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We study the motion of a nonplanar vortex in a circular easy-plane ferromagnet, which imitates a magnetic
nanodot. Analysis was done using numerical simulations and a new collective variable theory which includes
the coupling of Goldstone-like mode with the vortex center. Without magnetic field the vortex follows a spiral
orbit which we calculate. When a rotating in-plane magnetic field is included, the vortex tends to a stable limit
cycle which exists in a significant range of field amplitudeB and frequencyv for a given system sizeL. For
a fixedv, the radiusR of the orbital motion is proportional toL while the orbital frequencyV varies as 1/L
and is significantly smaller thanv. Since the limit cycle is caused by the interplay between the magnetization
and the vortex motion, the internal mode is essential in the collective variable theory which then gives the
correct estimate and dependency for the orbit radiusR,BL/v. Using this simple theory we indicate how an
ac magnetic field can be used to control vortices observed in real magnetic nanodots.
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I. INTRODUCTION

Nonlinear topological excitations in 2D spin systems of
soliton or vortex type are known to play an essential role in
2D magnetism. For example, solitons break the long-range
order in 2D isotropic magnets. Vortices play a similar role in
2D easy-plane magnets. Magnetic vortices have been studied
since the 1980s. They are important for the dynamical and
thermodynamical properties of magnets, for a review see
Ref. 1. The vortex contribution to the response functions of
2D magnets has been predicted theoretically2 and observed
experimentally.3

A second wind in the physics of magnetic vortices ap-
peared less than five years ago due to the direct observation
of vortices in permalloy4–9 sPy, Ni80Fe20d and Co sRefs.
10–12d magnetic nanodots. Such nanodots are submicron
disk-shaped particles, which have a single vortex in the
ground state due to the competition between exchange and
magnetic dipole-dipole interaction.13 A vortex state is ob-
tained in nanodots that are larger than a single domain whose
size is a few nanometersse.g., for the Py nanodot the ex-
change lengthlex=5.9 nmd. The vortex state of magnetic
nanodots has drawn much attention because it could be used
for high-density magnetic storage and miniature sensors.14,15

For this one needs to control magnetization reversal, a pro-
cess where vortices play a big role.16 The vortex signature
has been probed by Lorentz transmission electron
microscopy11,17and magnetic force measurements.10,18Great
progress has been made recently with the possibility to ob-
serve high-frequency dynamical properties of the vortex state
magnetic dots by Brillouin light scattering of spin waves,19,20

time-resolved Kerr microscopy,9 phase sensitive Fourier
transformation technique,21 and X-ray imaging technique.22

These have shown that the vortex performs a gyrotropic pre-
cession when it is initially displaced from the center of the
dot, e.g., by an in-plane magnetic field pulse.9,23,24

In general the vortex mesoscopic dynamics is described
by the Thiele collective coordinate approach,25–28which con-
siders the vortex as a rigid structure not having internal de-
grees of freedom.1 However recent experimental and theoret-
ical studies7,11,29–34 indicate phenomena which cannot be
explained using such a simple picture. One striking example
is the switching of the vortex polarization,7,11,30–33 where
coupling occurs between the vortex motion and oscillations
of its core. Another one is the cycloidal oscillations of the
vortex around its mean path29,34 where the dynamics of the
vortex center is strongly coupled to spin waves. In this way
the internal dynamics of the vortex plays a vital part. One of
the first attempts to take into account the internal structure of
vortices was presented in Ref. 35 which showed that a varia-
tion of the core radius slaved to the position explained the
motion of a vortex pair across an interface between two ma-
terials of different anisotropy. Some progress has been
achieved in Ref. 36 where we have confirmed that internal
degrees of freedom play a crucial role in the dynamics of
vortices driven by an external time-dependent magnetic field
in a classical spin system.

Here we present a complete study of this problem using
direct numerical simulations of the spin system and a collec-
tive variable theory which includes an internal mode. We
show that the periodic forcing of the system by the time-
dependent magnetic field together with the damping stabi-
lizes the vortex in a finite domain. This limit cycle exists
because of the interplay between the magnetization and the
vortex position so that it is essential to include an internal
mode in the collective variable theory to describe it. When
this is done, the theory yields the domain of stability in pa-
rameter space and the main dependencies on the field ampli-
tudeB and frequencyv. It can be seen as a one of the first
generalizations to vortices of the collective variable theories
developed for 1D Klein-Gordon kinks by Rice37–39 which
include the width of the kink together with its position.
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In the next section we formulate the continuum model,
discuss the role of different types of interactions, and briefly
review the main results on the structure of the vortex solu-
tion. The vortex motion without external field is examined in
Sec. III. It follows a spiral orbit as a result of the competition
between the gyroforce, the Coulomb force, and the damping
force. In Sec. IV with the ac driving, numerical simulations
show that the vortex converges to a stable limit cycle. We
give its boundaries in parameter space and indicate how the
radius and frequency of the vortex orbital motion depends on
the field and geometry parameters. Section V presents and
discusses in detail thenew collective variable theoryof the
observed vortex dynamics which takes into account the cou-
pling between an internal shape mode and the translational
motion of the vortex position. In Sec. VI we link this with
the individual spin motion observed in the simulations and
indicate how these effects can be observed and used in real
nano magnets.

The model we consider is a ferromagnetic system with
spatially homogeneous uniaxial anisotropy, described by the
classical Heisenberg Hamiltonian

H0 = −
J

2 o
sn,n8d

sSn ·Sn8 − dSn
zSn8

z d +
K

2o
n

sSn
zd2. s1d

Here Sn;sSn
x ,Sn

y ,Sn
zd is a classical spin vector with fixed

length S on the siten of a two-dimensional square lattice,
and the exchange integralJ.0 for a ferromagnet. The first
summation runs over nearest-neighbor pairssn ,n8d. We as-
sume a small anisotropy leading to an easy-plane ground
state. This anisotropy can be either of the exchange type,
with 0,d!1, or of the on-site type, with 0øK!J.

Extending ideas of Ref. 36 we study the movement of a
vortex in this system under the action of a magnetic field
Bstd=sBcosvt ,Bsinvt ,0d, which is spatially homogeneous
and is rotating in the plane of the lattice. This field adds an
interaction of the form

Vstd = − gBo
n

sSn
x cosvt + Sn

y sinvtd, s2d

whereg=2mB/" is the gyromagnetic ratio.
The spin dynamics is described by the Landau-Lifshitz

equations with Gilbert damping

dSn

dt
= − FSn 3

]H
]Sn

G −
«

S
FSn 3

dSn

dt
G , s3d

where H=H0+Vstd is the total Hamiltonian. Equations3d
preserves the length of the spinsuSnu;S, which has units of
action. Another form of Eqs.s3d more suitable for spin dy-
namics simulations is given in Appendix A.

II. CONTINUUM LIMIT

In the case of weak anisotropiesd!1, K!J, the charac-
teristic size of excitationsl0=aÎJ/ s4Jd+Kd is larger than the
lattice constanta, so that in the lowest approximation on the
small parametera/ l0 and weak gradients of magnetization
we can use the continuum approximation for the Hamil-
tonian s1d

H0 ; H0 − E0 =
JS2

2
E d2xFs¹sd2 +

m2

l0
2 G , s4d

whereE0 is a constant. The spin length has been rescaled so
that

s= S/S= sÎ1 − m2cosf;Î1 − m2sinf;md s5d

is a unit vector. The lengthl0 coincides with the radius of the
vortex core obtained in Ref. 28 for on-site anisotropy type
alonesd=0d. For the case of exchange anisotropy alonesK
=0d, it is also customary to use the lengthrv=aÎs1−dd /4d,
which is obtained from an asymptotic analysis and is to be
identified later with the radius of the “core” of a vortex.40,41

However, for the range ofd we are interested in, i.e., ford
&0.1, the difference betweenrv and l0 is negligible.

The interaction with a homogeneous time-dependent mag-
netic field is expressed as

Vstd = −
JS2

l0
2 E d2xfsbstd ·ssr,tddg

= − JS2bE d2jÎ1 − m2 cossf − ntd. s6d

In order to simplify notations we use here and below the
dimensionless coordinatej; r / l0, the dimensionless timet
;v0t, the dimensionless driving frequencyn=v /v0 and the
dimensionless magnetic fieldb=gB /v0,

42,43 where

v0 = Ss4Jd + Kd. s7d

In all real magnets there is, in addition to short-ranged
interactions, a long-ranged dipole-dipole interaction. In the
continuum limit this interaction can be taken into account as
energy of an effective demagnetization fieldH smd

Esmd = −E d2xM ·H smd,

whereM is the magnetization. Generally, this field is a com-
plicated functional ofM. However, in the case of a thin
magnetic film sor particled the volume contribution to the
demagnetization field is negligible, and only surface fields
are important. The face surfaces produce a local fieldH smd

=−4pM0ez for the sample with the saturation magnetization
M0. Then the dipole-dipole interaction can be taken into ac-
count by a simple redefinition of the anisotropy constants
K→Keff=K+4pM0

2a2/S2, leading to a new magnetic
length44

l0 → l0
eff = aÎ J

4Jd + K + 4pM0
2a2/S2 . s8d

This is the case of so-called configurational or shape
anisotropy.5,14,45 The lateral surface affects only the bound-
ary conditions, see Refs. 46 and 47 for details. For example,
for a very thin magnetic particle, which corresponds to our
2D system, free boundary conditions are valid, and we will
use them in the paper.

Thus, the total energy functional, normalized byJS2,
reads
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Efsg =E d2jF s¹sd2

2
+

m2

2
− sb ·sdG , s9d

where we have rescaled the magnetic length in accordance
with Eq. s8d. The continuum version of the Landau-Lifshitz
Eq. s3d becomes

]f

]t
=

dE
dm

+
«

s1 − m2d
]m

]t
, s10ad

]m

]t
= −

dE
df

− «s1 − m2d
]f

]t
. s10bd

These equations can be derived from the Lagrangian

L = −E d2js1 − md
]f

]t
− Efsg s11d

and the dissipation function

F =
«

2
E d2jS ]s

]t
D2

=
«

2
E d2jF 1

1 − m2S ]m

]t
D2

+ s1 − m2d

3S ]f

]t
D2G . s12d

Then Eqs.s10d result explicitly in

]f

]t
= −

ms=md2

s1 − m2d2 + mf1 − s=fd2g −
Dm

1 − m2

+
bmcossf − ntd

Î1 − m2
+

«

s1 − m2d
]m

]t
, s13ad

]m

]t
= = fs1 − m2d = fg − bÎ1 − m2sinsf − ntd

− «s1 − m2d
]f

]t
. s13bd

Without magnetic field the ground state of the system is a
uniform planar statem=0 andf=const. The field changes
essentially the picture: spins start to precess homogeneously
in the XY plane, f=w+nt. Such a precession causes the
appearance of az component of magnetization,m=const.
From Eqs.s13d, we find that the equilibrium values ofm and
f satisfy the following equations:

S1 −
n

m
D2

+ «2n2 =
b2

1 − m2 , s14ad

− b sinf − «nÎ1 − m2 = 0, s14bd

so that this state can only exist ifbù«n sotherwise only the
ground state withm=0 and f=const existsd. Assumingm
!1, we obtain

m<
n

1 −Îb2 − «2n2
, f = nt + p + arcsin

«nÎ1 − m2

b
.

s15d

Note how the magnetizationm is proportional to the field
frequencyn so that its sign is important. Below we discuss
the role of this homogeneous solution in the vortex dynam-
ics.

The continuum analog of the power-dissipation relation
sA2d for the total energy functionalEfsg is calculated from
Eqs.s11d and s12d and gives

dE
dt

= − 2F − W, W =E d2jSs ·
db

dt
D . s16d

Formally, Eqs.s14d have two solutions. One can check that
only for the solutions15d the dissipation balances the work
done by the field, so that the energyE tends to be stabilized.

Static vortices. The simplest nonlinear excitation of the
system is the well-known nonplanar magnetic vortex. We
recall briefly the structure of a single static vortex at zero
field. In this case the pair of functionssm,fd satisfies the
Eqs.s10d with the time derivatives set to zero andb=0. If we
look for planar solutionssm=0d for the f field, Eq. s10bd
becomes the Laplace equation. For the vortex solution lo-
cated atZ=X+ iY=RexpsiFd the f field has the form

fszd = w0 + q argsz− Zd, s17d

wherez=x+ iy is a point of theXY plane,qPZ is the p1
topological charge of the vortexsvorticityd. We will call the
solution with q=1 a vortex and the solution withq=−1 an
antivortex. The expressions17d does not satisfy the boundary
conditions for a finite system. For our circular system of
radius L sin units of l0d and free boundary conditions the
solution is34

f = argsz− Zd − argsz− ZId + argZ, s18d

where the “image” vortex is added atZI =ZL2/R2 to satisfy
the Neuman boundary conditions. The last term in Eq.s18d is
inserted to have the correct limit forL→`.

The m field has radial symmetrym;cosusr;uz−Zud.
From Eqs.s13ad and s17d one can derive thatus•d satisfies
the following differential problem:

d2u

dr2 +
1

r

du

dr
+ sinu cosuS1 −

1

r2D = 0, s19ad

cosus0d = p, cosus`d = 0, s19bd

wherep= ±1 is the so-called polarity of the vortex. The so-
lution of this differential problem is a bell-shaped structure
with a width in the order ofl0.

III. VORTEX MOTION AT ZERO FIELD

A standard description for the steady movement of mag-
netic excitations was given first by Thiele.25,26 Huber,27 and
Nikiforov and Sonin28 first applied this approach to the dy-
namics of magnetic vortices, using a traveling wave ansatz
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ssz,td=sfz−Zstdg. In terms of the fieldsm and f such an
ansatz is

msz,td = cosufuz− Zstdug, s20ad

fsz,td = argfz− Zstdg − argfz− ZIstdg + argZstd,

s20bd

where the functionus•d describes the out-of-plane structure
of the static vortex, and is the solution of Eqs.s19d. To derive
an effective equation of the vortex motion for the collective
variable Rstd=fXstd ,Ystdg, we project the Landau-Lifshitz
Eqs. s10d over the lattice using ansatzs20d. We obtain a
Thiele equation in the form of a force balance1

Gfez 3 Ṙg − 2phṘ + F = 0, s21d

where the overdot indicates derivative with respect to the
rescaled timet. The first term, the gyroscopic force, acts on
the moving vortex and determines the main properties of the
vortex dynamics. The value of the gyroconstant is well
knownG=2ppq,27,28 in our case for the vortex with positive
polarity and unit vorticityG=2p. The second term describes
the damping force with a coefficient27,48

h =
1

2
«sln L + C1d, s22d

whereC1<2.31 is a constant coming from them field and is
calculated in the appendix, see formulasB13d. The lnL de-
pendence inh was obtained in Ref. 27.

The last term in Eq.s21d is an external force, acting on the
vortex,F =−=RE, whereE is the total energy functionals9d.
Without magnetic fieldsb=0d such a force appears as a result
of boundary conditions, it describes the 2D Coulomb inter-
action between the vortex and its image

Eint = E0 + p ln
L2 − R2

L
, s23d

whereE0<p is the energy of the vortex core.34

In order to generalize the effective equations of the vortex
motion for the case of the magnetic field we derive now the
same effective equations by the effective Lagrangian tech-
nique as it was proposed in Refs. 33, 35, and 36. Inserting
ansatzs20d into the “microscopic” Lagrangians11d and the
dissipative functions12d, and calculating the integrals, we
derive an effective Lagrangianssee Appendix B for the de-
tailsd

L = − pR2Ḟ − Eint. s24d

In the same way we derive the effective dissipative function

F = phṘ2 = phsṘ2 + R2Ḟ2d. s25d

The equations of motion are then obtained from the Euler-
Lagrange equations

]L
]Xi

−
d

dtS ]L
]Ẋi

D =
]F
]Ẋi

s26d

for the Xi =hR,Fj,

Ḟ + h
Ṙ

R
=

1

L2 − R2 , s27ad

Ṙ

R
= hḞ. s27bd

This set of equations is equivalent to the Thiele Equation
s21d, when going to polar coordinates.

For zero dampings«=0d two radial forces act on the vor-
tex sgyroforce and Coulomb forced and compensate each
other, providing pure circular motion of the vortex. In that
case the radiusR of the orbit is arbitrary. Using Eqs.s27d it
is easy to calculate the frequency of this circular motion for
a givenR, see Ref. 1:

VsRd =
1

L2 − R2 . s28d

When the damping is present, there appears an additional
damping force which cannot be compensated by other forces.
Thus the trajectory of the vortex becomes open ended, fol-
lowing the logarithmic spiral from Eq.s27bd:

F − F0 =
1

h
ln

R

R0
, s29d

whereR0 andF0 are constants.

IV. NUMERICAL SIMULATIONS OF THE VORTEX
DYNAMICS

To investigate the vortex dynamics, we integrate numeri-
cally the discrete Landau-Lifshitz equationssA1d over square
lattices of size s2Ld2 using a fourth-order Runge-Kutta
scheme with time step 0.01. Each lattice is bounded by a
circle of radiusL on which the spins are free corresponding
to a Neuman boundary condition in the continuum limit. In
all cases the vortex is started near the center of the domain
and the field and damping are turned on adiabatically over a
time interval of about 100. We have only considered vortices
of fixed polarityp=1. More details on the numerical proce-
dure and in particular the vortex tracking algorithm can be
found in Ref. 33.

We have fixed the exchange constantJ=1 as well as the
spin lengthS=1. All cases presented here are for the aniso-
tropy d=0.08, corresponding tol0<1.77a so that we are
close to the continuum limit. The lattice radii we consider
here are 20a,L,100a.

To validate the simple theory presented in the previous
section we considered the case with no magnetic field. In the
absence of damping the vortex should follow a circular orbit
and its frequency of rotation should be given by Eq.s28d.
Starting with a vortex initial condition form andf given by
Eq. s20d, it is possible to “prepare” circular trajectories of
arbitrary radius by applying damping. This kills all spin
waves coming from the imperfect initial condition and drives
the vortex to the selected radius following the spirals29d.
Once the chosen radius is reached, damping is turned off
adiabaticallyover a time greater than 100s1/«d and the vor-
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tex will keep its circular orbit indefinitely. Such a scenario is
shown in Fig. 1.

We now analyze the spiral trajectories obtained when
damping is present. In Fig. 2 we plot the measured angle of
rotation F sin radiansd as a function the logarithm of the
measured radiusR for four values of damping. The vortex is
started every time from the same placesF0=p /2, R0=3ad in
the lattice. The behavior given by the spin simulation shown
by full lines agrees well with the relations29d given by

dashed lines. Note that the constantC1 is important to obtain
a quantitative agreement because it is of the same order as
the term lnL.

To study the vortex dynamics in the presence of the rotat-
ing field, we extend the simulations described in Ref. 33.
There we investigated the dynamics of the out-of-plane
structure of the vortex, focusing on the phenomenon of
switching, which occurs whennp,0. Here we consider vor-
tices with positive polarityp=1 andn.0 so that no switch-
ing occurs.

For simplicity we fixed the damping«=0.01 in Eq.s3d
and varied the parameterssb,n ,Ld. We checked that the ef-
fects reported here occur for a range of anisotropies and
damping around these values. Given a combination of the
parameterssn ,bd of the field, the radiusL of the system and
the damping«, we have observed that either the vortex es-
capes from the system through the border or it stays inside
for all times. In the latter case, it can approach a limit cycle
for a broad range of the field parameters. Figure 3 shows two
vortex trajectories starting from different positions and con-
verging to the same circle. When the limit cycle exists, its
basin of attraction is very large as can be seen by starting the
vortex at different positions and seeing it converge to the
same circle. In other words, the system keeps no memory of
the initial position of the vortex.

To exist, the limit cycle needs both magnetic field and
damping: once it is attained, switching off or changing either
of them destroys immediately the circular trajectory. For
fixed n and L, when the intensityb is not large enough,
damping dominates and the vortex escapes from the system
following a spiral, as explained in the previous section. Ifb
is too large, the vortex will also escape due to an effective
drift force caused by the field, which changes its direction
slowly enough, relative to the movement of the vortex. This
is the case when the frequency is very small, such that the

FIG. 1. Trajectory of a vortex at zero field for a time interval
0, t,104. The damping«=0.01 was switched off att=1600. The
vortex with q=p=1 was launched fromZ=20.5a+ i23.5a on a lat-
tice of radiusL=20a<11.3. “Clean” circular trajectories, where the
vortex is free of spin waves, are obtained with this method. In the
whole study the anisotropy is set tod=0.08. The damping is«
=0.01.

FIG. 2. sColor online.d Azimuthal angleF of the vortex position
as a function of the logarithm of the radial positionR for four
different values of the damping«. The lattice radius isL=20a
<11.3.

FIG. 3. sColor online.d Two trajectories of a vortex from simu-
lations of the many-spin models1d–s3d, on a lattice of radiusL
=78a<44, with a rotating fieldsn=0.125,b=0.002d. For this field,
all trajectories converge to the same circle independently of the
vortex’s initial position, provided it is not too close to the system
border.
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field is practically static. If both the intensity and the fre-
quency are too large, the field will destroy the excitation
creating many spin waves and also new vortices can be gen-
erated from the boundary. Many seemingly chaotic trajecto-
ries can be observed for high values of field parameters. To
determine the limit cycle, the value of the damping is not as
critical as the field parameters. For example, increasing the
damping up to five times its values«=0.002 to 0.01d did not
significantly change the limit cycle shown in Fig. 3 but only
accelerated the reaching of it. At this point note that there is
no resonant absorptionof the energy in the ac field unlike
the predictions of Ref. 23. The field just drives the vortex
with the frequencyV, which is always lower than the fre-
quencyv of the ac field.

All these extreme cases constrain the size and shape of the
regimes where circular limit trajectories appear in the space
of field parameterssn ,bd. In Fig. 4 we show for a system
radiusL=36a this parameter plane and point out where the
vortex escapes or gives rise to a limit cycle or confined orbit.
Similarly to what we found in the study of switching,33 we
also find “windows,” i.e., events which are not expected in a
particular regionffor instance, the pointsn=0.1, b=0.02d in
the diagramg. The zoom in of any region of the diagram
containing windows shows again a similar behavior. We can
also observe that the vortex is sensitive to small variations of
the field parameters, and that its behavior is not monotonous
sfollow, for example, the lineb=0.025 for increasing fre-
quenciesd.

When L is varied, there can appear “windows” where
there is no limit cycle. For example, forL=36a, n=0.1, b
=0.02 the vortex escapes from the system, while forL
=24a,30a, on one side andL=42a,48a,54a, . . ., on the
other side, the vortex reaches a limit cycle.

In the rest of this work we will concentrate on the circular
limit cycle. Figures 5 and 6 show the dependence of the
vortex radial positionR and azimuthal frequencyV as a
function of the system radiusL for a fixed field frequency
n=0.094 and four amplitudesb. The linear dependence ofR

on the system sizeL is very clear from Fig. 5 for the whole
range 11,L,56. Figure 6 shows the frequencyV of the
vortex orbit as a function of 1/L. The dependence is linear
for L.30 but not for smallerL indicating a possible size
effect. The points missing in the two figures forL=20 and
b=0.0187 correspond to a vortex escaping from the system.

For a fixed system sizeL the features of the limit cycle
depend on the values of the field frequencyn and amplitude
b. In Fig. 7 we plot the radiusR of the limit cycle as a
function of the inverse 1/n of the frequency of the applied
field. For large frequencies one can see that the radius tends
to a constant which is proportional to the amplitudeb. For
low frequencies the radius increases sharply. In this case
damping plays a larger role than mentioned above.

In Fig. 8 we plot the frequencyV of the orbital motion of
the vortex as a function of the field frequencyn for four
values of the field amplitudeb. The diagonal is shown on the
upper left corner of the picture and indicates thatV!n.

FIG. 4. sColor online.d Diagram of types of trajectories in the
sv ,Bd parameter plane corresponding in thesn ,bd plane to the
range 0,n,0.3 and 0,b,0.033. The radius of the system isL
=36a<20. The term “confined” means that no limit cycle was
reached, though the vortex stayed inside the system, during the time
of observationt&6400.

FIG. 5. sColor online.d Radius of the vortex orbitR vs the sys-
tem radiusL, in the circular limit cycle, for a fixed field frequency
n=0.094 and several amplitudesb. The lines are there to guide the
eye. Here and in the next figuresR andL are given in units ofl0.

FIG. 6. sColor online.d Frequency of the vortex orbitV vs the
inverse system radius 1/L, in the circular limit cycle, for a fixed
field frequencyn=0.094 and several amplitudesb.
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Although most trajectories which converge to limit cycles
end up in a circular orbit around the center of the system, we
have observed a few cases of a limit cycle that is not circular
as shown in Fig. 9sad. Some chaotic confined trajectories can
also be found as shown in the bottom panel of Fig. 9sbd.

V. THEORETICAL DESCRIPTION OF THE VORTEX
MOTION WITH ROTATING FIELD

To describe analytically the observed vortex dynamics, a
standard procedure is to derive Thiele-like equations, as it
was done in Sec. III without field. Due to the field there
appears the following Zeeman term in the total energyssee
Appendix C for detailsd:

Vstd < pbRLcossF − ntd. s30d

When the vortex reaches the limit cycle, the total energy is
constant. We have checked this fact in our simulations, cal-
culating the power-dissipation relationsA2d. For a vortex,
which moves according to the Thiele ansatz, the power-
dissipation relations16d takes the form

FIG. 7. sColor online.d Radius of the vortex orbitR vs the in-
verse 1/n of the frequencyn of the rotating magnetic field for four
different amplitudes of the field. The radius of the system isL
=36a<20.

FIG. 8. sColor online.d Frequency of the vortex orbitV vs the
frequencyn of the rotating magnetic field for four different ampli-
tudes of the field. The diagonal plotted in the upper left corner
corresponds to the lineV=n. The radius of the system isL=36a
<20.

FIG. 9. Two different kinds of confined vortex trajectories that
are not circular, occurring for large field amplitudes and frequen-
cies. In the top panel the radial positionRstd of the vortex is peri-
odic while it is chaotic in the bottom panel.

VORTEX MOTION IN A FINITE-SIZE EASY-PLANE… PHYSICAL REVIEW B 71, 134420s2005d

134420-7



dE
dt

= − phṘ2 + pbnRLsinsF − ntd.

The energy can tend to a constant value only whenḞ=n, so
the frequency of the vortex motion should be equal to the
driving frequency. Thus the standard Thiele approach cannot
provide the circular motion of the vortex with the orbit fre-
quencyV,n we have observed in our simulations, see pre-
vious section. The reason is that the field excites low-
frequency quasi-Goldstone modes,30,33 which can couple
with the translation mode.32 Therefore it is not correct to
describe the vortex as a rigid particle and it is necessary to
take into account the internal vortex structure.

To describe the approach to the limit cycle we now gen-
eralize the collective variable theory to take into account an
internal degree of freedom of the vortex. Because the mag-
netic field changes thez component of the magnetization and
generates a new ground state, it is natural to include into the
m field an additional degree of freedom. To comply with the
new ground states15d we add to thef field s20bd a time-
dependent phaseCstd describing homogeneous spin preces-
sion. Cstd can be understood as the generalization of an
arbitrary constant phase which could be added in Eq.s20bd
without changing the dynamics. However, this constant
phase does influence the dynamics if there is a constant in-
plane magnetic field, which breaks the rotational symmetry
in the xy plane.49

The ansatz that we choose is

msz,td = cosuS uz− Zstdu
lstd

D , s31ad

fsz,td = argfz− Zstdg − argfz− ZIstdg + argZstd + Cstd,

s31bd

which describes a mobile vortex structure similar to Eq.s20d,
but including a precession of the spins as a whole, through a
time-dependent phaseCstd and a dynamics of the vortex
core, through the core widthlstd. The latter allows a varia-
tion of the z component of the magnetization. We will see
that in the Lagrangian the two variablesl andC are conju-
gate to each other so that one needs to introduce them to-
gether.

We find it convenient to use in the following, instead of
lstd, thez component of the total spin

Mstd =
1

p
E d2xmsz,td = M0l

2std, s32d

which is related to the total number of “spin deviations” or
“magnons,” bound in the vortex.50 HereM0

M0 = 2E
0

`

rdr cosusrd < 2.75 s33d

is related to the characteristic number of magnons bound in
the static vortex. Note that without dissipation and for zero
field, M is conserved. The field excites an internal dynamics,
changing the number of bound magnons and the total spin
M.

To construct effective equations we use the same varia-
tional technique as in Sec. III. In addition to the “vortex
coordinates”hR,Fj, we consider two “internal variables”
hM ,Cj so that our set of collective variables is

Xi = hRstd,Fstd,Mstd,Cstdj. s34d

One can derive the effective Lagrangian of the system by
inserting ansatzs31d into the full Lagrangians11d, and cal-
culating the integrals, see Appendix C for details:

L
p

= MĊ − R2Ḟ − ln
L2 − R2

L
+

1

2
Sln

M

M0
−

M

M0
D

− bLRfSR

L
DcossF + C − ntd. s35d

In the same way one can derive an effective dissipative func-
tion

F
p

=
«

2
FsṘ2 + R2Ḟ2dSC1 +

1

2
lnsL2 − R2d −

1

2
ln

M

M0
D

+ Ċ2SL2 −
M

M0
D + 2R2ḞĊ +

C2Ṁ
2

MM0
G , s36d

where the constantsC1 andC2 are introduced in Eqs.sB13d
and sC10d, respectively. From the Euler-Lagrange equations
s26d for the set of variabless34d we obtain finally

Ṙ=
«R

2
FḞSC1 +

1

2
lnsL2 − R2d −

1

2
ln

M

M0
D + ĊG

−
bL

2
fSR

L
DsinsF + C − ntd, s37ad

Ḟ =
1

L2 − R2 −
«Ṙ

2R
SC1 +

1

2
lnsL2 − R2d −

1

2
ln

M

M0
D

−
bL

2R
gSR

L
DcossF + C − ntd, s37bd

Ṁ = − «FR2Ḟ + ĊSL2 −
M

M0
DG + bLRfSR

L
DsinsF + C − ntd,

s37cd

Ċ =
1

2
S 1

M0
−

1

M
D + «C2

Ṁ

MM0
. s37dd

To integrate numerically the differential algebraic system
s37d, one needs to solve at each step a linear system; we used
the MAPLE software51 which includes such a facility. The set
of Eqs.s37d describes the main features of the observed vor-
tex dynamics, and yields the circular limit cycle for the tra-
jectory of the vortex center, see Fig. 10. Let us note that Eqs.
s37ad and s37bd reduce to the Thiele equations for the coor-
dinatessR,Fd of the vortex center whenM andC are omit-
ted and in this case no stable closed orbit is possible. Only
including the internal degrees of freedomsM ,Cd can one
obtain a stable limit cycle.
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In the parameter planesn ,bd shown in Fig. 11 we indicate
the two main types of trajectories found by numerical inte-
grating Eqs.s37d. Vortex trajectories converge to a limit
cycle only forb&n /2 sred domaind. When the amplitude of
the rotating fieldb lies above the critical curve, the vortex
escapes from the system along a spiral trajectorysblue do-
maind. The model has no lower boundary for the limit cycle.
However when the amplitude of the field lies below the criti-
cal curvesdashed line in Fig. 11d, the radius of the vortex
orbit can become less than the lattice constantsgreen do-
maind. In this case discreteness effects are important for the
spin system, so the model can no longer be adequate.

In Fig. 12 we show the radius of the vortex orbitR on the
circular limit cycle as a function of the system sizeL, ob-
tained from the numerical solution of Eqs.s37d. Notice the
linear dependenceR~L similar to the one observed in the
numerical simulationsssee Fig. 5d.

To analyze the main features of the model we simplify it,
assuming that the vortex orbit is never close to the system

border sR!Ld and that the totalz component of the spin
varies weakly so thatN;sM −M0d /M0!1. Then one can
simplify the expressions for the Lagrangian and dissipative
function where the common factorp has been omitted:

L = M0NĊ − R2Ḟ +
R2

L2 −
N2

4
− bRLcosD, s38ad

F = hsṘ2 + R2Ḟ2d + «
L2

2
Ċ2 + «R2ḞĊ, s38bd

whereD;F+C−nt, andh was defined in Eq.s22d.
The equations of motion which result from Eq.s38d have

the simple form

Ṙ= hRḞ −
bL

2
sinD + «

R

2
Ċ, s39ad

Ḟ =
1

L2 − h
Ṙ

R
−

bL

2R
cosD, s39bd

M0Ṅ = − «L2Ċ + bRLsinD − «R2Ḟ, s39cd

2M0Ċ = N. s39dd

The set of Eqs.s39d describes two damped periodically
forced oscillators, described by two couples of variables
sR,Fd andsN,Cd. Under the action of forcing these oscilla-
tors can phase lock and induce the limit cycle. The numerical
study of Eqs.s39d reveals three different types of behaviors
as a function of the field amplitudeb for a fixed frequencyn.
We choosen=0.06. For a smallb=3310−4, the phaseD
increases linearly with time,N oscillates, andR increases
very slowly without stabilization. When the amplitude is
large such asb=0.12, D tends to −p, N becomes negative
and then goes back to about 0,R increases indefinitely. For
b=3310−4, N tends to a positive constant,D tends top so

FIG. 10. sColor online.d Two trajectories of a vortex from the
collective variable Eqs.s37d, starting from different initial positions.
Red line:Rs0d=a, Fs0d=5p /4, Cs0d=p /4. Blue line:Rs0d=10a,
Fs0d=5p /4, Cs0d=p /4. Other parameters:b=0.002,n=0.125,«
=0.01, andd=0.08. System radius:L=78a<44.

FIG. 11. sColor online.d The two types of trajectories observed
in the sn ,bd field parameter plane for the collective variable Eqs.
s37d. The parameters are«=0.01, d=0.08, and system radiusL
=36a<20.

FIG. 12. sColor online.d Radius of the vortex orbitR vs the
system sizeL, in the circular limit cycle for the collective variable
Eqs.s37d for a field frequencyn=0.06. The other parameters are the
same as in Fig. 11.
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that terms inṘ balance and we have the limit cycle. One can
see that the dynamics of the couplesN,Cd is fast with a
typical relaxation time of about 1/«L2 while the dynamics of
the couplesR,Fd is slow and depends on the initial position
R0. The limit cycle is obtained forR0,0.6L, outside that
rangeR increases indefinitely.

When the solution of the system of Eqs.s39d converges to
a limit cycle, we have

Ṙ= Ṅ = 0, Ḟ ; V = const, Ċ = n − V. s40d

In that case we obtain the following three algebraic equa-
tions:

2Rsn + AVd = bLsinD, s41ad

«Lsn − Vd = bRsinD, s41bd

− 2RV = bLcosD, s41cd

whereA=C1−1+lnL. Extracting the sinD term from the first
and second equation, we obtain the frequency of the vortex
motion

V <
n

1 + AR2/L2 . s42d

We now eliminate the sine and cosine terms from Eqs.s41ad
ands41cd, resulting inR<bL/2V. Combining with Eq.s42d
one has

V <
n + În2 − Ab2

2
. s43d

This value is smaller than the driving frequencyn in accor-
dance with our simulations. However, it is not proportional
to 1/L as in the spin simulations. For the radius of the limit
cycle we have finally

R<
bL

n + În2 − Ab2
<

bL

2n
. s44d

The radius of the vortex orbitR depends linearly on the
system size in good agreement with the results of the simu-
lation, see Sec. IV. It also bears the proportionality to 1/n
observed in the spin dynamics.

The range of parameters, which admits limit cycle trajec-
tories, can be estimated from the natural conditionR,L,
which gives b,2n. However, there exist stronger restric-
tions for the limit cycle. The solutions43d is real snot com-
plexd only whenn2−Ab2.0. Another limit for the param-
eters is obtained from the natural conditionRl0.a
sdiscreteness effects are important thered. Thus the range of
parameters, which admits the limit cycle trajectories can be
estimated as follows:

2a

l0L
,

b

n
, û s45d

with û=1/ÎA=1/ÎC1−1+lnL.
For the parameters considered in Fig. 11û<0.48 so that

the estimates45d agrees with the boundaryb<n /2 shown in

the figure. From the above expressions one can estimateĊ
on the limit cycle as

Ċ <
n − În2 − Ab2

2
,

which shows that the change in magnetizationN=2M0Ċ due
to the internal variables is small. It is nevertheless crucial for
obtaining the limit cycle.

VI. DISCUSSION

Another way to understand the vortex dynamics is to ana-
lyze the movement of individual spins. In a set of simula-
tions, we recorded the components of some individual spins
to observe their time evolution. We consider a large enough
time so that the vortex reaches the limit cycle. For the Fou-
rier spectrum of thez component of individual spins we have
observed some peaks, which appear naturally with the fre-
quency of the limit cycleV. Every time the vortex passes
close to the spins, the spins feel a lick upwards. The behavior
of fstd for several spins is shown in Fig. 13. When the
vortex has reached its limit cycle, i.e., fort.500 the spins
behave differently whether they are inside or outside the vor-
tex orbit. Inside,f is quite regular and increases linearly
with time at a rate given byn, with f<w0+nt. This is
shown by the three upper curves in Fig. 13 fort.500 which
is the time taken by the vortex to settle on its orbit. Outside
the orbit and fort.500, the increase off is more irregular
as shown by the three lower curves in Fig. 13. There the
Fourier spectrum offstd has a main frequencyv−V to-
gether with additional peaks atv±nV wheren is an integer.

Our collective variable theory describes this effect as we
show now. We assume that the vortex has reached the limit
cycle so that the variablesF andC fulfil the relationss40d.
According to the ansatzs31bd, on the limit cycle the dynami-
cal variablef can be written as

FIG. 13. sColor online.d Time evolution of thef field for spins
inside and outside the vortex orbit, once the vortex has reached a
circular limit cycle. The parameters aren=0.1, b=0.02, andL
=48a<27. Inside spins are located ats25a,25ad, s27a,25ad,
s29a,25ad, and the outside spins are ats31a,25ad, s33a,25ad,
s47a,25ad.
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fsz,td = w0 + nt + argfz− Zstdg − argfz− ZIstdg. s46d

We consider the vortex to be far from the boundary, i.e.,R
!L. Then the radius of the image-vortex trajectory isRI
=L2/R@L, and for any uzu,L the last term in Eq.s46d
argfz−ZIstdg<p+Fstd, so

fsz,td = w̃0 + sn − Vdt + argfz− Zstdg. s47d

If we consider a spin, situated at a distanceuzu.R, the last
term in Eq. s47d describes only small oscillations on the
background of the main dependencefsz,td=w̃0+sn−Vdt.
At the same time for a spin located atuzu,R, this term is
decisive. Let us consider the limiting case of a spin situated
near the center of the system. Then argfz−Zstdg<p+Fstd,
and Eq.s47d can be simply written asfsz,td=w0+nt. Thus,
the two regimes for the in-plane components of the spins are
well pronounced, which is confirmed by our simulations, see
Fig. 13.

In a wide range of parameters the vortex moves along a
limit circular trajectory. When the intensity of the ac field
exceeds a critical valueb.ûn, the vortex escapes through
the boundary and annihilates. This process is important for
practical applications, because vortices are known to cause
hysteresis loop in magnetic nanostructures.14 Usually static
fields are considered in the experiments and these cause a
hysteresis of theMxsHxd loop, see, e.g., Refs. 6, 10, 12, and
17. The saturation field in the static regime to obtain a hys-
teresis is aboutv0/g sin dimensionless unitsb,1d. In this
article we consider an ac driving of the vortex, which causes
a dynamical hysteresis,Mx as a function of the intensity of
the ac fieldb. Typical fields for vortex annihilation,b,ûn
!1, are much weaker than in the static regime. It is then
much easier to destabilize the vortex with an ac field than
with a dc field.

Let us make some estimates. We choose permalloysPy,
Ni80Fe20d magnetic nanodots.6,17 The measured value ofMs
=gSL2/a2=770 G, the exchange constantA=JS2=1.3
310−6 erg/cm, andg /2p=2.95 GHz/kOe.9 Typical fields
of the vortex annihilationb,ûn, which is about some tens
of Oe.

Another important fact can be seen from Fig. 12: the vor-
tex is unstable in small magnetic dots, the typical minimal
size Lmin,5. For the Py magnetic dot with the magnetic
lengthl0=5.9 nm,9 the minimal size for the vortex state mag-
netic dot under weak ac driving is aboutLminl0,30 nm. This
means that for magnetic dots with diameters less than 60 nm
the vortex state is unstable against the ac field giving rise to
a single-domain state.

In conclusion, we developed a collective variables ap-
proach which describes the vortex dynamics under a periodic
driving, taking into account internal degrees of freedom. To
our knowledge, it is the first time that an interplay between
internal and external degrees of freedom, giving raise to the
existence of stable trajectories, is observed in the case of 2D
magnetic structures. This ansatz givessup to a factor of 2d
the radius of the limit cycle. Also the dependencies ofR on
the system sizeL, the field amplitude, and the frequency are
correct. However, the dependence of the vortex orbit fre-
quencyV on the system size is different from the one in the

spin dynamics. Moreover, in the collective variable theory
the magnetization and vortex position variables vary on very
different time scales, this is not the case for the spin dynam-
ics. Despite this we think that this collective variable ap-
proach is very general and can be employed for the self-
consistent description of the dynamics of different 2D
nonlinear excitations, e.g., topological solitons in 2D easy-
axis magnets.52
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APPENDIX A: DISCRETE SPIN DYNAMICS

While Eqs.s3d are convenient for analytical consideration
the presence of the time derivative on both sides makes them
inconvenient for numerical simulations. Equivalent equa-
tions are obtained by forming the cross product of Eq.s3d
with Sn and subtracting the result from Eq.s3d. In this way
we get

s1 + «2d
dSn

dt
= fSn 3 Fng −

«

S
fSn 3 fSn 3 Fngg, sA1d

where Fn=−]H /]Sn is the total effective field; the factor
s1+«2d is usually neglected, or absorbed intoH, giving ef-
fective constantsJ, K, andB.

From the discrete dynamicssA1d one easily derives the
power-dissipation relation for the total energyH=
−onSn ·Fn. We have

dH
dt

= − o
n

Sn
dB

dt
− o

n
Fn

dSn

dt

= − o
n

Sn
dB

dt
+

«

s1 + «2dSo
n

FnfSn 3 fSn 3 Fngg

and finally

dH
dt

= −
«

s1 + «2dSo
n

fSn 3 Fng2 − o
n

Sn
dB

dt
. sA2d

While the first term is always negative, it is the second term
which can give rise to transients in the relaxation to equilib-
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rium, or even the resonances, depending on the parameters of
the time-dependent magnetic field.

APPENDIX B: COLLECTIVE VARIABLE EQUATIONS
WITHOUT FIELD

It is convenient to make calculations in the reference
frame centered on the vortex whose axes are parallel to the
standard frame

x − Xstd = r cosx, y − Ystd = r sinx. sB1d

Viewed from this point, the distance to the circular border of
the system changes as a function of the azimuthal anglex,
see Fig. 14. Every integral over the domainuzu,L can then
be calculated as

E
uzu,L

fsr,add2j = kFsadl, Fsad = 2pE
0

ssad

fsr,adrdr,

wherea=x−F is given by the cosine theorem

ssad = − Rcosa + ÎL2 − R2 sin2a, sB2d

and the averaging meanskFsadl=s1/2pde0
2pFsadda. We

also have the relations

er = excosx + eysinx, sB3ad

ex = − exsinx + eycosx, sB3bd

eR = excosF + eysinF, sB3cd

eF = − exsinF + eycosF. sB3dd

In order to derive an effective Lagrangian we start with
the “microscopic” Lagrangians11d,

L = G − Eint, G = −E d2js1 − mdḟ. sB4d

We will provide all the calculations for the vortex with unit
vorticity q=1 and positive polarityp=1. Using the traveling
wave ansatzs20bd in the form

fsz,td = x − xI + F,

one can calculate the time derivatives in the moving frame
sB1d:

ẋ =
Ṙ

r
sina −

RḞ

r
cosa,

ẋI = −
L2rṘ

R2rI
2 sina +

L2Ḟ

RrI
2
ÎrI

2 − r2 sin2a.

Here rI = uz−ZIstdu, xI =argsz−ZIstdd. In the main approach
for R/L!1, one can simplify an expression forẋI, so finally
we have

ḟ = sṘsin a − RḞ cosadS1

r
+

r

L2D . sB5d

Then the gyroterm in the LagrangianG gives

G = G1 + G2,

G1 = −E d2jḟ

= − 2pṘkfssad − L/3gsinal

+ 2pRḞkfssad − L/3gcosal,

G2 =E d2jmḟ = k0Ṙksinal − k0RḞkcosal,

where the constantk0=2pe0
`cosusrddr. After averaging

with account of the expressions

kssadsinal = 0, kssadcosal = −
R

2
, sB6d

we obtain the gyroterm in the form

G1 = − pR2Ḟ, G2 = 0, sB7d

and finally,G=−pR2Ḟ.
Let us calculate an effective dissipative function, starting

from the “microscopic” dissipative functions12d, which we
cut into two termsF=F1+F2 with

F1 =
«

2
E d2j

ṁ2

1 − m2, F2 =
«

2
E d2js1 − m2dḟ2.

The time derivative of them field can be easily calculated in
the moving framesB1d, using the traveling wave ansatzs20d

ṁ= u8sinusṘcosa + RḞ sinad. sB8d

Calculating integrals forF1 with account of Eq.sB8d, we
derive

FIG. 14. sColor online.d Arrangement of angles in the mobile
frame centered in the vortex with the coordinatesZ=X+ iY
=RexpsiFd.
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F1 =
«p

2
k1sṘ2 + R2Ḟ2d, sB9d

wherek1=e0
`u82srdrdr. In the same way we can deriveF2,

taking into accountḟ from Eq. sB5d,

F2 = «psṘ2ksk2 + lnsdsin2al + R2Ḟ2ksk2 + lnsdcos2al

− RṘḞksk2 + lnsdsin2ald,

k2 =
5

4
+E

0

1 sin2usrd
r

dr −E
1

` cos2usrd
r

dr. sB10d

Using the averages

ksin2a lnssadl = kcos2a lnssadl =
1

2
klnssadl

=
1

4
lnsL2 − R2d sB11d

we calculate the dissipative function in the form

F =
«p

2
FC1 +

1

2
lnsL2 − R2dGsṘ2 + R2Ḟ2d. sB12d

Here the constantC1=k1+k2,

C1 =
5

4
+E

0

1 sin2 usrd
r

dr −E
1

` cos2 usrd
r

dr +E
0

`

u82srdrdr

< 2.31. sB13d

Supposing that the vortex is not close to the boundary, i.e.,
R!L, we obtain the effective dissipative function in the
form s25d.

APPENDIX C: COLLECTIVE VARIABLE EQUATIONS
WITH FIELD

First we calculate an effective Zeeman energy for the
standard Thiele-like motion of the vortex. Inserting the trav-
eling wave ansatzs20d into the “microscopic” Zeeman en-
ergy s6d, and calculating the integrals, we get the effective
energy in the form

Vstd = −
1

2
bE

0

2p

dxfs2sx − Fd − c1gcossf − ntd

= pbRLfSR

L
DcossF − ntd, sC1d

where

fsxd =
4

3p
FEsxdS 1

x2 + 1D − KsxdS 1

x2 − 1DG , sC2d

whereEsxd andKsxd are elliptical integrals. When the vortex
is far from the boundary, which is the case of interest, one

can expand this function into the series,fsxd<1−x2/8. In
the main approach it leads to the Zeeman term in the form
s30d. The corresponding magnetic force

Fh = − =RV = eRpbLgSR

L
DcossF − ntd

− expbRLfSR

L
DsinsF − ntd, sC3d

where the function

gsxd = fsxd + xf8sxd =
4

3p
FKsxdS 1

x2 − 1D − EsxdS 1

x2 − 2DG .

sC4d

For x!1 it has the following expansiongsxd<1−3x2/8.
Let us calculate the same Zeeman energy using the ansatz

s31d. One can derive a Zeeman term similar to Eq.sC1d

Vstd = pbRLfSR

L
DcossF + C − ntd. sC5d

In addition to this direct influence on the system, the mag-
netic field also changes the gyroterm in the effective La-
grangian, and the energy of the system. These changes result
from the internal motion of the vortex throughlstd, and from
the uniform spin precession throughCstd. This does not
change the gyrotermG1, which has the same form as in Eq.

sB7d, but there appears the contributionG2=MĊ. This can
be easily calculated with account of the time derivative

ḟ = Ċ + sṘsina − RḞ cosadS1

r
+

r

L2D . sC6d

The total energy functionals9d can be written in the form
E=E1+E2+E3+V with

E1 =
1

2
E d2j

s=md2

1 − m2 = k1p, sC7ad

E2 =
1

2
E d2js1 − m2ds=fd2 < p ln

L2 − R2

lstdL
, sC7bd

E3 =
1

2
E d2jm2 =

pl2std
2

. sC7cd

The termE2, which describes the interaction between the
vortex and its image, can be derived from Eq.s23d, simply
replacingl0 by lstd. In the last anisotropy termE3 we have
used the relatione0

`cosu2srdrdr=1/2, seeRef. 42. Combin-
ing all terms of the Lagrangian and omitting the constant
term E1, one obtains the effective Lagrangian of the system
s35d.
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The dissipative function contains two dynamical contribu-
tions. The first one is due to the time dependence of them
field:

ṁ=
u8sinu

lstd
S Ṁ

2M
r + Ṙcosa + RḞ sinaD . sC8d

This termF1 can be derived in way similar to Eq.sB9d:

F1 =
«p

2
Sk1Ṙ

2 + k1R
2Ḟ2 +

C2Ṁ
2

MM0
D , sC9d

C2 =
1

2
E

0

`

u82srdr3dr < 0.48. sC10d

To calculate the second termF2 we useḟ from Eq.sC6d and
obtain

F2 =
«p

2
HsṘ2 + R2Ḟ2dFk2 +

1

2
ln

L2 − R2

l2std G + Ċ2fL2 − l2stdg

+ 2R2ḞĊJ . sC11d

The total effective dissipative functionF=F1+F2 has the
form s36d.
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