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We present the temperature dependence of the uniform susceptibility of spin-half quantum antiferromagnets
on spatially anisotropic triangular lattices, using high-temperature series expansions. We consider a model with
two exchange constandg andJ, on a lattice that interpolates between the limits of a square Idtlice0), a
triangular lattice(J,=J,), and decoupled linear chairtd,=0). In all cases, the susceptibility, which has a
Curie-Weiss behavior at high temperatures, rolls over and begins to decrease below a peak tenperature
Scaling the exchange constants to get the same peak temperature shows that the susceptibilities for the square
lattice and linear chain limits have similar magnitudes near the peak. Maximum deviation arises near the
triangular-lattice limit, where frustration leads to much smaller susceptibility and with a flatter temperature
dependence. We compare our results to the inorganic materigBuCk and CsCuBr, and to a number of
organic molecular crystals. We find that the fornt€s,CuCl, and CsCuBr,) are weakly frustrated and their
exchange parameters determined through the temperature dependence of the susceptibility are in agreement
with neutron-scattering measurements. In contrast, the organic materials considered are strongly frustrated with
exchange parameters near the isotropic triangular-lattice limit.
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[. INTRODUCTION The spatially anisotropic model, defined by a nearest-
) ) neighbor exchange constaht along one axis and, along
Understanding the interplay of quantum and thermal fluc|| other axegsee Fig. 1, interpolates between the limits of
tuations and geometrical frustration in low-dimensionalsquare-lattice(J; =0), triangular-lattice(J,=J;), and decou-
quantum antiferromagnets is a considerable theoreticaijeq linear chain(J,=0) limits.2224 It has been studied by
challenge:® Research in frustrated quantum antiferromag-spin_v\,‘.jwe theory series expansiorfé, largeN
nets was greatly stlmulatgd by_ Anderson’s “resonating Vatechniqueg® slave fermiong’ Schwinger bosons with
lence bond"(RVB) papef in which he suggested that the Ga,ssjan fluctuatior, and variational quantum Monte
parent insulators of the cuprate superconductors might hav@ao technique?? Quantum fluctuations are largest fdy
spin liquid ground states and excitations with fractlonalzo_&]2 and for J;>4J,,2225 and so for these parameter re-
quantum numbers, motivated by his earlier suggestion ofions one is most likely to observe quantum disordered
such a ground state for the Heisenberg antiferromagnet %Bhases.
fche triangular Igtticé.Thg Ising model ona triangular Iat'Fice _ From an experimental point of view, it is highly desirable
illustrates the rich physics that can arise due to frustration: ity have a definitive way to determine the values of the ex-
is known to have a macroscopic number of degeneratgpange parameters for individual material systems. Recently,

ground state$. The antiferromagnetic Heisenberg modelit has been shown how for materials with relatively small
with spatially anisotropic exchange interactions on the trian-

gular lattice is of interest both theoretically and experimen- \/ \/ \/
tally. It describes the spin excitations in LLaCl, (Ref. 10

and CsCuBr, (Ref. 1) and the Mott insulating phase of
several classes of superconducting organic molecular
crystalst? Other materials for which this model is relevant
include NaTiQ,*® CuCl, graphite intercalation compounéfs,
and the anhydrous alum, KBO,),.'® Theoretically, this
Heisenberg model is a candidate for a system with spin lig-
uid ground states and possibly excitations with fractional
quantum number&1817For the triangular-lattice model with 7\ A\ 7\

spatially isotropic interactions, the preponderence of numeri-

cal evidenc&?! suggests that the ground state has long- FiG. 1. The spatially anisotropic exchange constants for the
range magnetic order. However, making the interactions spa4eisenberg model on the triangular lattice. The model can also be
tially anisotropic can lead to a very rich ground-state phaseiewed as a square lattice with an extra exchange along one
diagram?? diagonal.
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values for the Heisenberg exchange constdrtsis can be these antiferromagnets, shows a broad maximum at a tem-
done in high magnetic fields, using inelastic neutron scatterperaturgwhich we call the peak temperatufg) of order the

ing to measure the spin-wave dispersion in the field inducec€urie-Weiss temperature. If the exchange constants are
ferromagnetic phas®. The temperature dependence of thescaled to give the same peak location, the magnitude of the
magnetic susceptibility is one of the most common experipeak susceptibility varies with frustration. The unfrustrated
mental measurements and it would be very useful if that camodels, represented by the square-lattice and the linear-chain
be used to determine the extent of frustration and the variougmits have similar peak susceptibilities. The triangular-
exchange constants directly. It is particularly important to|gttice deviates the most from them, having a much smaller

thave at schbenr:e for fn;aterials,w;shere the vergl highyheak value, and a much flatter temperature dependence. The
emperature behavior of the systé ) is not accesible to parameter regimes, where the ground states could be spin

experiments. Previously, Castilla, Chakravarty, and Emeryjisordered. do not stand out in these calculaf®asd are
pointed out how the temperature dependence of the magne \

susceptibility of the antiferromagnetic spin chain compoungfm”ar to the triangular-lattice limit. The reason for this is
CuGeQ implied significant magnetic frustratih. In that probably that at the temperature scales considered the sus-

case, it constrains the ratio of the nearest- and next-neareé:[(—aptibility is largely determined by short-range fruetration,
neighbor exchanges along the ch&iSimilarly, it is reason- 'aiher than long-length scale physics such as the existence of
able to expect that the temperature dependence of the magPin liquid states at zero temperature.
netic susceptibility should depend on frustration in two- Comparison with the measured susceptibility o§QsCl,
dimensional models also and hence constrain the datizy. ~ and CgCuBr, leads to exchange parameters in agreement
The Mott insulating phase of the organic molecular crys-With previous neutron measurements. For the organic mate-
tals is of particular interest because under pressure the matéals, it shows that they are all close to the isotropic
rials considered become superconducting. A possible RvVRiangular-lattice limit. But, some of them could be weakly
theory of superconductivity in such materials, emphasizingthisotropic, leading to a quantum-disordered ground state.
the role of frustration, has recently been propo¥etihese Since the organic materials are close to a Mott metal-
materials have exchange constants in the range of sever&isulator transition, we consider the possible role of
hundred K, and their behavior has led to several puzzlegnultiple-spin exchange. Such interactions can be necessary
Tamura and Kaff measured the temperature dependence ofor @ quantitative description of such materids.
the magnetic susceptibility for five organic molecular crys-
tals in the family 8’-[Pddmit),]X (where dmit is the elec-
tron acceptor molecule thiol-2-thione-4, 5-dithiolate;Sg) The spatially anisotropic triangular lattice is shown in Fig.
and the cationX=Me,As, Meg,P, MeSbh, EtMe,P, and 1. The antiferromagnetic Heisenberg model is described by
Et,Me,Sh, where Me=CH and Et=GHs, denote methyl the Hamiltonian
and ethyl groups, respectivelyThey compared their results
with the predictions for the square and triangular lattices and H=32S- S+ 5258, 1)
found that for all the materials the results could be fitted by 2 b
the high-temperature series expansion for the triangular latwvhere the first sum runs over all nearest-neighbor pairs along
tice. However, some and not all of them undergo a transitiorthe x axis and the second sum runs over all other nearest-
to a magnetically ordered state at low temperatures. neighbor pairs. The vecto&represent spin-1/2 operators. It
Recently, Shimiztet al3® showed usindH nuclear mag- is evident that, forJ;=0, the model is equivalent to the
netic resonance tha¢-(BEDT-TTF),Cu,(CN); did not un-  square-lattice Heisenberg model, f3=J; it is equivalent to
dergo magnetic ordering and that the temperature depethe isotropic triangular lattice model, and in the lind
dence of the uniform magnetic susceptibility could still be fit — 0, it is equivalent to a model of decoupled linear chains.
by that for the triangular lattice. However, it should be We now discuss how we might quantify how the amount
stressed that for these molecular crystals the underlying trief frustration in the model varies with,/J;. Possible mea-
angular lattice of molecular dimetgo which each spin is sures of frustration which have been discussed before in-
associatedis not isotropict? and so it is important to know clude:
the extent of the spatial anisotropy because this has a signifi- (i) The number of degenerate ground states.
cant effect on the possible ground state. The isotropic trian- (ii) How the competing interactions prevent the pairwise
gular lattice is believed to be ordered, but fdf/J,  collinear alignment of spins that would give neighboring
=0.7-0.9 the anisotropic lattice could be quantumspins the lowest interaction energy.
disordered? Hence determination of the actual ratio is im-  In order to quantify(ii), Lacorré® considered classical
portant for understanding these materials. spins and introduced a “constraint” functidf.,=-Ey/E,
Here, we use high-temperature series expansions to calcwhich is the ratio of the ground-state eneigyof the system
late the temperature-dependent uniform susceptibility of théo the “base energyE, which is the sum of all bond energies
spatially anisotropic triangular-lattice models. Such calculaif they are independently fully satisfied, i.e.,
tions have been done previously for the pure square- and

Il. FRUSTRATED MODEL

triangular-lattice casé%3’ but not for the spatially aniso- By = _iz_ [31(S: * Smax: (2)
tropic triangular-lattice model. This method is particularly J
useful here, as it allows one to cover the full rangelgfl, Lacorre suggested thkt has values ranging from 1 (no

ratios at once. Our main finding is that the susceptibility, forfrustration to +1 (complete frustration However, for spin
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models that have a traceless Hamiltonian the ground-statsith increasing frustration(ii) The amount of entropy at
energy cannot become positive. $@,must lie between-1  temperature scales much less than the exchange energy.
(unfrustrategl and O (fully frustrated—the largest possible

value ofF; is zero. Considering a single isosceles triangular

S0 ll. HIGH-TEMPERATURE SERIES EXPANSIONS
plaguette taken from the lattice in Fig. 1, Lacorre found that

for classical(large-S) spins as a function af,/J;, F; had its The high-temperature series expansion method has been
maximum value(-1/2) for the isotropic triangle(J;=J,). extensively applied to and tested for quantum lattice
The same result holds for the infinite lattice. models?*? We have obtained high-temperature expansions for

Kahrf© recently stressed that for Heisenberg spins the dearbitrary ratio ofJ;/J, to order ™. We express the uniform
generacy of the ground state depends on the value of the sphySceptibility, per mole, as
quantum numbes as well as the geometry of the plaquette. NaG2u2

) o : _ NaQ g _

For example, on an isotropic triangle, the ground state is X=—"— =X (3)
fourfold degenerate fo8=1/2 butnondegenerate fa@=1.4 kT
On a single isosceles triangle, f&=1/2, theground state whereN, is Avogadro’s numberg the g factor, ug a Bohr
has total spinS;=1/2 and istwofold degenerate fod; #J, = magnetonk the Boltzmann constant, afdthe absolute tem-
and fourfold degenerate at the isotropic palftJ,. We find  perature. The dimensionless quanjjtgan be expressed in a
that bothF; is maximal(-1/3) and the ground state has the high-temperature expansion /T andy=J,/J,, as
highest degeneracy fal;=J,. On the other hand, for spin h
S=1 the ground state is a nondegenerate si@et0) for a —_ n My An+1n
wide region near the isotropic limit0.5<J;/J,<2), is X E(JZ/T) mzzo Crny (A7), @
threefold degenerat€S;=1) outside this rangéJ;/J,<0.5 . - _
or J;/J,>2) and has accidental fourfold degeneracy at theThe Integer coefficientsy,, complete to orden=10 are pre-
special pointsl;/J,=0.5,2. The functior; has no singular sented in Table I.
maximum, but a plateau at0.5 for the whole range 0.5
<J,/3,<2, so the spin-1 case is much less frustrated than v cURIE-WEISS BEHAVIOR AND BEYOND: SERIES
the extreme spin-1/2 case. EXTRAPOLATIONS

The above properties of the degeneracy and constraint
function are not unique to quantum spins but also hold for As is well known, the high-temperature behavior of the
the Ising model on the same lattice. For a single isoscelegusceptibility, per mole, is given by a Curie-Weiss law
triangle and forS=1/2 theground-state energy changes at C
J;=J, from =J,/4 for J;>J,, to (-2J,+J,)/4 for J;<J,. X= )
The base energy iE,=—(J;+2J,)/4 and hencd-. has its T+ Tew
maximum value(-1/3) whenJ; =J,. The degeneracy of the For our model, the Curie constant
ground state is Zonly up-down symmetryfor J;<J,, 6 )
(only all up and all down are not ground statésr J;=J,, C=Nag’ugl/4k=Ag’, (6)
and 4(either one of theJ, bonds can be dissatisfietor J, \ith A=0.0938 in cgs units. The Curie-Weiss temperature is
>J,. So indeed by both measures fr=J, the model on a
triangle is most frustrated. Extending this analysis for a Tew=Jdo+J4/2. (7)
single triangle to a large lattice & sites the difference is
even more dramatic as the degeneracyeigp(cN) for J;

(5)

From an experimental point of view, an important question
=3, and is easily seen to be only 2 fah<J, and is: HOW low in temperature is the Curie Welss_law yalld. To
AL , investigate this, we plot in Fig.(2), the normalized inverse
exp(c’'NY?) for J;>J,, wherec, ¢’ are numbers of order 1. o .
usceptibility as a function of/ T, for several parameters,

.SO the_mod_el has the largest ground-state degeneracy at t egether with the Curie-Weiss law. It is clear that beldw
Isotropic point.

Althouah this paper is concerned with the quantum spi < 10T,,, the Curie-Weiss fit is no longer accurate. Devia-
9 pap q PINions from the Curie-Weiss behavior are the smallest near the

model, ihe reason we mention the above properiies of Cla%Fiangular-lattice limit, and largest for linear chains. If one

sical models is t_)ecause an |mpo_rtant question is whether O\&ere to fit the inverse susceptibility below some temperature
results concerning the connection between the amount 1

. 0 a Curie-Weiss behavior, one would get a systematically
fr_u_stranon and the temperature dependence O.f the SUSCEp é'rger Curie-Weiss temperature. To quantify this, we define
bility are also exhibited by the corresponding classical f ’

Heisenberg and Ising models. This may be the case if ihan effective temperature-dependent Curie-Weiss consgnt

temperature dependence of the susceptibility down to the

peak is largely determined by the frustration and correlations off p%

associated with a single placquette. Tew=—"T- dv/dT 8
With regard to measures of frustration we also note from X

an experimental point of view two measures that have beelf one was to fity™* to a linear curve in the vicinity of some

proposed previousK/.(i) The ratio of the Curie-Weiss tem- temperaturdT) and use the intercept to estimate the Curie-

perature to the magnetic ordering temperature. This increas&¥eiss constant, one would gﬁffv. Figure Zb) shows how
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TABLE |. Series coefficients for the high-temperature expansions of the uniform suscepjhititi£q.
(4). Nonzero coefficients,,, up to ordem=10 are listed.

(m,n) Cmyn (m,n) Cmyn (m,n) Cmyn (m,n) Cmyn

(0,0 1 (3,5 —7680 7,7 20480 (7,9 —129328128
0,2 -4 (4,5 1920 (0,8 4205056 (8,9 —159694848
1,2 -2 (5,5 —672 1,8 —58877952 (9,9 19133440
0,2 16 (0,6 23488 (2,9 110985216 (0,10 —2574439424
1,2 32 (1,6 293376 (3,8 —501760 (1,10 52032471040
0,3 —64 (2,6 111552 (4,9 101972480 (2,10 —735774720
1,3 —264 (3,6 411392 (5,9 —84013056 (3,10 —29924454400
2,3 —-96 (4,6 —115968 (6,8 29817856 (4,10 15318384640
3,3 16 (5,6 70656 (7,9 —15618048 (5,10 38033190912
(0,9 416 (6,6 —12768 (8,9 2923776 (6,10 —40192143360
1,9 1216 (0,7 207616 (0,9 —198295552 (7,10 48646737920
2,9 2400 ,7 —-1766016 (1,9 —571327488 (8,10 —13533921280
3,9 -512 2,7 —7739648 (2,9 3934844928 (9,10 4594278400
(4,9 80 3,7 —1804992 (3,9 —4115195904 (10,10 —869608960
0,5 —4544 (4,7 —3373440 (4,9 3772164096

1,5 —10880 (5,7 689920 (5,9 —1888413696

2,5 —20480 (6,7 120064 (6,9 1134317568

ngfv varies with temperature for several parameter ratios. IThe susceptibility is scaled to have a peak value of unity, and
shows that attempts to fit to a Curie-Weiss behavior belowhe temperature axis is scaled by the peak susceptibility to a
four times the Curie-Weiss temperature can result in an overdimensionless relative temperature. One finds that the sus-
estimate in the Curie-Weiss constant by less than 20% for theeptibility peaks at a comparable relative temperature for the
isotropic triangular lattice, whereas for the square lattice amunfrustrated square-lattice and linear chains. The primary
error of 40% is possible. Similar observations were madalifference between these two models lies in the behavior of
previously for the classical Heisenberg antiferromagnet on #he susceptibility below the peak. It decreases much more
kagomélattice*3 slowly for the linear chains than it does for the square lattice.
To obtain the susceptibility fol <T,, we need to de- We believe that this is related to the fact that longer-range
velop a series extrapolation scheme. We have usémy  antiferromagnetic correlations grow much faster for the
Padé and the integral differential approximants to extrapolatequare lattice than they do for linear chains. Thus the shift of
the serie$*-¢ For the linear chain model we use the very the spectral weight away from zero wave vector occurs more
long series given by Takaha$hiand for the square- and gradually for linear chains. For the triangular lattice, the peak
triangular-lattice cases we have also used the longes shifted to much lower relative temperatures. Note that the
series’®37 In the former case, the calculated susceptibilitytriangular lattice has a peak at a temperature even lower than
agrees well with the exact results obtained from thermodyfor J;/J,=0.8, whereT=0 calculations show an absence of
namic Bethe-ansatz calculatioffs.For the square- and long-range ordet?
triangular-lattice cases it also agrees well with previous nu- From Fig. 3 it is clear that frustration leads to a reduction
merical calculationd®4® In all cases, several integral/ in the magnitude of the produg,T, as well as a reduction
d-log-Pade approximants are calculated, and in the plots bén the peak temperaturg, with respect to the Curie-Weiss
low two outer approximants are shown, i.e., a large numbetemperaturél,,. These parameters are plotted in appropriate
of approximants lie between those shown. Based on our gemlimensionless units in Fig. 4 as a function of the frustration
eral experience with series extrapolatiShsye feel confi- ratio J;/(J;+J,), and both have a minimum around the
dent that as long as the upper and lower curves are not taviangular-lattice limitJ;=J,. To connect with experiments
far from each other, they bracket the true value of the therwe also show the ratio of the peak temperatligeand the
modynamic susceptibility. In general, we find that the ex-Zeeman energy required to fully polarize the spipgBsa,
trapolations work well down to the peak temperature andelated to the couplings strength38y

begin to deviate from each other below the peak. It is not )

possible to address the zero- and very low-temperature be- 23+ 2], + B for J, < 2J

havior of the susceptibility from these calculations. OueBsar= ! 2 1 2 ' (9)
In Fig. 3, we show the uniform susceptibility, for different 43, for J, = 2J;.

y=J,/J,, as a function of temperature. For dll/J, ratios,
there are two plots showing the upper and lower limits ofFigure 4 also shows the ratjd4T,)/ x,, Which is a measure
extrapolated values as discussed in the previous paragrapdf.the flatness of the curves on the high-temperature side of
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C ] Tew- The susceptibility departs
o2 1 v v v I v v v v v v 1 from the high-temperature Curie-
0 2 4 6 8 10 Weiss limit [Eq. (4)] already at
T/T temperatures a few timeg,,, due
(a) cw to short-range correlations. The
smallest departure occurs for the
27 . T T L T T T ] triangular lattice. (b) Effective
Lo - Curie-Weiss constante" vs tem-
Co ] perature found by a local fit of the
- , s susceptibility to the Curie-Weiss
Ler= ! - - 7 form, Eq.(7). The plot shows that
S *— Linear Cham . fitting data below Z,, can result
o e—o Square-Lattice ] in large overestimates of the
e el & == Triangular Lattice N Curie-Weiss constant.
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12F ]
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the peak. A larger value of this ratio implies a slower decayorder to see evidence for the presence of a gapJfbd,

of the susceptibility with temperature. These quantities~0.8 as opposed to no gap in the isotropic triangular-lattice
clearly show that the triangular lattice is the most frustratedcase one would be required to analyze the susceptibility
with the lowest peak temperature relative to the scale of theurve at temperatures much below the estimated fap
exchange interactiong,,/ T, or KT,/gugBss the smallest  ~0.25],~0.5T, in the dimerized stat& and such low tem-
dimensionless ratid,x, and the flattest peak denoted by the peratures are not accessible by the present series calcula-
largestx(4T,)/ xp. The plots look very symmetrical around tions.

the triangular-lattice limit, and there is nothing anomalous

about thg case af;/J,=0.8, wher(nT zero-temperature studies  \; cOMPARISON WITH EXPERIMENTAL SYSTEMS

give a disordered and gapped dimerized ground $taée

note that all of the extracted parameters in Fig. 4 are from the In this section, we compare our theoretical results with
susceptibility curve at temperatures above the peak and iexperimental data on @SuCl,, Cs,CuBr,;, and various or-
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C T T T T T T T T T T T T ]
11— —= ~ —
I Y 1
: ) 4 \ B FIG. 3. (Color online Suscep-
B ﬂ\\ N b tibility vs temperature for differ-
02 4 % Y ) ent values ofl;/J,. The peak sus-
L \ h ceptibility x, and the Curie-Weiss
o L / 4 A i constaniC=Ag? are used to define
§ -7 i S TLatti \\‘ . a dimensionless relative tempera-
08 4 o ce—o square-Latlice R ture scale. As discussed in the
- P Jl/J2=O.8 7 text, the two curves shown for
i / i o Triangular-Lattice ] eachJ;/J, vaIl_Je are due to differ-
i j | ent extrapolation schemes. For the
0.7k A—A Jl/J2=1-1 _ most frustrated triangular lattice
& . .
L J/1.=3 - the peak in the susceptibility oc-
- Iy 2 . & curs at the lowest relative
- *—* Linear-chain 9 temperature.
06 1 L 1 1 | 1 1 1 1 I 1 1 1 1
0 0.2 0.4
2
Txp/Ag

s,CuCl, _|

ganic materials. In Fig. 5, we show the susceptibility as a
function of temperature for different;/J, ratio, where the
temperature is scaled by the peak temperaligg and the
susceptibility itself is scaled by the peak temperature to give 1
a dimensionless reduced susceptibility. This plot is very in-
structive as it allows one to clearly read out théJ, ratios.
Also shown are the susceptibilities for the materials
Cs,CuCl, and CsCuBry, with theirg values taken from elec-
tron spin resonance experimeft$3In this plot with no free
parameters, it is apparent that thgJ, ratio is near 3.0 for
Cs,CuCl; and near 2.0 for GEuBr,. Some of these results 0.5
can also be seen from Fig. 4, where key dimensionless ratios
of the temperature-dependent susceptibility are shown.

A more detailed comparison of the susceptibility for the
materials, CgCuCl, and CsCuBry, allowing g to vary freely
is shown in Fig. 6. Oncg is allowed to vary, the material
Cs,CuCl, can be fit above the peak not too badly even with P
the pure square-lattice modglot shown. However, a much ol v v L
improved fit happens wit;/J,=3 andJ,=1.49 K in excel- 0 0.2 0.4 0.6
lent agreement with the exchange values extracted directly J1/(J1+Jz)
from neutron-scattering measuremei®talso shown are fits _ o
to linear chain and triangular-lattice limits, which bracket FIG. 4. (Color onling Variation of the key parameters of the
J,/J,=3. One can see significant deviation in both limits. Susceptibility curvex(T) as a function of the frustration ratio

The large deviation from the isotropic triangular-lattice case’t/ (J1+J2): location of peak temperaturg, relative to the overall
shows that frustration is relatively weak in this material. energy scale of the couplings, given by the Curie-Weiss constant

For CsCUB, the best fit ford,/J,=2 arises withJ, Tew Or the saturation fieldBg,; required to overcome all antiferro-

. magnetic interactiongsee text for more detajls dimensionless
=6.99 K. However, wherg is allowed to vary, a range of 9 g s

. . roduct of peak susceptibility and peak temperaliye,/ Ag? (with
J1/J, values from 1.8 to 2.8 give comparable fits, several 0&;0.0938 in cgs uniys and flatness of the susceptibility curve

which are shown in figure. In general, the hlgh-temperaturg((ﬂp)/x(Tp)_ The isotropic triangular latticél,=J,) is the most
data are better fit by a largd/J, vglue, whereas the data at frustrated with the lowest relative peak temperafGgeT ., lowest

and around the peak are better fit by a smaligd, value.  peak susceptibility, and flattest curve at temperatures above the
No choice of parameters can fit the very low-temperaturg,eak. The circles are values extracted from the experimental data
data(below half the peak temperatir&@hese values are also for Cs,CuCl, from Ref. 51 and the squares are for,CsBr, (Ref.
consistent with previous estimates. Using the value of thai). This suggests that the ratlhy/J, is close to 3.0 and 2.0, re-
incommensurate ordering wave vect@=0.5751)b" ob-  spectively, for these two materials. The former is consistent with
served by neutron scatteridy,classical spin-wave theory independent estimates from neutron scattetRef. 30.

®

Organics
Cs,CuBr, |
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04 T T T T ] T T T T l T T T T I T T T T I T T T T

- S— G—6 Square-Lattice b,
I P 1,/1,=0.8 ]

=1 Triangular-Lattice

I *é?'{ h AaT /=11 ]
3 W FIG. 5. (Color onling S
0.3 _*p* 133 - . 5. (Color onling Suscep-

tibility vs temperature in units of
the peak temperaturg,. The iso-

7 tropic triangular lattice (green
line) has the lowest and flattest
susceptibility. Solid squares show
data points for the anisotropic tri-
angular lattice material GEuCl,
(a axis, Ref. 5], solid circles
show data for C&uBr, from Ref.
11.

%—%* Linear-Chain —
Cs,CuBr,, g=2.17
. CSZCuCI » g=2.23

Tp)(/Ag2

ol Tf

0.1

gives J;/J,=2.14 whereas including quantum renormaliza-all be brought to rough agreement with the triangular-lattice
tion corrections as predicted by largeSp(N) theory?® gives  model. Assuming isotropic interactions, agd2.04, we es-
J;/J,~1.8, and series expansiAgives J;/J,~1.4. This timate the exchange constants to be 283, 289, 270, 279, and
calls into question the rather large renormalization of the247 K, respectively. It is clear that none of these organic
ordering wave vector found in the series expansion study. Materials are far from the isotropic triangular-lattice limit.

Now we turn to the organic materials. In Fig. 7, we But, we emphasize that by this method it is difficult to dis-
show a corresponding comparison for the materia€fiminate betweenl,/J, ratios in the range 0.85J,/J,
x-(BEDT-TTF),CW,(CN)s. Only the theoretical data for the <1.15. Note that the latter regions also include quantum
isotropic triangular lattice are shown. One can see an imporc_ilsordered phases.

iy . . X To avoid the problem of determining the peak tempera-
tan_t dlffl_cu_lty in using t_heTp-scaIed plots near th.e trlangqlar— ture, we go back to Fig. 3, and scale the data by the peak
lattice limit to determinel;/J,. For the organic material,

9 susceptibility. These can be inferred accurately from the data,
«x-(BEDT-TTF);,CW,(CN)3, the measured susceptibility is o ep v?/hen ¥he peak temperature cannot. In l¥ig. 9, we show

very flat and it is difficult to determine the peak temperaturegch a comparison of experimental data with theory. The
Tp. From the data, the peak temperature appears to be bgata fork-(BEDT-TTF),Cu,(CN); lie extremely close to the
tween 65 and 95 K. Using the values fiy of 65 and 95 K, isotropic triangular-lattice case. The other materials deviate
one can either get the data to fall above or below thgrom the J;=J, limit, but still lie in the range 0.85:J;/J,
triangular-lattice values. A suitably chosen peak temperature:1.15. If we assume that the systems are described by the
allows one to get very close agreement with the triangularisotropic triangular lattice, the exchange constant can be read
lattice limit. This peak temperature can also be used to desf from the peak susceptibility by using the relatidn
termine the exchange constant. However, for the triangulas0.003%?/ x,. This leads to exchange constants of 250 K for
lattice, there is theoretical uncertainty in the peak location«-(BEDT-TTF),Cu,(CN); and 280, 289, 260, 273, and 236
Hence it is more accurate to directly fit the experimental dat& for the other materials. These values are close to those
to theory to obtain the exchange constants. kgBEDT  obtained from the best fits.

-TTF),Cu,(CN)3, fixing g=2.006 andJ;=J,, the best fit It should be noted here that in the experimental data, a
leads taJ; =256 K, a value close to that obtained by Shimizu Curie term from magnetic impurities and a diamagnetic term
et al3® has been subtracted and these can also influence the determi-

The ability to fit flat susceptibilities to the isotropic nation of exchange parameters. However, it is unlikely that
triangular-lattice model is further illustrated in Fig. 8, whereany of these materials are very far from the isotropic
the susceptibility data are shown from five different molecu-triangular-lattice limit.
lar crystals in the family3’-[Pddmit),]X (where dmit is the From the fits the Heisenberg couplings are comparable for
electron acceptor molecule thiol-2-thione-4, 5-dithiolate,all materials and around 250 K. We now consider how these
C;Ss) and the cationX=Me,As, Mg,P, MgSh, EtMe,P,  compare with quantum chemistry calculations. The exchange
and EsMe,Sh, where Me=CHK and Et=GHs, denote me- constants can be related to parameters in an underlying Hub-
thyl and ethyl groups, respectivélyWe have taken thg  bard modéP3454whereJ=2t?/U andt is the intersite(i.e.,
value to be 2.04. By adjusting the peak temperature, they cainterdime) hopping andU is the cost of double occupancy
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for two electrons or holes on a dimer. If the Coulomb repul-lations on isolated dimers, which do not take into account
sionU, on a single molecule within the dimer is much larger screening® Using the above values dof and U gives J
than the intermolecular hoppintg within a dimer thenU ~100 K.

=2t,. For B’-[Pddmit),]X electronic structure calculations Note that the quality of fit is best for the material
based on the local-density approximatidtDA) (Refs. 34, «-(BEDT-TTF),Cu,(CN)s, where it really fits well with the
54, and 5% give t~30 meV andt,~500 meV, and saJ isotropic triangular-lattice model. However, it is also a sys-
~50 K. For x-(BEDT-TTF),Cu,(CN); Hiickel electronic tem that does not order down to very low temperatdfes.
structure calculations givie~ 50 meV and,~ 200 meV>%:5”  This remains a puzzle. The quality of fits was not as good for
The resultingU =400 meV is comparable to that deducedthe other organic compounds. It is quite possible that the
from measurements of the frequency-dependent optical corsrganics have other interactions not captured by the Heisen-
ductivity of similar x materialst?®® This value of U is  berg model. In a Mott insulator when a perturbation expan-
smaller than values deduced from quantum chemistry calcwsion int/U is used to derive an effective Hamiltonian for the
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L - FIG. 7. (Color online Com-
parison of the temperature depen-
— | Qence of the magnetic susceptibil-
ity of k-(BEDT-TTF),Cu,(CN)3
— with series expansions calcula-
tions for isotropic triangular lat-
tice. The experimental data are
from Ref. 35. A value ofg

<4< K-(BEDT—TTF)ZCUZ(CN)y Tp=85K . =2.006 was used based on elec-

tronic spin resonance measure-

K-(BEDT-TTF)ZCUQ(CN) , T =95K ments(Ref. 56. We see that this

3 p material is well described by a
L A-A K-(BEDT-TTF)ZCUZ(CN)y T =65K . Heisenberg model on the isotropic
i . s P i triangular lattice, with peak tem-

=& Triangular-Lattice peratureT,=85 K. Note also that

the agreement is quite sensitive to
L 4 changes in the value off, a
quantity that is difficult to pin-
0 1 2 3 point in a flat curve.

T/T »

PN

b

2
Tpx/Ag

0.05

spin degrees of freedom one finds that to fourth ordeflth  lattice lead to rich physics and have an experimental realiza-
there are cyclic exchange terms in the Hamiltorfart tion in monolayers of solidHe on graphité? Let J denote
U/t< 10 then these terms may be important. Recent neutrorthe nearest-neighbor exchange aijdhe multiple spin ex-
scattering studies showed the effect of such interactions oshange, involving the four spins comprising a pair of trian-
the dispersion of spin excitations in JGuQO,.38 gular plaguettes. This model has been studied extensively
The metallic phase of the organics are in the regimeand exact diagonalization calculations suggest that the 120°
U/t~5-10 (Ref. 12 and so one might expect multiple- Néel state, which is the ground state th=0, is destroyed
exchange terms to be relevant in the insulating phase. For thehen J,>0.1).5* It is appealing to think that this could be
triangular-lattice triple exchange is also possible. Howeverthe explanation for why-(BEDT-TTF),Cu,(CN); does not
for spin-1/2 this just corresponds to a renormalization of themagnetically order, whereas it should if it is really described
nearest-neighbor two-particle excharf§@he frustrating ef- by the isotropic triangular-lattice nearest-neighbor model.
fects of multiple-spin exchange on the isotropic triangularThis material is close to a Mott-Hubbard metal-insulator

- - FIG. 8. (Color online Com-
parison of the temperature depen-
dence of the magnetic susceptibil-
ity of five different organic
molecular crystals from the family
B’-[Pddmit),]X (different X are

(a\] - ’ .
Ny i _ 7 =C,Hs) with series expansions for
Xm - e X_1\/[64Sb . isotropic triangular lattice. Experi-
= B Z— X=M34P ) mental data are from Ref. 34. A
value of g=2.04 was used based
0.051— X=Me4AS I on electronic spin resonance mea-
- e X=Et2M62P - surementgRef. 60. All of these
| | materials are well described by a
— X=Et2MCZSb Heisenberg model close to that for
i 7 the isotropic triangular lattice, as-
L - suming that ring-exchange inter-
0 . . . , | . , . . | . . . . actions do not need to be taken
0 1 2 3 into account.
T/T
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1 —
I =& Triangular-Lattice FIG. 9. (Color online Param-
J /] =0.8 eter free comparison of the sus-
o r -2 ceptibility data on organic materi-
R o8k a—h JI/JZZI-I _ als with theoretical plots scaled by
= i oo X=Me As i _the peak susceptibility,, which
4 is easy to measure accurately for a
- o X=MC4P . flat curve. It is evident that the
i X=Me Sb 1 materials deviate only slightly
4 from the isotropic triangular-
B “«—— X=Et2M92P T lattice model and havé,/J, ra-
0.6 X=Ft Me.Sb — tios in the range 0.85-1.15.
2 2
_ x-(BEDT-TTF),Cu,(CN), _
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0 0.05 0.1 0.15 0.2 0.25
2
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transition since the insulating state is destroyed under presvith respect to neighbors as quantified by the paranteter
sure or uniaxial stres¥:%° However, it is not clear thal, in Sec. Il, is maximum near the isotropic limit and this is
will be large enough in the actual material. The expressiongvhat pushes the peak in the susceptibility down to lower
derived from at/U expansion giv# J,/J=10t/U)% This  temperatures. For a wide range of frustrated antiferromagnets
means one must havg <8t to obtain a spin liquid. How- it has been previously pointed out that the Curie-Weiss law
ever, exact diagonalization of the Hubbard model on the isoholds to relatively low temperaturé$? Several theoretical
tI’OpiC triangular lattice at half f|”|ng, shows that the insulat- mode'S, most'y for classical SpinS, have been deve'oped to
ing state only occurs fod > 121.° Hence it is not clear that eyplain thist®®® Basically, frustration leads to individual
multiple-spin exchange could account for the fact that thisjaquettes or spin clusters behaving essentially indepen-
material appears to be close to the isotropic triangle but do€genty, However, our models are less frustrated than that and
hot magnetically qrder. Hovx_/ever, to definitively re_solve t_h'shence always develop substantial correlations. This means
issue would require a de_talled study of the spatially anisogy any simplistic explanation is unlikely.
tropic model with four-spin exchange. In organic molecular crystals a weak temperature depen-
dence of the magnetic susceptibility is often interpreted as
VI. CONCLUSIONS being evider_lc_e_ for_metallic behavior, since for a Fermi liquid
the susceptibility is weakly temperature dependent. How-

In this paper, we have developed high-temperature exparever, this is inconsistent with the fact that in most of these
sions for the uniform susceptibility of the spatially aniso- materials above temperatures of about 50 K there is no
tropic triangular-lattice Heisenberg model. We find that theDrude peak in the optical conductivity and the resistivity has
temperature dependence of the susceptibility at temperaturesnonmonotonic temperature dependence and values of order
of order the exchange constants are sensitive to frustratiotihe Mott limit.1279This work shows that due to the substan-
that is, the ability of spins to align antiparallel to all their tial magnetic frustration the susceptibility can actually be
neighbors. The square-lattice and linear chain limits havelue to local magnetic moments, even though in the range up
similar reduced susceptibilities at and above the peak, whiléo 300 K one does not see a clear Curie temperature depen-
the triangular-lattice limit appears most frustrated, with thedence.
smallest and flattest susceptibilities. Comparison with vari- In a future study we will consider the temperature depen-
ous experimental systems shows that a variety of organidence of the specific-heat capacity for this model. A previous
materials are close to the isotropic triangular-lattice limit,study of the square lattice, single chain, and triangular-
whereas the inorganic materials,CsiCl, and CsCuBr, are  lattice Heisenberg model found that the peak in the specific
much less frustrated. heat versus temperature curve occurred araliod all mod-

It would be nice to have a simple formalism which could els but was much broader for the triangular lattice. A related
provide an analytic relation between the peak susceptibilityssue was that as the temperature decreases the entropy de-
and exchange parameters. Qualitatively, our arguments shoeveases much more slowly for the triangular lattice than the
that short-range frustration, or the inability to align parallel others.
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