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change much in each of these broad domains,

dj*

ds1/Îhd
< 0.2 − 0.4, s30d

or in common units,

dj

ds1/ÎHd
< s0.2 − 0.4dÎf0

2p
. s31d

Since the measured core sizerc differs from our j by a
constant shift, we may rewrite the last estimate as

drc

ds1/ÎHd
< s115 − 230d ÅÎkOe s32d

in units employed in experiments. Given our suggestion of
universality, we expect the high-field slopedrc/ds1/ÎHd for
all materials to be in this range. For the set of materials
discussed here, this is the case: we roughly estimate the slope
as 220 for V3Si, 190 for NbSe2, 240 for YNi2B2C, and
170 ÅÎkOe for CeRu2. The ability of our approach to pro-
vide the slope values in a good agreement with the data
indicates that the model correctly catches the physics of the
field dependence of the core size. The slopes are relevant in
particular, given an uncertain relationship betweenj we cal-
culate and the experimentalrc funcertain shiftsC in j*shd
<rc

*shd+Csl ,Td shown in Fig. 2scdg.
We add to this that our numerical calculations show that,

in qualitative agreement with existing data onrc, j for clean
materialssl,1d reachesH-independent plateaus in decreas-
ing fields.1 The values ofj at these plateaus decreases with
scattering and with temperature. Unfortunately, the data
available are still scarce and the issue of plateaus calls for
more experimental and theoretical work.

A number of questions still remains to be addressed.
Theoretically, it is not clear whether or not our clean limit
results are compatible with the prediction of Pesh and
Kramer that the core size of an isolated vortex defined as
r1=D / s]D /]rdr→0 goes to zero asT→0.24 We note, how-
ever, that our results forrc are meaningful only in large
fields and for large GL parametersk, whereas these authors
have considered an isolated vortex in a material withk
=0.9. The same can be said with respect to calculations of
Ichioka et al. done for thed-wave symmetry who find a
shrinking core size in decreasing temperatures.25

Calculations of Miranović et al.8 of the low-temperature
field dependence of the lengthr1=Dm/ s]D /]rdr→0 in the
mixed statesDm is the order-parameter maximum along the
nearest-neighbor directiond show that for clean materials
with l,1 the lengthr1sHd goes through a minimum and
increases approachingHc2. It also shows a much stronger
field dependence on the dirty sidesl.1d than ourjsHd. A
way out of this difficulty, in our opinion, is to conclude that
r1sHd is not proportional either to ourjsHd or to existing
data on the core sizercsHd in clean materials for which the
minimum in rcsHd had not been recorded.1

There is indirect experimental evidence that the scattering
suppresses the field dependence of the core size. Noharaet
al.22 report that theH dependence ofrc extracted from the
field dependence of the specific heat coefficientge and well
pronounced in pure NbSe2, in fact, disappears after doping
the crystal with Ta. The doping changes the impurity param-
eter from 0.19 to 1.25 so that the observation is consistent
with our conclusion. The data of this group on YNi2B2C and
YsNi0.8Pt0.2dB2C are more convincing yet: the first crystal
has the impurity parameterl<0.4 si.e., it is on the clean
sided whereas the Pt-doped crystal is on the dirty side with
l<2.4; theH dependence ofrc in the doped crystal is prac-
tically absent. Still, the question ofrcsHd in the presence of
impurities could be resolved if themSR data were taken on a

FIG. 2. sColor onlined sad the experimental core radiusrc nor-
malized onjc2=Îf0/2pHc2sTd of each compound for materials
indicated in the legend;T is the temperature of each experiment.
The solid line is the theoreticalj*shd with h=H /Hc2sTd, the same
curve as in Fig. 1.sbd the same data shifted by amounts indicated in
the legend.scd the same assbd, but plotted vs 1/Îh.
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set of the same crystals with varying mean-free path; candi-
dates for such a study could bese.g., crystals of LuNi2B2C
doped with Cod.26

We reiterate in conclusion that experimental core sizesrc
follow swithin material- and experiment-dependent constantd
the field dependence of the coherence lengthj calculated
with the help of the weak-coupling BCS theory. TheH de-
pendence ofj is pronounced at low temperatures of clean
materials and becomes weaker with increasing scattering and
temperature;rc should do the same. We have shown that in
high fields and lowT’s the slopesdrc/dsH−1/2d is nearly
independent of the Fermi surface shape; the theory provides
an estimate of these slopes confirmed by comparison to data
for a number of different high-k materials.
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APPENDIX A

The sums18d overm, n can be replaced with the sum over
m from 0 to m=m+n and the sum overm from 0 to `; the
former can be written as a hypergeometric function

S= o
m=0

`

s2m − 1d!!S−
u

2
Dm

2F1s− m,1 −s;1;2d. sA1d

We now use the integral representation

2F1sa,b;c;zd =
e−ipbz1−c

4p2 GscdGs1 + b − cdGs1 − bd

3R dtst − zdc−b−1tb−1s1 − td−a, sA2d

where the contour circles the branch points att=0 andt=z
twice in opposite directions; the representation holds every-
where except points where theG factors diverge.27 This yield

S=
eipss−1d

4p2 Gs1 − sdGssd R st − 2ds−1t−s

3o
m=0

`

s2m − 1d!!F−
u

2
s1 − tdGm

dt. sA3d

The sum heressometimes called Euler or Borel sum-
mable, see, e.g., Ref. 28d is transformed into an integral with
the help of identity

o
m=0

`

s2m − 1d!! s− xdm =
2

Îp
ReE

0

` dse−s2

1 + 2s2x
, sA4d

which is proven by formally expanding 1/s1+2s2xd in pow-
ers of 2s2x and integrating overs.

Then the contour integral emerges of the form

J = R st − 2ds−1t−s dt

1 + s2us1 − td
, sA5d

which can be transformed back to the hypergeometric form
after the substitutiont=vs1+s2ud /s2u=vz

J =
4p2eips1−sd

Gs1 − sdGssd 2F1s1,1 −s;1;2/zd. sA6d

Furthermore,2F1s1,1−s ;1 ;2 /zd=s1−2/zds−1 and we obtain
Eq. s19d of the main text.

APPENDIX B

One has to evaluate the integral at the right-hand side of
Eq. s22d. We start with the Fermi cylinder

E
0

vD dv

v
S=

2
Îp

ReE
0

`

dse−s2E
0

vD dv

v
hss,vd, sB1d

with

h =
s1 − s2uds−1

s1 + s2uds , u =
v2q2

4v2 . sB2d

Substitutionx=v2/vD
2 transforms the integral overv to

J =
1

2
E

0

1

dx
sx − yds−1

sx + yds =
s− 1d−ss1 + yd1−s

4yss − 1ds2yd−s 2F1S1 − s,1 −s;2

− s;
1 + y

2y
D −

s− 1ds

4
FcS1 − s

2
D − cS1 −

s

2
DG , sB3d

where

y =
s2v2q2

4vD
2 ! 1 sB4d

because large values ofs are cut off bye−s2
; even atHc2 of

clean materials this inequality reduces to the standard BCS
restriction"vD@D0. Utilizing the reflection formulas for the
Digamma function,12 cs1−zd=cszd+p cotspzd, the expres-
sion in square parentheses is rewritten as

cS1 + s

2
D − cSs

2
D −

2p

sinspsd
. sB5d

We further use the asymptotic formula 15.3.13 of Ref. 12 for

2F1 with 1/2y@1. Then, the real part ofJ assumes the form

ReJ = −
cosspsd

4
FcS1 + s

2
D − cSs

2
DG −

1

2
fln 2 + g + cssdg

+ ln
2vD

vq
− ln s. sB6d

The integration overs in Eq. sB1d is now straightforward:
the s independent part of ReJ enters, the result being un-
changed because s2/Îpde0

`dse−s2
=1. Furthermore,

s2/Îpde0
`dse−s2

ln s=−g /2− ln 2. Collecting all terms in the
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self-consistency equations22d we obtain Eq.s23d. As ex-
pected, the large parametervD cancels out from the final
result.

For the 3D situation, we have to replace in 2D Eq.sB1d
s2/Îpde0

`dse−s2
ReJ with Îpe0

`dserfcssdReJ. As in 2D, the
s-independent part of ReJ enters, the result being unchanged
since Îpe0

`dserfcssd=1, whereas Îpe0
`dserfcssdln s=−1

−g /2. This gives the 3D version of Eq.s23d.

APPENDIX C

An explicitly real representation of the integrals16d is
given in Ref. 10 for the Fermi sphere. Here we provide it for

the 2D isotropic case of Eq.s19d. To this end, one separates
the integration domain in two: 0,s,1/Îu and 1/Îu,s
,`. In the first, the integration variable is changed toy
=s/Îu, whereas in the second toy=ssÎud−1. Then we obtain

Ssu,sd =
2

Îpu
E

0

1

dy
s1 − y2ds−1

s1 + y2ds

3FexpS−
y2

u
D − cosspsdexpS−

1

y2u
DG , sC1d

the form easy to deal with numerically.
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