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We report a comprehensive investigation of the low-energy properties of antiferromagnetic quantumXXZ
spin chains with aperiodic couplings. We use an adaptation of the Ma-Dasgupta-Hu renormalization-group
method to obtain analytical and numerical results for the low-temperature thermodynamics and the ground-
state correlations of chains with couplings following several two-letter aperiodic sequences, including the
quasiperiodic Fibonacci and other precious-mean sequences, as well as sequences inducing strong geometrical
fluctuations. For a given aperiodic sequence, we argue that in the easy-plane anisotropy regime, intermediate
between theXX and Heisenberg limits, the general scaling form of the thermodynamic properties is essentially
given by the exactly knownXXbehavior, providing a classification of the effects of aperiodicity onXXZchains.
We also discuss the nature of the ground-state structures and their comparison with the random-singlet phase
characteristic of random-bond chains.
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I. INTRODUCTION

At low temperatures, the interplay between lack of trans-
lational invariance and quantum fluctuations in low-
dimensional strongly correlated electron systems may induce
novel phases with peculiar behavior. In particular, random-
ness in quantum spin chains may lead to Griffiths phases,1,2

random quantum paramagnetism,3–5 large-spin formation,6,7

and random-singlet phases.8,9 On the other hand, studies on
the influence of deterministic but aperiodic elements on simi-
lar systemsssee, e.g., Refs. 10–18d, inspired by the experi-
mental discovery of quasicrystals,19 have revealed strong ef-
fects on dynamical and thermodynamic properties, although
much less is known concerning the precise nature of the
underlying ground-state phases.20

Prototypical models for those studies are spin-1
2 antiferro-

magneticXXZ chains described by the Hamiltonian

H = o
i

JisSi
xSi+1

x + Si
ySi+1

y + DSi
zSi+1

z d, s1d

where Ji .0 and theSi are spin operators. In the uniform
casesJi ;Jd, the ground state for chains with −1,Dø1 is
critical,21 exhibiting power-law decay of the pair correlations
as a function of the distance between spins,22 as well as
gapless elementary excitations. Such a critical phase is un-
stable towards dimerization, i.e., the introduction of alternat-
ing couplingsJodd andJeven, in the presence of which a gap
opens between thesnow localizedd ground state and the first
excitated states.23–25 This instability hints at the profound
effects produced by fully breaking the translational symme-
try of the system.

Random-bond versions of these chains have been much
studied by a real-space renormalization-groupsRGd method
introduced26,27 by Ma, Dasgupta, and HusMDHd for the
Heisenberg chainsD=1d and more recently extended by
Fisher,1,2,8 who gave evidence that the method becomes as-
ymptotically exact at low energies. In the last few years, the
method has been applied and adapted to a variety of random
systemsssee, e.g., Refs. 6, 7, and 28–34d. The basic idea is to

decimate the spin pairs coupled by the strongest bondssthose
with the largest gaps between the local ground state and the
first excited multipletd, forming singlets and inducing weak
effective couplings between neighboring spins, thereby re-
ducing the energy scale. ForXXZ chains in the regime −12
,Dø1, the method predicts the ground state to be a
random-singlet phase, consisting of arbitrarily distant spins
forming rare, strongly correlated singlet pairs.8

Another way of breaking the translational symmetry is
suggested by analogies with quasicrystals. These are struc-
tures which exhibit symmetries forbidden by traditional crys-
tallography, and which correspond to projections of higher
dimensional Bravais lattices onto low-dimensional
subspaces.35 A one-dimensional example is provided by the
Fibonacci quasiperiodic chain, obtained from a cut-and-
project operation on a square lattice.36 In this chain, the spins
are separated by two possible distances,a andb, whose se-
quence, starting from the left end of the chain, isabaab….
This sequence can be generated by repeatedly applying a
substitutionsor inflationd rule a→ab, b→a, starting from a
single distancea. Associating with eacha a couplingJa and
with eachb a couplingJb we obtain a spin chain with cou-
plings following a Fibonacci sequence. More generally, we
can postulate a two-letter substitution rule, build the corre-
sponding letter sequence, and associate couplings with letters
to obtain spin chains whose couplings follow aperiodic but
deterministic sequences.37 Quasiperiodic sequences are char-
acterized by a Fourier spectrum consisting of Bragg peaks,
but more complex spectrassuch as singular-continuousd can
be generated by substitution rules.38 In this work we apply
the term “aperiodic” when referring to nonperiodic, self-
similar sequences, also encompassing those that are strictly
quasiperiodic in the above sense.

In XX spin chainssD=0d, the low-temperature thermody-
namic behavior can be qualitatively determined for virtually
any aperiodic sequence by an exact RG method.17 The ef-
fects of aperiodicity depend on the topological properties of
the sequence. If the fraction of lettersa sor bd at odd posi-
tions is different from that at even positionssi.e., if there is
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average dimerizationd, then a finite gap opens between the
global ground state and the first excited states, and the chain
becomes noncritical. Otherwise, the scaling of the lowest
gaps can be classified according to the wandering exponent
v measuring the geometric fluctuationsg related to nonover-
lapping pairs of letters,17 which vary with the system sizeN
as g,Nv. If v,0, aperiodicity has no effect on the long-
distance, low-temperature properties, and the system behaves
as in the uniform case, with a finite susceptibility atT=0. If
v=0, as in the Fibonacci sequence, aperiodicity is marginal
and may lead to nonuniversal power-law scaling behavior of
the thermodynamic properties. Ifv.0, aperiodicity is rel-
evant in the RG sense, affecting theT=0 critical behavior
and leading to exponential scaling of the lowest gapsL at
long distancesr, according to the formL,exps−rvd. In par-
ticular, for sequences withv= 1

2, the geometric fluctuations
mimic those induced by randomness, and the scaling behav-
ior is similar to the one characterizing the random-singlet
phase.8

In contrast, results for the effects of aperiodicity on low-
energy properties ofXXZchains have been so far scarce and
restricted to particular sequences. Vidal, Mouhanna, and
Giamarchi13,14 studied the related problem of an interacting
spinless fermion chain with Fibonacci or precious-mean po-
tential by using bosonization techniques, which are valid in
the weak-modulation regimesJa.Jbd. At half filling, where
the system corresponds to anXXZ chain in zero external
field, their calculations predict that aperiodicity will drive the
system away from the usual Luttinger-liquid behavior for 0
øDø1. A similar conclusion is drawn from studies on a
Hubbard chain with hoppings following a Fibonacci
sequence.16 Density-matrix renormalization-groupsDMRGd
results onXXZ chains with precious-mean couplings,15 and
recent real-space RG calculations on the FibonacciXXZ
chain39,40 salso based on the MDH schemed, likewise predict
that low-temperature properties are different than in the uni-
form chains. The zero-temperature magnetization curve of
FibonacciXXZchains has also been investigated,18 with em-
phasis on determining the plateau structure.

Our aim in this paper is to investigate the effects ofarbi-
trary aperiodic coupling distributions on the low-temperature
properties ofXXZchains, reinforcing and extending our pre-
vious results.41 From an adaptation of the Ma-Dasgupta-Hu
RG scheme, we obtain information about low-temperature
thermodynamics and ground-state correlation functions for
several aperiodic sequences. Our results, which are presum-
ably exact in the strong-modulation limitsJa!Jb or Ja@Jbd,
point to the following conclusions:

s1d The exact classification found in theXX limit can ar-
guably be extended toXXZ chains in the anisotropy regime
0,Dø1. We predict that dimerized aperiodicity opens a
gap to the lowest excitations, and that otherwise the effects
of aperiodicity on the low-temperature thermodynamics are
gauged by the same exponentv, irrespective of anisotropy.
In particular, sequences which are strictly marginal in theXX
limit continue to be so for anisotropies 0,D,1, but may be
marginally relevant in the Heisenberg limit.

s2d On the other hand,v is found not to define the be-
havior of correlation functions, although ground-state struc-
tures in the presence of marginal or relevant couplings also

reflect self-similar properties of the sequences. Dominant
correlations correspond to well defined distances, related to
the rescaling factor of the sequencesscontrary to the random-
singlet phase, where no such characteristic distances existd,
and two types of behavior are possible; either the chains can
be decomposed into a hierarchy of singlets, forming a kind
of “aperiodic-singlet phase,” or into a hierarchy of effective
spins, in which case low-energy excitations involve an expo-
nentially large number of spins. This is in sharp contrast both
to the gapless spin-wave excitations of the uniform chains
and to the gapped triplet-wave excitations of the dimerized
chains.

s3d Based on second-order calculations, the long-distance
decay exponents of average ground-state correlation func-
tions are seen to vary with the coupling ratio in the presence
of strictly marginal aperiodicity. Otherwise, strong universal-
ity si.e., independence of the exponents on both the coupling
ratio and anisotropyd is obtained for the whole line 0øD
,1, although different decay exponents may emerge in the
Heisenberg limit. Also, the scaling form of typicalsrather
than averaged correlations follows essentially the same scal-
ing form as the energy gaps, similarly to what happens for
random-bond chains.

In order to make the paper self-contained, we begin by
reviewing some known results. So, in Sec. II we present the
basics of the Ma-Dasgupta-Hu scheme, as applied to
random-bondXXZ chains, and summarize the properties of
the underlying random-singlet phase. Also, in Sec. III we
provide a short discussion on aperiodic sequences, as well as
a sketch of the exact RG results forXX chains with aperiodic
couplings. Our adaptation of the Ma-Dasgupta-Hu method to
aperiodicXXZ chains is described in Sec. IV, and results for
marginal and relevant aperiodicities are presented in Secs. V
and VI. Section VII is devoted to a discussion and conclu-
sions. There are also two appendices, in which some impor-
tant technical points are detailed.

II. RANDOM-BOND SPIN CHAINS
AND THE MA-DASGUPTA-HU METHOD

Consider an antiferromagnetic quantum spin-1
2 chain de-

scribed by the Hamiltonian

H = o
i

JisSi
xSi+1

x + Si
ySi+1

y + DiSi
zSi+1

z d, s2d

whereJi .0 and all anisotropies are such that 0øDi ø1. Let
us assume that the couplingsJi are randomly distributed ac-
cording to a broad probability distributioǹsJid having an
upper cutoffJmax. Under such conditions, in a finite but large
chain, there is a strongest bondJ0.Jmax connecting, say,
spins S1 and S2, which in turn are coupled to their other
nearest-neighborsSl andSr by weaker bondsJl andJr. The
local Hamiltonian connectingS1 andS2 is

H0 = J0sS1
xS2

x + S1
yS2

y + D0S1
zS2

zd,

whose ground state is a singlet, separated from the first ex-
cited states by an energy gapL0= 1

2s1+D0dJ0. The idea be-
hind the Ma-Dasgupta-Hu26,27 method is that, at tempera-
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tures belowL0, S1 and S2 can be decimated out of the
system, since they couple into a singlet, giving a negligible
contribution to the thermodynamic properties. Nevertheless,
their virtual excitations induce a weak effective coupling be-
tweenSl andSr, described by the Hamiltonian

H8 = J8sSl
xSr

x + Sl
ySr

y + D8Sl
zSr

zd.

The parametersJ8 and D8 can be obtained by second-order
perturbation theoryssee Appendix Ad and are given by

J8 =
1

1 + D0

JlJr

J0
and D8 =

1 + D0

2
DlDr . s3d

Notice thatJ8 is smaller than eitherJl, Jr or J0; likewise,
unless allDi =1, the effective anisotropyD8 is smaller than
eitherDl or Dr. Thus, after eliminatingS1 andS2, the overall
energy scale is reduced. The previous steps can be repeated
with the next largest bond, which most probably is notJ8.

Starting from Eqs.s3d Fisher8 was able to write and solve
recursion relations for the probability distribution of the ef-
fective couplings. The fixed-point distribution is presumably
independent of the initial couplings,42 and it diverges as a
power law for J8→0+, indicating that the perturbative ap-
proach leading to Eqs.s3d becomes essentially exact for as-
ymptotically low energies.

The ground state is a “random-singlet” phase, consisting
of arbitrarily distant spins forming rare, strongly correlated
singlet pairs.8,43 Exciting a singlet whose spins are separated
by a distancer costs an energy of orderL, with a dynamic
scaling form

L , e−mÎr/r0,

wherem andr0 are constants. At low temperatures, the zero-
field susceptibility diverges as

x ,
1

T ln2 T
.

Average ground-state correlations are dominated by the rare
singlet pairs, and they decay as a power law,

Csrd ; ukSi ·Si+rlu ,
1

r2 ,

where the bar denotes an average over the whole chain,
while typical correlations are short-ranged, following

Ctypsrd , e−mtypÎr/r0.

These asymptotic results are independent of the anisotropies
Di, as long as 0øDi ø1 for all i, with the same distribution
on even and odd bonds.

III. APERIODIC SEQUENCES AND XX CHAINS

Following closely the analysis of Hermisson,17 in this sec-
tion we consider antiferromagnetic quantumXX chains, de-
scribed by the Hamiltonian

H = o
i

JisSi
xSi+1

x + Si
ySi+1

y d, s4d

where now the strengths of the site-dependent couplingsJi
can be eitherJa or Jb and are distributed according to deter-
ministic but aperiodic binary sequences, obtained by substi-
tution sor inflationd rules of the form

s:Ha → wa

b → wb,

wherewa andwb are wordssfinite stringsd composed of let-
ters a and b. A well known example is provided by the
Fibonacci sequence, whose substitution rule is

sfb:Ha → ab

b → a.

Starting from a single lettera, repeated application ofsfb
yields strings with lengths given by the Fibonacci numbers 1,
2, 3, 5, 8,…, ultimately producing a letter sequenceabaaba-
baaba…, for which no period can be identified.

Given an inflation rules, various statistical properties44

of the associated sequence are enclosed in the substitution
matrix,

M = S#aswad #aswbd
#bswad #bswbd

D ,

where #aswbd denotes the number of lettersa in the wordwb.
The largest eigenvalue ofM , l+, gives the asymptotic scal-
ing factor of the string lengthsi.e., the ratio between the
lengths of the strings corresponding to successive iterations
of the rulesd; the entries of the corresponding eigenvector
are proportional to the frequenciespa andpb of lettersa and
b in the limit sinfinited sequence.

The remaining eigenvalue,l−, is related to the geometric
fluctuations of the sequence, which are defined in the follow-
ing way. Let Nn

a be the number of lettersa in the string
obtained aftern iterations ofs, andNn be the corresponding
total number of letterssthe length of the stringd. Then, a
measure of the geometric fluctuations induced by the se-
quence is the differencegn betweenNn

a and the number of
lettersa expected from the limit-sequence frequencypa, and
this behaves as

gn = uNn
a − paNnu , ul−un.

SinceNn,l+
n, this last equation can be rewritten as

gn , Nn
vl ,

by defining the “wandering exponent,”

vl =
lnul−u
ln l+

.

If vl ,0, fluctuations become smaller as the string grows,
and the sequence looks more and more “periodic.” On the
other hand, ifvl .0, fluctuations increase without limit. The
marginal casevl =0 is in general connected to logarithmic
fluctuations. It can be shown45 that substitutions for which
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vl ,0 generate quasiperiodicsor limit-quasiperiodicd se-
quences.

The concept of geometric fluctuations is essential in es-
tablishing the Harris-Luck criterion46,47 for the relevance of
inhomogeneities to the critical behavior of magnetic systems.
The criterion states that, if fluctuations in the local param-
eters controlling the criticality of the system vary with some
characteristic lengthL asg,Lv, then there is a critical value
of the exponentv above which the presence of inhomogene-
ities can affect the critical behavior. This happens for

v . 1 −
1

dn
, s5d

whered is the number of dimensions along which inhomo-
geneities are distributed, andn is the correlation-length criti-
cal exponent of the underlying uniform system. Randomly
distributed inhomogeneities lead tov= 1

2, and the general
Harris criterion46,48,49is recovered.

The ground state of the model in Eq.s4d is critical in the
uniform limit sJi ;Jd: there is no energy gap to the low-lying
excitations, and pair correlations decay as power laws,50

Caasrd = ukSi
aSi+r

a lu , r−haa
,

with hxx=hyy= 1
2 andhzz=2. This phase is unstable towards

dimerizationsi.e., the presence of couplingsJo andJe alter-
nating between odd and even bondsd, in which case a gap
opens in the low-energy spectrum, and ground-state correla-
tions become short-ranged. More generally, the model exhib-
its a szero-temperatured quantum phase transition between
two dimer phases for17,51

d = ln J2j−1 − ln J2j = 0. s6d

If J2j−1;Jo and J2j ;Je, the phase transition occurs ford
=lnsJo/Jed=0, and belongs to the Onsager universality class,
with n=1.

When the couplingsJi are chosen according to aperiodic
sequences for which the fractions of lettersa sor bd at even
and odd positions are different, Eq.s6d is not satisfied, and
the system is in a dimer phase. This suggests that the local
parameters defining the criticality ofXX chains are the shifts
d j =lnsJ2j−1/J2jd. In order to study the fluctuations of thed j,
which depend on two consecutive couplings, we must usu-
ally consider the sequence of nonoverlapping letter pairs as-
sociated with a given aperiodic sequence. To build the infla-
tion rule ss2d for such pairs, it is necessary to iterate the
original rules until the strings obtained from a singlea and
b have lengths of the same parity. As an illustration, let us
take the Fibonacci sequence. Applyingsfb three times yields

sfb
3 :Ha → abaab

b → aba.

Noting that the pairbb does not occur in the sequence, we
readily obtain

sfb
s2d:5aa→ sabdsaadsbadsbadsabd

ab→ sabdsaadsbadsbad
ba→ sabdsaadsbadsabd.

For a general pair inflation ruless2d, we can define an
associated substitution matrix,

M s2d =1
#aaswaad #aaswabd #aaswbad #aaswbbd
#abswaad #abswabd #abswbad #abswbbd
#baswaad #baswabd #baswbad #baswbbd
#bbswaad #bbswabd #bbswbad #bbswbbd

2 ,

where now #abswbad denotes the number of pairsab in the
word associated with the pairba. The leading eigenvaluesl1
andl2 of M s2d define another wandering exponent,

v =
lnul2u
ln l1

,

which governs the fluctuations of the letter pairs, and conse-
quently of thed j. It is essential to note thatv is in general
different from vl: for the Fibonacci sequence, for instance,
we havevl =−1, but v=0. sThere are aperiodic sequences,
generated by what Hermisson called mixed substitution
rules, for which a pair inflation rule cannot be defined; how-
ever, it is still possible to investigate the fluctuations of thed j
in terms of a set of substrings with minimal length.d

By an exact renormalization-group treatment,
Hermisson17 was able to build recursion relations for effec-
tive couplings and to show that, in agreement with the above
heuristic argument, the eigenvaluesli of M s2d give directly
the RG eigenvaluesyi around the uniform fixed point ofXY
chains with aperiodic couplings,

yi =
lnuliu
ln l1

,

while the corresponding eigenvectors yield the scaling fields.
Thus, aperiodicity is relevant in the RG sensesi.e., it moves
the RG flows away from the uniform fixed pointd if the next-
to-leading eigenvaluey2=v is positive, exactly as predicted
by the Harris-Luck criterion, Eq.s5d, with d=n=1. sTo be
precise, the eigenvalue ofM s2d entering the definition ofv is
not always the next-to-leading one, but rather the second-
largest eigenvalue whose corresponding scaling field is non-
zero for a generic choice of coupling constants.d

For a large class of aperiodic sequences fulfilling Eq.s6d,
l2 is given in theXX limit by an integerk. When a pair
substitution rule can be defined, this integer is simply given
by

k = #abswabd − #baswabd.

Thus, the wandering exponent in theXX limit is of the form

v =
ln k

ln t
, s7d

where t;l1 corresponds to the rescaling factor of the se-
quence of letter pairs.

It is also possible to determine the scaling of the lowest
energy levelsL with the system sizer. For irrelevant or
marginal aperiodicitysvø0d we have
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L , r−z, s8d

with a dynamical exponentz equal to unity if v,0, but
which can vary with the coupling ratioJa/Jb in the marginal
casessv=0d. Relevant aperiodicitysv.0d leads to a differ-
ent scaling form,

L , exps− mrvd, sm = constd s9d

and to a formally infinite dynamical exponent. From Eqs.s8d
and s9d, scaling forms for low-temperature thermodynamic
properties, such as the specific heat and zero-field suscepti-
bility, can be obtained, as discussed in the next sections.
Ground-state correlation functions, however, do not seem to
be simply accessible from the exact RG treatment.

Since the critical phase of uniformXXZ chains is also
unstable towards dimerization in the whole anisotropy re-
gime 0,Dø1, one might expect that the relevant geometri-
cal fluctuations in the presence of aperiodic couplings would
be somehow related to thed j defined above.sA precise defi-
nition of the relevant local parameters would require a gen-
eralization of the criticality conditionfEq. s6dg to XXZ
chains, which, to the best of our knowledge, is not currently
available.d Consequently, the exponentv would be involved
in determining the scaling behavior of thermodynamic prop-
erties of aperiodic chains for all anisotropies intermediate
between theXX and Heisenberg limits. The results of the
next sections indeed provide evidence that this seems to be
the case.

IV. THE MA-DASGUPTA-HU METHOD
FOR APERIODIC XXZ CHAINS

We now wish to investigate the effects of aperiodic cou-
plings onXXZ chains described by the Hamiltonian in Eq.
s2d. Based on the success of the Ma-Dasgupta-Hu scheme in
predicting the properties of random-bond chains, we expect
that it also works in the presence of aperiodicity. We concen-
trate on the case of uniform anisotropysDi ;Dd, but more
general situations can be considered.

Applying the MDH method to aperiodic chains requires
taking into account that now, since we have only two distinct
coupling constants, there are many spin blocks with the same
slargestd gap at a given energy scale. Also, those blocks may
consist of more than two spins, in which case effective spins
would form upon renormalization. The strategy is to sweep
through the lattice until all blocks with the same gap have
been renormalized, leading to new effective couplingssand
possibly spinsd. Then we search for the next largest gap,
which again corresponds to many blocks. When all possible
original blocks have been considered, there remain some un-
renormalized spins, possibly along with effective ones, de-
fining new blocks which form a second generation of the
lattice. The process is then iterated, leading to the renormal-
ization of the spatial distribution of effective blockssor
bondsd along the generations.

Due to the self-similarity inherent to aperiodic sequences
generated by inflation rules, it is natural that the block dis-
tribution reaches a periodic attractorsusually a fixed point or
a two-cycled after a few lattice sweeps; numerical implemen-

tations of the method indicate that this attractor is indepen-
dent of the anisotropyD for all coupling ratios. By studying
recursion relations for the effective couplings, we can obtain
analytical results. As the RG steps proceed, the coupling ra-
tio usually gets smaller, suggesting that the method becomes
asymptotically exact. This picture holds for marginalsv
=0d and relevantsv.0d aperiodicity. Irrelevant aperiodicity
is characterized by a wandering exponentv,0, meaning
that geometric fluctuations become negligible at long dis-
tances. An example is provided by the Thue-Morse sequence,
generated by the substitution rulea→ab, b→ba, for which
v=−`. Applying the MDH scheme to the Thue-Morse se-
quence leads to an effective coupling ratio which approaches
unity along the generations, although the couplings them-
selves become smaller. This means that the perturbative ap-
proach in the core of the MDH scheme eventually breaks
down, and no asymptotic behavior can be obtained. How-
ever, this intuitively agrees with the picture that irrelevant
aperiodicity leads to the same critical properties as the uni-
form model, where all couplings have the same value.

For sequences where the fraction of lettersa sor bd at odd
bonds is different from that at even bondssi.e., where the
sequence induces average dimerizationd, one generally ex-
pects that a finite gap opens between the global ground state
and the first excited states, independent of the value of the
wandering exponentv. This is the case of the period-
doubling sequence, built from the substitution rulea→ab,
b→aa. Upon application of the MDH method, after a few
lattice sweepsswith the precise number depending on the
strength of dimerizationd we reach a situation where, say, all
strong bonds occupy even positions, whereas all bonds at
odd positions are weaker. Thus, all remaining couplings are
necessarily decimated in a last lattice sweep, generating a
final effective coupling which approaches zero exponentially
with the system sizeN. This can be interpreted as indicating
that there is no correlation between spins separated by large
distances, in agreement to what happens in gapped Heisen-
berg andXX chains. In the presence of average dimerization,
few quantitative predictions can be drawn from the MDH
method; one of them is an estimate of the excitation gap,
whose order of magnitude is provided by the value of the
strong bonds in the final lattice sweep. In contrast, randomly
dimerized Heisenberg chains in the strong-randomness limit
are in a gapless Griffiths phase, exhibiting short-range corre-
lations but a diverging susceptibility.28

In a general situation, the blocks to be renormalized con-
sist of n spins connected by equal bondsJ0, and coupled to
the rest of the chain through weaker bondsJl and Jr. As
discussed in Appendix A, the ground state for blocks with an
even number of spins is a singletsas in the original MDH
methodd, and at low energies we can eliminate the whole
block, along withJl and Jr, leaving an effective antiferro-
magnetic bondJ8 coupling the two spins closer to the block
and given by second-order perturbation theory as

J8 = gn
JlJr

J0
sn evend,

with D-dependent coefficientsgn. On the other hand, a block
with an odd number of spins has a doublet as its ground
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state; at low energies, it can be replaced by an effective spin
connected to its nearest neighbors by antiferromagnetic ef-
fective bonds

Jl,r8 = gnJl,r sn oddd,

whose values are calculated by first-order perturbation
theory.

In general, the anisotropy parameters are also renormal-
ized and become site dependent; forn even, the effective
anisotropy is D8=dnsD0dDlDr, while for n odd Dl,r8
=dnsD0dDl,r, with udnsDdu,1 for 0øD,1 anddns1d=1. So,
for 0,D,1 the Di flow to the XX fixed point sall Di =0d,
ultimately reproducing the corresponding scaling behavior,
while for the Heisenberg chain allDi remain equal to unity.
An analytical treatment of the intermediate anisotropy re-
gime is possiblessee Ref. 40d, leading to a prediction of the
effective coupling ratio for which the system crosses over to
theXX behavior. However, for simplicity, we present analyti-
cal calculations for theXX and Heisenberg limits, showing
some numerical results for the general case 0øDø1. If we
start with a uniform anisotropyD.1, the Di grow without
limit, and the system ultimately behaves like an antiferro-
magnetic Ising chain, suppressing all quantum fluctuations.
For D,0, thegn coefficients forn even become larger than
unity, so that, if the modulation is not strong enough, the
MDH scheme may produce effective couplings which are
larger than the original couplings, leading to “bad” decima-
tions; moreover, the two-spin local gap closes asD→−1.
This puts the MDH results under suspicion, requiring a more
careful analysis that is beyond the scope of the present work.

Correlation functions can be calculated at zeroth order by
assuming that only spins which eventually appear in the
same renormalized block are correlated. Note that an effec-
tive spin represents all spins in an original block via
Clebsch-Gordan coefficientsssee Appendix Ad, and this al-
lows us to calculate correlations between any two spins
whose effective spins end up in the same block at some stage
of the RG process. In order to estimate correlations between
other spin pairs we must expand the local ground states up to
second order inJl,r /J0. This requires lengthy calculations
ssee Appendix Bd, and we restrict applications of this expan-
sion to the simplest yet illustrative cases of sequences where
only two-spin blocks are involved in the RG steps.

In Secs. V and VI, we present a detailed discussion of the
results obtained by applying the MDH scheme to sequences
inducing marginal or relevant aperiodicity.

We should mention that similar strong-modulation pertur-
bative approaches have been applied to investigate the spec-
tral properties of noninteracting electrons with aperiodic
hopping parameters or single-site potentialsssee, e.g., Refs.
52–54d. However, theXXZ chain with nonzero anisotropyD
is mapped by the Jordan-Wigner transformation onto a half-
filled interacting electron system, for which, to the best of
our knowledge, no such studies exist.

V. MARGINAL APERIODICITY

A. The Fibonacci sequence

First we apply the method to chains with Fibonacci cou-
plings. This is the simplest example of the quasiperiodic

precious-mean sequences with marginal fluctuations.17 A few
bonds closer to the left end of the original chain, along with
induced effective couplings, are shown in Fig. 1 forJa,Jb.
In this case, only singlets are formed by the RG process;
apart from a few bonds close to the chain ends, the renor-
malized lattice is again a Fibonacci chain. An effective cou-
pling Jb8 is induced between spins separated by only one
singlet pair, whileJa8 connects spins separated by two singlet
pairs, and in terms of the original couplings we have

Ja8 = g2
2Ja

3

Jb
2 and Jb8 = g2

Ja
2

Jb
.

The bare coupling ratio isr=Ja/Jb; its renormalized value is
r8=g2r. In each generationj , all decimated blocks have the
same sizer j and gapL j sproportional to the effectiveJb
bondsd. The recursion relations forr andL are given by

r j+1 = g2r j and L j+1 = g2r j
2L j . s10d

For theXX chaing2=1, and thusr j+1=r j, corresponding to a
line of fixed points. On the other hand, for the Heisenberg
chaing2= 1

2, so thatr j+1,r j, leading to a stable fixed point
r`=0. Since the perturbative approach on which the MDH
scheme is based works forr!1, the method can be expected
to yield asymptotically exact results for the Heisenberg Fi-
bonacci chains. In both cases, solving Eqs.s10d gives the gap
in the j th generation in terms of the original coupling ratior
and gapL,

L j = g2
j2r2jL.

sNotice that, sinceg2 depends on the anisotropy, this last
equation is valid only forDi ;0 or Di ;1; in the intermediate
anisotropy regime, the variation ofg2 along the generations
must be taken into account.40d The distance between spins
forming a singlet in thej th generation defines a characteristic
length r j, corresponding to the Fibonacci numbersr j
=1,3,13,55,…; for j @1 the ratio r j+1/ r j approachesf3,
where f=s1+Î5d /2 is the golden mean. So we haver j

, r0f3j, wherer0 is a constant, and we obtain the dynamical
scaling relation,

L j , r j
−ze−m ln2sr j/r0d, s11d

with z=−2
3 ln r / ln f andm=−lng2/9 ln2 f. For the Heisen-

berg chainsg2= 1
2

d, Eq. s11d describes a weakly exponential
scaling swith a formally infinite dynamical exponentd, but
not of the formL,exps−rvd found for theXX chain with
relevant aperiodicitysv.0d. For theXX chain sg2=1d, m
=0 and we can identifyz with a dynamical exponentz,

FIG. 1. Left end of the FibonacciXXZ chain with Ja,Jb.
Dashedssolidd lines represent weaksstrongd bonds, while circles
indicate the positions of the spins. Apart from a few bonds close to
the chain ends, the effective couplings also form a Fibonacci
sequence.
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whose value depends on the coupling ratio, leading to non-
universal scaling behavior, characteristic of strictly marginal
operators. sWe can check thatz=z corresponds to the
asymptotic form of the exactXX expression11,17 for r!1.d
This nonuniversality should hold in the anisotropy regime
0,D,1 with a “bare” value ofr defined at a crossover
scale. Note that, taking into account the scaling formL
,exps−rvd valid for relevant aperiodicity, we can view the
above Heisenberg scaling formsmÞ0d as a marginally rel-
evant sv→0+d case. The result in Eq.s11d has also been
obtained in Ref. 39.

If we chooseJa.Jb, blocks with three spins connected by
two strong bonds appear in the chain, producing effective
spins upon renormalization. However, as illustrated in Fig. 2,
the first lattice sweep yields again a Fibonacci chain with the
roles of weak and strong bonds interchanged, exactly as in
Fig. 1. The effective couplings in the second generation are
given by

Ja8 = g2g3
2Jb

2

Ja
and Jb8 = g3

2Jb, s12d

and the coupling ratio is now

r8 =
Jb8

Ja8
=

1

g2

Ja

Jb
= sg2rd−1,

which is larger than one, showing thatJa8,Jb8. Thus, we can
apply the same analysis as in the case withJa,Jb, but now
with bare couplings given by Eq.s12d. So, in theXX chain,
sinceg2=1, the MDH method predicts scaling forms which
are symmetric underr→1/r, in agreement with the exact
treatment.11,17

The susceptibilityxsTd can be estimated8 by assuming
that, at energy scaleL j ,T, singlet pairs are effectively fro-
zen, while unrenormalized spins are essentially free, contrib-
uting Curie terms to the susceptibility. Thus, ifnj , r j

−1 is the
number of surviving spins in thej th generation,xsT,L jd
,nj+1/L j. This already gives reasonable results, as indicated
by comparison with those obtained for theXX chain from
numerical diagonalization of finite chains,39 based on the
free-fermion method.50 However, a more useful approxima-
tion can be obtained by noting that, in thej th generation, we
can view the resulting lattice as composed of “independent”
singlets in which a pair of spins is coupled via anXXZ inter-
action with effective bond and anisotropy parametersJb

s jd and
Db

s jd. Since the fraction of such singlets with respect to the
number of original bonds issnj −nj+1d /2, the free energy per
site of the whole system, in the presence of an external field
h→0, can be estimated as

fsh,Td =
1

2o
j

nj − nj+1

2
FpairsJb

s jd,Db
s jd;h,Td , s13d

where FpairsJ,D ;h,Td is the free energy of a pair of spins
interacting via the Hamiltonian

Hpair = JsS1
xS2

x + S1
yS2

y + DS1
zS2

zd − hsS1
z + S2

zd.

Iterating the recursion relations for the effective couplings
Ja,b andDa,b, we can determine their values in each genera-
tion, and evaluate numerically the sum in Eq.s13d to obtain
the free energy. Thermodynamic properties such as the zero-
field susceptibilityx and the specific heatc can be obtained
by the relations

x = − U]2f

]h2U
h=0

and c = − T
]2f

]T2 .

As an example, Fig. 3 shows plots of the specific heat of
FibonacciXXZchains withJa/Jb= 1

10 and three values of the
anisotropyD=Da=Db, corresponding to theXX and Heisen-
berg limits and to an intermediate casesD= 9

10
d. The results

for the XX limit agree very well with those obtained from
numerical diagonalization, although the agreement becomes
worse for larger coupling ratios; in particular, the specific-
heat scaling law11,17

csTd , T1/zGcS ln T

ln r2D ,

with z=zsrd andGc a function with period one, is fully sat-
isfied, reflecting the strictly marginal character of the aperi-
odic perturbations. This is not the case in the Heisenberg
limit, and the logarithmic amplitudes of the oscillations in
the specific heat become larger with decreasing temperatures,
reflecting the weakly exponential dynamical scaling in Eq.
s11d. For intermediate anisotropies, there is a crossover from
Heisenberg-like toXX-like behavior as the temperature is
lowered; the larger amplitude of the low-temperature oscil-
lations corresponds to those of anXX chain with a bare cou-
pling ratio reff,r defined at a crossover scale in which ef-

FIG. 2. Left end of the Fibonacci chains withJa.Jb. Effective
spins form in the first lattice sweep, giving rise to a Fibonacci chain
with the roles of the weak and strong bonds interchanged, exactly as
in the original lattice in Fig. 1.

FIG. 3. sColor onlined Specific heat of the FibonacciXXZchains
for Ja/Jb= 1

10 and three different values of the uniform anisotropyD,
as given by the “independent-singlet” approximation.
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fective anisotropies become negligible.sFor a detailed
analysis, see Ref. 40.d

As all singlets formed in thej th generation have lengthr j
and the bond distribution is fixed, the average ground-state
correlation between spins separated by a distancer j can be
estimated as

Caasr jd ; kSi
aSi+r j

a l . 1
2uc0usnj − nj+1d = suc0ur j

−1, s14d

where the bar denotes an average over all possible pairs,s is
a constant,a=x,y,z, and c0 is the correlation between the
two spins in a singlet, given byc0=−1

4 for the Heisenberg
chain and for botha=x anda=z in the XX chain. We point
out that these should be the dominant correlations, and spins
separated by distances other thanr j are predicted to be only
weakly correlated. As shown in Fig. 4, results from numeri-
cal diagonalization for theXX Fibonacci chain withr= 1

10
agree very well with the MDH predictions. Note that corre-
lations in the uniformXX chain50 decay asCxxsrd, r−1/2 and
Czzsrd, r−2, so that dominantxx szzd correlations in the
Fibonacci chain are weakersstrongerd than in the uniform
chain. Due to the strictly marginal character of the fluctua-
tions induced by the aperiodic couplings, deviations from the
predictions in Eq.s14d appear in theXX chain for larger
values ofr, as also shown in the figure. This point will be
further discussed in the next subsection, but these deviations
should not be present in the Fibonacci Heisenberg chain,
where aperiodicity can be viewed as marginally relevant.

B. The silver-mean sequence

The silver-mean sequence is obtained from the substitu-
tion rulea→aab, b→a, and the rescaling factor predicted in
the XX limit is17

tsm= 1 +Î2.

When the MDH scheme is applied, the first lattice sweep
also generates a silver-mean sequence, identical to the origi-
nal one forJa,Jb, but with the roles of weak and strong
bonds interchanged forJa.Jb, as shown in Figs. 5 and 6. In
the latter case, the second-generation structure is identical to
the third-generation lattice obtained forJa,Jb, a situation
we can assume without loss of generality. So, we can write
the recursion relations

Ja8 = g2
Ja

2

Jb
and Jb8 = Ja,

from which we get

r8 ;
Ja8

Jb8
= g2

Ja

Jb
; g2r and

L8

L
=

Jb8

Jb
= r.

These are similar to the relations found for the Fibonacci
chains. The length of singlets formed in thej th generation is
r j =1,1,3,7,17,41,…, whose asymptotic ratio isr j+1/ r j
=tsm. Thus, solving the recursion relations yields

L j , r j
−zsrde−m ln2sr j/r0d,

with

zsrd = −
lnsg2

−1/2rd
ln tsm

and m = −
lnsg2

1/2d
ln2 tsm

, s15d

so that in theXX limit the scaling again corresponds to a
nonuniversal power-law behavior with a dynamical exponent
z=zsrd.

As in the Fibonacci chains, pair correlations in the ground
state can be estimated by noting that only singlets are pro-
duced by the RG process, and we conclude that forr!1 the
dominant correlationssthose between spins separated by the
characteristic distancesr j =1,3,7,17,…d should behave as

Csr jd ,
1

r j
,

while correlations between spins separated by other distances
should be negligible.

FIG. 4. sColor onlined Ground-state correlations as a function of
the distance between spins for the FibonacciXX chain. The curves
are obtained from numerical diagonalization of closed chains with
2584 sites. ForJa/Jb= 1

10 slower curvesd, dominant correlations cor-
respond to distancesr j =1, 3, 13, 55 and 233, for whichCxx andCzz

are nearly equal, as predicted by the MDH methodscirclesd, and
decay as 1/r sdotted curved. Larger coupling ratios lead to a slower
decay ofCxx sand a faster decay ofCzzd, as seen forJa/Jb= 1

2 supper
curve, offset for clarityd.

FIG. 5. Left end of the silver-mean chain withJa,Jb. Effective
couplingsJb8 correspond to the originalJa bonds, whileJa8 connects
spins separated by one singlet pair. Apart from the leftmost bond,
the effective couplings also form a silver-mean sequence.

FIG. 6. Left end of the silver-mean chain withJa.Jb. Effective
spins form in the first lattice sweep, producing the same structure as
the third generation forJa,Jb.
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However, forXX chains, this is a rough approximation if
the coupling ratio is not too small, and free-fermion calcula-
tions reveal a power-law decay of bothCxxsr jd and Czzsr jd
with r-dependent exponents, as in Fig. 4. This can be ac-
counted for by the MDH method if we expand the ground-
state vector to second order inr, as described in Appendix B.
Results of such calculations are shown in Fig. 7 forr= 1

4 and
r= 1

10, in the XX and Heisenberg limits. Both average and
typical correlations are plotted; the latter, defined by

Ctyp
aasrd = expslnukSi

aSi+r
a lud ,

filter out the contribution of those pairs of spins most
strongly correlated, yielding an estimate of the correlation
between two arbitrary spins separated by a distancer. In the
random-singlet phase, characteristic of random-bond chains,8

average correlations decay algebraically asCsrd,1/r2,
whereas typical correlations are short-ranged, following
Ctypsrd,exps−Îr / r0d. This is due to the fact that the average
correlations are dominated by the rare singlet pairs, while the
correlation between a typical pair of spins is of the order of
some intermediate effective couplingssee Appendix Bd.

As shown in Fig. 7sad, this picture does not hold for
silver-meanXX spin chains. As the coupling ratio is lowered,
average and typical correlations exhibit clearly distinct be-
havior, but bothCxxsr jd andCtyp

xx srd still follow approximately
a power law, withr-dependent exponents, reproducing the
results of the free-fermion calculations. This nonuniversality
is related to the marginal character of the precious-mean
fluctuations, which keeps the effective coupling ratio un-
changed along the RG process, and can be qualitatively un-
derstood from the following argument. For each singlet pair
coupled by a strong bond and whose spins are separated by a
characteristic distancer j, there exists a certain number of
other spin pairs separated by the same distancer j, but con-
nected through weaker bonds, whose correlationssee Appen-
dix Bd is smaller than the strongest ones by factors of order
r, r2, r3, etc. The average correlation can be estimated as

Cxxsr jd , s1 + a1r + a2r2 + ¯ + ajr
jdr j

−1, s16d

where thean’s are proportional to the fractions of pairs giv-
ing contributions of orderrn, and the sum has an upper cut-
off at n= j , sincer j corresponds to thej th-generation singlets.
Assuming thatan=a1an−1, for some constanta swhich can
be numerically checked to be a reasonable approximation for
small rd, we have

1 + a1r + a2r2 + ¯ + ajr
j = 1 +

1 − sard j

1 − ar
a1r,

and taking into account thatr j , r0tsm
j we can write

sard j , r j
1−hsrd, with hsrd = 1 −

lnsard
ln tsm

.

Combining the above results we conclude that

Cxxsr jd ,
1

r j
,

for r,a−1, reproducing the zeroth-order MDH prediction,
but a nonuniversal behavior,

Cxxsr jd ,
1

r j
hsrd ,

is obtained forr.a−1.
For the silver-meanXX chains, an estimate of thean based

on numerical implementations of the MDH method gives
a1.9.5 anda.3, but with some dependence onr j and r.
As shown in Fig. 8, the decay exponenthxx of the average
correlation approaches unity asr→0, but starts to decrease
more rapidly for r*0.1, considerably less than 1/a; this
discrepancy indicates that Eq.s16d, with the assumption of
constantan’s, although providing a valuable insight into the
origin of the nonuniversal behavior, is not a good approxi-
mation for larger coupling ratios. The exponents predicted by
the second-order MDH scheme are systematically smaller

FIG. 7. sColor onlined Ground-state pair correlations in the
silver-meanXX sad and Heisenbergsbd chains, for r= 1

4 supper
curvesd and r= 1

10 slower curvesd, obtained from the second-order
MDH schemeschains with 8119 sitesd. Solid and dashed curves
correspond to average and typical correlations, respectively.

FIG. 8. Decay exponents ofCxxsr jd andCtyp
xx srd for theXX silver-

mean chain as a function of the coupling ratior=Ja/Jb, obtained
from both the second-order MDH schemeschains with 8819 sitesd
and the free-fermion methodschains with 3363 sitesd. Errors bars
are at most the same size as the symbols themselves.
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than the presumably exact ones obtained from the free-
fermion methodswhich should tend tohxx= 1

2 asr→1d. This
also happens for the decay exponenthtyp

xx of the typical cor-
relations, which diverges asr→0, in agreement with the fact
that, in this limit, the chain decomposes into independent
singlets. A similar behavior is observed for the transverse
correlationsCzzsrd andCtyp

zz srd sbut now the decay exponents
approachhzz=htyp

zz =2 asr→1d.
On the other hand, dominant ground-state correlations in

the Heisenberg silver-mean chain closely follow the predic-
tions of the zeroth-order MDH scheme, as can be seen in Fig.
7sbd. This is due to the fact that the effective coupling ratio
decreases as the RG proceeds, and the contribution toCsr jd
due to spin pairs other than those connected by strong bonds
becomes exponentially negligible. Typical correlations decay
not as a power law, but rather according to

Ctypsrd , e−mtyp ln2sr/r0d,

precisely the same form of the dynamical scaling; by fitting
the numerical results, the constantmtyp is found to be ap-
proximately m /2, with m given by Eq. s15d. As in the
random-singlet phase, the scaling form of the typical corre-
lations is similar to that of the lowest gaps, reflecting the fact
that two spins separated by a distancer are basically uncor-
related until the energy scale is of orderLsrd, when they
become weakly correlated through an intervening spin taking
part in a singlet pair.

C. The bronze-mean sequence

The bronze-mean sequence is built from the substitution
rule a→aaab, b→a, with a largeXX rescaling factor,17

tbm = S3 +Î13

2
D3

. 36.03.

The bond-distribution attractor produced by the MDH RG
scheme is not a fixed point, but a two-cycle;55 apart from a
few bonds near the chain ends, the same distributions alter-
nate between even and odd generations, as shown forJa
,Jb in Fig. 9. In this case, the second-generation couplings
relate to the original couplings by

J̃a = g2
7g3

2Ja
5

Jb
4 and J̃b = g2

5g3
2Ja

4

Jb
3 .

Likewise, in terms of the couplings in the previous genera-
tion, we write the third-generation couplings,

J̃A = g3
2g4

J̃a
2

J̃b

and J̃B = g3
2J̃a,

and the fourth-generation couplings,

J̃a8 = g2
3g3

2J̃A
4

J̃B
3

and J̃b8 = g2
2g3

2J̃A
3

J̃B
2

.

Since the attractor is now a two-cycle, and not a fixed point,
we must relate the couplings in the fourth and second gen-

erations. By eliminatingJ̃A andJ̃B in the above equations, we
get

J̃a8 = g2
3g3

4g4
4J̃a

5

J̃b
4

and J̃b8 = g2
2g3

4g4
3J̃a

4

J̃b
3
,

so that the coupling ratios satisfy the recursion relation

r̃8 ;
J̃a8

J̃b8
= g2g4

J̃a

J̃b

; g2g4r̃,

while the corresponding gaps are related by

L8

L
=

J̃b8

J̃b

= g2
2g3

4g2
3r̃4.

The distance between spins connected by strong bonds in the
j th generation isr j =1,13,43,469,1549,…, which asymp-
totically givesr j+2/ r j =tbm, so thatr2j , r0tbm

j . Thus, solving
the recursion relations forr̃ andL, and taking into account
that r̃=g2

2r, we obtain the dynamic scaling form

L2j = r2j
−zsrd expS− m ln2 r2j

r0
D , s17d

with

zsrd = −
lnsg2

8g3
4g4r4d

ln tbm
and m = −

lnsg2
2g4d

ln2 tbm
.

Of course, the same form is obtained if we choose to look at
the odd generations. In theXX limit, as g2=g4=1, we again
have m=0 and Eq. s17d corresponds to a nonuniversal
power-law scaling behavior, with a dynamical exponentz
=zsrd; once more, as in all marginalXX chains,z equals the
leading term in ther!1 expansion of the exact dynamical
exponent.17 As in the Fibonacci and silver-mean chains,
choosingJa.Jb leads to the same scaling behavior, since

FIG. 9. First five generations of the bronze-meanXXZ chain
with Ja,Jb, each showing the leftmost 24 sites. The numbers indi-
cate the positions of the sites in the original chain. Encircled blocks
contribute effective spins when renormalized. The labels on the
right denote the effective bonds in each generation. The attractor of
the block distribution is a two-cycle, reached at the second genera-
tion. All bonds to the right of the horizontal arrow follow the same
sequence in the secondsthirdd and fourthsfifthd generations.
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after the first lattice sweep the bond distribution is essentially
equal to the one obtained forJa,Jb.

Thus, the bronze-mean chains present qualitatively the
same low-temperature thermodynamic behavior as the
Fibonacci chain. However, this is not the case for ground-
state properties. As indicated in Fig. 9, the renormalization
process in each generation involves all spins in the chain and
gives rise to a hierarchy of effective spins, analogous to that
shown in Fig. 11. As a consequence, an effective spin in the
j th generation represents 3j−1 real spins. So, while the
ground states of the Fibonacci and silver-mean chains could
be described as “aperiodic-singlet phases,” from which exci-
tations of a given energy involve spins separated by a single,
well defined distance, low-energy excitations in the bronze-
mean chain involve an exponentially large number of spin
pairs, whose distances are distributed in an increasing range.
This is reflected in the ground-state correlation functions,
which exhibit a fractal-like structure, as seen in Fig. 10. The
strongest correlations in the chains correspond to the dis-
tances r2j =13,469,16 897,…, and their scaling behavior
can be obtained by the following analysis.

Consider a pair of neighboring effective spins belonging
to the same block in thej th generation, and letc0 be their
zeroth-order correlation. Each of these spins represents 3j−1

real spins, so that for each such pair there are 3j−1 pairs of
real spins separated by the same distancer j, contributing to
the total correlation per siteCsr jd. However, the contribution
of a real pair toCsr jd depends on the string of Clebsch-
Gordan coefficients indicating the weight of its two spins in
the effective spins: each time the intermediate effective spin
representing a real spinSk is located at the endssthe centerd
of a three-spin block, the weight ofSk is multiplied by a
factor c1,3 sc2,3d upon renormalization.sThese coefficients
are in general different forxx andzzcorrelations; see Appen-
dix A.d Since each effective spin in thej th generation has
gone throughj-1 renormalizations, a real pair can be classi-
fied according to the numbern of factorsc1,3 present in the
sequald weights of its spins. The contribution of all type-n
pairs to Csr jd is proportional to the number of such pairs,
being given by

gj
snd = 2n s j − 1d!

n!s j − 1 −nd!
sc1,3

2 dnsc2,3
2 d j−1−nuc0u.

Thus, the total contribution of a single effective-spin pair to
Csr jd is

gj = on=0

j−1
gj

snd = sc2,3
2 + 2c1,3

2 d j−1uc0u,

which gives

Csr jd , njgj ,
sc2,3

2 + 2c1,3
2 d j

r j
,

wherenj is the fraction of active spins in thej th generation.
Since asymptotically we havej =lnsr j / r0d / lnÎtbm, this last
result can be written as

Csr jd , r j
−h, with h = 1 −

lnsc2,3
2 + 2c1,3

2 d
ln Îtbm

. s18d

For the Heisenberg chain,c1,3=g3= 2
3 andc2,3=

1
3, so thath

=1. For theXX chain, h depends on whether we look at
longitudinal or transverse correlations; in the former case we
havec1,3

xx =1/Î2 andc2,3
xx = 1

2, so thathxx.0.875, while in the
latter casec1,3

zz = 1
2, c2,3

zz =0, and sohzz.1.387. These values
are fully compatible with the results from numerical imple-
mentations of the MDH scheme shown in Fig. 10, and they
agree very well with free-fermion calculations forXX chains
with r!1. Again, larger coupling ratios lead to nonuniversal
decay of the correlations, except in the Heisenberg limit.

D. A sequence producing effective-spin triples

The appearance of an effective-spin hierarchy is better
illustrated by the sequence obtained from the substitution
rule a→bbaba, b→bba. The first three generations of the
chains, forJa,Jb, are shown in Fig. 11; forJa.Jb the first
lattice sweep interchanges the roles of weak and strong
bonds, recovering the former case. Renormalization involves
both three-spin and two-spin blocks, and each lattice sweep
reproduces the original sequence, yielding effective cou-
plings given by

Ja8 = g2g3
2Ja

2

Jb
and Jb8 = g3

2Ja,

so that the recursion relations for the coupling ratio and the
energy gap are

FIG. 10. Ground-state correlation functions of theXX sad and
Heisenbergsbd bronze-mean chains, obtained from the zeroth-order
MDH schemeschains with 2 010 601 sitesd.

FIG. 11. First three generations of theXXZchain with couplings
following the sequence in Sec. V D, forJa,Jb, showing an
effective-spin hierarchy. Solid lines indicate strong bonds; for clar-
ity, weak bonds are not represented. Shaded blocks contribute ef-
fective spins when renormalized, while white blocks form singlets.
A third-generation effective spin represents three second-generation
and nine first-generation spins.
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r8 = g2r and L8 = g3
2rL.

The size of three-spin blocks followsr j =2,6,22,…, while
that of two-spin blocks corresponds tor j /2, leading asymp-
totically to a rescaling factor

tst = 2 +Î3 . 3.73,

and a dynamical scaling relation

L j , r j
−zsrde−m ln2sr j/r0d,

with

zsrd = −
lnsg2

−1/2g3
2rd

ln tst
and m = −

lnsg2
1/2d

ln2 tst
.

Again, aperiodicity induces nonuniversal behavior for 0
øD,1 and a weakly exponential scaling in the Heisenberg
limit.

As in the bronze-mean chains discussed in the previous
Sec. V C, excitations of a given energy involve an exponen-
tially large number of spins, due to the effective-spin hierar-
chy. More precisely, since each effective spin in thej th gen-
eration represents 3j−1 real spins, excitations with energyL j,
corresponding to breaking aj th generation singlet, involve
s2d3j−1 spins; exciting a three-spin block in the same genera-
tion costs an energy of the same order and involves 3j spins.
Dominant ground-state correlation functions also decay as in
Eq. s18d, but now with

h = 1 −
lnsc2,3

2 + 2c1,3
2 d

ln tst
,

yielding hxx.0.830 andhzz.1.526 for theXX chain, and
h=1 for the Heisenberg chain. These values are again fully
compatible with the results from numerical implementations
of the MDH scheme.

E. A marginal tripling sequence

This sequence is generated by the substitution rulea
→aba, b→bba. As discussed in Ref. 17, this type of aperi-
odicity may lead to marginal behavior even in anisotropicXY
chains. As shown in Fig. 12, forJa,Jb the MDH scheme
produces a second-generation lattice with four different ef-
fective couplings, given by

J̃a = g2g3
Ja

2

Jb
, J̃b = g3Ja,

J̃c = g3
2Ja, J̃d = g2

Ja
2

Jb
,

with an effective coupling ratior̃= J̃a/ J̃b=g2r. sChoosing

Ja.Jb interchanges the roles ofJ̃c andJ̃d, otherwise produc-
ing the same bond distribution.d The bond distribution does
not change upon further lattice sweeps, and the effective cou-
plings satisfy the recursion relations

J̃a8 = g2
J̃a

2

J̃b

, J̃b8 = g2
J̃cJ̃d

J̃b

,

J̃c8 = g2
J̃aJ̃c

J̃b

, J̃d8 = g2
J̃aJ̃d

J̃b

.

Noting thatJ̃a= J̃cJ̃d/ J̃b, we can write

r̃8 =
J̃a8

J̃b8
=

J̃a

J̃b

= r̃,

so that aperiodicity is marginal even in the Heisenberg limit.
The recursion relation for the gaps is

L8 =
J̃b8

J̃b

L = g2r̃L,

and the size of the singlets formed along the generations
follows r j =3j −1, with a rescaling factortmt=3, so that the
dynamic scaling relation is given by

L j , r j
−zsrd,

with a nonuniversal dynamical exponent

z= zsrd = −
lnsg2

2rd
ln 3

.

Thermodynamic properties can be estimated by using the
same idea of the “independent-singlet” approximation de-
scribed for Fibonacci chains, with slight modifications due to
the fact that the first lattice sweepsbut not the later onesd
involves renormalization of both two- and three-spin blocks.
Thus, the free energy per site can be calculated by adding to
Eq. s13d a term representing the contribution of spins renor-
malized in the first lattice sweep, and given by

f1sh,Td =
1

6
FpairsJb,Db;h,Td +

1

6
FtriplesJb,Db;h,Td, s19d

where FtriplesJ,D ;h,Td is the free energy of a spin triple
obeying the Hamiltonian

Htriple = JsS1
xS2

x + S1
yS2

y + DS1
zS2

zd + JsS2
xS3

x + S2
yS3

y + DS2
zS3

zd

− hsS1
z + S2

z + S3
zd.

Notice that three-spin blocks yield effective spins when
renormalized, and these will pair with other real or effective
spins to form singlets in the second lattice sweep, but this is
not taken into account by Eq.s19d. In order to obtain a cor-
rect estimate of the low-temperature susceptibility, we must

FIG. 12. First two generations of theXXZ chain with couplings
following the sequence in Sec. V E, forJa,Jb. The numbers indi-
cate the position of the spins in the original chain. The first lattice
sweep generates a fixed-point bond distribution with four different

effective couplingsJ̃a throughJ̃d.
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multiply the contribution arising from spin triples by a factor
like e−Jb/T. Results for the temperature dependence of the
specific heat and susceptibility are shown in Fig. 13, forr
= 1

10 and three values of the uniform anisotropyD, corre-
sponding to theXX and Heisenberg chains and to an inter-
mediate case. Both quantities exhibit log-periodic oscilla-
tions, obeying the scaling forms

csTd , T1/zGcS ln T

ln l
D and xsTd , T1/z−1GxS ln T

ln l
D ,

with l being the asymptotic ratio between the gaps in suc-
cessive generations, whileGc andGx are periodic functions
swith a period of 1d. In the XX and Heisenberg limits, we
havel=g2

2r; for intermediate anisotropies,l equalsreff, a
coupling ratio defined at the energy scale in which effective
anisotropies become negligible.

Also as a consequence of the strictly marginal character of
aperiodic fluctuations for all anisotropies in the regime 0
øDø1, dominant ground-state correlations followCsr jd
,1/r j in ther!1 regime, but nonuniversal behavior should
be observed for larger coupling ratios.

VI. RELEVANT APERIODICITY

A. The binary Rudin-Shapiro sequence

The Rudin-Shapiro sequence is originally defined as a
four-letter sequence,56 generated by the substitution rulea

→ac, b→dc, c→ab, andd→db. It has the interesting prop-
erty that its geometrical fluctuations mimic those induced by
a random distribution. In order to reduce it to a binary se-
quence, we make the associationsc;a andd;b, obtaining
an inflation rule for letter pairs, given byaa→aaab, ab
→aaba, ba→bbab, and bb→bbba. The rule generates
blocks having between two and five spins and is symmetric
under the interchange ofa andb, so that the scaling behavior
is invariant with respect to the interchange ofJa andJb. The
left end of the first two generations of the Rudin-Shapiro
chains is shown in Fig. 14 forJa,Jb.

Blocks with more than three spins are eliminated in the
first lattice sweep and do not appear in later generations.
Both two- and three-spin blocks are present in the fixed-point
block distributionsalready reached at the second generationd,
and upon renormalization the sequence produces an
effective-spin hierarchy, stemming from approximately
mirror-symmetric patterns of three-spin and five-spin blocks
in the original lattice. This is illustrated in Figs. 15 and 16.

In the j th generation, three-spin blocks have sizer j
=s2d4j−1 swith a rescaling factortrs=4d, while two-spin
blocks have sizer j /2. The first lattice sweep generates effec-

tive couplingsJ̃i having eight different values,

J̃a = g2g3g4
Ja

5

Jb
4, J̃b = g3g5Ja,

J̃c = g2g3
Ja

2

Jb
, J̃d = g3g4g5

Ja
2

Jb
, J̃e = g2

2g3g5
Ja

2

Jb
,

J̃f = g2
2g3g4g5

Ja
3

Jb
2, J̃g = g2

2g3g4
Ja

4

Jb
3, J̃h = g2

3g3g4
2Ja

5

Jb
4 ,

and whose bond distribution remains unchanged upon renor-
malization, leading to the recursion relations

J̃a8 = g2
3J̃a

2J̃dJ̃g

J̃bJ̃c
2

, J̃b8 = g3J̃f ,

FIG. 14. First two generations of the binary Rudin-ShapiroXXZ
chain, for Ja,Jb. The first lattice sweep generates eight different

effective couplings,J̃a throughJ̃h, labeled in the figure by the letters
a–h. Further renormalization does not change the bond distribution.

Starting from the second generation, only blocks coupled byJ̃b

sthick linesd andJ̃c sthin linesd bonds are renormalized.sFor clarity,
weaker bonds are not drawn in the picture.d

FIG. 13. sColor onlined Log-log plots of the specific heatcsTd
and susceptibilityxsTd as functions of temperature forXXZ chains
with couplings following the marginal tripling sequence, forJa/Jb

= 1
10 and three different values of the uniform anisotropyD.

FIG. 15. Pattern of three-spin blocks and isolated spins leading
to the effective-spin hierarchy in Rudin-ShapiroXXZ chains. Thick
lines indicate strong bonds. Shaded blocks contribute effective spins
when renormalized; white blocks form singlets.

FIG. 16. Pattern of five-spin and three-spin blocks leading to the
effective-spin hierarchy in Rudin-ShapiroXXZ chains. Thick lines
indicate strong bonds. Shaded blocks contribute effective spins
when renormalized; white blocks form singlets.
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J̃c8 = g3J̃g, J̃d8 = g2g3
2J̃dJ̃f

J̃b

, J̃e8 = g2g3
2J̃eJ̃g

J̃c

,

J̃f8 = g2
2g3

J̃aJ̃dJ̃f

J̃bJ̃c
2

, J̃g8 = g2
2g3

J̃aJ̃dJ̃g

J̃bJ̃c

, J̃h8 = g2
3J̃eJ̃fJ̃h

2

J̃b
2J̃c

.

Defining a new effective couplingJ̃0= J̃aJ̃d/ J̃c, we obtain a
system of three recursion relations,

J̃08 = g2
4g3

J̃0
2J̃f

J̃b
2

, J̃b8 = g3J̃f, and J̃f8 = g2
2g3

J̃0J̃f

J̃b

.

With coupling ratiosr̃= J̃0/ J̃b and s̃= J̃f / J̃b, and a gap pro-

portional toJ̃b, we have

r̃ j = g2
4r̃ j−1

2 , s̃ j = g2
2r̃ j−1, and

L j

L j−1
= g3s̃ j ,

which, after eliminatings̃ j, yields

r̃ j = g2
4r̃ j−1

2 and
L j

L j−1
= g3r̃ j

1/2.

Solving the recursion relations we obtain

L j , r j
−z expF− mS r

r0
DvG

with v= 1
2,

z =
lnsg3/g2

2d
ln trs

and m = −
1

2
lnsg2

2g4r2d.

So we obtain, for the whole regime 0øDø1, the dynamical
scaling form predicted for theXX chain, reproducing the re-
sult for the random-singlet phase.

For chains with RS couplings, effective-spin formation
determines the dominant ground-state correlations, but the
corresponding hierarchy is slightly different from the ones
seen in Secs. V C and V D, now involving both three-spin
sand some five-spind blocks and unrenormalized spins. As
illustrated in Figs. 15 and 16, for each block renormalized in
the j th generation the correlation between its end spins con-
nects a number of order 2j original spin pairs separated by
the same distancer j sthe size of the blockd, yielding a con-
tribution to the average correlation in the Heisenberg chain
andCxxsr jd in the XX chain given by

gj = fs2c1,3
2 d j−1 + c2,3

2 ok=1

j−1
s2c1,3

2 dk−1guc0u,

wherec0 is the correlation between end spins in a three-spin
block. For the Heisenberg chain 2c1,3

2 = 8
9 ,1, and thus,

Csr jd , gjnj ,
1

r j
, s20d

wherenj ,1/r j is the fraction of three-spin blocks in thej th
generation. For theXX chain 2sc1,3

xx d2=1, so thatgj has a term
proportional toj , andCxxsr jd carries a logarithmic correction,

Cxxsr jd , gjnj , sy0 + y1 ln r jdr j
−1, s21d

where y0 and y1 are constants. Thezz correlation between
end spins in a three-spin block is zero, so that the dominant
correlations correspond to spin pairssconnected through one
of the effective end spins and the middle spind at distances
r j8=4j−1±4j−2±4j−3±¯±1, with averagekr j8l=4j−1, whose
contribution is given bygj8,s1

2
d j−1, sincec1,3

zz = 1
2. We then

have

Czzsr j8d , gj8nj , kr j8l
−3/2. s22d

Eqs. s21d and s22d should be contrasted with the random-
singlet isotropic resultCsrd, r−2, indicating a clear distinc-
tion between the ground-state phases induced by disorder
and aperiodicity, even in the presence of similar geometric
fluctuations. This is related to the inflation symmetry of the
aperiodic sequences, which is absent in the random-bond
casesor in aperiodic systems with random perturbations57d.
Its effects are exemplified by the fractal structure of the
ground-state correlations visible in Fig. 17, which displays
results from numerical implementations of the MDH method
for bothXX and Heisenberg chains, showing conformance to
the scaling forms in Eqs.s20d–s22d. Contrary to the marginal
sequences, these scaling forms should be observed in the
large-distance behavior of Rudin-ShapiroXXZchains for any
coupling ratiorÞ1; we expect a crossover from the uniform
to aperiodic scaling behavior as larger distances are probed
for r close to unity. Free-fermion calculations in theXX limit
support this picture.

B. The 6-3 sequence

This sequence is generated by the substitutiona
→babaaa, b→baa, and its XX wandering exponent isv
=ln 2/ ln 5, with a rescaling factort63=5. Application of the
MDH scheme leads to a fixed-point bond distribution with
singlet renormalization only, so that no effective-spin hierar-

FIG. 17. Ground-state correlations for chains with Rudin-
Shapiro couplings, obtained from extrapolation of numerical MDH
results for chains with 216 to 220 sites.sad Cxxsrd supper solid curved
andCzzsrd slower solid curved for theXX chain. The dotted curve is
proportional tor−3/2. sCurves offset for clarity.d Inset: dominantCxx

correlations, corresponding to distancesr j =s2d4j-1, fitted by a law
of the form rCxxsrd=y0+y1 ln r sdashed curved. sbd Csrd for the
Heisenberg chainssolid curved. The dotted curve is proportional to
1/r.
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chy is present. ForJa,Jb, as depicted in Fig. 18, three ef-
fective couplings are produced after the first lattice sweep,

J̃a = g2
2Ja

3

Jb
2, J̃b = Ja, J̃c = g2

Ja
2

Jb
,

and upon further lattice sweeps we obtain the recursion rela-
tions

J̃a8 = g2
3J̃a

3J̃c

J̃b
3

, J̃b8 = g2
J̃aJ̃c

J̃b

, J̃c8 = g2
2J̃a

2J̃c

J̃b
2

.

Thus, defining the effective coupling ratios

r̃ ;
Jã

J̃b

= g2
2SJa

Jb
D2

and s̃ =
J̃c

J̃b

= g2
Ja

Jb
,

we can rewrite the recursion relations as

r̃8 = g2
2r̃2, s̃8 = g2r̃, and

L8

L
=

J̃b8

J̃b

= g2s̃r̃.

In the j th generation, we haves̃ j
2= r̃ j, and thus,

r̃ j+1 = g2
2r̃ j

2 and L j+1 = g2r̃ j
3/2L j .

The length of the singlets correspond tor j =1,9,45,225,…,
so that asymptoticallyr j , r0t j, with r0= 9

25 and t=t63=5.
Solving the above recursion relations we obtain the dynami-
cal scaling behavior,

L j , r j
−z expF− mS r

r0
DvG , s23d

with a wandering exponentv=ln 2/ ln 5.0.431 and

z =
3 ln g2

ln 5
and m = −

3

2
lnsg2

4r3d,

wherer=Ja/Jb is the original coupling ratio.
If we chooseJa.Jb, blocks with 2, 3, and 4 spins coupled

by strong bonds appear along the chain. Effective spins are
produced by the first lattice sweep, yielding effective cou-
plings

J̃a = g2
3g3

2g4
3Jb

7

Ja
6, J̃b = g2g3

2g4
Jb

3

Ja
2, and J̃c = g2

2g3
2g4

2Jb
5

Ja
4 ,

whose distribution is the same as that of the third-generation
bonds forJa,Jb, and which remains unchanged upon renor-

malization. Thus, the scaling behavior is the same as above,
but now with a bare coupling ratio

r̃ ;
J̃a

J̃b

= g2
2g4

2SJb

Ja
D4

.

Thermodynamic properties can be estimated as in the
Fibonacci case, by using the independent-singlet approxima-
tion. Plots of the specific heatcsTd and susceptibilityxsTd as
functions of temperature are shown in Fig. 19, and compare
quite well with results from numerical diagonalization, even
for relatively large coupling ratiossJa/Jb= 1

4
d. This is not

surprising, given the fact that the effective coupling ratio
rapidly decreases as the RG proceeds, even for theXX chain.
As seen in the inset of Fig. 19sbd, at temperatures of the
order of the gapsL j the susceptibility follows the scaling
form

xsTd ,
1

Tuln Tu1/v ,

which can be readily obtained from Eq.s23d by assuming
that singlet pairs are magnetically frozen, while active spins
contribute Curie terms tox. Estimates ofcsTd andxsTd for
chains with anisotropies 0,Dø1 are qualitatively identical
to the ones for theXX chain.

Since no effective-spin hierarchy is present, and aperiod-
icity is relevant, dominant ground-state correlations, for any
coupling ratiorÞ1 and sufficiently large characteristic dis-
tancesr j, should decay as

Cxxsr jd , Czzsr jd ,
1

r j
,

for all anisotropies in the regime 0øDø1. This is confirmed
in the XX limit by numerical diagonalization, as shown in
Fig. 20.

FIG. 18. First two generations of the 6-3 sequence, discussed in
Sec. VI B, forJa,Jb. In the second generation, dashed lines indi-

cate effectiveJ̃a bonds, while thick and thin solid lines denote ef-

fective J̃b and J̃c bonds. In subsequent generations, theJ̃cJ̃a pairs

change toJ̃aJ̃c, and the firstJ̃a becomesJ̃c, but the bond distribution
is otherwise unchanged.

FIG. 19. Thermal dependence of the specific heatsad and sus-
ceptibility sbd of the XX chain with couplings following the 6-3
sequence of Sec. VI B, obtained forJa/Jb= 1

4 from both numerical
diagonalization of chains with 46 875 sitesscirclesd and the MDH
schemessolid curvesd. The inset insbd presents a log-linear plot of
T versussxTd−v, with v=ln 2/ ln 5, showing that forT.L j, corre-
sponding to the specific-heat maxima, the susceptibility satisfies the
scaling formx,T−1uln Tu−1/v sdashed lined; at intermediate tem-
peratures, a Curie-like behavior is observed.
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C. The fivefold-symmetry sequence

The sequence produced by the substitution rulea
→aaab, b→bba is related to binary tilings of the plane with
fivefold symmetry.36 The squite larged XX rescaling factor is
tff =25+10Î5.47.36, with a wandering exponentv
=ln 3/ ln tff .0.285.

Under a numerical implementation of the MDH scheme
with Ja,Jb, we obtain a quite intricate pattern. After a four-
bond transient produced by the first two lattice sweeps, a
two-cycle periodic attractor is reached, where six- and seven-
bond distributions alternate, as depicted in Fig. 21.sWith
Ja.Jb, the same two-cycle is reached after the first lattice
sweep.d The distance between spins connected by the stron-
gest bonds in each generation correspond tor j
=1,3,33,190,1385,9050,…, which asymptotically gives
r j+2/ r j .tff . The equations relating the effective couplings of
the fourth and fifth generations are

J̃a = g2
3g3

J̃A
2J̃CJ̃F

J̃B
3

, J̃b = g3J̃E, J̃c = g2
2J̃AJ̃CJ̃G

J̃B
2

,

J̃d = g2
2J̃CJ̃EJ̃F

J̃BJ̃D

, J̃e = g3
2J̃A

2J̃CJ̃G

J̃B
3

, J̃f = g2
2g3

J̃AJ̃CJ̃F

J̃B
2

,

while between the couplings of the fifth and fourth genera-
tions we have

J̃A8 = g2
2g3

J̃e
2J̃f

J̃bJ̃c

, J̃B8 = g2g3
J̃dJ̃f

J̃b

, J̃C8 = g2
J̃eJ̃f

J̃b

,

J̃D8 = g2
6g3

2J̃a
2J̃dJ̃eJ̃f

J̃b
3J̃c

, J̃E8 = g2
6g3

J̃a
2J̃e

2J̃f

J̃b
3J̃c

,

J̃F8 = g2
8g3

2J̃a
3J̃dJ̃eJ̃f

J̃b
4J̃c

, J̃G8 = g2
8g3

J̃a
3J̃e

2J̃f

J̃b
4J̃c

.

Eliminating the fifth-generation couplings and defining
the ratios

r̃ =
J̃A

J̃B

, s1 =
J̃C

J̃B

, s2 =
J̃F

2

J̃AJ̃B

, and s3 =
J̃F

J̃E

,

we can write a set of four recursion relations,

r̃8 = g2
3r̃ j

3, s18 =
g2

g3
r̃2,

s28 = g2
22g3r̃9ss1s3d4, s38 = g2

4g3s1s3.

The gaps in successive even generations obey

L8

L
=

J̃B8

J̃B

= g2
5g3rs1

2s2,

and by expressings1, s2, ands3 in terms ofr̃ we get

L j+1

L j
= ag2

20jr̃ j
16/3,

where now 2j +2 labels the lattice generation anda is a
constant, depending on the values of the coupling ratios in
the fourth generation. Solving this last equation gives

L j , AjBj2C3j
,

with

A = ag2
−8, B = g2

20, and C = g2
4/9r̃1

8/9.

For large enoughj , since j =lnsr j / r0d / ln tff , we have

L j , expF− mS r j

r0
DvG ,

with

m = − ln C and v =
ln 3

ln tff
,

again obtaining, for the whole anisotropy regime 0øDø1,
the same scaling form predicted for theXX chain.

The effective-spin hierarchy produced by the RG process
is analogous to that in the bronze-mean chains, so that
ground-state correlations behave as in Eq.s18d, with h=1 in
the Heisenberg chain, buthxx.0.884 andhzz.1.359 in the
XX limit. However, these figures are not so well reproduced
in the numerical calculations, even for chains withN.1.6
3106 sites, most probably due to the extremely large rescal-
ing factor.

VII. DISCUSSION AND CONCLUSIONS

For all aperiodic sequences discussed in the previous sec-
tions, the recursion relations for the main coupling ratio and
the energy gaps have the forms

FIG. 20. sColor onlined Ground-state correlations of theXX
chain with couplings following the 6-3 sequence of Sec. VI B, for
two different values of the coupling ratior=Ja/Jb, as obtained by
numerical diagonalization of chains with 1874 sites. Peaks in the
curves correspond to the characteristic distancesr j =9, 45, and 225.
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r j+1 = cr j
k and L j+1 = f1f2

j r j
,L j , s24d

wherec, f1, and f2 areD-dependent nonuniversal constants,
and , sa rational numberd and k san integerd relate to the
number of singlets involved in determining the effective cou-
plings. In particular,k is ultimately the difference in the
number of singlets producing the effective couplings whose
ratio is r,1.

If kù2, the recursion relation forr always has a stable
fixed point atr* =0, so that the effective coupling ratios be-
come exponentially small as the renormalization proceeds,
indicating that asymptotic results obtained from the MDH
method should be essentially exact. Taking into account the
scaling behavior of the characteristic distancesr j , r0t j, Eqs.
s24d lead to the dynamical scaling form

L j , r j
−ze−m8 ln2sr j/r0de−msr j/r0dv

, e−msr j/r0dv
, s25d

with z andm8 nonuniversal constants,

m = −
lnsc,/k−1r,d

ksk − 1d
,

r being the bare coupling ratio, and

v =
ln k

ln t
.

Note thatv has the same form as the exact wandering expo-
nent forXX chains with nondimerizing aperiodic couplings,
given in Eq.s7d. Moreover,v depends only on the topology

and the self-similar properties of the sequence, being inde-
pendent of the anisotropy in the regime 0øDø1.

If k=1, the recursion relation forr has a line of fixed
points, provided thatc=1, which is generically the case in
the XX limit; otherwise r* =0 is a stable fixed point. The
general solution to Eqs.s24d is

L j , r j
−zsrde−m ln2sr j/r0d, s26d

where

zsrd = −
lns f1f2

1/2c−,/2r,d
ln t

and m = −
lns f2

1/2c,/2d
ln2 t

.

Unless f2Þ1, which, among the sequences studied here,
happens only for the relevant fivefold-symmetry sequence of
Sec. VI C,m is zero in theXX limit. This means that we can
identify a nonuniversal dynamical exponentz=zsrd, and the
scaling behavior of thermodynamic properties depends on
the coupling ratio for the whole anisotropy regime 0øD
,1. In the Heisenberg limitsD=1d, unlessm=0, as in the
marginal tripling sequence of Sec. V E, Eq.s26d describes a
weakly exponential dynamic scaling. In this case, aperiodic-
ity can be viewed as a marginally relevant operatorsv
→0+d in the renormalization-group sense.

These results strongly suggest that low-temperature ther-
modynamic properties of any antiferromagneticXXZ chain
with anisotropies intermediate between theXX and Heisen-
berg limits and couplings following a given binary aperiodic
sequence can be classified according to a single wandering
exponentv, which is known exactly forXX chains. This
generalizes what happens in random-bondXXZ chainssfor
which v= 1

2d, where thermodynamic properties in the aniso-
tropy regime −12 øDø1 are those characterizing the
random-singlet phase.8,43 Note that, although the above clas-
sification seems to imply an anisotropy-independent critical
valuevc=0 for the relevance of aperiodic fluctuations on the
low-temperature behavior ofXXZ chains, it does not show
thatv plays the role of a genuine wandering exponent, in the
sense that fluctuations scale asg,Nv for general easy-plane
anisotropies. In any case, due to the fact that the critical
exponentssincluding the correlation-length exponentnd of
the uniform XXZ chain are known to vary with the aniso-
tropy along the whole critical line −1øDø1,21,22 it remains
an open question how the present results fit into the frame-
work of the Harris-Luck criterion.

Of course, Eqs.s24d are valid for all anisotropies 0øD
ø1 only if the bond distribution generated by the MDH
method is independent ofD. This is certainly the case for
strong enough modulation.sHow strong this modulation has
to be depends on the various block sizes produced by the
sequence.d However, from numerical implementations of the
method, we find that, even when the blocks selected for
renormalization in the first few lattice sweeps depend onD, a
universal distribution is eventually reached, in much the
same way as when we chooseJa.Jb instead ofJa,Jb.
Thus, we expect that, for general binary substitution rules
inducing relevant aperiodicity, the scaling form in Eq.s25d
holds for all coupling ratiosrÞ1.

FIG. 21. Leftmost 24 sites in the first six generations ofXXZ
chains with couplings following the fivefold-symmetry sequence,
discussed in Sec. VI C, forJa,Jb. The attractor of the bond distri-
bution is a two-cycle, reached after three lattice sweeps. Second-
generation bonds are denoted byJa through Jd; third- and fifth-
generation couplings are labeleda through f, while A throughG
label fourth- and sixth-generation bonds. CouplingsJG only occur
much farther along the chains. Starting from the fourth generation,
lines indicate blocks to be renormalized.
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An approximate picture of the ground state and of the
lowest excitations in the presence of aperiodic couplings can
also be deduced from the MDH scheme, and is revealed by
the behavior of the pair correlation functions. As the energy
scale is reduced, two types of behavior can be identified.
Either the RG process produces a hierarchy of singletssas in
the Fibonacci, silver-mean, marginal-tripling, and 6-3 se-
quencesd, or a hierarchy of effective spinssas in the bronze-
mean, spin-triple, Rudin-Shapiro, and fivefold-symmetry se-
quencesd. The first type reveals a kind of self-similar,
aperiodic-singlet phase, from whichssinglet-tripletd excita-
tions involve strongly coupled pairs composed of spins sepa-
rated by well defined characteristic distances. In the second
type, since the number of spins contributing to an effective
spin increases exponentially along the hierarchy, excitations
of a certain energy involve spins separated by a wide range
of distances, giving rise to a fractal structure of the correla-
tion functions. Notice that, contrary to the finite temperature
behavior, there is no relation between the ground-state prop-
erties and the marginal or relevant character of the aperiod-
icity.

For aperiodic sequences inducing strictly marginal fluc-
tuations, we could account for the nonuniversality of the
correlation-function decay exponents by a numerical calcu-
lation based on a second-order expansion of the ground-state
vectors. This compares quite well with results from numeri-
cal diagonalization in theXX limit, which indeed show that
the zeroth-order MDH predictions are reproduced in the
strong-modulation regime.

The results on relevant aperiodic couplings show that geo-
metrical fluctuations, measured by the wandering exponent
v, are not determinant for ground-state properties, although
they control the low-energy scaling of thermodynamic quan-
tities. In particular, both random bonds and Rudin-Shapiro
couplings are characterized byv= 1

2; however, correlations
in the random-singlet phase are entirely different from those
in XXZ chains with Rudin-Shapiro couplings. This is a con-
sequence of the inflation symmetry induced by substitution
rules, which is clearly absent in random chains.sAnalo-
gously, comparative studies58,59 between random-bond and
Rudin-Shapiro quantum Ising chains show that, although the
corresponding scaling properties are similar at the critical
point, only randomness is capable of producing the off-
critical Griffiths singularities.1,2,60d Nevertheless, aperiodic
and randomXXZ chains share the feature that the average
and typical behaviors are strikingly distinct, and that average
correlations decay as power laws. Finally, aperiodic ground-
state phases are unstable towards random perturbations,
which break inflation symmetry, and the random-singlet be-
havior is ultimately recovered.57
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APPENDIX A: RENORMALIZATION
OF MULTI-SPIN BLOCKS

In this appendix, we derive the expressions for the renor-
malized coupling constants used in the extension of the Ma-

Dasgupta-Hu method toXXZ chains with aperiodic cou-
plings. Contrary to the random-bond chains discussed in Sec.
II, when couplings follow aperiodic sequences generated by
inflation rules we generally need to consider spin blocks with
more than one strong bond, and thus more than two spins.
For instance, in the Fibonacci sequence withJa.Jb ssee Fig.
2d there appear blocks with one or twoJa bonds. Since we
assume that all couplings are antiferromagnetic, the local
ground state is a singlet for blocks with an even number of
spins, but a doublet if the blocks contain an odd number of
spins.61

Let us consider a block withn spinsS1 throughSn con-
nected by equal bondsJ0, with anisotropyD0. This is de-
scribed by the local Hamiltonian

H0 = J0o j=1

n−1
sSj ·Sj+1dD0

,

where we introduced the notation

sSi ·SjdD ; Si
xSj

x + Si
ySj

y + DSi
zSj

z.

The gapL0 between the ground-state energy of the block and
its lowest excited multiplet depends onJ0 andD0. For two-
spin and three-spin blocks we have

L0
s2d =

1 + D0

2
J0 and L0

s3d =
1

4
sD0 + ÎD0

2 + 8dJ0.

We define the strongest bonds in the chain as those produc-
ing spin blocks with the largest gapsL0.

An n-spin block to be renormalized is connected to its
neighboring spinsSl andSr by weaker bondsJl andJr. The
relevant part of the chain Hamiltonian is

H = H0 + Hlr ,

with

Hlr = JlsSl ·S1dDl
+ JrsSn ·SrdDr

. sA1d

The idea of the MDH method is to obtain recursion relations
for the couplings by treatingHlr as a perturbation toH0.

If n is evensas in the two-spin case shown in Fig. 22d, the
ground state ofH0 is a singlet, which we denote byuC0l,
with a corresponding energyE0. In the space of this singlet,
the states ofSl andSr are arbitrary. In the space spanned by

FIG. 22. Renormalization step involving the decimation of a
two-spin block.
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the eigenstatesuCil of H0 swith energiesEid and the states
uml ,mrl;umll ^ umrl of Sl,r sml,r = ± 1

2
d, the statesugsml ,mrdl

;uml ,mrl ^ uC0l are degenerate. The first-order perturbative
corrections to the ground-state energyE0 are zero, but the
second-order corrections are given by the eigenvalues of the
matrix

Vml,mr;ml8,mr8
= o

e

kgsml,mrduHlr uelkeuHlr ugsml8,mr8dl
E0 − Ei

,

where the summation spans the excited statesuel;uml9 ,mr9l
^ uCilsi =1,… ,2n−1d. In terms of the raising and lowering
operatorsS±=Sx± iSy we have

sSi ·SjdD ;
1

2
sSi

+Sj
− + Si

−Sj
+d + DSi

zSj
z, sA2d

and a little algebra shows that

Vml,mr;ml8,mr8
=

1

4
JlJrkml,mruSl

+Sr
−uml8,mr8lo

iÞ0

kC0uS1
−uCilkCiuSn

+uC0l + kC0uSn
+uCilkCiuS1

−uC0l
E0 − Ei

+
1

4
JlJrkml,mruSl

−Sr
+uml8,mr8lo

iÞ0

kC0uS1
+uCilkCiuSn

−uC0l + kC0uSn
−uCilkCiuS1

+uC0l
E0 − Ei

+ DlDrJlJrkml,mruSl
zSr

zuml8,mr8lo
iÞ0

kC0uS1
zuCilkCiuSn

zuC0l + kC0uSn
zuCilkCiuS1

zuC0l
E0 − Ei

. sA3d

Since the first two terms on the right-hand side of Eq.sA3d
are complex conjugates, and noting thatE0−Ei is propor-
tional to J0, we can write

Vml,mr;ml8,mr8
= gn

JlJr

J0
kml,mruSl

xSr
x + Sl

ySr
yuml8,mr8l

+ gndnDlDr
JlJr

J0
kml,mruSl

zSr
zuml8,mr8l,

wheregn anddn depend onD0 fwith dn=1 for D0=1, where
SUs2d symmetry is recoveredg. The above matrix elements
are precisely the ones corresponding to the Hamiltonian

H8 = J8sSl
xSr

x + Sl
ySr

y + D8Sl
zSr

zd,

with the effective parametersJ8 andD8 given by

J8 = gn
JlJr

J0
and D8 = dnDlDr . sA4d

For two-spin blocks we have

g2 =
1

1 + D0
and d2 =

1 + D0

2
.

For larger blocks the parameters can be evaluated numeri-
cally as a function ofD0; however, for four-spin blocks we
can analytically determineg4=1 in the XX limit and g4= 2

3
−Î3/6.0.378 in the Heisenberg chain.

If n is oddsas in the three-spin case shown in Fig. 23d, H0
has two degenerate ground states, which we denote byuC0

±l.
These can be associated with an effective spin-1

2 S0, whose
states can be described by the azimuthal quantum number

m0, so thatum0= ± 1
2l= uC0

±l. In the spaceH spanned by the
states ofS0, Sl, and Sr, the statesuml ,mr ,m0l;umll ^ umrl
^ um0l are degenerate. The introduction ofHlr lifts this de-
generacy, and we expect that, to orderJl,r /J0, perturbation
theory leads to an effective HamiltonianH8, with matrix el-
ements givensapart from a constantd by

Hml,mr,m0;ml8,mr8,m08
8 = kml,mr,m0uHlr uml8,mr8,m08l.

Restricting ourselves to the spaceH, it is possible to write

H8 = Jl8sSl ·S0dDl8
+ Jr8sS0 ·SrdDr8

,

provided

JlsSl ·S1dDl
= Jl8sSl ·S0dDl8

, sA5d

and

FIG. 23. Renormalization step involving a three-spin block.
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JrsSn ·SrdDr
= Jr8sS0 ·SrdDr8

.

We now expand Eq.sA5d with the help of Eq.sA2d, and
notice that

kml,mr,m0uSl
+S0

−uml8,mr8,m08l = dml8,ml−1dmr8,mr
dm08,m0+1,

kml,mr,m0uSl
+S1

−uml8,mr8,m08l = dml8,ml−1dmr8,mr
km0uS1

−um08l,

kml,mr,m0uSl
zS0

zuml8,mr8,m08l = mlm0dml8,ml
dmr8,mr

dm08,m0
,

kml,mr,m0uSl
zS1

zuml8,mr8,m08l = mldml8,ml
dmr8,mr

km0uS1
zum08l,

di,j being the Kronecker symbol. By the Wigner-Eckart theo-
rem, we can write

km0uS1
−um08l = gndm08,m0+1,

km0uS1
zum08l = sdngndm0dm08,m0

,

with gn anddn depending onD0, and we formally obtain the
renormalized parameters,

Jl8 = gnJl and Dl8 = dnDl . sA6d

Analogously, by symmetry we have

Jr8 = gnJr and Dr8 = dnDr . sA7d

For three-spin blocks we obtain

g3 =
sD0 + ÎD0

2 + 8d
2 +

1

4
sD0 + ÎD0

2 + 8d2
,

and

d3 =
1

4
sD0 + ÎD0

2 + 8d ,

while for larger blocks the parameters can be calculated nu-
merically. In particular, for five-spin blocks we have, in the
XX limit sfor which analytical results are availabled, g5
=Î3/3.0.577, and in the Heisenberg chaing5.0.512.

In blocks with an odd number of spins, the original spins
Si si =1,… ,nd are represented by the effective spinS0, with
“weights” given by the coefficientsci,n

x and ci,n
z , defined

through the operator identitiessvalid in Hd

Si
x = ci,n

x S0
x and Si

z = ci,n
z S0

z.

These are useful in the calculation of correlation functions.
Note thatc1,n

x =cn,n
x =gn and c1,n

z =cn,n
z =dngn. For three-spin

blocks we have

c2,3
x = −

1

1 +
1

8
sD0 + ÎD0

2 + 8d2
,

and

c2,3
z =

1

4
D0sD0 + ÎD0

2 + 8dc2,3
x .

EquationssA4d, sA6d, and sA7d constitute the recursion
relations defining the RG steps in the MDH scheme.

APPENDIX B: SECOND-ORDER CALCULATION
OF CORRELATION FUNCTIONS

Let us assume that a two-spin block, such as the one
shown in Fig. 22, is selected for renormalization at some
point of the RG process. In terms of the states ofS1 andS2,
the eigenstates of the block HamiltonianH0, with the corre-
sponding energies, are

uC0l =
1
Î2

su↑↓l − u↓↑ld, E0 = − S1

2
+

1

4
D0DJ0,

uC1l = u↑↑l, uC2l = u↓↓l, E1 = E2 =
1

4
D0J0,

and

uC3l =
1
Î2

su↑↓l + u↓↑ld, E3 = S1

2
−

1

4
D0DJ0.

The connection between the two-spin block and the rest of
the chain, through the neighboring spinsSl and Sr, is de-
scribed by the HamiltonianHlr in Eq. sA1d.

Denoting byuAil the states of all other spins in the chain,
and assuming that in the thermodynamic limit there is a
unique ground stateuA0l, the ground state of the whole chain
can be written, at the zeroth order in perturbation theory, as
ug0l= uA0,C0l. Up to the second order inJl,r /J0 we obtain a
corrected state,

ugl = ug0l + o
i

o
kÞ0

uAi,Ckl
kAi,CkuHlr uA0,C0l

E0 − Ek

+ o
i,j

o
k,,Þ0

uAi,Ckl
kAi,CkuHlr uAj,C,lkAj,C,uHlr uA0,C0l

sE0 − EkdsE0 − E,d

− o
i,j

o
kÞ0

uAi,Ckl
kAi,CkuHlr uAj,C0lkAj,C0uHlr uA0,C0l

sE0 − Ekd2 .

sB1d

A second-order estimate of the expectation value of any op-
eratorO is simply given by

kOlg ;
kguOugl
kgugl

.

For the calculation of correlation functions involving
spins in the block, we writeO=OCOA, whereOC andOA are
operators acting on the subspaces defined by the statesuCil
and uAil, respectively. Expanding Eq.sB1d, we obtain an ex-
pression for kguOugl with terms containing combinations
such askCiuOCuC jl and kA0uSl

+OAuA0l, which is rather cum-
bersome to write here. As examples of the final results ob-
tained in the Heisenberg limit, we have

kgugl ; g−1 = 1 +
3

16

Jl
2 + Jr

2

J0
2 −

1

2

JlJr

J0
2 kA0uSl ·SruA0l,

ANDRÉ P. VIEIRA PHYSICAL REVIEW B71, 134408s2005d

134408-20



kS1 ·S2lg = −
3

4
gS1 −

1

16

Jl
2 + Jr

2

J0
2 +

1

6

JlJr

J0
2 kA0uSl ·SruA0lD ,

kSl ·S1lg =
1

2
gFS1

3
+

1

4

Jr + 2Jl

J0
D Jr

J0
kA0uSl ·SruA0l

−
1

4
S1 +

3

4

Jl

J0
D Jl

J0
G ,

and

kSn ·S1lg = −
1

2
gFS1 +

1

4

Jl

J0
D Jl

J0
kA0uSn ·SluA0l

− S1 +
3

4

Jr

J0
D Jr

J0
kA0uSn ·SruA0lG ,

Sn being any spin other thanSl, Sr, S1 andS2. These expres-
sions depend explicitly on expectation values like
kA0uSl ·SruA0l, which in turn depend on expectation values
involving spins neighboring the blocks in whichSl and Sr
will be decimated. As the RG proceeds, this generates a hi-
erarchical structure, which can be solved backwards by as-
suming that the correlation between the spins in the very last
block to be renormalized takes it zeroth-order value. It is

interesting to notice that the correlation between two spins
which are not decimated in the same block is at most of
orderJl,r /J0.

Similarly, in theXX limit we have, for instance,

kgugl ; g−1 = 1 +
1

2

Jl
2 + Jr

2

J0
2 − 4

JlJr

J0
2 kA0uSl

xSr
xuA0l,

kS1
xS2

xlg = −
1

4
g,

kS1
zS2

zlg = −
1

4
gS1 −

1

2

Jl
2 + Jr

2

J0
2 + 4

JlJr

J0
2 kA0uSl

xSr
xuA0lD ,

kSn
xS1,2

x lg = − gSJl,r

J0
kA0uSn

xSl,r
x uA0l −

Jr,l

J0
kA0uSn

xSr,l
x uA0lD ,

kSn
zS1,2

z lg = g
Jr,l

2

J0
2 kA0uSn

zSr,l
z uA0l .

Notice that expressions for thezz correlations may involve
other expectation values of bothxx andzzcorrelations.
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