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Field dependence of the vortex core size
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We show that the field dependence of the coherence lefigthcalculated within the weak-coupling BCS
theory for clean superconductors at low temperatures and high fields is qualitatively the sameHas the
dependence of the vortex core siggrecorded experimentally in a number of superconductors with high
Ginzburg-Landau parameta. We argue thatH dependencies of and p. are weakened by scattering and
temperature and disappear in the dirty limit andTas T.. We find that the high-field slopép,/d(H=?) for
clean materials at low’s is nearly material independent, and we provide an estimate of this nearly universal
slope, the prediction supported by the data available.
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I. INTRODUCTION Werthamer{HW) on the upper critical fieldH(T), the situ-
ation in whichA — 0 and the field is uniform. This yields the
The coherence lengthhas first been introduced as a phe- field dependence of, which agrees qualitatively with ob-
nomenological length scale in the néarGinzburg-Landau  servedp,(H).
(GL) description where it sets, among other things, the “vor- A few examples of numerical solutions of the microscopic
tex core size’p.. Since the core, in fact, does not have aequations of superconductivity show that tHedependence
sharp boundary, the sizg cannot be unambiguously defined of p. follows from the theory under very general
and is commonly chosen “operationally convenient,” i.e., ingssumption§-8 Our approach can be applied to the problem
a way that varies from one experimental or theoretical situof p(H) only in large fields of highe materials; still, we
ation to another. For examplg, may be defined as the ra- gptain our main results analytically, which has certain advan-
dius of a circle where the persistent current is maxingrum,tages as compared to however powerful numerical tech-
or—within the London approach—as the distance at whichhjques, and enables one to make experimentally verifiable
the divergent London current density reaches the depairingredictions. For example, we show that tHelependence of
value, or assuming the core being a normal cylinder ang, is weakened by scattering and disappears in the dirty
equating the core contribution to the vortex energy tojimit; also it vanishes ad—T,. Besides,&(H) is weakly
(He/8m)mp; with HZ/8 being the condensation enefgy.  affected by peculiarities of the Fermi surface, i.e., we expect
Another example comes from the scanning tunneling workyyalitatively the same dependence at low temperatures for

where “the vortex core radius is arbitrary defined by thatyarious clean materials, the high-field sloge./d(H™2?) is
distancep. from the vortex center for which the tunneling nearly universal.

current has decreased froi,, t0 36% Of |axImin.” We begin with the notion that within the microscopic
Clearly, these procedures yield different values_pg,f al- theory, at arbitrary magnetic field$ and temperatures, it
though all of them have the same order of magnitude. is not clear what exact value one should assigré.tdhe

A lot of experimental effort has been invested recently ingjtficulty comes from the fact thag is not among the basic
the study of the vortex core size; see the review by Soniefypyt parameters of the theory; instead, it should be calcu-
and references theretnNotably, whatever the definition of |ated, in general a very difficult if at all possible analytic
pc is adopted, the low temperatupg is shown to decrease task. There is, however, a region at the second-order phase
with increasing field in a number of materials, such asyansition from superconducting to normal state, the SN
NbSe, V3Si, LUNIB,C, YB8,Cu;07-5 and CeRy physical - poundary, where the theory can be linearized and, conse-
characteristics of which have little to do with each otheryyently, ¢ is well defined.

(except all of them have a large GL parameterh, /). The The linearization has been performed by HW in the work
dependencep(H) for all testegmaterlals are qualitatively of on the upper critical fieldH(T, 7) with 7 being the mean
similar; for large fieldsp.~1/vH. Properties of the quasi- scattering time on nonmagnetic impuriteesThey have

particle spectrum inside and outside the cofeere the  shown that atH,, where the order parametargoes to zero,

ered responsible for thd and T dependences gf..

In this paper we study the relation between experimen- - &(MIPA=A, (1)
tally determinedp. and the coherence length calculated
within the weak-coupling BCS theory for arbitrafyandH. wherell=V + 27 A/ ¢ is the gauge-invariant gradiers, is
We argue that near the vortex centers where the order parartie vector potential, angy is the flux quantum. Formally,
eterA— 0 and the field is practically uniform for larges, the equation is equivalent to the Schrddinger equation for a
one can use for determination gfthe same formal proce- charge in uniform magnetic field; the field., at which su-
dure as that employed in the seminal work of Helfand andberconductivity first nucleates in a bulk sample corresponds
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to the lowest eigenvalue of this equatioH,= ¢q/27E.
This field (and ¢) is obtained by solving the basic self-
consistency equation of the theory

o Teos (128
L =] ?

where the functior§(T, &, 7) can be written as

S= %Jo dse tant % (3)

o ! _ﬁ>j

‘,%zm( g’ “
B=1+2wr, o°=2mHeldo=E7. (5

Here,o=#T(2n+1)/A, nis an integery is the Fermi veloc-
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Il. FERMI SPHERE: H(T) AND S(H,¢,w,¢)

Here we reproduce major points of th@H) derivation for
the system near the second-order SN transition with the help
of the quasiclassical Eilenberger formali$mThe main
equations of the theory read

- IIf =g(F + 27A) = (G + 2w7)f, (7)
A Teos (A
ﬁ'”?-w%(ﬁw F)- ®

Here,v is the Fermi velocityf(r,»,v) andg(r,w,v) are the
Eilenberger Green’s functions with averages over the Fermi
surface, denoted d&=(f) and G=(g).

In the normal phasé=0 andg=1. In a small vicinity of
the SN transition|f| <1, whereag can still be set unity in
linear approximation inf due to normalizationg=(1
—ff1)¥2 (for the same reason we do not need here an equa-
tion for fT). Equation(7) can be linearized

ity, and ¢ =v 7 is the mean-free path. The power-series repre-

sentation ofS is obtained by formally expanding tanand
then integrating oves. The evaluation ofS was performed
for the isotropic Fermi surface, i.e., for a Fermi sphere.
Thus, strictly speaking, the lengthis defined only at the
SN phase boundanH(T), and the question remains
whether or not the same definition éfis useful out of the
immediate vicinity ofH,(T). In fact, in a variety of situa-
tions (small samples, proximity systepnthe SN transition
may take place far from the bulk(T). To approach the

¢ -Tf=F - pf, 9)

¢=vr, E=F+27Alh, B=1+2wr. (10)

The solution of Eq(9) is written as

[

f=(B+€ M) F= f dpe P B+, (12)
0

problem of the phase boundary in these systems, one has % for the Fermi surface average

know &(H,T) in a broad domain of théel-T plane away of
the bulkH(T).

A method to evaluaté(H,T) had been developed in Refs.

9 and 10. In principle, the method follows HW by utilizing
the fielduniformity and theA smallnessat the SN transition,

F= f dpePB(e P IIF), (12
0

We now assume thai, F, andF satisfy Eq.(1); then, uti-
lizing commutators of the operatdl in a uniform field and

wherever it occurs. Below, we outline the method as applieghe known properties of exponential operabm)e can ma-

to the three-dimensional3D) isotropic case of a Fermi
sphere. Then, we consider two-dimensiof2D) isotropic

materials, i.e., the Fermi cylinder. We find that away from the 27S

critical temperaturel. of clean superconductorg§(H,T) so
obtaineddecreasesvhenH increasesowardH,,; the effect

nipulate Eq.(12) to

F(r,w) =A(r)

B-S

is suppressed by impurity scattering and is absent in the dirtyhere

limit. We provide a closed-form equation f@g(H) for the

oo

— A2\ H 2 2 j
zeroT clean case for both Fermi sphere and cylinder and 5= (-q) [(mﬂ)!} (€ )mﬂ

show that the results can be represented as
&H) (H)
——=U(— (6)
§(H02) Hc2

with U being an universal function.

_m’jzoj!(2m+ 2j+1) ml E

x[1[@i-Dg?-£3, &:&ﬂ. (14)
i=1 d’O

After substitutingF of Eqg. (13) in the self-consistency Eg.

We next argue that the same procedure can be applied {8) and cancelingA(r), we obtain an implicit Eq.(2) for

the mixed state in applied field$<H., near the vortex core
centers in materials with large=\/&. This is because near
the centera\(r) — 0 and the fieldvarying on the scale of the
London penetration depthk,) can be taken asniform We

find our results oné(H) in qualitative agreement with the

data available op.(H), uncertainties of experimental proce-

dures of extracting. notwithstanding.

E&H,T,€). It is easy to see that at the bub., where g?
=1/&, the serieg14) reduces to the HW surt®).

The double sun{l4) is, in fact, an asymptotic series and
is difficult to deal with when the goal is to solve E@) for
&H,T,€). The situation simplifies greatly in the dirty limit;
Sis an expansion in powers df. Keeping only the terms
with m+j=0, 1, oneobtains
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_ % 4 At o (1-su)7t 1—szu>"'1 1
S=1 5 het<1, gt<. (15) 1+207 “\1r5u) I+
When substituted in the self-consistency B), this yields a =3 (‘7_ 1)(_ 2us’ )m 1
de Gennes-Maki dirty-limit result fo&(T,€) and Hgy(T).? m\m 1+us/ 1+
Since the fieldg® does not entes, the coherence length in oo
the dirty limit is field independentn other words, in the = M“Zmuﬂus@v (20)
dirty limit, the coherence length at a givhdetermined at mn (ml)2n! '

the bulk upper critical field, is the same at tAigor any H.

Formally similar situation takes place near the critical\yhere ,=m+n. Substituting this into Eq(19) and integrat-
temperatureT, where the truncation(15) is justified by  jng overs one obtainsSin the form(19).
smallness ofj* and ¢ 2 (not of €). We conclude thatear T, Having the quantityS(H,&,w,¢) for both 3D (Fermi
the coherence length is field independent for &ne then  gpherg and 2D (Fermi cylindey, one can solve Eq2) for
expect the stronge#t dependence of to exist at low tem- s T ¢) that, in general, can be done numerically. As
peratures in clean materials. pointed out above, the most interesting is the situatiom at

Given the complexity of serieid4), it is desirable to have  ~ iy clean materials; this case can be treated analytically.
an integral representation f&better suited for analytic and

numerical work. This had been done in Ref. 10 for the 3D

case of a spherical Fermi surface. We refer the reader for
details of this nontrivial procedure and provide here the re- IV. CLEAN MATERIALS AT T=0
sult (a similar procedure for the 2D case is described in Sec.

Il and Appendix B To deal with the divergence of (./T) in Eq. (2) we note

that the sum ovemw on the right-hand side is actually ex-

_ = (1-u)t tended to the Debye frequeney,. Then, we have for the
Su,0) =7 Ref ds———— erfcs, (16)  finite sum
o (1+us)”
&1 1 2hwpe”
2q 1 1 P I o (21)
U:?' U=§<1+P); (17) o0 hw 27T T
q

where the neglected terms are of the or@iéth2w3 and y
~0.577 is the Euler constant. Hence the divergefitiim Eq.
(2) drops off. Since in the clean lim=2wr and 2rS/(B
-9 =S/ w we obtain instead of Eq2) in the zeroT limit

erfcs=(2/\e‘°7—r)f;°dzexp(—zz) (o here differs by the sign from
that used in Ref. 10 Note thato=1 atH,,; integration by
parts in(16) gives the HW integral3). One can check by
formally expanding the integrand in powersw and inte-
grating overs that the integra(16) can indeed be written as

the serieg14) (see Appendix B in Ref. J0A similar expan- 2hwp & dow
sion for the 2D case is given in Sec. lIl. In A = 27TT§O o . ;S(U.U)- (22
IIl. FERMI CYLINDER The integral at the right-hand side diverges logarithmically

The calculations of the previous section cannot be dong‘”th increasinguwp, and so does the Ieft-_ha_md 5|dez in other
for an arbitrary Fermi surface. Still, for some simple shapeé’vords’wf’ shou[d drop off the result. This integral is evalu-
it is possible. The simplest of those is the Fermi cylinderatecj in Appendix B for. both 3D gr]d 2D cases.
with the field parallel to the cylinder axis. Employing the As a result we obtain an implicit equation fér

same procedure outlined for the Fermi sphere, we arrive at
hvq codmo) l+o o o)
Aga 4 2 2 2

S= E (_ 1)

0 n!(m!)2

n2m(2m+ 2n)! (E
4

) A-o)p (19 23

whereu and o are defined in Eq(17); we use the notation where s is the Digamma function. The only difference be-
(1-0)p=(1-0)(2-0)...(m-0).12 The integral representa- tween the 2D and 3D situations is in the number
tion of this sum can be obtained in a manner similar to that

described in Ref. 10 for the 3D case, aop = \5, ap = e/\“E. (24)
2 * (1-usdH”? Settingo=1 in Eq.(23) one obtains
Su,0) =—= Ref ds%e‘82 (19 g a-(
N 0 1+ USZ) s "
= _Fo_ = v ~y/2
(see Appendix A To verify this result we write Heo 2mEs, &2 on’Eae : (25)
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This yields for the 3D case

BoA;

2wh2v292+7’

He(0) =

(26)

the value obtained variationally by Gor’kbvand proven to

be exact by HW; in HW-reduced units it corresponds to

h*(0)=H,(0)/TcH.,(T,) =0.725 For the 2D case, this gives
h"(0)~0.59, the result obtained by BulaevsKii.
We now observe that material parameters enter(E8).

only in the first term under the log sign. If one measures the 1

length in units ofé, and uses the reduced fiefidEH/H,,,

then Eq.(23) takes the form independent of material param-

eters

coqmo)

l1+o o
72 157) -5 w0

SER

Hence, this equation defines a universal cuf\(@) indepen-
dent of either material characteristiog,Ag or the dimen-
sionality. Given this curve anH(0), one can recovef(H)
for a clean material af=0.

The curveé(H)/éHe)=U(H/H,) is shown as a solid
line in Fig. 1 for 0.15<H/H<1; the reason why the small

g

1
h&™?

In(2he?) +

3

:§_C2'

(27)

o
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FIG. 1. (Color onling (a) the normalized coherence length
=&H)/&MHg) vs h=H/H,. The solid line is calculated with the

fields domain is not shown is given in Sec. V. Also shown arehelp of Eq.(27) for the clean limit aff=0. The open symbols show

results of numerical evaluation @H) for a few values of
the impurity parametek=#v /27T . The numerical calcu-
lation is done with the help of the self-consistency &).for
arbitrary T and\; S(¢,0%, w,\) is evaluated using an explic-
itly real form given in Appendix C.

It is worth noting that the effect of raising temperature on

&(H) is qualitatively similar to that of the impurity scattering
(see solid dots fot=T/T.=0.5); both suppress the field de-

pendence of. However, at low temperatures for reasonably

clean materials in a broad domain of high fielgd;l) is well

represented by the zefoelean-limit curve; it is seen in Fig.

1(a) that for A=0.25 this domain extends down to=0.4.
Figure 1b) shows the same results plotted againstH,/

the quantity proportional to the intervortex spacing. In this
on-

manner the data are often presented to examine possible ¢
nection between the field dependence of the core side)
and other properties of the mixed stat@ur result shows
that for materials on the clean side with<1, the slope
d¢"/d(h™2) for H—Hg, is universal. In fact, using Eq27)
this slope atH., can be evaluated for the clean limit &t
=0

dé¢

8
=1-—~0.189.
d(h™?) | =g

71,2

(28)

We also observe that for real materials with#0 and T

E(\t,h) for a few values of the scattering parametar
=hv/27 T and reduced temperatures0.1 shown in pairgA,t)

on the legend. The full symbols are for a clean material at an el-
evated temperaturéx,t)=(0.1,0.5. (b) & vs 1//h.

V. CORE SIZE

The above discussion @{H) applies at the SN second-
order phase transition where the field is uniform and the
order parameteA goes to zero. In fact, these conditions are
met in vortex cores of higl-type-1l superconductors in high
fields. Indeed, in this case the field within the core of a size
&is practically uniform since it varies on a much larger scale
\_. Besides, when one approaches the vortex ceiter .

To evaluatef in this situation, one can use the same formal-
Ism as at the SN phase boundary; in other words, the above
procedure of evaluating(H) can be used to characterize the
size p.. In particular, the properties established fé&iH)
should pertain also tp.(H). The most important features of
the H dependence of are as follows{i) this dependence is
weakened by scattering and disappears in the dirty liginjt;

the H dependence of vanishes asT—T; (iii) &H) is
weakly affected by peculiarities of the Fermi surfdte., we
expect qualitatively the same dependence for various mate-
rials); (iv) in reduced variables, the dimensionless coherence
length & =&/ £, should be nearly universal function of the
reduced fielch=H/H_, for clean materials in high fields and

#0, £ (h) becomes flat as the field decreases with the imputow temperatures; anév) for materials on the clean side

rity and temperature-dependent plateaus.

(A<1) the low-T sloped¢ /d(h™*?) is nearly universal in
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high fields(h— 1), but ¢ becomedd independent in decreas- ger
ing fields. These features translated to the properties of the h(r)=BX 1 +)2G2’ (29)
core size can be checked experimentally. ¢ -
Qn”e Sh_OUId put a note of caution on our claim of UNIVET"\vhereB is the magnetic induction and the sum is extended
sality. Th_ls feature e_xpressed in E@7), has been der_lved over the reciprocal latticé.
for two simple Fermi surfaces, a sphere and a cylidtler. 1 is relevant for this discussion théa) the London model
Neverth.eless, since the F_erm| surface shape qlways entefSntains only one length scale, the penetration dapttand
calculations of macroscopic parameterséas A\, via aver- (b) the model implies the constant order parameteand
aging over the whole surface, one does not expect the fingerefore breaks down at distances of the owléfhe latter
features of the surface to drastically alter our conclugéa  comes about formally in Eq29) since the sum is divergent
cept in special circumstances, e.g., when the local density gthis is readily seen as the logarithmic divergencé efhen
states has sharp maxima at the surfa®éth this caveat we r—0). To mend this inherent shortcoming of the London
will use the term “universality” in further discussion. model, various cutoffs are commonly used, e.g., by introduc-
There is another drawback to our approach. When appliethg a factor exp-constG2£2), which excludes distances
to the SN phase boundary, say, of a proximity sandwich, themaller thané. Numerous efforts to fix the constant’s value
field H in the &(H) dependence is the externally controlled notwithstandingsee, e.g., Ref. 29in practice this constant
uniform applied fieldH,. Relating here the core size §H), is used quite liberally depending on the application in ques-
we imply thatH is the field value at the vortex centel,,  tion. Other cutoffs basically suffer of similar uncertaintfés.
which is nearly constant within the core provided> 1. Hence, thereliable results of the London model are only
However, the difficulty is that no reliable and generally ap-those that are insensitive to the cutoff chosen. Still, one can
plicable estimate of, in terms ofH, is available, except fit the datah(r) to a properly truncated su29) and extract
numerical results with a particular choice of parameters fothe best-fit parametens; and ¢ along with theirH depen-
low-« and for highT, materials>~8 Another exception is the dence. Interestingly enough, the so extraciét) behaves as
case of isolated vortices in the GL domain, whetfg  a function ofH in nearly the same manner agH) extracted
~2H1.1® In a more interesting situation dfi,>H.;, the  directly from the field distribution:; it is found for a few ma-
vortex fields are strongly overlapped and variations of theerials that in high fieldp.~ ¢+ C with a material dependent
actual field within the vortex lattice are weak relative to theconstantC.!
applied field; in fact, they are on the ordertdf; <H,. Here We now consider the data op.(H) for V3Si, NbSs,
an error made by considering the field at the vortex axes agNi,B,C, and CeRy provided in Refs. 18 and 21-23, re-
equal to the applied field is small. In other words, relating thespectively, and summed up in the review by SohiaH the
vortex core sizep(H,) to £(H,) has a reasonable chance of samples are high-quality single crystals and have large GL
success only in large fieldsl,>H, and improves asd,  parametersc; we assume them to be cledthe available
— Hep. scattering parameters ark(V3Si)=0.13 and A(NbSe)
There is also a formal difficulty we encounter attempting~0.15. The reduced temperatures of tpSR experiments
to extend the analysis to low fields. In fact, the curve shownwere low: ~0.22, 0.33, 0.19, and 0.3, respectively. For each
in Fig. 1 and generated by solving EQ7) shows oscillating  material we have taken thé., at a corresponding tempera-
behavior if extended to fields belol~0.151" Our numeri- ture, calculatedé,, and normalized the experimental core
cal work for finiteA and T shows that these oscillations are radius to this value to obtajp,=p/ &, The results are plot-
washed out quickly with increasing scattering and/or tem+ed in Fig. 2a) together with the theoretica" versus re-
perature and are hardly seen for0.25(i.e., in still rather  duced fieldsh=H/H,,. For reasons explained above we took
clean materials only the data points fon>0.15. We expect the experimental
p;(h) and the theoreticaf’(h) to be shifted by a material-,
temperature-, and purity-dependent constafith) = p.(h)
VI. COMPARISON WITH DATA +C(\,T). Since the temperatures and impurity parameters in
different experiments were different, we do not expect these
Relating the results obtained to information available onshifts to be the same for the materials examined. In this
the vortex core size, we focus on theéSR data reviewed situation, we have chosen the consta@itso as to shift the
recently by Soniet.This technique allows one to obtain the data points as close as possible to our curve'df). The
field distributionh(r) within the vortex lattice. Then one can result is shown in Fig. ®); the shifts needed are shown in
calculate the current distribution and define the core raglius the panel legend. Although the shifts vary, the data for dif-
as the distance from the vortex axis to the current maximunferent materials land nicely in a vicinity of our curve. This
in the nearest neighbor direction. This definition of the coresupports our guess of universality, a considerable ambiguity
size is independent of a model one may choose to theoretéf the procedure notwithstanding.
cally describe the distributioh(r), the point stressed in Ref. An interesting feature of the data and of the universal
18. We will consider here the data on so defipgd curve £ (1/\/h) is seen in Fig. &). The slope of this curve
The uSR data orh(r) can also be analyzed with the help starting with the valug28) of =0.2 ath=1, increases to
of the London model or its nonlocal version. For simplicity, about 0.4 in the domain 0.25h<<0.5 and then drops back
we consider here the standard London isotropic result to about 0.2 nean=0.15. In other words, the slope does not
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FIG. 2. (Color onling (a) the experimental core radiys nor-
malized on¢=+/¢o/2H(T) of each compound for materials
indicated in the legendT is the temperature of each experiment.
The solid line is the theoretical (h) with h=H/Hg(T), the same
curve as in Fig. 1(b) the same data shifted by amounts indicated in

the legend(c) the same ab), but plotted vs 1ih.

change much in each of these broad domains,

d o
_02-04, (30
d(1/vh)
or in common units,
d
g,_ z(o.2—0.4\/@. (31)
d(1/vH) 27

Since the measured core sipg differs from our & by a

constant shift, we may rewrite the last estimate as
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°_ ~ (115 - 230 AVkOe (32

in units employed in experiments. Given our suggestion of
universality, we expect the high-field slogg./d(1/vH) for

all materials to be in this range. For the set of materials
discussed here, this is the case: we roughly estimate the slope
as 220 for \Si, 190 for NbSg 240 for YNi,B,C, and
170AVkOe for CeRy. The ability of our approach to pro-
vide the slope values in a good agreement with the data
indicates that the model correctly catches the physics of the
field dependence of the core size. The slopes are relevant in
particular, given an uncertain relationship betwéeme cal-
culate and the experimenta) [uncertain shiftsC in & (h)

~ pc(n)+C(\,T) shown in Fig. Zc)].

We add to this that our numerical calculations show that,
in qualitative agreement with existing data gn £ for clean
materials(A <1) reachedH-independent plateaus in decreas-
ing fields! The values of¢ at these plateaus decreases with
scattering and with temperature. Unfortunately, the data
available are still scarce and the issue of plateaus calls for
more experimental and theoretical work.

A number of questions still remains to be addressed.
Theoretically, it is not clear whether or not our clean limit
results are compatible with the prediction of Pesh and
Kramer that the core size of an isolated vortex defined as
p1=A/(dAldr),_, goes to zero a —0.2* We note, how-
ever, that our results fop. are meaningful only in large
fields and for large GL parameteks whereas these authors
have considered an isolated vortex in a material with
=0.9. The same can be said with respect to calculations of
Ichioka et al. done for thed-wave symmetry who find a
shrinking core size in decreasing temperatdpes.

Calculations of Miranow et al® of the low-temperature
field dependence of the lengiy=A/(dA/dr),_, in the
mixed state(A,, is the order-parameter maximum along the
nearest-neighbor directipnshow that for clean materials
with A <1 the lengthp,(H) goes through a minimum and
increases approaching.,. It also shows a much stronger
field dependence on the dirty side>1) than our&(H). A
way out of this difficulty, in our opinion, is to conclude that
p1(H) is not proportional either to ou#(H) or to existing
data on the core sizg,(H) in clean materials for which the
minimum in p,(H) had not been recordéd.

There is indirect experimental evidence that the scattering
suppresses the field dependence of the core size. Nehara
al.?? report that theH dependence op, extracted from the
field dependence of the specific heat coefficignand well
pronounced in pure Nb$ein fact, disappears after doping
the crystal with Ta. The doping changes the impurity param-
eter from 0.19 to 1.25 so that the observation is consistent
with our conclusion. The data of this group on %RC and
Y (Niy gP% »)B-C are more convincing yet: the first crystal
has the impurity parameter=0.4 (i.e., it is on the clean
side whereas the Pt-doped crystal is on the dirty side with
\=2.4; theH dependence gj; in the doped crystal is prac-
tically absent. Still, the question @f(H) in the presence of
impurities could be resolved if theSR data were taken on a
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set of the same crystals with varying mean-free path; candi- Then the contour integral emerges of the form
dates for such a study could lfe.g., crystals of LUNB,C

doped with C¢.26 J= fﬁ (t- 2)"“%“’—0It (AS5)
We reiterate in conclusion that experimental core sjzes 1+52u(l-t)’

follow (within material- and experiment-dependent constantWhiCh can be transformed back to the hvperaeometric form
the field dependence of the coherence lengtbalculated fter th bstitution=o (1 +s2u)/s2u= yperg
with the help of the weak-coupling BCS theory. THede- ~ &te' (€ substitution=v Wisu=vz
pendence of is pronounced at low temperatures of clean 4 m(1-0)
materials and becomes weaker with increasing scattering and J= mflﬂ, 1-0,1;2/2). (AB)
temperaturep, should do the same. We have shown that in
high fields and lowT's the slopesdp./d(H™/?) is nearly  Furthermore,F,(1,1-0;1;2/2)=(1-2/2)°"* and we obtain
independent of the Fermi surface shape; the theory provideBq. (19) of the main text.
an estimate of these slopes confirmed by comparison to data
for a number of different high- materials.
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Substitutionx:wzlwé transforms the integral oves to

(B2)
APPENDIX A

The sum(18) overm, n can be replaced with the sum over

m from O to x=m+n and the sum over from O to «; the (x y)ot ( 171 +y)t™
former can be written as a hypergeometric function =5 Xty ayo-1)2y) " oFi{1-01-0;2
w u\~ 1+y) (1) [1-¢ o
S=E(2,u—1)!!<——> Fi(-w1-0;1;2). (A1) -0 y)— —yl1-— B3
wn=0 2 21 g, 2y 4 l// 2 ‘ﬂ 2 ’ ( )
We now use the integral representation where
e—i-n-bzl—c SZ 242
JFi(a,b;c;2) = —2—T(0T(1+b-c)[(1-b) y=24 <1 (B4)

% f dt(t — 25141 - )2, (A2) because large values sfare cut off bye‘52 ; even atH, of

clean materials this inequality reduces to the standard BCS
. . restrictionziwp > Ay, Utilizing the reflection formulas for the
where the contour circles the branch pointd=a0 andt=z

twice in opposite directions; the representation holds everyDlgamrml functiori? y(1-2)=y(2)+x cot(2), the expres-
where except points where thefactors divergé’ This yield sion in square parentheses is rewritten as

elar(a'— lﬂ( 1+ 0) _ 1/1<E> _ 2m (B5)
S=— 7 T~ a)F(o)jg (t-2)7 % 2 2) sin(mo)’
- We further use the asymptotic formula 15.3.13 of Ref. 12 for
xS (2u- D! {_ (1 —t)}ﬂ (A3) oF, with 1/2y>1. Then, the real part af assumes the form
=0 coqmo) l+o o 1
The sum here(sometimes called Euler or Borel sum- "eV- 4 lﬂ( 2 >_¢(E) o2+ y+ifo)]
mable, see, e.g., Ref. B transformed into an integral with
the help of identity % s (B6)
vq
2 = dse® _ _ . . .
E Cu-N(- x)“— = R 22y (A4) The integration oves in Eq. (B1) is now straightforward:
u=0 0o 1+25% the s independent part of R& enters, the result being un-
which is proven by formally expanding @+ 2s?x) in pow- charE]ed because (2/\577)f5°d5552:1_ Furthermore,
ers of Z%x and integrating oves. (2/\““‘7r)f°o°dse‘52 In s=—y/2-In 2. Collecting all terms in the

134505-7



V. G. KOGAN AND N. V. ZHELEZINA

self-consistency equatio2) we obtain Eq.(23). As ex-

pected, the large parametex, cancels out from the final

result.
For the 3D situation, we have to replace in 2D Eg1)

(2/\“"7_-r)f(°)°dse‘52 ReJ with Vz[jdserfas)Red. As in 2D, the

s-independent part of Rkenters, the result being unchanged

since d?rfé’dserfc(s):l, whereas \f'ﬂ—rfg‘jdserfo(s)ln s=-1
—-yl2. This gives the 3D version of E¢23).

APPENDIX C

An explicitly real representation of the integrél6) is

PHYSICAL REVIEW B 71, 134505(2009

the 2D isotropic case of Eq19). To this end, one separates
the integration domain in two: 9s<1/Ju and 1Au<s
<. In the first, the integration variable is changedyto
=s/+u, whereas in the second y&=(syu)™%. Then we obtain

2 1 (1 _y2)0~1
uao-) = - /
S Vaulo T (1+yH)°

2
X [exp(— y_) - cos{wa)exp(— é)} , (C1
u y2u

given in Ref. 10 for the Fermi sphere. Here we provide it forthe form easy to deal with numerically.
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