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Vortex motion in a finite-size easy-plane ferromagnet and application to a nanodot
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We study the motion of a nonplanar vortex in a circular easy-plane ferromagnet, which imitates a magnetic
nanodot. Analysis was done using numerical simulations and a new collective variable theory which includes
the coupling of Goldstone-like mode with the vortex center. Without magnetic field the vortex follows a spiral
orbit which we calculate. When a rotating in-plane magnetic field is included, the vortex tends to a stable limit
cycle which exists in a significant range of field amplitugl@nd frequencyw for a given system size. For
a fixed w, the radiusk of the orbital motion is proportional tb while the orbital frequency) varies as 1l
and is significantly smaller tha@. Since the limit cycle is caused by the interplay between the magnetization
and the vortex motion, the internal mode is essential in the collective variable theory which then gives the
correct estimate and dependency for the orbit raBitsBL/ w. Using this simple theory we indicate how an
ac magnetic field can be used to control vortices observed in real magnetic nanodots.
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I. INTRODUCTION In general the vortex mesoscopic dynamics is described
¢by the Thiele collective coordinate approgér®which con-
psiders the vortex as a rigid structure not having internal de-
2D magnetism. For example, solitons break the long-rang8"€es Of Tfe‘3<1?;‘“g;'jfwe)’ er recent experimental and theoret-
order in 2D isotropic magnets. Vortices play a similar role in/c@l studies™==%indicate phenomena which cannot be
2D easy-plane magnets. Magnetic vortices have been Studi&%plamed_usmg such a simple picture. One fggg?g example
since the 1980s. They are important for the dynamical and® the switching of the vortex polarizatidrt-**- where
thermodynamical properties of magnets, for a review se§QUPIiNg occurs between the vortex motion and oscillations
Ref. 1. The vortex contribution to the response functions on its core. Another one is the cycloidal oscillations of the

. . vortex around its mean p&th** where the dynamics of the
g)l?pg:ﬁﬁgﬁingas been predicted theoretiéadiyd observed vortex center is strongly coupled to spin waves. In this way

. . . . the internal dynamics of the vortex plays a vital part. One of
A second wind in the physics of magnetic vortices ap- y piay b

. . _the first attempts to take into account the internal structure of
peared less than five years ago due to the direct observatiQRtices was presented in Ref. 35 which showed that a varia-
of vortices in permalloy® (Py, NigsFe,) and Co (Refs.  ion of the core radius slaved to the position explained the

10-12 magnetic nanodots. Such nanodots are submicrofotion of a vortex pair across an interface between two ma-
disk-shaped particles, which have a single vortex in theerials of different anisotropy. Some progress has been
ground state due to the competition between exchange angthieved in Ref. 36 where we have confirmed that internal
magnetic dipole-dipole interactidi.A vortex state is ob- degrees of freedom play a crucial role in the dynamics of
tained in nanodots that are larger than a single domain whosgrtices driven by an external time-dependent magnetic field
size is a few nanometer®.g., for the Py nanodot the ex- in a classical spin system.

change length,,=5.9 nm. The vortex state of magnetic Here we present a complete study of this problem using
nanodots has drawn much attention because it could be useédect numerical simulations of the spin system and a collec-
for high-density magnetic storage and miniature sengofs. tive variable theory which includes an internal mode. We
For this one needs to control magnetization reversal, a prashow that the periodic forcing of the system by the time-
cess where vortices play a big rdfeThe vortex signature dependent magnetic field together with the damping stabi-
has been probed by Lorentz transmission electrotizes the vortex in a finite domain. This limit cycle exists
microscopy*'’ and magnetic force measuremett$®Great  because of the interplay between the magnetization and the
progress has been made recently with the possibility to obvortex position so that it is essential to include an internal
serve high-frequency dynamical properties of the vortex statenode in the collective variable theory to describe it. When
magnetic dots by Brillouin light scattering of spin wavé€® this is done, the theory yields the domain of stability in pa-
time-resolved Kerr microscopy,phase sensitive Fourier rameter space and the main dependencies on the field ampli-
transformation techniqu&,and X-ray imaging techniqu®.  tudeB and frequencyw. It can be seen as a one of the first
These have shown that the vortex performs a gyrotropic pregeneralizations to vortices of the collective variable theories
cession when it is initially displaced from the center of thedeveloped for 1D Klein-Gordon kinks by Rie3® which

dot, e.g., by an in-plane magnetic field pulsé.2* include the width of the kink together with its position.

Nonlinear topological excitations in 2D spin systems o
soliton or vortex type are known to play an essential role i
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In the next section we formulate the continuum model,

discuss the role of different types of interactions, and briefly
review the main results on the structure of the vortex solu-

tion. The vortex motion without external field is examined in
Sec. lll. It follows a spiral orbit as a result of the competition
between the gyroforce, the Coulomb force, and the dampin
force. In Sec. IV with the ac driving, numerical simulations
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whereE, is a constant. The spin length has been rescaled so
that

g

Ho=Ho-Ep= g f dzx[(Vs)z + (4)

$=S/S= (V1 —nPcosg; V1 —nésing; m) (5)

show that the vortex converges to a stable limit cycle. Weg 5 it vector. The length, coincides with the radius of the
give its boundaries in parameter space and indicate how thg, ey core obtained in Ref. 28 for on-site anisotropy type

radius and frequency of the vortex orbital motion depends O ione (5=0)

the field and geometry parameters. Section V presents al
discusses in detail theew collective variable theorgf the
observed vortex dynamics which takes into account the co
pling between an internal shape mode and the translation
motion of the vortex position. In Sec. VI we link this with

the individual spin motion observed in the simulations and
indicate how these effects can be observed and used in rel%

nano magnets.

u

A

. For the case of exchange anisotropy al¢ke

nQO), it is also customary to use the lengtiray/(1-6)/45,

which is obtained from an asymptotic analysis and is to be
entified later with the radius of the “core” of a vorté¢!
owever, for the range of we are interested in, i.e., fa¥
=0.1, the difference betwear) andl, is negligible.

The interaction with a homogeneous time-dependent mag-
tic field is expressed as

The model we consider is a ferromagnetic system with

spatially homogeneous uniaxial anisotropy, described by th
classical Heisenberg Hamiltonian

S (S, Sy - 0SS + o

(1)
(n,n") Z

Ho=-3 S (2
n

Here S,=(S,,S,.S) is a classical spin vector with fixed

length S on the siten of a two-dimensional square lattice,

and the exchange integrdl0 for a ferromagnet. The first

summation runs over nearest-neighbor péirsn’). We as-

sume a small anisotropy leading to an easy-plane groun

Vi) ==
0

e d>{(b(®) - s(r,1))]

(6)

= —JSZbJ d?6V1 —m? cod ¢ — v7).
In order to simplify notations we use here and below the

dimensionless coordinatée=r/l,, the dimensionless time

= wgt, the dimensionless driving frequeney w/ wg and the

dimensionless magnetic fielt= yB/ wg,***3 where

d wy=S(4J5+K). (7)

state. This anisotropy can be either of the exchange type, |n all real magnets there is, in addition to short-ranged

with 0< §<1, or of the on-site type, with € K<J.

interactions, a long-ranged dipole-dipole interaction. In the

Extending ideas of Ref. 36 we study the movement of acontinuum limit this interaction can be taken into account as
vortex in this system under the action of a magnetic fieldenergy of an effective demagnetization fiedd™

B(t)=(Bcoswt,Bsinwt,0), which is spatially homogeneous

and is rotating in the plane of the lattice. This field adds an

interaction of the form

- B> (S coswt + S, sinwt),

(1) )

where y=2ug/# is the gyromagnetic ratio.

The spin dynamics is described by the Landau-Lifshitz
equations with Gilbert damping
]

ds, JH ds,
#fo2] o] o
dt S, S dt
where H="Hy+V(t) is the total Hamiltonian. EquatiofB)

preserves the length of the spii&| =S, which has units of
action. Another form of Eqs(3) more suitable for spin dy-

namics simulations is given in Appendix A.

II. CONTINUUM LIMIT

In the case of weak anisotropiés< 1, K<J, the charac-
teristic size of excitationg=a,/J/(4J6+K) is larger than the
lattice constang, so that in the lowest approximation on the
small parameten/l, and weak gradients of magnetization
we can use the continuum approximation for the Hamil-
tonian(1)

&M = —f d>xM -H™,

whereM is the magnetization. Generally, this field is a com-
plicated functional ofM. However, in the case of a thin
magnetic film (or particle the volume contribution to the
demagnetization field is negligible, and only surface fields
are important. The face surfaces produce a local fi¢fd
=-47Mgg, for the sample with the saturation magnetization
M. Then the dipole-dipole interaction can be taken into ac-
count by a simple redefinition of the anisotropy constants
K—Kef=K+47M3a?/S, leading to a new magnetic

lengttf4
IO — Igﬁ = a\/

This is the case of so-called configurational or shape
anisotropy1**> The lateral surface affects only the bound-
ary conditions, see Refs. 46 and 47 for details. For example,
for a very thin magnetic particle, which corresponds to our
2D system, free boundary conditions are valid, and we will
use them in the paper.

Thus, the total energy functional, normalized B,
reads

J
436+ K + 4nMZaS’

(8

134420-2



VORTEX MOTION IN A FINITE-SIZE EASY-PLANE...

2
g[s]=fd25{@+"—:—<b-s> , (©

where we have rescaled the magnetic length in accordance
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v Ceml-n?

m~ ———=——=, ¢=vr+m+arcsin _
1-+\b*—¢&“v

(15

with Eg. (8). The continuum version of the Landau-Lifshitz Note how the magnetizatiom is proportional to the field

Eq. (3) becomes

o€
&_(]5:_+ € dm

ar om (1 —mZ)E’ (109
am__ & 20
PR e(1-nr) P (10b)

These equations can be derived from the Lagrangian

L= —f d?&(1 - m)aa—‘iS - &[s] (11

and the dissipation function

e 2 g 1 2
]-‘:Efdzg(j—i> zﬁfdzg{l—m2<(;_r:-]> + (L)
99 ?
x((%> } (12

Then Eqgs(10) result explicitly in

Z-‘f:-(j‘(_v—r;“%}m[l—(v@sﬁ]—f_—";z
¥ bm‘iis(_d’n; D) m —8m2) ‘Z—T (139
iir = V[(1-m) V ¢] - bV1 -nPsin(¢p - v7)
—s(l—mz)%s- (13b)

frequencyv so that its sign is important. Below we discuss
the role of this homogeneous solution in the vortex dynam-
ics.

The continuum analog of the power-dissipation relation
(A2) for the total energy functiona[s] is calculated from
Egs.(11) and(12) and gives

d—g:—mf—w, szd%(s-@). (16)
dr dr
Formally, Egs.(14) have two solutions. One can check that
only for the solution(15) the dissipation balances the work
done by the field, so that the ener§ytends to be stabilized.
Static vortices The simplest nonlinear excitation of the
system is the well-known nonplanar magnetic vortex. We
recall briefly the structure of a single static vortex at zero
field. In this case the pair of functionsn, ¢) satisfies the
Egs.(10) with the time derivatives set to zero ahd 0. If we
look for planar solution§m=0) for the ¢ field, Eq. (10b)
becomes the Laplace equation. For the vortex solution lo-
cated aZ=X+iY=Rexpi®) the ¢ field has the form

$(2)= o+ qargz-2), 17

where z=x+iy is a point of theXY plane,qeZ is the m;
topological charge of the vortefvorticity). We will call the
solution withq=1 a vortex and the solution with=-1 an
antivortex. The expressigqi7) does not satisfy the boundary
conditions for a finite system. For our circular system of
radius L (in units of ;) and free boundary conditions the
solution i$*

¢=argz-2)-argz-2) +argZ, (18)

where the “image” vortex is added Zf=ZL?/R? to satisfy
the Neuman boundary conditions. The last term in(&8) is
inserted to have the correct limit far— oo,

The m field has radial symmetryn= cosé(p=|z-Z|).
From Eqgs.(13@ and(17) one can derive thaf(s) satisfies

Without magnetic field the ground state of the system is

uniform planar staten=0 and ¢=const. The field changes The following differential problem:

essentially the picture: spins start to precess homogeneously d2e ) 1

in the XY plane, ¢=¢+v7. Such a precession causes the d_p2 + ;d_p +singcosé| 1 —? =0, (199
appearance of @ component of magnetizationm=const.

From Eqs(13), we find that the equilibrium values af and c0sA(0) = p, cOSA() =0, (1)

¢ satisfy the following equations:
wherep==1 is the so-called polarity of the vortex. The so-

2 2 : PR ; ;
1-Y) 122 , (148 lution of this differential problem is a bell-shaped structure
m 1-n? with a width in the order of,,.
— Ill. VORTEX MOTION AT ZERO FIELD
-bsing-ery1-m?=0, (14b)

A standard description for the steady movement of mag-
netic excitations was given first by Thiel@?® Huber?” and
Nikiforov and Sonir® first applied this approach to the dy-
namics of magnetic vortices, using a traveling wave ansatz

so that this state can only existhf= ev (otherwise only the
ground state withm=0 and ¢=const exists Assumingm
<1, we obtain

134420-3



SHEKA et al. PHYSICAL REVIEW B 71, 134420(2005

S(z,7)=9z-Z(7)]. In terms of the fieldsm and ¢ such an ] R 1
ansatz is o+ =1 (274
m(z,7) = coshl|z— Z(7)|], (208
d(z,r)=ardz-2Z(7)]-ardz- Z,(7)] +argZ(7), g = 77<I) (27b)
(20b)

. . This set of equations is equivalent to the Thiele Equation
where the functiord(¢) describes the out-of-plane structure (21), when going to polar coordinates.

of the static vortex, and is the solution of E¢89). To derive For zero dampingde =0) two radial forces act on the vor-

an effective equation of the vortex motion for the collective joy (gyroforce and Coulomb forgeand compensate each
variable R(7)=[X(7),Y(7)], we project the Landau-Lifshitz qther providing pure circular motion of the vortex. In that

Egs. (10) over the lattice using ansal20). We obtain a ¢ase the radiuR of the orbit is arbitrary. Using Eqg$27) it

Thiele equation in the form of a force balafce is easy to calculate the frequency of this circular motion for
Gle, X R] - 2m7R+F =0, 21) a givenR, see Ref. 1.
where the overdot indicates derivative with respect to the Q(R) = % (28)
L*-R

rescaled timer. The first term, the gyroscopic force, acts on
the moving vortex and determines the main properties of the
vortex dynamics. The value of the gyroconstant is well
known G=27pa,%"?8in our case for the vortex with positive
polarity and unit vorticityG=27. The second term describes
the damping force with a coefficient*®

When the damping is present, there appears an additional
damping force which cannot be compensated by other forces.
Thus the trajectory of the vortex becomes open ended, fol-
lowing the logarithmic spiral from Eq27b):

_1 cb—cbo:ilni, (29)
n= Es(ln L+Cy), (22 7 R

whereC,~2.31 is a constant coming from thefield and is whereR, and @, are constants.
calculated in the appendix, see form@Bl3). The InL de-
pendence iy was obtained in Ref. 27. IV. NUMERICAL SIMULATIONS OF THE VORTEX

The last term in Eq(21) is an external force, acting on the DYNAMICS
vortex, F=-Vg&, wheref is the total energy functiondb). . _ . . .
Without magnetic fieldb=0) such a force appears as aresult 10 investigate the vortex dynamics, we integrate numeri-
of boundary conditions, it describes the 2D Coulomb inter-Cally the discrete Landau-Lifshitz equatiof#sl) over square

action between the vortex and its image lattices of size(2L)? using a fourth-order Runge-Kutta
T scheme with time step 0.01. Each lattice is bounded by a
gnt=gy+ 7rln L-R (23) circle of radiusL on which the spins are free corresponding

to a Neuman boundary condition in the continuum limit. In
where&-~ 7 is the enerav of the vortex copd all cases the vortex is started near the center of the domain
Iee d0~7tT s the el'e gt)éo ﬁet_o e cot' ’ fh ; and the field and damping are turned on adiabatically over a
N order 1o generaiize the efiective equations of the VOIteX; o interval of about 100. We have only considered vortices
motion for the case Of the magnetic f'el.d we derive how theof fixed polarityp=1. More details on the numerical proce-
same eﬁgctlve equations k_)y the effective Lagrangian te(.:hdure and in particular the vortex tracking algorithm can be
nigue as it was proposed in Refs. 33, 35, and 36. Insertm%und in Ref. 33
ansatz(20) into the “microscopic” Lagrangia(ll) and the We have fixed the exchange constdntl as well as the
dissipative function(12), and calculating the integrals, we

: . . . spin lengthS=1. All cases presented here are for the aniso-
?:"rge an effective Lagrangiagsee Appendix B for the de- tropy 6=0.08, corresponding thy=~1.77a so that we are

close to the continuum limit. The lattice radii we consider
[ = - 7R2Pp — gt (24) here are _28< L< 1OQa. . .
To validate the simple theory presented in the previous
In the same way we derive the effective dissipative functionsection we considered the case with no magnetic field. In the
i, 5 oo absence of damping the vortex should follow a circular orbit
F=mqR"=my(R°+ R°®7). (25) and its frequency of rotation should be given by E28).
Starting with a vortex initial condition fom and ¢ given by
Eq. (20), it is possible to “prepare” circular trajectories of
arbitrary radius by applying damping. This kills all spin

The equations of motion are then obtained from the Euler
Lagrange equations

oL d[dL\ IF waves coming from the imperfect initial condition and drives
o dr & - & (26)  the vortex to the selected radius following the spi(29).
! ! Once the chosen radius is reached, damping is turned off
for the X;={R, ®}, adiabaticallyover a time greater than 1(0/e) and the vor-

134420-4



VORTEX MOTION IN A FINITE-SIZE EASY-PLANE... PHYSICAL REVIEW B 71, 134420(2005

110 T T T T
24 |

90 1
22 |

70 .
20 |

50 1
18 r 1 1 1 1

50 70 90 110
FIG. 3. (Color online) Two trajectories of a vortex from simu-
lations of the many-spin mod€ll)—(3), on a lattice of radiud

18 20 22 24 =78a=44, with a rotating field»=0.125,b=0.002. For this field,
all trajectories converge to the same circle independently of the
FIG. 1. Trajectory of a vortex at zero field for a time interval vortex’s initial position, provided it is not too close to the system
0<t<10* The damping:=0.01 was switched off &t=1600. The  border.
vortex withg=p=1 was launched frorZ=20.5a+i23.52 on a lat- ) o )
tice of radiusL =20a~11.3. “Clean” circular trajectories, where the dashed lines. Note that the constajtis important to obtain
vortex is free of spin waves, are obtained with this method. In the? quantitative agreement because it is of the same order as
whole study the anisotropy is set #=0.08. The damping iz  the term Irb..
=0.01. To study the vortex dynamics in the presence of the rotat-
ing field, we extend the simulations described in Ref. 33.
tex will keep its circular orbit indefinitely. Such a scenario is There we investigated the dynamics of the out-of-plane
shown in Fig. 1. structure of the vortex, focusing on the pheno_menon of
We now analyze the spiral trajectories obtained wherSWitching, which occurs whemp<0. Here we consider vor-
damping is present. In Fig. 2 we plot the measured angle dices with positive polaritypp=1 andv>0 so that no switch-
rotation @ (in radiang as a function the logarithm of the 'Ng occurs. _ _ _
measured radiug for four values of damping. The vortex is  For simplicity we fixed the damping=0.01 in Eq.(3)
started every time from the same pldde,=/2, Ry=3a) in and varied the parametefls, v,L). We checked _that thg ef-
the lattice. The behavior given by the spin simulation showrf€CtS reported here occur for a range of anisotropies and
by full lines agrees well with the relatiof@9) given by damping around these values. Given a combination of the
parametergv,b) of the field, the radius of the system and

40 ; ; . the dampinge, we have observed that either the vortex es-
e capes from the system through the border or it stays inside
;;B;Bé;}; for all times. In the latter case, it can approach a limit cycle

30 | €=0.0100 | for a broad range of the field parameters. Figure 3 shows two

vortex trajectories starting from different positions and con-
verging to the same circle. When the limit cycle exists, its
basin of attraction is very large as can be seen by starting the
vortex at different positions and seeing it converge to the
same circle. In other words, the system keeps no memory of
the initial position of the vortex.

To exist, the limit cycle needs both magnetic field and
damping: once it is attained, switching off or changing either
, ) of them destroys immediately the circular trajectory. For
0 0.1 0.2 0.3 fixed » and L, when the intensityb is not large enough,
Logarithm of the vortex orbit radius (In R/R) dampi_ng domi_nates and th_e vortex escapes from the system

following a spiral, as explained in the previous sectiorb If

FIG. 2. (Color online) Azimuthal angled of the vortex position IS 100 large, the vortex will also escape due to an effective
as a function of the logarithm of the radial positiéhfor four  drift force caused by the field, which changes its direction
different values of the damping. The lattice radius id.=20a  slowly enough, relative to the movement of the vortex. This
~11.3. is the case when the frequency is very small, such that the

Azimuthal angle (®-®)
S 8
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FIG. 4. (Color online) Diagram of types of trajectories in the
(w,B) parameter plane corresponding in theb) plane to the
range 0<»<0.3 and 0<b<<0.033. The radius of the systemlis FIG. 5. (Color online) Radius of the vortex orbiR vs the sys-
=36a=~20. The term “confined” means that no limit cycle was tem radiusL, in the circular limit cycle, for a fixed field frequency
reached, though the vortex stayed inside the system, during the timg=0.094 and several amplitudesThe lines are there to guide the
of observationr= 6400. eye. Here and in the next figur&andL are given in units of,,

System size (L)

field is practically static. If both the intensity and the fre- on the system sizk is very clear from Fig. 5 for the whole
quency are too large, the field will destroy the excitationrange 1k L <56. Figure 6 shows the frequendy of the
creating many spin waves and also new vortices can be genortex orbit as a function of 1/ The dependence is linear
erated from the boundary. Many seemingly chaotic trajectofor L>30 but not for smalleiL indicating a possible size
ries can be observed for high values of field parameters. Teffect. The points missing in the two figures for 20 and
determine the limit cycle, the value of the damping is not ash=0.0187 correspond to a vortex escaping from the system.
critical as the field parameters. For example, increasing the For a fixed system sizk the features of the limit cycle
damping up to five times its valug=0.002 to 0.01did not  depend on the values of the field frequencgnd amplitude
significantly change the limit cycle shown in Fig. 3 but only b. In Fig. 7 we plot the radiuR of the limit cycle as a
accelerated the reaching of it. At this point note that there isunction of the inverse 1/ of the frequency of the applied
no resonant absorptionf the energy in the ac field unlike field. For large frequencies one can see that the radius tends
the predictions of Ref. 23. The field just drives the vortexto a constant which is proportional to the amplitualeFor
with the frequency(), which is always lower than the fre- low frequencies the radius increases sharply. In this case
gquencyw of the ac field. damping plays a larger role than mentioned above.

All these extreme cases constrain the size and shape of the In Fig. 8 we plot the frequenc§) of the orbital motion of
regimes where circular limit trajectories appear in the spaceéhe vortex as a function of the field frequeneyfor four
of field parametergv,b). In Fig. 4 we show for a system values of the field amplitude. The diagonal is shown on the
radiusL =36a this parameter plane and point out where theupper left corner of the picture and indicates tha& v.
vortex escapes or gives rise to a limit cycle or confined orbit.
Similarly to what we found in the study of switchifgwe
also find “windows,” i.e., events which are not expected in a
particular regiorfor instance, the pointr=0.1,b=0.02 in
the diagramh The zoom in of any region of the diagram & g5
containing windows shows again a similar behavior. We can

06

R

0.06

o
©

bit (Q)

I
SO OO
OO«

(oo geoNey

also observe that the vortex is sensitive to small variations of5
the field parameters, and that its behavior is not monotonou:: 0:04
(follow, for example, the linéb=0.025 for increasing fre- f
guencies ° 0.03 -
When L is varied, there can appear “windows” where g
there is no limit cycle. For example, far=36a, »=0.1,b 8 002} i
=0.02 the vortex escapes from the system, while lfor g 5
=24a,30a, on one side and.=42a,48,54a,..., on the M — : ,

other side, the vortex reaches a limit cycle. 002 003 004 005 0.068 0.07

In the rest of this work we will concentrate on the circular
limit cycle. Figures 5 and 6 show the dependence of the
vortex radial positionR and azimuthal frequency) as a FIG. 6. (Color online) Frequency of the vortex orbid vs the
function of the system radiuk for a fixed field frequency inverse system radius L/ in the circular limit cycle, for a fixed
v=0.094 and four amplitudds The linear dependence Bf field frequencyr=0.094 and several amplitudes

Inverse system size (1/L)
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| b=0006

6l —— 50013
& b=0.016

Radius of the vortex orbit (R)

6 8 10 12 14 16 18 20 22

Inverse frequency of the field (1/v)

FIG. 7. (Color online) Radius of the vortex orbiR vs the in-
verse 14 of the frequency of the rotating magnetic field for four
different amplitudes of the field. The radius of the systenlLis

=36a=20.
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5L . . . .

30 35 40 45 50

Although most trajectories which converge to limit cycles ~
end up in a circular orbit around the center of the system, we?) V=023, 5=0.0025

have observed a few cases of a limit cycle that is not circular
as shown in Fig. @). Some chaotic confined trajectories can

also be found as shown in the bottom panel of Figp)9

V. THEORETICAL DESCRIPTION OF THE VORTEX
MOTION WITH ROTATING FIELD

To describe analytically the observed vortex dynamics, ag, ¢ [ -
standard procedure is to derive Thiele-like equations, as i
was done in Sec. lll without field. Due to the field there
appears the following Zeeman term in the total endispe

Appendix C for details
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B
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g e e o

g 002¢ —— b=0.013 |

e . . . —=— b=0.016 _
004 006 008 0.1 0.12  0.14

Frequency of the field (v)

FIG. 8. (Color online) Frequency of the vortex orbi® vs the

425 |

4 | -

325 |

30 325 35 37.5 40 425 45
b) v=0.28, =0.016

FIG. 9. Two different kinds of confined vortex trajectories that
are not circular, occurring for large field amplitudes and frequen-
cies. In the top panel the radial positi®it) of the vortex is peri-
odic while it is chaotic in the bottom panel.

V(7) = wbRLcoqd® - v7). (30)

When the vortex reaches the limit cycle, the total energy is

frequencyw of the rotating magnetic field for four different ampli- constant. We have checked this fact in our simulations, cal-
tudes of the field. The diagonal plotted in the upper left cornerculating the power-dissipation relatiq2). For a vortex,

corresponds to the lin€=v. The radius of the system is=36a
~20.

which moves according to the Thiele ansatz, the power-
dissipation relatior{16) takes the form
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da& Y ) To construct effective equations we use the same varia-
d—:—m?R + mbyRLsiN(® - v7). tional technique as in Sec. Ill. In addition to the “vortex
T . ” H [TH 1 ”
coordinates”{R,®}, we consider two “internal variables

The energy can tend to a constant value only wiberw, so  {M, ¥} so that our set of collective variables is

the frequency of the vortex motion should be equal to the —

driving frequency. Thus the standard Thiele approach cannot %= {R(7), (1), M (), W(7)}- (34)
provide the circular motion of the vortex with the orbit fre- One can derive the effective Lagrangian of the system by
guencyQ) < v we have observed in our simulations, see pre-nserting ansat£31) into the full Lagrangian11), and cal-
vious section. The reason is that the field excites low-culating the integrals, see Appendix C for details:
frequency quasi-Goldstone mod¥s3 which can couple _—

with the translation mod#& Therefore it is not correct to Z MY -R2D - In L°-R + }(In M_ M)
describe the vortex as a rigid particle and it is necessary to ™ L 2\ My Mg
take into account the internal vortex structure. R

To describe the approach to the limit cycle we now gen- - bLRf<[>cos(<I> +W¥ -7, (35

eralize the collective variable theory to take into account an

internal degree of freedom of the vortex. Because the madn the same way one can derive an effective dissipative func-
netic field changes thecomponent of the magnetization and tjgn

generates a new ground state, it is natural to include into the

m field an additional degree of freedom. To comply with the F gl - : 1 1 M

new ground staté15) we add to thes field (20b) a time- P 5{(R2+ R2®2)<C1+ > In(L?-R?) - > In M_o)
dependent phas#(7) describing homogeneous spin preces-
sion. ¥(7) can be understood as the generalization of an
arbitrary constant phase which could be added in(E§b
without changing the dynamics. However, this constant
phase does influence the dynamics if there is a constant ivhere the constants; andC, are introduced in EqgB13)
plane magnetic field, which breaks the rotational symmetryand (C10), respectively. From the Euler-Lagrange equations

: M .. C,M2
+\If2<L2——)+2R2<D\If+ 2 ] (36)
M, MM,

in the xy plane*® (26) for the set of variable§34) we obtain finally
The ansatz that we choose is
. R| . 1 1 M :
o R= %[®<C1+ SIn(L2=R) - E'”M_) +«1r}
m(z,7) = cosa(—), (319 °
1(7)
bL [(R) .
- ?f L sin(® + ¥ - v7), (373
$(z7)=ardz-Z(7)] - ardz-Z(7)]+arg(7) + ¥(7),
(31 .1 &R 1, 5 1 M
which describes a mobile vortex structure similar to &), ¢ = 2-R2_ oR Cy+ 5'”('- -R) - > lnM_o
but including a precession of the spins as a whole, through a b
time-dependent phas#(7) and a dynamics of the vortex _bL (B) D+ 7
core, through the core widtl{7). The latter allows a varia- 2Rg L cog v7), (379

tion of thez component of the magnetization. We will see
that in the Lagrangian the two variableand ¥ are conju- . M R\
gate to each other so that one needs to introduce them td¥ =~ | RR® + | L? - Mo *+bLR{| - sin(@ + ¥ - v7),
gether.

We find it convenient to use in the following, instead of (379
[(7), the z component of the total spin

1 \'If—}<i l>+ Cr (370)
M(T)=;fd2xm(z,r)=l\/lolz(r), (32 “2\Mp M/ Pumy
To integrate numerically the differential algebraic system
(37), one needs to solve at each step a linear system; we used
the MAPLE softwaré® which includes such a facility. The set

M. =2 J * of Egs.(37) describes the main features of the observed vor-
0=

which is related to the total number of “spin deviations” or
“magnons,” bound in the vorte¥.Here M,

pdp cosb(p) = 2.75 (33 tex dynamics, and yields the circular limit cycle for the tra-
jectory of the vortex center, see Fig. 10. Let us note that Egs.

is related to the characteristic number of magnons bound if378 and(37b) reduce to the Thiele equations for the coor-

the static vortex. Note that without dissipation and for zero dinates(R,®) of the vortex center whehl andW are omit-

field, M is conserved. The field excites an internal dynamicsted and in this case no stable closed orbit is possible. Only

changing the number of bound magnons and the total spimcluding the internal degrees of freedail, V) can one

M. obtain a stable limit cycle.

0
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851 1 " ——bo008
= —— b=0.006
&6 — b=0009
= — b=0.013
2
80 J °
el
>
(0] 3 3
S
75 g %
72} 2r
2
o
S
70 B 1 0 1 1 1 1 ! L 1 L
0 10 20 30 40 50 60 70 80 90
! i ) , System size (L)

70 75 80 85 FIG. 12. (Color online) Radius of the vortex orbiR vs the

system sizd, in the circular limit cycle for the collective variable
Eqs.(37) for a field frequency=0.06. The other parameters are the
same as in Fig. 11.

FIG. 10. (Color online) Two trajectories of a vortex from the
collective variable Eqg37), starting from different initial positions.
Red line:R(0)=a, ®(0)=5n/4, W(0)==/4. Blue line:R(0)=10a,
®(0)=57/4, ¥(0)=m/4. Other parameterdi=0.002,»=0.125,¢
=0.01, and5=0.08. System radiug: =78~ 44. border (R<L) and that the totak component of the spin

o o varies weakly so thaN=(M-My)/My<1. Then one can

In the parameter plarfe’,b) shown in Fig. 11 we indicate ~ simplify the expressions for the Lagrangian and dissipative
the two main types of trajectories found by numerical inte-function where the common facter has been omitted:
grating Eqgs.(37). Vortex trajectories converge to a limit

cycle only forb=<v/2 (red domain When the amplitude of
the rotating fieldb lies above the critical curve, the vortex
escapes from the system along a spiral trajectbiye do-
main). The model has no lower boundary for the limit cycle. _ . L2. .
However when the amplitude of the field lies below the criti- F=n(R?+ReP?) + SE\PZ + ROV, (38b)
cal curve(dashed line in Fig. 11 the radius of the vortex
orbit can become less than the lattice constgneen do- whereA=®+W¥-vr, and 7 was defined in Eq(22).
main). In this case discreteness effects are important for the The equations of motion which result from E&8) have
spin system, so the model can no longer be adequate. the simple form

In Fig. 12 we show the radius of the vortex orBibn the

2

. . R N
£=MON\II—R2<I>+F—Z—bRLcosA, (389

cir_cular limit cycle as a functior_1 of the system si_Ize ob- R= nR(i) _ b—LsinA +sB\P, (393
tained from the numerical solution of Eg®7). Notice the 2 2
linear dependenc®«L similar to the one observed in the
numerical simulationgsee Fig. 5. .1 R bL
To analyze the main features of the model we simplify it, ® ==~ n=—_=COSA, (39b)
assuming that the vortex orbit is never close to the system L~ "R 2R
~ 0.12 : 2 . :
o MoN = — sL2¥ + bRLSsINA - eR?®, (390
Q
eflld Escape _
B 2My¥ =N. (390
Y
g 0.06 The set of Eqs(39) describes two damped periodically
) 1M1 forced oscillators, described by two couples of variables
i-% 0.03 Limit CYCle (R,®) and(N,W). Under the action of forcing these oscilla-

tors can phase lock and induce the limit cycle. The numerical
study of Eqs.(39) reveals three different types of behaviors
005 0.1 015 02 025 as a function of the field amplitudefor a fixed frequency.
Field frequency (V) We chooser=0.06. For a smalb=3X10" 4 the phaseA
increases linearly with timelN oscillates, andR increases
FIG. 11. (Color online) The two types of trajectories observed Very slowly without stabilization. When the amplitude is
in the (»,b) field parameter plane for the collective variable Egs. large such a9=0.12, A tends to -m, N becomes negative
(37). The parameters are=0.01, §=0.08, and system radiuls and then goes back to about®,increases indefinitely. For
=36a~=20. b=3x 104 N tends to a positive constar, tends tom so
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that terms inR balance and we have the limit cycle. One can 80
see that the dynamics of the coupld, V) is fast with a 70
typical relaxation time of about EL? while the dynamics of
the couple(R,®) is slow and depends on the initial position
Ro. The limit cycle is obtained foR,<0.6L, outside that
rangeR increases indefinitely.

When the solution of the system of E¢39) converges to

60
50
40

Individual spin’s ¢-field

a limit cycle, we have 30 —_ (25a.25a)
. ) . (27a,25a)
R=N=0, ®=Q=const, ¥=v-Q. (40 20 — (29a,25a)
. . _ 1 — (31a,25a)
In that case we obtain the following three algebraic equa- 19 — (33a,25a)
tions: 0 ) — (47a,25a)

Q) = bLsinA 0 500 1000 1500 2000

2R(v+AQ) =bLsinA, (419 Time (1)
eL(v—Q)=bRsinA, (41b) FIG. 13. (Color online) Time evolution of theg field for spins
inside and outside the vortex orbit, once the vortex has reached a
- 2RO = bLCosA, (410 circular limit cycle. The parameters ane=0.1, b=0.02, andL

=48a~=~27. Inside spins are located #R5a,25a), (27a,253),
whereA=C,—1+InL. Extracting the sitA term from the first  (29a,25a), and the outside spins are &8la,25a), (33a,253),
and second equation, we obtain the frequency of the vorteg7a, 25a).

motion
v the figure. From the above expressions one can estithate
A== (42) the limit cycl
1 +AR?/L2 on the limit cycle as
We now eliminate the sine and cosine terms from E4%a § ~ v— 12 - AR
and (410, resulting inR=bL/2Q). Combining with Eq.(42) 2 '
one has )
s which shows that the change in magnetization2My ¥ due
vty v - AR 43) to the internal variables is small. It is nevertheless crucial for
2 ' obtaining the limit cycle.
This value is smaller than the driving frequeneyn accor- V1. DISCUSSION

dance with our simulations. However, it is not proportional
to 1/L as in the spin simulations. For the radius of the limit ~ Another way to understand the vortex dynamics is to ana-
cycle we have finally lyze the movement of individual spins. In a set of simula-
tions, we recorded the components of some individual spins
~ bL — bL (44) to observe their time evolution. We consider a large enough
vHVA-AR 2V time so that the vortex reaches the limit cycle. For the Fou-
, ) ) rier spectrum of the component of individual spins we have
The radius of the vortex orbiR depends linearly on the hqerved some peaks, which appear naturally with the fre-
sy_stem size in good agreement with the resu_lts of_ the SiMUuency of the limit cycle(). Every time the vortex passes
lation, see Sec. IV. It also bears the proportionality 11/ ¢|ose to the spins, the spins feel a lick upwards. The behavior
observed in the spin dynamics. o . of ¢(7) for several spins is shown in Fig. 13. When the
The range of parameters, which admits limit CYC'e rajeC~ortex has reached its limit cycle, i.e., for-500 the spins
tories, can be estimated from the natural condiReiL,  popaye differently whether they are inside or outside the vor-
V.Vh'Ch g|vesb_<_2v. However, the_re eX|s_t Stronger restric- oy rpit, Inside,¢ is quite regular and increases linearly
tions for the limit cycle. The solutiof43) is real (not com- with time at a rate given by, with ¢~ @o+vr. This is

5 > |
plex) only when »?~Ab?>0. Another limit for the param- g, by the three upper curves in Fig. 13 for 500 which

e(;grs IS obta|?fed from' the natura%_mcon?]|t|oﬁlo>a ¢ is the time taken by the vortex to settle on its orbit. Outside
(discreteness effects are important thefiéus the range o the orbit and forr> 500, the increase ab is more irregular

par_ametzrs, v¥h|||ch a.dmlts the limit cycle trajectories can b%s shown by the three lower curves in Fig. 13. There the
estimated as follows: Fourier spectrum ofp(7) has a main frequencyw—{) to-

2a b gether with additional peaks at+=n{) wheren is an integer.

L < 2 <x (45) Our collective variable theory describes this effect as we

0 show now. We assume that the vortex has reached the limit
with le/\ﬁzllv’cl—lﬂnL. cycle so that the variableb andW fulfil the relations(40).

For the parameters considered in Fig.»#%0.48 so that According to the ansatB1b), on the limit cycle the dynami-
the estimatd45) agrees with the boundaly~= v/2 shown in  cal variable$ can be written as

134420-10
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d(z,7) = o+ vr+ardz-Z(7)]-ardz-Z/(n]. (46) spin dynamics. Moreover, in the collective variable theory
the magnetization and vortex position variables vary on very
different time scales, this is not the case for the spin dynam-
=5 ‘ ics. Despite this we think that this collective variable ap-
=L?/R>L, and for any|Z <L the last term in Eq(46) proach is very general and can be employed for the self-
ardz=2,(r)]=m+®(1), so consistent description of the dynamics of different 2D
K27 =Fo+ (1= Q)r+ardz-Z(7)]. 47) 22;I|nmez$n2>t<§?|tatlons, e.g., topological solitons in 2D easy

We consider the vortex to be far from the boundary, .,
<L. Then the radius of the image-vortex trajectoryRs

If we consider a spin, situated at a distaige> R, the last
term in Eq. (47) describes only small oscillations on the
background of the main dependeng€z, 7)="py+(v—Q)7. ACKNOWLEDGMENTS
At the same time for a spin located @ <R, this term is
decisive. Let us consider the limiting case of a spin situate

gﬁgrEtge( :;;T; g];tzi?n;ﬁt\z:h;hzggg(:z] :ZT?;E?S tions was done at the Centre de Ressources Informatiques de
Y : ’ 0" " ~> Haute-Normandie. D.D.Sh. and Yu.G. thank the University
the two regimes for the in-plane components of the spins ary Bayreuth, where part of this work was performed, for kind
vv_eII pronounced, which is confirmed by our simulations, Seenospitality z;md acknowledge support from Deutsc,hes Zen-
Fig. 13. . trum fur Luft- und Raumfart e.V., Internationales Biro des
. [n a wide range of parameters t.he vortex moves algng Bundesministeriums fiir Forschung und Technologie, Bonn
limit circular trajectory. When the intensity of the ac field and Ukrainian Ministry of Education and Science, in the
frame of a bilateral scientific cooperation between Ukraine
%nd Germany(DLR Project No. UKR-02-011 and MES
u$1§roject No. M/82-2004 D.D.Sh., J.G.C. and Yu.G. ac-
knowledge support from Ukrainian-French Dnipro grant
(IQO. 82/240293 J.P.Z. was supported by a grant from Deut-

F.G.M. and J.G.C. acknowledge support from a French-
%erman Procope grafilo. 04555T@. Part of the computa-

practical applications, because vortices are known to ca
hysteresis loop in magnetic nanostructureslsually static
fields are considered in the experiments and these cause
hysteresis of thMX(HX) Iqop, see, e.g., Refs. 6, 10, .12, and sche Forschungsgemeinschaft.
17. The saturation field in the static regime to obtain a hys-
teresis is aboutvy/ y (in dimensionless unite~1). In this
article we consider an ac driving of the vortex, which causes
a dynamical hysteresidd, as a function of the intensity of
the ac fieldb. Typical fields for vortex annihilation~ v While Egs.(3) are convenient for analytical consideration
<1, are much weaker than in the static regime. It is therthe presence of the time derivative on both sides makes them
much easier to destabilize the vortex with an ac field tharinconvenient for numerical simulations. Equivalent equa-
with a dc field. tions are obtained by forming the cross product of Bj.

Let us make some estimates. We choose permdfyy  with S, and subtracting the result from E). In this way
NigoFexo) magnetic nanodofs!’ The measured value ol we get
=9Sl?/a’=770 G, the exchange constamh=JS=1.3

APPENDIX A: DISCRETE SPIN DYNAMICS

X 10°¢ erg/cm, andy/27=2.95 GHz/kO€. Typical fields 1+g2 as, =[S X E.1- 215 X [S X F Al
of the vortex annihilatiorb~ »v, which is about some tens (1+e9 dt [Sh n] S[S” [Sn o1l (AD)
of Oe.

Another important fact can be seen from Fig. 12: the vor—Where Fn=-dH/dS, is the total effective field; the factor

tex is unstable in small magnetic dots, the typical minimal
size L,n~5. For the Py magnetic dot with the magnetic
lengthl,=5.9 nm? the minimal size for the vortex state mag- T . N
netic dot under weak ac driving is abdyg;,lo~30 nm. This power-dissipation relation for the ftotal energ§i=
means that for magnetic dots with diameters less than 60 nrﬁE”S”'F”' We have
the vortex state is unstable against the ac field giving rise to gy dB ds,
a single-domain state. ot =-> Sma - FnE

In conclusion, we developed a collective variables ap- n n
proach which describes the vortex dynamics under a periodic dB e
driving, taking into account internal degrees of freedom. To =-> Sge t mz FalSh X [Sy X Fpl]
our knowledge, it is the first time that an interplay between n &)
internal and external degrees of freedom, giving raise to thgng finally
existence of stable trajectories, is observed in the case of 2D . ]
magnetic structures. This ansatz giep to a factor of 2 _ € B
the radius of the limit cycle. Also the dependenciesRadn dat - (1 +32)S§n: (S x Fal - % S“E (A2)
the system siz&, the field amplitude, and the frequency are
correct. However, the dependence of the vortex orbit freWhile the first term is always negative, it is the second term
guency() on the system size is different from the one in thewhich can give rise to transients in the relaxation to equilib-

(1+€?) is usually neglected, or absorbed it giving ef-
fective constantg, K, andB.
From the discrete dynamid#\1) one easily derives the
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I dzD=x-x+P,
one can calculate the time derivatives in the moving frame
| . __ e
B R RO
y ot Image X =— sina— — cosa,
vortex p p
N, o !
J I
| . .
g e I . _ LR LD
%~ |Vortex | X == p2 sina + —2\"p|2—p2 sirfa.
@ | R Repi Rei
X x X, :
Here p,=|z-Z,(7)|, x;=argz-Z,(7)). In the main approach

for R/L<1, one can simplify an expression fgy, so finally
FIG. 14. (Color online) Arrangement of angles in the mobile \ye have

frame centered in the vortex with the coordinatgsX+iY

=Rexp(i®). YL ; 1.»p
¢=(Rsin a-R® COSa')<—+L—2). (B5)
rium, or even the resonances, depending on the parameters of ) p. .
the time-dependent magnetic field. Then the gyroterm in the Lagrangighgives
APPENDIX B: COLLECTIVE VARIABLE EQUATIONS g=G,+G,,

WITHOUT FIELD

It is convenient to make calculations in the reference B 5.
frame centered on the vortex whose axes are parallel to the Gi=- | d%s
standard frame

X-X(7)=pcosy, y-Y(7)=psiny.  (BL) =~ 2mR(ola) - L/3]sina)

Viewed from this point, the distance to the circular border of +2mRd([o(a) - Li3]cosa),

the system changes as a function of the azimuthal apgle

see Fig. 14. Every integral over the dom&@h<L can then . . )
be calculated as fo d“éme = kgR(sin @) — koRd{cosa),
o(a)
f f(p, )= (F(a), F(a)= ZwJ f(p,a@)pdp, where the constank,=2m[jcosf(p)dp. After averaging
et 0 with account of the expressions

wherea=y—-® is given by the cosine theorem R
=X given by (o(@sina)=0, (o(a)cosa)=->, (B

o(a) = — Rcosa + \L? - R? sirfa, (B2)

and the averaging meand(a))=(1/27)[3"F(a)da. We  We obtain the gyroterm in the form
also have the relations

— 2, —
e, = ecosy +e,siny, (B3a) Gr= - mRP, - G2=0, &7
_ and finally, G=-7R%®d.
€=~ &SIny + €,Cosy, (B3b) Let us calculate an effective dissipative function, starting
from the “microscopic” dissipative functiofl2), which we
er=ecosd +esind, (B3c)  cut into two termsF=F,;+F, with
=-egi + € e e .

ep =~ esind + g,cosd. (B3d) fl:ﬁfdzgl_mz' f2=5Jd2§(l—m2)¢2.

In order to derive an effective Lagrangian we start with

the “microscopic” Lagrangiaril), The time derivative of then field can be easily calculated in

_ ) the moving framgB1), using the traveling wave ansdi20)
L=G-&™, g:—fdzg(l—mm. (B4)
m= ¢ sind(Rcosa + R® sina). (B8)
We will provide all the calculations for the vortex with unit
vorticity g=1 and positive polarityp=1. Using the traveling Calculating integrals fotF; with account of Eq.(B8), we
wave ansatz20b) in the form derive
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Fi= %Tkl(F?Z + R2D?), (B9)

wherek, =[5 6"2(p)pdp. In the same way we can derive,,
taking into accountp from Eg. (B5),

Fp = em(R¥(ky + Ina)sirPa) + RRDX (k, + In o) coga)
- RRD((K, + Ino)sin 2a)),

_fw wdp_ (B].O)
1 P

5 f sirf6(p)
—dp
4 0

k2 =—+
p
Using the averages

(siffalno(a)) =(cofalno(a)) = %(In o(a))

= % In(L? - R?) (B11)

we calculate the dissipative function in the form

F= %T{Cl+ % In(L? - RZ)](R2+ RA?).  (B12)

Here the constan®;=Kk;+ks,

1 * )
5 fw 0 f oS 8o) f 0'%(p)pdp
0 ! P °

Ci=-+
174 o
(B13)

~ 2.31.
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can expand this function into the serid$x)~1-x?/8. In
the main approach it leads to the Zeeman term in the form
(30). The corresponding magnetic force

R
Fr=-VgV= ewaLg(E)cos(tl) -v7)

- eXﬂ'bRLf<§>Sin(<I> -v7), (C3

where the function

900 = 7 + xF' () = %[K(x)(% - 1) . E(x)<xiz _ 2)]

(C9

For x<1 it has the following expansiog(x) ~1-3x?/8.
Let us calculate the same Zeeman energy using the ansatz
(31). One can derive a Zeeman term similar to Eg1)

V(T)ZWbRLf(F)COS{CD+‘I’— V7). (C5H)

In addition to this direct influence on the system, the mag-
netic field also changes the gyroterm in the effective La-
grangian, and the energy of the system. These changes result
from the internal motion of the vortex throudy), and from

the uniform spin precession through(7). This does not
change the gyroterr§,, which has the same form as in Eq.

(B7), but there appears the contributi@@zM‘P. This can
be easily calculated with account of the time derivative

Supposing that the vortex is not close to the boundary, i.e.,

R<L, we obtain the effective dissipative function in the

form (25).

APPENDIX C: COLLECTIVE VARIABLE EQUATIONS
WITH FIELD

First we calculate an effective Zeeman energy for the
standard Thiele-like motion of the vortex. Inserting the trav-
eling wave ansatz20) into the “microscopic” Zeeman en-
ergy (6), and calculating the integrals, we get the effective

energy in the form
1 277
V(7) =~ Ebf dx[o?(x = ®) - cyJcos(¢ - v7)
0

= WbRLf(?)COiCD— v7), (C1

f(x)zi{E(x)(x—lz+l>—K(x)(xiz—lﬂ, (C2

where

¢:\P+(Rsina—R<i>c03a)(}+§). (C6)
p

The total energy functional9) can be written in the form
5=El+€2+53+V with

2
=5 f dzg(lvnzz-klw (C7a
2_ 2
fd2§(1 m)( V¢)2~ﬂ-|n oL (C7b)
£,= f d2em? = 77'2(7) (C79

The term&,, which describes the interaction between the
vortex and its image, can be derived from E&3), simply
replacingly by (7). In the last anisotropy terrfi; we have
used the relatioricos#?(p)pdp=1/2, seeRef. 42. Combin-
ing all terms of the Lagrangian and omitting the constant

whereE(x) andK(x) are elliptical integrals. When the vortex term &£;, one obtains the effective Lagrangian of the system
is far from the boundary, which is the case of interest, ond35).
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The dissipative function contains two dynamical contribu- Y
tions. The first one is due to the time dependence ofnthe Cy= Ef 0'“(p)p~dp ~ 0.48. (C10
field: 0
To calculate the second ter#, we use¢ from Eq.(C6) and
m= —p+Rcosa+RP sina |. Ccs8
(7 \2m” « (C8) 2_ 2

s ] L2~ 1)

F,= %T{(Rh chbz){kﬁ % In le(T)

This termF; can be derived in way similar to E¢B9):

+ 2RV . (C11
12
F,= g(kll'?% k1R2d>2+ %) (C9) The total effective dissipative functiof=F,;+F, has the
2 MM, form (36).
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