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Aperiodic quantum XXZ chains: Renormalization-group results
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We report a comprehensive investigation of the low-energy properties of antiferromagnetic quéXfum
spin chains with aperiodic couplings. We use an adaptation of the Ma-Dasgupta-Hu renormalization-group
method to obtain analytical and numerical results for the low-temperature thermodynamics and the ground-
state correlations of chains with couplings following several two-letter aperiodic sequences, including the
quasiperiodic Fibonacci and other precious-mean sequences, as well as sequences inducing strong geometrical
fluctuations. For a given aperiodic sequence, we argue that in the easy-plane anisotropy regime, intermediate
between theXX and Heisenberg limits, the general scaling form of the thermodynamic properties is essentially
given by the exactly knowXX behavior, providing a classification of the effects of aperiodicityXZ chains.
We also discuss the nature of the ground-state structures and their comparison with the random-singlet phase
characteristic of random-bond chains.
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I. INTRODUCTION decimate the spin pairs coupled by the strongest bhdse

At low temperatures. the interolay between lack of trans-With the largest gaps between the local ground state and the
. emp ' pay . ; first excited multiplet, forming singlets and inducing weak
lational invariance and quantum fluctuations in low-

: . : effective couplings between neighboring spins, thereby re-
dimensional strongly correlated electron systems may mducgUCin the enerav scale. FotXZ chains in the reaime &
novel phases with peculiar behavior. In particular, random- 9 9y : 9 2

ness in quantum spin chains may lead to Griffiths ph&ses, <A<1, t.he method predigts. the groqnd state to be. a
random quantum paramagnetiérh Jarge-spin formatiof;’ randpm—smglet phase, consisting .of arbitrarily distant spins
and random-singlet phas&3.0n the other hand, studies on foergtjhrare, stror;gLy cokr'relatt(ra]d stlnglelt ?aﬁrsl. Ty i
the influence of deterministic but aperiodic elements on simi- nother- way ol breaking the fransiational Symmetry IS
lar systemgsee, e.g., Refs. 10-8nspired by the experi- suggeste_zd by a_nglogles W't.h quas!crystals. The_ge are struc-
mental discovery of quasicrystd&have revealed strong ef- tures which exhibit s_ymmetnes forbidden b_y tr§d|t|onal crys-
fects on dynamical and thermodynamic properties, althouggallography, and which correspond to projections of higher

much less is known concerning the precise nature of th imensional Bravais I.att|ces onto. Iow-Q|menS|onaI
underlying ground-state phas®s Subspace® A one-dimensional example is provided by the

Prototypical models for those studies are stJiantiferro- Fibonacci quasiperiodic chain, obtained from a cut-and-
magneticXXZ chains described by the Hamiltonian project operation on a square lattRén this chain, the spins

are separated by two possible distan@eandb, whose se-
- _ quence, starting from the left end of the chainakah...
H_;J'(S(Sx”JrSYS/"HASZSZ”)’ @ This sequence can be generated by repeatedly applying a
substitution(or inflation) rule a— ab, b— a, starting from a
where J;>0 and the§ are spin operators. In the uniform single distance. Associating with eacla a couplingJ, and
case(J;=J), the ground state for chains with <IA<1is  with eachb a couplingJ, we obtain a spin chain with cou-
critical 2! exhibiting power-law decay of the pair correlations plings following a Fibonacci sequence. More generally, we
as a function of the distance between sptss well as can postulate a two-letter substitution rule, build the corre-
gapless elementary excitations. Such a critical phase is usponding letter sequence, and associate couplings with letters
stable towards dimerization, i.e., the introduction of alternatto obtain spin chains whose couplings follow aperiodic but
ing couplingsJ,gg and Jeyen in the presence of which a gap deterministic sequencééQuasiperiodic sequences are char-
opens between th@ow localized ground state and the first acterized by a Fourier spectrum consisting of Bragg peaks,
excitated state€-2° This instability hints at the profound but more complex specti@uch as singular-continuousan
effects produced by fully breaking the translational symme-dbe generated by substitution rufésin this work we apply
try of the system. the term “aperiodic” when referring to nonperiodic, self-
Random-bond versions of these chains have been mudimilar sequences, also encompassing those that are strictly
studied by a real-space renormalization-gréR®) method  quasiperiodic in the above sense.
introduced®?” by Ma, Dasgupta, and HUMDH) for the In XX spin chaingA=0), the low-temperature thermody-
Heisenberg chainfA=1) and more recently extended by namic behavior can be qualitatively determined for virtually
Fisher!28 who gave evidence that the method becomes asany aperiodic sequence by an exact RG meffidthe ef-
ymptotically exact at low energies. In the last few years, thefects of aperiodicity depend on the topological properties of
method has been applied and adapted to a variety of randothe sequence. If the fraction of letteas(or b) at odd posi-
systemgsee, e.g., Refs. 6, 7, and 28)3%he basic idea is to tions is different from that at even positiofise., if there is
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average dimerization then a finite gap opens between thereflect self-similar properties of the sequences. Dominant
global ground state and the first excited states, and the chagorrelations correspond to well defined distances, related to
becomes noncritical. Otherwise, the scaling of the lowesthe rescaling factor of the sequen¢esntrary to the random-
gaps can be classified according to the wandering exponesinglet phase, where no such characteristic distances,exist
w measuring the geometric fluctuatiopselated to nonover-  and two types of behavior are possible; either the chains can
lapping pairs of letters] which vary with the system siZ¥  pe decomposed into a hierarchy of singlets, forming a kind
asg~N”. If <0, aperiodicity has no effect on the long- of “aperiodic-singlet phase,” or into a hierarchy of effective
distance, low-temperature properties, and the system behavgﬁins, in which case low-energy excitations involve an expo-

as in the uniform case, with a finite susceptibilityTat0. If ~ Lontia)ly Jarge number of spins. This is in sharp contrast both
=0, as in the Fibonacci sequence, aperiodicity is margmai

and may lead to nonuniversal power-law scaling behavior o 0 the gapless spin-v_vave excitatior_ns Qf the uniform ch_ains
the thermodynamic properties. &> 0, aperiodicity is rel- nd_ to the gapped triplet-wave excitations of the dimerized
evant in the RG sense, affecting the0 critical behavior chains. . .

and leading to exponential scaling of the lowest gapat (3) Based on second-order calculations, the long-distance

long distances, according to the form\ ~exp(-r®). In par- ‘%'ecay exponents of average groun'd—stat(_a qorrelatlon func-
1 tions are seen to vary with the coupling ratio in the presence

ticular, for sequences with=3, the geometric fluctuations f strictly marginal aperiodicity. Otherwise, strong universal-
mimic those induced by randomness, and the scaling behay- y 9 P Y- ' 9

ior is similar to the one characterizing the random-singlel’ty .(|.e., mdependenc.e of th? exponents on both _the coupling
phasé ratio and amso?ro;jyls obtained for the whole line QA_

In contrast, results for the effects of aperiodicity on low- < 1. although different decay exponents may emerge in the
energy properties 0fXZ chains have been so far scarce andHeisenberg limit. Also, the scaling form of typicatather
restricted to particular sequences. Vidal, Mouhanna, anéhan averagecorrelations follows essentially the same scal-
Giamarcht314 studied the related problem of an interacting iNg form as the energy gaps, similarly to what happens for
spinless fermion chain with Fibonacci or precious-mean pofandom-bond chains. . _
tential by using bosonization techniques, which are valid in In order to make the paper self-contained, we begin by
the weak-modulation regim@,=J,). At half filling, where ~ réviewing some known results. So, in Sec. Il we present the
the system corresponds to aXZ chain in zero external Pasics of the Ma-Dasgupta-Hu scheme, as applied to
field, their calculations predict that aperiodicity will drive the "andom-bondXXZ chains, and summarize the properties of
system away from the usual Luttinger-liquid behavior for o0the underlying random-singlet phase. Also, in Sec. Ill we
<A<1. A similar conclusion is drawn from studies on a Provide a short discussion on aperiodic sequences, as well as
Hubbard chain with hoppings following a Fibonacci askef[ch of the exact R'G results %K chains with aperiodic
sequencd® Density-matrix renormalization-groufdMRG)  couplings. Our adaptation of the Ma-Dasgupta-Hu method to
results onXXZ chains with precious-mean couplinifsand aperlpdchXZ chains is des_crlk_Je_o! in Sec. IV, and re_sults for
recent real-space RG calculations on the Fibonatez marginal and. relevar_1t aperiodicities are pregented in Secs. V
chairf®4° (also based on the MDH schejnékewise predict apd VI. Section VIl is devoted to a dlspu53|pn and cqnclu—
that low-temperature properties are different than in the uniSions. There are also two appendices, in which some impor-
form chains. The zero-temperature magnetization curve df@nt technical points are detailed.

FibonacciXXZ chains has also been investigatéayith em-
phasis on determining the plateau structure.

Our aim in this paper is to investigate the effectsadbi- Il. RANDOM-BOND SPIN CHAINS
trary aperiodic coupling distributions on the low-temperature AND THE MA-DASGUPTA-HU METHOD
p.roperties ofXXZ chains, reinforc;ing and extending our pre-  consider an antiferromagnetic quantum séinhain de-
vious results’! From an adaptation of the Ma-Dasgupta-Hu gerined by the Hamiltonian
RG scheme, we obtain information about low-temperature
thermodynar_nic_s and ground-state correlatior_l functions for H=>, J(SS + S, + ASS ), (2)
several aperiodic sequences. Our results, which are presum- i
ably exact in the strong-modulation lim{i,<<J, or J,> Jp),
point to the following conclusions:

(1) The exact classification found in theX limit can ar-
guably be extended t¥XZ chains in the anisotropy regime
0<A=1. We predict that dimerized aperiodicity opens a " r ;
gap to the lowest excitations, and that otherwise the eﬁectgham’ there is a strongest bORg= Jnax connecting, say,
of aperiodicity on the low-temperature thermodynamics are‘Sp'nSSl an_d S, Which in turn are coupled to their other
gauged by the same exponent irrespective of anisotropy. nearest-nglghpors and S .by weaker pondsh andJ. The
In particular, sequences which are strictly marginal inxtxe local Hamiltonian connecting, ands, is
limit continue to be so for anisotropiesQA < 1, but may be Ho= Jo(SS5+ IS+ A S,
marginally relevant in the Heisenberg limit.

(2) On the other handy is found not to define the be- Whose ground state is a singlet, separated from the first ex-
havior of correlation functions, although ground-state struccited states by an energy gap=3(1+A0)J,. The idea be-
tures in the presence of marginal or relevant couplings alsbind the Ma-Dasgupta-H&2" method is that, at tempera-

whereJ;> 0 and all anisotropies are such thatQ;<1. Let
us assume that the couplingsare randomly distributed ac-
cording to a broad probability distributiop(J;) having an
upper cutoffd,,,. Under such conditions, in a finite but large
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tures belowA,, S; and S, can be decimated out of the H= 3 + 4
system, since they couple into a singlet, giving a negligible 2 (S + ), @
contribution to the thermodynamic properties. Nevertheless, )

their virtual excitations induce a weak effective coupling be-Where now the strengths of the site-dependent couplings

tweenS and$S, described by the Hamiltonian can be eithed, or J, and are distributed according to deter-
ministic but aperiodic binary sequences, obtained by substi-

H =J(SS+99+A'SS). tution (or inflation) rules of the form

The parameterd’ and A’ can be obtained by second-order : a— W,

perturbation theorysee Appendix Aand are given by b— w,

133 1+4, wherew, andw, are words(finite stringg composed of let-
= T+A — and A’ :TA'A" (3) tersa andb. A well known example is provided by the

+20 Jo Fibonacci sequence, whose substitution rule is

Notice thatJ’ is smaller than eithed,, J, or Jg; likewise, a— ab

unless allA;=1, the effective anisotropyt’ is smaller than Ofp: b

eitherA, or A,. Thus, after eliminating,; andS,, the overall —a

energy scale is reduced. The previous steps can be repeatgghrting from a single lettea, repeated application afy,

with the next largest bond, which most probably is 4ot yields strings with lengths given by the Fibonacci numbers 1,
Starting from Eqs(3) Fishef was able to write and solve 2, 3,5, 8,.., ultimately producing a letter sequenabaaba-

recursion relations for the probability distribution of the ef- haaba.., for which no period can be identified.

fective couplings. The fixed-point distribution is presumably  Given an inflation ruleo, various statistical properti&s

independent of the initial couplingd,and it diverges as a of the associated sequence are enclosed in the substitution
power law forJ’— 0%, indicating that the perturbative ap- matrix,

proach leading to Eq€3) becomes essentially exact for as-
ymptotically low energies. _ (Ha(Wa)  #Hawp)
The ground state is a “random-singlet” phase, consisting B Ho(w,) #Ho(wp) /'’

of arbitrarily distant spins forming rare, strongly correlated

singlet pair$43 Exciting a singlet whose spins are separatedvhere #(w,) denotes the number of letteasn the wordw,

by a distance costs an energy of ordeY, with a dynamic  The largest eigenvalue &fl, \,, gives the asymptotic scal-

scaling form ing factor of the string lengtHi.e., the ratio between the
lengths of the strings corresponding to successive iterations

A~ e—um, of the rule g); the entries of the corresponding eigenvector

are proportional to the frequencipg andp,, of lettersa and

whereu andry are constants. At low temperatures, the zero-b in the limit (infinite) sequence.

field susceptibility diverges as The remaining eigenvalua,_, is related to the geometric
fluctuations of the sequence, which are defined in the follow-
_ 1 ing way. LetNZ be the number of lettera in the string
X T2t obtained aften iterations ofo, andN, be the corresponding

total number of lettergthe length of the string Then, a
Average ground-state correlations are dominated by the ram@easure of the geometric fluctuations induced by the se-

singlet pairs, and they decay as a power law, quence is the differencg, betweenN3 and the number of
lettersa expected from the limit-sequence frequenpgy and
o\ this behaves as
cn =[S -Swl~ 3, | Y

Onh= |Nﬁ_ paNn| ~ |)\_|n_
where the bar denotes an average over the whole chai

' AN g . .
while typical correlations are short-ranged, following %mceNn A, this last equation can be rewritten as

Iy ~ Nw|’
Ciyp(r) ~ € Fyw"Iro, G~ T

_ _ _ by defining the “wandering exponent,”
These asymptotic results are independent of the anisotropies

A, as long as & A, <1 for all i, with the same distribution _In|n_|
on even and odd bonds. “ =0 A,
IIl. APERIODIC SEQUENCES AND XX CHAINS If <0, fluctuations become smaller as the string grows,

and the sequence looks more and more “periodic.” On the
Following closely the analysis of Hermisséhin this sec-  other hand, ifw; >0, fluctuations increase without limit. The
tion we consider antiferromagnetic quantiX chains, de- marginal caseo =0 is in general connected to logarithmic
scribed by the Hamiltonian fluctuations. It can be showhthat substitutions for which
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;<0 generate quasiperiodir limit-quasiperiodi¢ se- For a general pair inflation rule®, we can define an
quences. associated substitution matrix,

The concept of geometric fluctuations is essential in es-
tablishing the Harris-Luck criteridf#7 for the relevance of #aa(Waa) H#aaWap) #aa(Woa)  Haa(Wop)
mhomqge_neltles to the crlt_lcal behay|or qf magnetic systems. _ HapWag)  HapWap)  Han(Woa)  Han(Wep)
The criterion states that, if fluctuations in the local param- M =
eters controlling the criticality of the system vary with some HoaWaa)  #oo(Wab)  #pa(Wha)  #oalWop)
characteristic length asg~ L®, then there is a critical value Hon(Waa)  #op(Wap)  #op(Woa)  Hon(Wop)

of the exponent» above which the presence of inhomogene-

h h f paieb in th
ities can affect the critical behavior. This happens for where now #(w) denotes the number of paieb in the

word associated with the paia. The leading eigenvalues

1 and\, of M@ define another wandering exponent,
w>1- 4 (5
) _In|xy
whered is the number of dimensions along which inhomo- “"n A’

geneities are distributed, ands the correlation-length criti-

cal exponent of the underlying uniform system. Randomlywhich governs the fluctuations of the letter pairs, and conse-

distributed inhomogeneities lead m:%, and the general quently of thed;. It is essential to note thab is in general

Harris criterior{®4849is recovered. different from w,: for the Fibonacci sequence, for instance,
The ground state of the model in Ed) is critical in the  we havew,=-1, butw=0. (There are aperiodic sequences,

uniform limit (J;=J): there is no energy gap to the low-lying generated by what Hermisson called mixed substitution

excitations, and pair correlations decay as power Rws, rules, for which a pair inflation rule cannot be defined; how-

[ e ever, it is still possible to investigate the fluctuations of he
c(r) = [(S'S ~ 7™, in terms of a set of substrings with minimal length.

. x— yy—1 2 . . By an exact renormalization-group treatment,
\év-lth ﬂx -ny .2 and7*=2. This phase IS unstable towards Hermissof’ was able to build recursion relations for effec-
imerization(i.e., the presence of couplings and J, alter-

nating between odd and even bojds which case a gap tive couplings and to show that, in agreement with the above

. heuristic argument, the eigenvaluesof M@ give directl
opens in the low-energy spectrum, and ground-state correlgz "o eiggnvalue):ﬁ arour?d the unﬁ‘orm fixegd point OK?(I
tions become short-ranged. More generally, the model exhib-, 7. : o7 .

: o chains with aperiodic couplings,
its a (zero-temperatujequantum phase transition between

H ,51
two dimer phases féf _Inx{

5=1NJy1~InJy=0. 6) T

If J-1=Jo and J =J,, the phase transition occurs & ypjje the corresponding eigenvectors yield the scaling fields.
=In(J,/J)=0, and belongs to the Onsager universality classyy s aperiodicity is relevant in the RG serfse., it moves
with »=1. _ _ . the RG flows away from the uniform fixed pojrit the next-
When the couplings; are chosen according to aperiodic (4_|eading eigenvalug,=w is positive, exactly as predicted

sequences for which the fractions of lettergor b) at even by the Harris-Luck criterion, Eq(5), with d=»=1. (To be

and odd positions are different, E@) is not satisfied, and precise, the eigenvalue d @ entering the definition of is

the system is in a dimer phase. This suggests that the locgly; always the next-to-leading one, but rather the second-
parameters defining the criticality 8iX chains are the shifts |5gest eigenvalue whose corresponding scaling field is non-
6=In(J3j-1/3z). In order to study the fluctuations of th& ;15 for a generic choice of coupling constants.

which depend on two consecutive couplings, we must Usu- Eor g Jarge class of aperiodic sequences fulfilling &,

ally consider the sequence of nonoverlapping letter pairs a;, is given in theXX limit by an integerk. When a pair

sociated with a given aperiodic sequence. To build the inflagpstitution rule can be defined, this integer is simply given
tion rule o@ for such pairs, it is necessary to iterate theby

original rule o until the strings obtained from a singéeand

b have lengths of the same parity. As an illustration, let us K = #ap(Wap) = Hoa(Wap).-
take the Fibonacci sequence. Applyiog three times yields ) ] S
Thus, the wandering exponent in th limit is of the form
3 Ja— abaab
Otp- b — aba w= M 7)
Noting that the paibb does not occur in the sequence, we n
readily obtain where 7=\, corresponds to the rescaling factor of the se-
aa— (ab)(aa)(ba)(ba)(ab quence of letter pairs.
@, — (ab)(aa)(ba)(ba)(ab) It is also possible to determine the scaling of the lowest
o1y -} ab— (ab)(aa)(ba)(ba) energy levelsA with the system size. For irrelevant or
ba— (ab)(aa)(ba)(ab). marginal aperiodicitf w<0) we have
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A~r7Z (8) tations of the method indicate that this attractor is indepen-
_ ] o dent of the anisotropy for all coupling ratios. By studying
with a dynamical exponent equal to unity if <O, but  yecyrsjon relations for the effective couplings, we can obtain
which can vary with the coupling ratid,/J, in the marginal  apalytical results. As the RG steps proceed, the coupling ra-
casesw=0). Relevant aperiodicityw >0) leads to a differ- i usually gets smaller, suggesting that the method becomes
ent scaling form, asymptotically exact. This picture holds for marginab
=0) and relevantw > 0) aperiodicity. Irrelevant aperiodicity
9 . . :
is characterized by a wandering exponent.0, meaning
and to a formally infinite dynamical exponent. From E@. that geometric fluctuations become negligible at long dis-
and (9), scaling forms for low-temperature thermodynamictances. An example is provided by the Thue-Morse sequence,
properties, such as the specific heat and zero-field susceptjenerated by the substitution rude—ab, b— ba, for which
bility, can be obtained, as discussed in the next sectionsy=-%. Applying the MDH scheme to the Thue-Morse se-
Ground-state correlation functions, however, do not seem tquence leads to an effective coupling ratio which approaches
be simply accessible from the exact RG treatment. unity along the generations, although the couplings them-
Since the critical phase of uniforr{XZ chains is also selves become smaller. This means that the perturbative ap-
unstable towards dimerization in the whole anisotropy reproach in the core of the MDH scheme eventually breaks
gime 0<A <1, one might expect that the relevant geometri-down, and no asymptotic behavior can be obtained. How-
cal fluctuations in the presence of aperiodic couplings wouldever, this intuitively agrees with the picture that irrelevant
be somehow related to th# defined above(A precise defi-  aperiodicity leads to the same critical properties as the uni-
nition of the relevant local parameters would require a genform model, where all couplings have the same value.
eralization of the criticality conditionEq. (6)] to XXZ For sequences where the fraction of let@i®r b) at odd
chains, which, to the best of our knowledge, is not currentlybonds is different from that at even bonds., where the
available) Consequently, the exponeatwould be involved  sequence induces average dimerizatimne generally ex-
in determining the scaling behavior of thermodynamic prop-pects that a finite gap opens between the global ground state
erties of aperiodic chains for all anisotropies intermediateand the first excited states, independent of the value of the
between theXX and Heisenberg limits. The results of the wandering exponent. This is the case of the period-
next sections indeed provide evidence that this seems to lgbubling sequence, built from the substitution rale- ab,
the case. b—aa Upon application of the MDH method, after a few
lattice sweepgwith the precise number depending on the
strength of dimerizationwe reach a situation where, say, all
strong bonds occupy even positions, whereas all bonds at
odd positions are weaker. Thus, all remaining couplings are

We now wish to investigate the effects of aperiodic cou-necessarily decimated in a last lattice sweep, generating a
plings onXXZ chains described by the Hamiltonian in Eq. final effective coupling which approaches zero exponentially
(2). Based on the success of the Ma-Dasgupta-Hu scheme With the system sizél. This can be interpreted as indicating
predicting the properties of random-bond chains, we expedhat there is no correlation between spins separated by large
that it also works in the presence of aperiodicity. We concendistances, in agreement to what happens in gapped Heisen-
trate on the case of uniform anisotrof;=A), but more  berg andXX chains. In the presence of average dimerization,
general situations can be considered. few quantitative predictions can be drawn from the MDH

Applying the MDH method to aperiodic chains requires method; one of them_is an_estima_lte of the excitation gap,
taking into account that now, since we have only two distinctwhose order of magnitude is provided by the value of the
coupling constants, there are many spin blocks with the sam@rong bonds in the final lattice sweep. In contrast, randomly
(larges} gap at a given energy scale. Also, those blocks ma)glm(_anzed He|senb(_ar_g chains in the .st_rpng-randomness limit
consist of more than two spins, in which case effective spingre in a gapless Griffiths phase, exhibiting short-range corre-
would form upon renormalization. The strategy is to sweegations but a d|ve_:rg|n_g susceptibilit. _
through the lattice until all blocks with the same gap have In @ general situation, the blocks to be renormalized con-
been renormalized, leading to new effective couplitggsd  Sist ofn spins connected by equal bondis and coupled to
possibly spins Then we search for the next largest gap,the rest of the chain through weaker bonijsand J;. As
which again corresponds to many blocks. When all possibléliscussed in Appendix A, the ground state for blocks with an
original blocks have been considered, there remain some u§ven number of spins is a singl&s in the original MDH
renormalized spins, possibly along with effective ones, demethod, and at low energies we can eliminate the whole
fining new blocks which form a second generation of theblock, along withJ, and J;, leaving an effective antiferro-
lattice. The process is then iterated, leading to the renormamagnetic bond)’ coupling the two spins closer to the block
ization of the spatial distribution of effective blocker ~ and given by second-order perturbation theory as

A ~exp—ur?®), (u=consj

IV. THE MA-DASGUPTA-HU METHOD
FOR APERIODIC XXZ CHAINS

bondg along the generations. 33
Due to the self-similarity inherent to aperiodic sequences J= YnJ— (neven,
generated by inflation rules, it is natural that the block dis- 0

tribution reaches a periodic attracfmsually a fixed point or  with A-dependent coefficientg,. On the other hand, a block
a two-cycle after a few lattice sweeps; numerical implemen-with an odd number of spins has a doublet as its ground
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O O 2 O = e 2 OO O e+ O 2 e = # i = O O 8 OO = O 5 2 G 8 O O+ OO 2 K3 ¢ 2 O 5 O

state; at low energies, it can be replaced by an effective spir
connected to its nearest neighbors by antiferromagnetic ef
fective bonds

‘JI,,r = ')’n‘JI,r (n odd),

whose values are calculated by first-order perturbatior?3 a
theory.

In general, the anisotropy parameters are also renorm
ized and become site dependent; foreven, the effective
anisotropy is A'=48,(Ag)AA,, while for n odd A,
=5(Ap)A , With |5,(A)[ <1 for 0<A<1 ands,(1)=1. So, ) _ _
for 0<A<1 the A; flow to the XX fixed point (all A;=0), precious-mean sequences with marginal fluctuattéAstew

ultimately reproducing the corresponding scaling behavior,bonds closer to the left end of the original chain, along with

while for the Heisenberg chain all, remain equal to unity. nduced effective couplings, are shown in Fig. 1 g Jp,

An analytical treatment of the intermediate anisotropy re-n this case, only singlets are formed by the RG process;
gime is possiblésee Ref. 41 leading to a prediction of the @Part from a few bonds close to the chain ends, the renor-
effective coupling ratio for which the system crosses over '[d“.al'ze‘,j lattice is again a Fibonacci chain. An effective cou-

the XX behavior. However, for simplicity, we present analyti- Pling Jp i '”dl_Jcefj between spins separated by only one
cal calculations for th&XX and Heisenberg limits, showing Singlet pair, whileJ; connects spins separated by two singlet

some numerical results for the general case/0<1. If we  P&irs, and in terms of the original couplings we have

FIG. 1. Left end of the FibonaccKXZ chain with J,<Jp.
shed(solid) lines represent weakstrong bonds, while circles
indicate the positions of the spins. Apart from a few bonds close to
he chain ends, the effective couplings also form a Fibonacci
sequence.

start with a uniform anisotropy >1, the A; grow without B 2
limit, and the system ultimately behaves like an antiferro- J,= 2—2 and J,= sz—a.
magnetic Ising chain, suppressing all quantum fluctuations. b b

For A <0, they, coefficients fom even become larger than The bare coupling ratio is=J,/Jy; its renormalized value is
unity, so that, if the modulation is not strong enough, they'=,, In each generatiop all decimated blocks have the
MDH scheme may produce effective couplings which arésame sizer; and gapA; (proportional to the effectivel,

larger than the original couplings, leading to “bad” decima-pondg. The recursion relations fgr and A are given by
tions; moreover, the two-spin local gap closesfas:—1.

This puts the MDH results under suspicion, requiring a more pis1=op; and Ajuq= yop A (10
careful analysis that is beyond the scope of the present worlf:or theXX chainy,=1, and thug;,,=p;, corresponding to a

Correlation functions can be calculated at zeroth order b¥ine of fixed points. On the other hand, for the Heisenberg
assuming that only spins which eventually appear in the ) '

. 1 . ) .
. =3 1<pi
same renormalized block are correlated. Note that an ef“fecc-hﬁIn Y2=35, SO thatp;., Pi leading to a stable.ﬁxed point
. : LT L . p,=0. Since the perturbative approach on which the MDH
tive spin represents all spins in an original block via :

- . . scheme is based works fpr< 1, the method can be expected
Clebsch-Gordan coefficientsee Appendix A and this al- . . : :

) . to yield asymptotically exact results for the Heisenberg Fi-

lows us to calculate correlations between any two spin

whose effective spins end up in the same block at some sta%OnaCCI chains. In both cases, solving HGe) gives the gap

e, o - . .
of the RG process. In order to estimate correlations betweeqrﬁ1 Lh(;gSAgenerann in terms of the original coupling ratio

) X n
other spin pairs we must expand the local ground states up 8
second orde_r ing, ./ Jo. This r_equires_ Iengthy cal(_:ulations A= yjzzpsz.
(see Appendix B and we restrict applications of this expan-
sion to the simplest yet illustrative cases of sequences wheflotice that, sincey, depends on the anisotropy, this last
only two-spin blocks are involved in the RG steps. equation is valid only fod;=0 or A;=1; in the intermediate
In Secs. V and VI, we present a detailed discussion of th@nisotropy regime, the variation of, along the generations
results obtained by applying the MDH scheme to sequence®ust be taken into accouffi The distance between spins
inducing marginal or relevant aperiodicity. forming a singlet in thgth generation defines a characteristic
We should mention that similar strong-modulation pertur-length r;, corresponding to the Fibonacci numbers
bative approaches have been applied to investigate the speel,3,13,55,..; for j>1 the ratior,,/r; approachess’,
tral properties of noninteracting electrons with aperiodicwhere ¢=(1+y5)/2 is the golden mean. So we have
hopping parameters or single-site potenti@se, e.g., Refs. ~rq¢%, wherer, is a constant, and we obtain the dynamical
52-54. However, theXXZ chain with nonzero anisotropy scaling relation,
is mapped by the Jordan-Wigner transformation onto a half-

; ; 4 ) =l In?(rif
filled interacting electron system, for which, to the best of Aj~rite® "), 11
our knowledge, no such studies exist. with £=-3In p/In ¢ and u=-Iny,/9 In? . For the Heisen-
V. MARGINAL APERIODICITY berg_ chairj(yf%), Eq. (11) (_Jle_scribes a _Weakly exponential
_ _ scaling (with a formally infinite dynamical exponentbut
A. The Fibonacci sequence not of the formA ~exp(-r®) found for the XX chain with

First we apply the method to chains with Fibonacci cou-relevant aperiodicity(w > 0). For the XX chain (y,=1), u
plings. This is the simplest example of the quasiperiodic=0 and we can identify with a dynamical exponent,
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4

o

FIG. 2. Left end of the Fibonacci chains wily>J,.. Effective 0t
spins form in the first lattice sweep, giving rise to a Fibonacci chain
with the roles of the weak and strong bonds interchanged, exactly a:
in the original lattice in Fig. 1.

Specific heat

-8
whose value depends on the coupling ratio, leading to non- 10

universal scaling behavior, characteristic of strictly marginal
operators. (We can check thatz=¢ corresponds to the
asymptotic form of the exacXX expressiolt1” for p<1.) ;
This nonuniversality should hold in the anisotropy regime 10" S e L Luum .
0<A<1 with a “bare” value ofp defined at a crossover 10 T

scale. Note that, taking into account the scaling foAm . - _ )
~exp(-r®) valid for relevant aperiodicity, we can view the FIG. 3. gCoIor onling _Specn‘lc heat of the FlbgnacKD(Z_chalns
above Heisenberg scaling forfm # 0) as a marginally rel- for J;_i/Jbzl—0 and“t_hree different \_/aluef of the u_nlform anisotrdpy
evant (w— 0%) case. The result in Eq11) has also been as given by the “independent-singlet” approximation.
obtained in Ref. 39.

If we choosel, > J,, blocks with three spins connected by HhT) = }E n - n‘+1F (39 A1 T)
two strong bonds appear in the chain, producing effective ' 24 2 paif »Zp 1T 1/
spins upon renormalization. However, as illustrated in Fig. 2,
the first lattice sweep yields again a Fibonacci chain with thevhere F,,;(J,A;h,T) is the free energy of a pair of spins
roles of weak and strong bonds interchanged, exactly as iimteracting via the Hamiltonian
Fig. 1. The effective couplings in the second generation are

(13
i

given by Hpair: ‘](S)1($ + S}/SVQ + Agsé) - h(Si + SE)
32 Iterating the recursion relations for the effective couplings
7= o and I =42, 12 Jap andA, ,, we can determine their values in each genera-
a YZY%Ja 5= 75 (12 tion, and evaluate numerically the sum in Efj3) to obtain

the free energy. Thermodynamic properties such as the zero-
field susceptibilityy and the specific heat can be obtained
by the relations

and the coupling ratio is now

’ J"J 1 ‘]a ( )_1
T A G P P
Ja 72Jb X=- a_hz and Cz_Tﬁ'
which is larger than one, showing th#i{<J;. Thus, we can . h=0 3
apply the same analysis as in the case Witk J,, but now As an example, Fig. 3 shows plots of the specific heat of

with bare couplings given by Eq12). So, in theXX chain,  FibonacciXXZ chains WithJa/Jbzl—l0 and three values of the
since y,=1, the MDH method predicts scaling forms which anisotropyA=A,=A;, corresponding to th&X and Heisen-
are symmetric undep— 1/p, in agreement with the exact berg limits and to an intermediate case=-=5). The results
treatment.17 for the XX limit agree very well with those obtained from
The susceptibilityy(T) can be estimatédby assuming numerical diagonalization, although the agreement becomes
that, at energy scal&; ~T, singlet pairs are effectively fro- worse for larger coupling ratios; in particular, the specific-
zen, while unrenormalized spins are essentially free, contribheat scaling law1’
uting Curie terms to the susceptibility. Thusnjf~ rj‘l is the nT
number of surviving spins in thgth generationx(T~ A;) c(T) ~ Tl’ZGC(—2>,
~n;;1/A;. This already gives reasonable results, as indicated Inp
by comparison with those obtained for teX chain from  with z=¢(p) and G, a function with period one, is fully sat-
numerical diagonalization of finite chaif$based on the isfied, reflecting the strictly marginal character of the aperi-
free-fermion method? However, a more useful approxima- qgic perturbations. This is not the case in the Heisenberg
tion can be obtained by noting that, in tjtb generation, we  |imjt, and the logarithmic amplitudes of the oscillations in
can view the resulting lattice as composed of “independentihe specific heat become larger with decreasing temperatures,
singlets in which a pair of spins is coupled via¥KZinter-  reflecting the weakly exponential dynamical scaling in Eq.
action with effective bond and anisotropy paramefgrsand  (11). For intermediate anisotropies, there is a crossover from
A, Since the fraction of such singlets with respect to theHeisenberg-like toXX-like behavior as the temperature is
number of original bonds in;—n;,1)/2, the free energy per lowered; the larger amplitude of the low-temperature oscil-
site of the whole system, in the presence of an external fielthtions corresponds to those of XX chain with a bare cou-
h—0, can be estimated as pling ratio pes<p defined at a crossover scale in which ef-
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FIG. 5. Left end of the silver-mean chain wilh<J,,. Effective
couplingsJ;, correspond to the original, bonds, whileJ] connects
spins separated by one singlet pair. Apart from the leftmost bond,
the effective couplings also form a silver-mean sequence.

()

r — =12
10°F — ¢ (o= 1/10)
- C*() (p=1/10) ’ N |
© MDH prediction bty ! When the MDH scheme is applied, the first lattice sweep
o ! also generates a silver-mean sequence, identical to the origi-
10" 1(')0 e '1(')1 e "1(')2 Sa— nal one forJ,<J,, but with the roles of weak and strong
r bonds interchanged fa,> J,, as shown in Figs. 5 and 6. In
the latter case, the second-generation structure is identical to
FIG. 4. (Color onling Ground-state correlations as a function of the third-generation lattice obtained fd5<J,, a situation

the distance between spins for the Fibonakichain. The curves we can assume without loss of generality. So, we can write
are obtained from numerical diagonalization of closed chains withthe recursion relations

2584 sites. Foﬁa/\]bzl—lO (lower curve$, dominant correlations cor- 5

respond to distances=1, 3, 13, 55 and 233, for whic@* andC** 3 = Ja d =3

are nearly equal, as predicted by the MDH metloiicles, and a~ 72Jb an b~ Yas
decay as 1r/ (dotted curve Larger coupling ratios lead to a slower ]

decay ofC* (and a faster decay @??, as seen foﬂa/Jb:% (upper ~ from which we get

curve, offset for clarity. o 3 A 3 .

p =?—7’2J_3572P and —-=2"=
fective anisotropies become negligibléFor a detailed b b b
analysis, see Ref. 40. These are similar to the relations found for the Fibonacci

As all singlets formed in th¢th generation have length  chains. The length of singlets formed in tjth generation is
and the bond distribution is fixed, the average ground-statpj.:l,1,3,7,17,41,” whose asymptotic ratio is,/r;

correlation between spins separated by a distapcan be =7, Thus, solving the recursion relations yields
estimated as

Ce(ry) = (S'S) = Flcol(ny = Ny = olelr™, - (14)

i Tem=1 +12.

p.

A}~ e In%(rifro)

with
where the bar denotes an average over all possible paiss,
- . . In(y;2p) In(14?)
a constanta=Xx,y,z, andc, is the correlation between the p)=- Y2 P and pu=- 2 (15)
two spins in a singlet, given b;zoz—;l1 for the Heisenberg N 75m In? 7,

chain and for bothw=x and a=z in the XX chain. We point

out that these should be the dominant correlations, and spi

separated by distances other thamre predicted to be only _~

weakly correlated. As shown in Fig. 4, results from numeri-=~ £(p).

cal dia onalizatioﬁ for theXX Fibon.ac’ci chain witho= L As in the Fibonacci chains, pair correlations in the ground
9 ; A P~10  state can be estimated by noting that only singlets are pro-

agree very well with the MDH predictions. Note that corre- duced by the RG process, and we conclude thapfed. the

; i i 150 XX(p) — p=1/2 ,
Iaztlons '”_ﬁhe uniformxx cha|n5 decay asC (r). r and dominant correlationgthose between spins separated by the
C#qr)~r~4, so that dominantxx (z2 correlations in the

Fibonacci chain are weakdstronge) than in the uniform characteristic distances=1,3,7,17,..) should behave as
chain. Due to the strictly marginal character of the fluctua-

tions induced by the aperiodic couplings, deviations from the Clry ~ r’

predictions in Eq.(14) appear in theXX chain for larger )

values ofp, as also shown in the figure. This point will be While correlations between spins separated by other distances
further discussed in the next subsection, but these deviatiorould be negligible.

should not be present in the Fibonacci Heisenberg chain,

where aperiodicity can be viewed as marginally relevant. = T T T e e e e e e

4

Y that in theXX limit the scaling again corresponds to a
nonuniversal power-law behavior with a dynamical exponent

B. The silver-mean sequence

The silver-mean sequence is obtained from the substitu- FIG. 6. Left end of the silver-mean chain wiflj> J,.. Effective
tion rulea— aab, b— a, and the rescaling factor predicted in spins form in the first lattice sweep, producing the same structure as
the XX limit is'’ the third generation fod,<J,.
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0 i 0 35 . ; :
10°E 10 : | T T
") e p=la | (b) ©
o C gzp(r), p=110 . : e 0 T]lyp(MDH) ]
N — "0, p=1/4 R xx :
S — %, po 110 .10 L 0 My, (free fermions) i
=\ XX
10'2 3 = 25 O TI (MDH) —
§ 110 = " & o " (free fermions)
10°E s 2r 7
A )y p=110 10 15L o _
10°F — (), p=14
3 e €, p=110 B
) R R RO IR NI P 18 g o g .
10 , , 10 o
10° 10" 100 10° 10" 10° I 8 8 g
r r 05 L | f |
. . . . ’ 0.1 0.2 0.3
FIG. 7. (Color online Ground-state pair correlations in the P

silver-meanXX (a) and Heisenbergb) chains, forp:%1 (upper

curves and p:ﬁ) (lower curve$, obtained from the second-order FIG. 8. Decay exponents @*(r;) andCf;‘p(r) for the XX silver-

MDH scheme(chains with 8119 sitgs Solid and dashed curves mean chain as a function of the coupling rapeJ,/J,, obtained

correspond to average and typical correlations, respectively. from both the second-order MDH scherf@hains with 8819 sitgs
and the free-fermion metho@hains with 3363 sitgs Errors bars

However, forXX chains, this is a rough approximation if '€ at most the same size as the symbols themselves.

the coupling ratio is not too small, and free-fermion calcula- .

tions reveal a power-law decay of bo@i*(r;) and C*qr;) C¥r) ~ (L+ayp+ ap’t o+ aij)rj"l, (16)
with p-dependent exponents, as in Fig. 4. This can be ac- , . . L
counted for by the MDH method if we expand the ground-where th9an§ are proportlr?nal fo the fractions of pairs giv-
state vector to second ordergnas described in Appendix B. ing contributions of ordep”, and the sum has an upper cut-

) - 1 off at n=j, sincer; corresponds to thgh-generation singlets.
Reslult§ of such calculatpns are sh'ovyn in Fig. 7p‘9r}1 and Assuming thata,=a,a"™*, for some constant (which can
p=1g in the XX and Heisenberg limits. Both average and

] ! . be numerically checked to be a reasonable approximation for
typical correlations are plotted; the latter, defined by small p), we have

aa — . 1 —(a i
Cae(r) = expInKS'S3)). L+ayp+ayp’+--+ap =1+ #alp,
—ap
filter out the contribution of those pairs of spins mostand taking into account thaj~r,7., we can write
strongly correlated, yielding an estimate of the correlation |
between two arbitrary spins separated by a distanée the (ap)i ~ rme) with np)=1- M.
random-singlet phase, characteristic of random-bond ciains, ) In 75m

average correlations decay algebraically @)~ 1/r?, Combining the above results we conclude that
whereas typical correlations are short-ranged, following

Ciyp(n) ~exp(—\r/ry). This is due to the fact that the average X ) ~ 1

correlations are dominated by the rare singlet pairs, while the ) r| '

correlation between a typical pair of spins is of the order of o . o

some intermediate effective couplifigee Appendix B for p<a™, rgproducmg the zeroth-order MDH prediction,
As shown in Fig. 7a), this picture does not hold for DUt nonuniversal behavior,

silver-meanXX spin chains. As the coupling ratio is lowered, 1

average and typical correlations exhibit clearly distinct be- C(ry) ~ Dk

havior, but bottC*(r;) andCy(r) still follow approximately i

a power law, withp-dependent exponents, reproducing theis obtained forp> o™t

results of the free-fermion calculations. This nonuniversality For the silver-meaiXX chains, an estimate of tleg based

is related to the marginal character of the precious-meaon numerical implementations of the MDH method gives
fluctuations, which keeps the effective coupling ratio un-a;=9.5 anda=3, but with some dependence onand p.
changed along the RG process, and can be qualitatively us shown in Fig. 8, the decay exponemnt of the average
derstood from the following argument. For each singlet paircorrelation approaches unity as-0, but starts to decrease
coupled by a strong bond and whose spins are separated byreore rapidly forp=0.1, considerably less than & this
characteristic distanceg;, there exists a certain number of discrepancy indicates that E(L6), with the assumption of
other spin pairs separated by the same distajdeut con-  constanta,’s, although providing a valuable insight into the
nected through weaker bonds, whose correlatse® Appen-  origin of the nonuniversal behavior, is not a good approxi-
dix B) is smaller than the strongest ones by factors of ordemation for larger coupling ratios. The exponents predicted by
p, p%, p°, etc. The average correlation can be estimated as the second-order MDH scheme are systematically smaller
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than the presumably exact ones obtailned from the free- _o_o__o__o__o_o__o__o__o_o_ -o—o--o--o--o—o--o--<2)4 uds

fermion methodwhich should tend tay*=3 asp—1). This

also happens for the decay expone;@tj of the typical cor- L

relations, which diverges gas— 0, in agreement with the fact 2 — 325

that, in this limit, the chain decomposes into independent * > &&= o—o—o—o G Eo=mo—o—o—0 /o, Jp

singlets. A similar behavior is observed for the transverse I

correlationsC*4r) andCi,(r) (but now the decay exponents ,; , _ 1620

approachy*=7,=2 asp— 1). 0—0-+0—0++0—0- GO~ 0—0--0—0-ToD-0—0--0—0o-GE=p0  Ja./p
On the other hand, dominant ground-state correlations in gl

the Heisenberg silver-mean chain closely follow the predic- -

. . . 540 -
tions of the zeroth-order MDH scheme, as can be seen in Fig cs—5 65655 0—0—0—0- 650 E5Dp- 00000 J1, [}
7(b). This is due to the fact that the effective coupling ratio

decreases as the RG proceeds, and the contributiQfr{p g
i i 5
due to spin pairs ot.her than .th'ose con_nected by strong bond%ﬁo_o__o_o_ oo, oo ‘\/_\4/798 T,
becomes exponentially negligible. Typical correlations decay
not as a power law, but rather according to FIG. 9. First five generations of the bronze-meéXZ chain

with J,<Jp, each showing the leftmost 24 sites. The numbers indi-
cate the positions of the sites in the original chain. Encircled blocks
precisely the same form of the dynamical scaling; by fittingcontribute effective spins when renormalized. The labels on the
the numerical results, the constami, is found to be ap- right denote the effective bonds in each generation. The attractor of
proximately u/2, with u given by Eq.(15). As in the the block distribution is a two-cycle, reached at the second genera-
random-singlet phase, the scaling form of the typical correfion. All bonds to the right of the horizontal arrow follow the same
lations is similar to that of the lowest gaps, reflecting the facteduence in the secorthird) and fourth(fifth) generations.

that two spins separated by a distamcare basically uncor-

2
Ciyp(r) ~ e #up In“rfro),

related until the energy scale is of ord&fr), when they _ 3 B T
become weakly correlated through an intervening spin taking J = ygygyj;j and J = ygyg‘yi—g,
part in a singlet pair. I Jp
C. The bronze-mean sequence so that the coupling ratios satisfy the recursion relation
The bronze-mean sequence is built from the substitution kT 3
rule a—aaah b— a, with a largeXX rescaling factot, P = j_é: = y2y4j—a = Y,74P,
3+13\° b b
Tom = = 36.03. while the corresponding gaps are related by
The bond-distribution attractor produced by the MDH RG A_’_j_kg_yz 4 34
scheme is not a fixed point, but a two-cyéfeapart from a A ‘3 = 02YsYP
few bonds near the chain ends, the same distributions alter- b

nate between even and odd generations, as showrd,for The distance between spins connected by strong bonds in the
<Jp in Fig. 9. In this case, the second-generation couplinggth generation is;=1,13,43,4691549.,..., which asymp-

relate to the original couplings by totically givesr;,,/r;=7yy, SO thatry ~Tom,, Thus, solving
_ P 5 7 the recursion relations fgs and A, and taking into account
= y;ygj_j; and J,= ygng—gl_ that p=y4p, we obtain the dynamic scaling form
b b
r .
Likewise, in terms of the couplings in the previous genera- Ay = rgf@) exp(— wln? —21) (17
tion, we write the third-generation couplings, o
32 with
Ia=v3v=s and Jg=3la
A 75743 2= s _ In(By5ya0") __In(%ys)
b Up)=- =227 and p=-- 2
N Tpym In Thm

and the fourth-generation couplings,
~4 ~s Of course, the same form is obtained if we choose to look at
~ J ~ J i imi =, = i
3 = ysyz_A and J;= ygyz?w_A the odd generations. In theX limit, as y,=y,=1, we again
2735 32 have =0 and Eq.(17) corresponds to a nonuniversal
B B power-law scaling behavior, with a dynamical exponent
Since the attractor is now a two-cycle, and not a fixed point=/(p); once more, as in all marginXIX chains,/ equals the
we must relate the couplings in the fourth and second geneading term in thep<1 expansion of the exact dynamical
erations. By eliminating, andJg in the above equations, we exponent’ As in the Fibonacci and silver-mean chains,
get choosingJ,>J,, leads to the same scaling behavior, since
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100 D D 5D (— G 5 65— 5D 65 65 (—) 555 65 —) 5D
e (a)

== == = —

FIG. 11. First three generations of th&Z chain with couplings
following the sequence in Sec. VD, fai;<J,, showing an
effective-spin hierarchy. Solid lines indicate strong bonds; for clar-
ity, weak bonds are not represented. Shaded blocks contribute ef-
fective spins when renormalized, while white blocks form singlets.
A third-generation effective spin represents three second-generation
and nine first-generation spins.

)

(j-1! 2 2 \ie1-
i i gJ(n): 2 ,(Cl,s)n(cz,a)] ey
FIG. 10. Ground-state correlation functions of KX (a) and ni(j—1-n)!

Heisenberdb) bronze-mean chains, obtained from the zeroth-order_l_h h | ibuti f inale effecti . .
MDH scheme(chains with 2 010 601 sites us, the total contribution of a single effective-spin pair to

C(ry is
_NU 2 ENE

after the first lattice sweep the bond distribution is essentially 9= 2n=0 g} = (c3,3+ 261 3 ledl,
equal to the one obtained fdg<J,. which gives

Thus, the bronze-mean chains present qualitatively the
same low-temperature thermodynamic behavior as the
Fibonacci chain. However, this is not the case for ground-
state properties. As indicated in Fig. 9, the renormalization ) ) ) . )
process in each generation involves all spins in the chain an§{"€ren; is the fraction of active spins in theh generation.
gives rise to a hierarchy of effective spins, analogous to thap!"C€ asymptotically we havg=In(rj/ro)/In\ryy, this last
shown in Fig. 11. As a consequence, an effective spin in th&eSult can be written as
jth generation represents™3 real spins. So, while the In(c2 5+ 2¢2
ground states of the Fibonacci and silver-mean chains could C(ry) ~ 17, with p=1-—""—"%.
be described as “aperiodic-singlet phases,” from which exci-
tations of a given energy involve spins separated by a singlg:or the Heisenberg chail, 5= yg,:% andc, 3:%, so thaty
well defined distance, low-energy excitations in the bronze=1_For theXX chain, 7 depends on whether we look at
mean chain involve an exponentially large number of spingngitudinal or transverse correlations; in the former case we

pairs, whose distances are distributed in an increasing rangﬁavec’{xszll\ﬁ andc’g’(s:% so that7*=0.875, while in the
This is reflected in the ground-state correlation functions, .. ‘age?z=1 22 =0, and so772=1.387. These values

which exhibit a fractal-like structure, as seen in Fig. 10. The, fully compatible with the results from numerical imple-
strongest correlations in the chains correspond to the di

: . > YSnhentations of the MDH scheme shown in Fig. 10, and they
tancgsrzj; 1.3";63’1?1 8?7" .and th?'r 'scalmg behavior agree very well with free-fermion calculations &KX chains
can be obtained by the following analysis. = . with p<<1. Again, larger coupling ratios lead to nonuniversal

Consider a pair of neighboring efiective spins belonglngdecay of the correlations, except in the Heisenberg limit.
to the same block in thgth generation, and lat, be their '

zeroth-order correlation. Each of these spins represénts 3
real spins, so that for each such pair there dré gairs of D. A sequence producing effective-spin triples
real spins separated by the same distajceontributing to
the total correlation per sit€(r;). However, the contribution
of a real pair toC(r;) depends on the string of Clebsch-
Gordan coefficients indicating the weight of its two spins in
the effective spins: each time the intermediate effective spi
representing a real spff, is located at the endshe center

of a three-spin block, the weight & is multiplied by a
factor ¢, 3 (C; 3) upon renormalization(These coefficients
are in general different fatx andzzcorrelations; see Appen-
dix A.) Since each effective spin in thgh generation has

(St 2ci,)

I

C(ry) ~ nyg; ~

, (18)
In \“'Tbm

The appearance of an effective-spin hierarchy is better
illustrated by the sequence obtained from the substitution
rule a— bbabg b—bba The first three generations of the
r(fhains, ford,<Jy, are shown in Fig. 11; fod,>J, the first
lattice sweep interchanges the roles of weak and strong
bonds, recovering the former case. Renormalization involves
both three-spin and two-spin blocks, and each lattice sweep
reproduces the original sequence, yielding effective cou-
plings given by

gone through-1 renormalizations, a real pair can be classi- ) J2 )
fied according to the number of factorsc, 3 present in the Ja= 72 33 and J,= v’sza,
b

(equa) weights of its spins. The contribution of all tympe-
pairs toC(rj) is proportional to the number of such pairs, so that the recursion relations for the coupling ratio and the
being given by energy gap are
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1 28 2
OO« O+ 1+ e+ O GO+ O O« O+ G+ GO O+ OO ~ ~ _J3
Ja Jp Je= ngaa Jg= 'YZJ_a
ays ;
1 5 7 11 14 16 19 23 25 29 32 34 38 41 43 46 50 52 55 with an effective coupling ratigp=J,/J,=7y,p. (Choosing

O = = =00 = = = OO -0 = OmenO OO = 2 2 OO 50 2O 150

i i i 7 J.>Jp interchanges the roles df andJy, otherwise produc-
ing the same bond distributionThe bond distribution does
FIG. 12. First two generations of thXZ chain with couplings ~ NOt change upon further lattice sweeps, and the effective cou-
following the sequence in Sec. V E, fdg<J,. The numbers indi-  plings satisfy the recursion relations
cate the position of the spins in the original chain. The first lattice ~
sweep generates a fixed-point bond distribution with four different

effective couplingia throughﬁd. Jp Jy
p'=yp and A'=y3pA. 5 e~ 3y
The size of three-spin blocks follows=2,6,22,.., while oY 3, 4= 2 3
that of two-spin blocks corresponds itg2, leading asymp- o
totically to a rescaling factor Noting thatJ,=J.J4/J,, We can write
Tg=2+\3=3.73, A
. . . == =0
and a dynamical scaling relation N J
Aj~ rj‘g(”)e‘“ '“Z(fj/rcﬂ, so that aperiodicity is marginal even in the Heisenberg limit.
, The recursion relation for the gaps is
with ~
- J/
o MOE) () LIS
P In Tst » In2 Tst ' ‘]b

Again, aperiodicity induces nonuniversal behavior for oand the size of the singlets formed along the generations
<A <1 and a weakly exponential scaling in the Heisenbergollows r;=3 -1, with a rescaling factor,,;=3, so that the
limit. dynamic scaling relation is given by
As in the bronze-mean chains discussed in the previous A ~ =)
Sec. V C, excitations of a given energy involve an exponen- o
tially large number of spins, due to the effective-spin hierar-with a nonuniversal dynamical exponent
chy. More precisely, since each effective spin in jtregen- In(+2p)
eration represents 3 real spins, excitations with energy:, z={p)=- —Zp,
corresponding to breaking jgh generation singlet, involve In3

(2)3™* spins; exciting a three-spin block in the same genera- Thermodynamic properties can be estimated by using the
tion costs an energy of the same order and involVe®BS.  game idea of the “independent-singlet” approximation de-
Dominant ground-state correlation functions also decay as iQ¢rihed for Fibonacci chains, with slight modifications due to
Eq. (18), but now with the fact that the first lattice swedput not the later onés
In(c2 5+ 262 5) involves renormalization of both two- and three-spin blocks.
n=1 _I— Thus, the free energy per site can be calculated by adding to
N Tst Eq. (13) a term representing the contribution of spins renor-
yielding 7*=0.830 andz**=1.526 for theXX chain, and malized in the first lattice sweep, and given by
n=1 for the Heisenberg chain. These values are again fully 1 1
compatible with the results from numerical implementations fi(h,T) = EFpair(Jb,Ab;h,T) + gFtripIe(\]b!Ab;haT)! (19
of the MDH scheme.
where Fyipe(J,A;h,T) is the free energy of a spin triple

E. A marginal tripling sequence . . .
g ping sed obeying the Hamiltonian

This sequence is generated by the substitution eule
—.aba b—bba As discussed in Ref. 17, this type of aperi- Huipe =J(SIS; + S + AS[S) + ISy + S + ASSS)
odicity may lead to marginal behavior even in anisotropic ~h(S+%+S).
chains. As shown in Fig. 12, fa¥,<J, the MDH scheme
produces a second-generation lattice with four different efNotice that three-spin blocks yield effective spins when
fective couplings, given by renormalized, and these will pair with other real or effective
) spins to form singlets in the second lattice sweep, but this is
J.= Yoyg =2 jbz - not taken into account by Eq419). In order to obtain a cor-
a NS & rect estimate of the low-temperature susceptibility, we must
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0 . . . . . . . . D= ; @D ) 9 () o= D =) 7 = D
FIG. 15. Pattern of three-spin blocks and isolated spins leading
to the effective-spin hierarchy in Rudin-ShapX&Z chains. Thick

lines indicate strong bonds. Shaded blocks contribute effective spins
when renormalized; white blocks form singlets.

XM

—ac, b—dc, c—ab, andd— db. It has the interesting prop-

) erty that its geometrical fluctuations mimic those induced by
10 a random distribution. In order to reduce it to a binary se-
guence, we make the associatiarsa andd=b, obtaining

FIG. 13. (Color onlin@ Log-log plots of the specific hea(T) ~ an inflation rule for letter pairs, given bga—aaah ab
and susceptibilityy(T) as functions of temperature f&XZ chains —aaba ba—bbah and bb—bbba The rule generates
with couplings following the marginal tripling sequence, fhy J, blocks having between two and five spins and is symmetric
=%J and three different values of the uniform anisotrajy under the interchange afandb, so that the scaling behavior
is invariant with respect to the interchangeJgfandJ,. The

left end of the first two generations of the Rudin-Shapiro
®hains is shown in Fig. 14 fai,<J,.

Blocks with more than three spins are eliminated in the

. ) . ; first lattice sweep and do not appear in later generations.
sponding to theXX and Heisenberg chains and to an inter- b Pp g

di h - hibit | iodi il Both two- and three-spin blocks are present in the fixed-point
mediate case. Both quantities exhibit log-periodic oscillay|qey distribution(already reached at the second generation
tions, obeying the scaling forms

and upon renormalization the sequence produces an
InT effective-spin hierarchy, stemming from approximately
nx mirror-symmetric patterns of three-spin and five-spin blocks

in the original lattice. This is illustrated in Figs. 15 and 16.
with X being the asymptotic ratio between the gaps in suc- In the jth generation, three-spin blocks have suqe
cessive generations, whi®, andG, are periodic functions =(2)4"! (with a rescaling factorr,s=4), while two-spin
(with a period of 3. In the XX and Heisenberg limits, we blocks have size;/2. The first lattice sweep generates effec-

have A= yzp, for intermediate anisotropies, equalspg, @ tive coupllngsJ havmg eight different values,
coupling ratio defined at the energy scale in which effective

10" 10" 10° 10 10" 10" 10°

multiply the contribution arising from spin triples by a factor
like T, Results for the temperature dependence of th
specific heat and susceptibility are shown in Fig. 13, dor
=%) and three values of the uniform anisotropy corre-

-
) and X(T)~T1’Z‘lG<

In
c(T) ~ Tl/ZGc<m

anisotropies become negligible. ~ Jg ~
Also as a consequence of the strictly marginal character of Ja= 7273V 4 Jb = ¥3Y5da,

aperiodic fluctuations for all anisotropies in the regime 0 b
<A=<1, dominant ground-state correlations follo@&r;)
~1/r;in the p<1 regime, but nonuniversal behavior should J.= 3_621 3. = J_g o= 2 J_g
be observed for larger coupling ratios. CTY2Y3y . VAT YSVAYsy» e V2¥3¥s, v

VI. RELEVANT APERIODICITY 5 .

. . . J ~ J, ~
A. The binary Rudin-Shapiro sequence Jf yzy3y4y5J , Jy= 7/%73743_2’ Jy = 727372\]4!
b b

The Rudin-Shapiro sequence is originally defined as a
four-letter sequenc®, generated by the substitution rue  and whose bond distribution remains unchanged upon renor-

1 28 malization, leading to the recursion relations
Qn =0 = O OO m = O OO = = 0 20 = O = QO GreenD = = e 2 O =0 = = OO 2 10 OO = e Qe e

o 5.3

3 _ _3YaYdYg 73
@ Ja_72~~2 v =73

2 22 86 150 202 ‘]b‘]c
o0—0—0 0 O—0—0 O=—0 0—0 0 =0 O0—0 O0—0—0 O O0—0—0 O=0 O=0=—0

c g & dba g h e g g 8 d f

D G EEED ) &) ) @D &) ) — D D =D
FIG. 14. First two generations of the binary Rudin-Shapi&Z
chain, forJ,<J,. The first lattice sweep generates eight different

effective couplingsja throughjh, labeled in the figure by the letters
a—h. Further renormalization does not change the bond distribution.

= —— ° =

FIG. 16. Pattern of five-spin and three-spin blocks leading to the
Starting from the second generation, only blocks coupledpy effective-spin hierarchy in Rudin-ShapiXXZ chains. Thick lines
(thick lines andJ (thin lines bonds are renormalize¢For clarity, indicate strong bonds. Shaded blocks contribute effective spins
weaker bonds are not drawn in the picture. when renormalized; white blocks form singlets.
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~ o~ i~ JoJ
J=vady Jy=vah=, =2~
b Jc
Jddi =, Jddg 5 A
= Yoys et N =hyrant, =it
JoJ2 Jnde 323,

Defining a new effective couplinaozjaﬁdljc, we obtain a
system of three recursion relations,

377
B o~ = JoJs
Jo Ya¥a~—, Jp=vd; and 'Jf VaYs——
32 3

With coupling ratiosTJ:TJO/jb and&zjf/TJb, and a gap pro-
portional toJ,, we have

A
~ _ 2 ~ ~
pj= 7?5]—11 gj= Ygﬁj—lv and = ¥30j,
Ajq
which, after eliminatings;, yields
~ _ 42 _AJ_ ~1/2
pj= Y2pj-1 and IR LE
-1

Solving the recursion relations we obtain

r w
~r¢ — 4l =
Aj~rj exp{ ,u(ro) }
with =3,
IN(ysf 1
SLGEL p==> (Y07
In 7 2

So we obtain, for the whole regime<OA <1, the dynamical
scaling form predicted for th&¥X chain, reproducing the re-
sult for the random-singlet phase.

For chains with RS couplings, effective-spin formation
determines the dominant ground-state correlations, but th
corresponding hierarchy is slightly different from the ones
seen in Secs. V C and V D, now involving both three-spin
(and some five-spinblocks and unrenormalized spins. As
illustrated in Figs. 15 and 16, for each block renormalized in
the jth generation the correlation between its end spins co
nects a number of order driginal spin pairs separated by

the same distancg (the size of the block yielding a con-

tribution to the average correlation in the Heisenberg chai

and C*{(r;) in the XX chain given by

i 1 _
0,=[ (262 )+ 20 (2 1]

PHYSICAL REVIEW B 71, 134408(2005

10 0.05r
T004f oA
] .
S 003 O

0.020 P—
10' 10° 10° 10*
r

FIG. 17. Ground-state correlations for chains with Rudin-
Shapiro couplings, obtained from extrapolation of numerical MDH
results for chains with ¥ to 220 sites.(a) C*(r) (upper solid curve
andC#4r) (lower solid curve for the XX chain. The dotted curve is
proportional tor=3/2, (Curves offset for clarity.Inset: dominantC**
correlations, corresponding to distanegs (2)41-1, fitted by a law
of the form rC*(r)=yg+y,Inr (dashed curve (b) C(r) for the
Heisenberg chaifsolid curve. The dotted curve is proportional to
1/r.

wherey, andy,; are constants. Thez correlation between
end spins in a three-spin block is zero, so that the dominant
correlations correspond to spin pafconnected through one

of the effective end spins and the middle gpat distances
rj’:4j‘1¢4j‘2i4i‘3i---tl, with average(rj’>:4j‘1, whose
contribution is given bygj’~(%)j‘1, sincecf?,:%. We then
have

CZZ(rJ_/) ~ gj’nj — <r]_r>—3/2_ (22)

Egs. (21) and (22) should be contrasted with the random-
singlet isotropic resulC(r) ~r~?, indicating a clear distinc-
tion between the ground-state phases induced by disorder
nd aperiodicity, even in the presence of similar geometric
uctuations. This is related to the inflation symmetry of the
aperiodic sequences, which is absent in the random-bond
case(or in aperiodic systems with random perturbatfdns
Its effects are exemplified by the fractal structure of the

pground-state correlations visible in Fig. 17, which displays

results from numerical implementations of the MDH method
for both XX and Heisenberg chains, showing conformance to

the scaling forms in Eq$20)—(22). Contrary to the marginal

sequences, these scaling forms should be observed in the
large-distance behavior of Rudin-Shapk¥XZ chains for any
coupling ratiop # 1; we expect a crossover from the uniform

to aperiodic scaling behavior as larger distances are probed

wherec; is the correlation between end spins in a three-spirfor p close to unity. Free-fermion calculations in tK& limit

block. For the Heisenberg chairu:i%:g<1, and thus,

1

i
wheren;~ 1/r; is the fraction of three-spin blocks in thth

generat|0n For th&X chain 2¢f%)?=1, so thag; has a term
proportional toj, andC*{(r;) carries a logarithmic correction,

C(rj)) ~ ginj ~ (Yo +y1In rj)rj_ly (21

support this picture.

B. The 6-3 sequence

This sequence is generated by the substitutian
—babaag b—baa and its XX wandering exponent i
=In 2/In 5, with a rescaling factorg;=5. Application of the
MDH scheme leads to a fixed-point bond distribution with
singlet renormalization only, so that no effective-spin hierar-
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Omem = O G s o 1 O D O O Qs Gmlm+ G e+ G+ QoD G2 0 O 0

it @

FIG. 18. First two generations of the 6-3 sequence, discussed ir 107
Sec. VI B, forJ,<J,. In the second generation, dashed lines indi- &

cate ef‘fectivéa bonds, while thick and thin solid lines denote ef- I
fective J, and J; bonds. In subsequent generations, dh&, pairs 0" F

change t&a?]c, and the first~]a becomesNJC, but the bond distribution
is otherwise unchanged.

— MDH
o free fermions

10" 10°

chy is present. Fod,<J,, as depicted in Fig. 18, three ef- 0" 10 10’

fective couplings are produced after the first lattice sweep,
B " FIG. 19. Thermal dependence of the specific Haaand sus-
3. = yzﬁ 323 J.= J_a ceptibility (b) of the XX chain with couplings following the 6-3
a”Y2g bTYa TN sequence of Sec. VI B, obtained fy/J,=3 from both numerical
) ) ) diagonalization of chains with 46 875 sit@srcles and the MDH
and upon further lattice sweeps we obtain the recursion relascheme(solid curves. The inset in(b) presents a log-linear plot of

tions T versus(xT)™, with w=In 2/In 5, showing that foff = A;, corre-
~ ~~ >~ sponding to the specific-heat maxima, the susceptibility satisfies the
3= 392 3= Jade 3= sza‘]C scaling form y~ T YIn T|"Y (dashed ling at intermediate tem-
a= 72 B b= 72 3y 1o YeT 72 32 peratures, a Curie-like behavior is observed.
b b
Thus, defining the effective coupling ratios malization. Thus, the scaling behavior is the same as above,
~ 5 ~ but now with a bare coupling ratio
-~ Ja Ja J Ja
p53—=7§J— and 0—3—=7/2J—, 3 3.\4
b b ~ b
b b p=2= ﬁﬁ(J-) .
we can rewrite the recursion relations as o a
T Thermodynamic properties can be estimated as in the
~ o 22 =y~ _%b_ o~~~ Fibonacci case, by using the independent-singlet approxima-
= , o= , and —=—=19y,0p. ) ! .
P =Y5p yoP AT, y2ap tion. Plots of the specific heatT) and susceptibility(T) as
_ _ o functions of temperature are shown in Fig. 19, and compare
In the jth generation, we havejzzpj, and thus, quite well with results from numerical diagonalization, even

~ _ 22 _~32 for relatively large coupling ratio$J,/J,=3). This is not
Pra= 72 and Aja= vop A surprising, éiveng the fapct tghat the aefftgctfve coupling ratio
The length of the singlets correspondrie 1,9,45,225,..,  rapidly decreases as the RG proceeds, even faxxhehain.

so that asymptoticallyj~r074, with fo:% and 7=7¢3=5. As seen in the inset of Fig. “9): gt temperatures of '_[he
Solving the above recursion relations we obtain the dynamiorder of the gaps\; the susceptibility follows the scaling

cal scaling behavior, form
Aj~rexg —ul 1) 23 M)~ =
i rj ex I ro ’ ( ) T||n T|l/a)’
with a wandering exponen#=In 2/In 5=0.431 and which can be readily obtained from E(R3) by assuming

that singlet pairs are magnetically frozen, while active spins

contribute Curie terms tg. Estimates oft(T) and x(T) for

chains with anisotropiesQA <1 are qualitatively identical

) o . ) to the ones for theXX chain.

wherep=J,/J is the original coupling ratio. Since no effective-spin hierarchy is present, and aperiod-
If we choosel,> Jy, blocks with 2, 3, and 4 spins coupled ity is relevant, dominant ground-state correlations, for any

by strong bonds appear along the chain. Effective spins argyypling ratiop# 1 and sufficiently large characteristic dis-

produced by the first lattice sweep, yielding effective COU'tanceer-, should decay as

plings

_3|n'}/2

3
d wu=-=In(yzp?),
ng and w=-3 n(y2p”)

1
J oo~ 3 ~ P C(rp) ~ CHAry) ~ —,

J—Z, Jp= 72')’%?’4\]_2' and J.= 757’%7’3132' J T

a @ a for all anisotropies in the regimesOA <1. This is confirmed
whose distribution is the same as that of the third-generatioin the XX limit by numerical diagonalization, as shown in
bonds forJ,<J,, and which remains unchanged upon renor-Fig. 20.

Ja= vavsvs
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C. The fivefold-symmetry sequence 10°

The sequence produced by the substitution rale
—aaah b— bbais related to binary tilings of the plane with
fivefold symmetr)i*6 The (quite large XX rescaling factor is
=25+ 10/5=47.36, with a wandering exponenty 10
=In 3/In 7 =0.285.

Under a numerical implementation of the MDH scheme =

with J,<J,, we obtain a quite intricate pattern. After a four- 3 N “., | !
bond transient produced by the first two lattice sweeps, a ¢ — € O ®=3 A ;
two-cycle periodic attractor is reached, where six- and seven — COE=14 VoA l
bond distributions alternate, as depicted in Fig. @d/ith - C) (p=3) ‘ a
J,>Jp, the same two-cycle is reached after the first lattice L T e=14 Ry :J
sweep) The distance between spins connected by the stron " L L
gest bonds in each generation correspond tp 10° 10" 10>
=1,3,33,1901385,9050,.., which asymptotically gives r
:r':ezlfgurt;ﬁéﬁgiiﬁﬂuggr?grsatriilggr;%ethe effective couplings of FIG. 20. (Color online Ground-state correlations of th&X
chain with couplings following the 6-3 sequence of Sec. VI B, for
_ 3.3 _ L 333 two dif_ferent_ valueg of_the coupliljg rat_i@:Ja/Jb, as obtained l_)y
Ja= Yoy A 3= yade Je= V2 ACG numerical diagonalization of chains with 1874 sites. Peaks in the
Jg Jé curves correspond to the characteristic distampe@, 45, and 225.
~ EC’:jEjF ~ jijCjG ~ EAach é]"’_l — ,)/20]"';[6/3
J=Ym~ =% 5 Ji=%7s ~ A A2
sdp JB Js j

hile b h i  the fifth and fourth where now 2+2 labels the lattice generation amdis a
)cl:lor;sewgt\r/]vaeveg the couplings of the fifth and fourth genera-cqqant, depending on the values of the coupling ratios in

the fourth generation. Solving this last equation gives

~ J ~ o~ JoJ -~ ABIC?
By BEvyss Evs Aj~ABICY,
Jode Jy Jp with
— .8 — .20 AAIo5809,
YZJJdJJf ~,_ ] Jgjgjf A—a’yz, B—)/g, and C=
35 ' Y273 75 ' For large enougl, sincej=In(r;/ro)/In 7, we have
b¥c bYc
~ Aj~exp - (h> ]
g 5 JdJ s Toe s 33353, : p{ Mo
R e N A vt with
b c ch
Eliminating the fifth-generation couplings and defining _ _In3
the ratios p==InC and o= - -
N jA jc 3’2: jF again obtaining, for the whole anisotropy regime <1,
p==—, o1=Z, 0y,=z—, and o3z3=—, the same scaling form predicted for th& chain.
J Js Jads Je The effective-spin hierarchy produced by the RG process
. : . is analogous to that in the bronze-mean chains, so that
we can write a set of four recursion relations, . . : o
ground-state correlations behave as in @@), with =1 in
o) a3  Yoms the Heisenberg chain, but*=0.884 and7**=1.359 in the
P =72Pp O1= P XX limit. However, these figures are not so well reproduced
v in the numerical calculations, even for chains wihk=1.6
) 2 o . L X 1P sites, most probably due to the extremely large rescal-
0y= Y5 ysp (0109)%, 5= Y5y3010%. ing factor.

The gaps in successive even generations obey

A’ J’ VII. DISCUSSION AND CONCLUSIONS
A = 12300102 For all aperiodic sequences discussed in the previous sec-
3 p q p
B tions, the recursion relations for the main coupling ratio and
and by expressing, o5, andoy in terms ofp we get the energy gaps have the forms
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L oo oo oo oo and the self-similar properties of the sequence, being inde-
pendent of the anisotropy in the regimes@ <1.
gl If k=1, the recursion relation fop has a line of fixed
s ™ points, provided that=1, which is generically the case in
01100 GG 2 O OO + G- O OO OO0+ O O OO the XX limit; otherwise p"'=0 is a stable fixed point. The
o B 8 ¥ general solution to Eqg24) is
17 1142 Ay~ rj—l(me—u In%(rjiro) (26)
OO0 = # OO0 2 OmmeO—O—0 = 2 O+ O+ O O—O—O——0 = = OmemeO—O—0 20 O
b d a c
where
80330}—; o—0 0—0 O 0=0 0—0 0 O0—0 O—0 0—0 0—0—0 0110840 — In(flfélzc_glzpf) — |n(f%/20€/2)
DECBF EC F EC A A F EC &)=~ In 7 and p=- In? 7
2215 - 55590 Unless f,#1, which, among the sequences studied here,
°;°—°a °;°—°—°a °—°—°—°e °;'°f °—°—°—°—°a °—°—°—°a°—° happens only for the relevant fivefold-symmetry sequence of
Sec. VI C,u is zero in theXX limit. This means that we can
L identify a nonuniversal dynamical exponemt{(p), and the
4?,‘5)0_(?; o 00 6 06 00 0 om0 om0 om0 0_0_055;‘790 scaling behavior of thermodynamic properties depends on
DECBF EC F EC A A F E the coupling ratio for the whole anisotropy regime<Q

<1. In the Heisenberg limitA=1), unlessu=0, as in the
. . : i _ marginal tripling sequence of Sec. V E, HE6) describes a
chains with couplings following the fivefold-symmetry sequence,Weakly exponential dynamic scaling. In this case, aperiodic-

discussed in Sec. VI C, fal, < Jp. The attractor of the bond distri- ity can be viewed as a marginally relevant operatar
bution is a two-cycle, reached after three lattice sweeps. Second-y 9 y P

generation bonds are denoted By through Js; third- and fifth- —0%) in the renormalization-group sense.
generation couplings are labeledthrough f, while A throughG These results strongly suggest that low-temperature ther-
label fourth- and sixth-generation bonds. Couplidgsonly occur ~Modynamic properties of any antiferromagneXisZ chain
much farther along the chains. Starting from the fourth generationWith anisotropies intermediate between ¥ and Heisen-
lines indicate blocks to be renormalized. berg limits and couplings following a given binary aperiodic
sequence can be classified according to a single wandering
exponentw, which is known exactly forXX chains. This
generalizes what happens in random-botXiZ chains(for
wherec, f;, andf, are A-dependent nonuniversal constants,which w:%), where thermodynamic properties in the aniso-
and ¢ (a rational numbgrand k (an integer relate to the tropy regime -isAsl are those characterizing the
number of singlets involved in determining the effective cou-random-singlet phas&'® Note that, although the above clas-
plings. In particular,k is ultimately the difference in the sification seems to imply an anisotropy-independent critical
number of singlets producing the effective couplings whosevalue w.=0 for the relevance of aperiodic fluctuations on the
ratio isp<1. low-temperature behavior 0fXZ chains, it does not show

If k=2, the recursion relation fop always has a stable thatw plays the role of a genuine wandering exponent, in the
fixed point atp” =0, so that the effective coupling ratios be- sense that fluctuations scalegas N for general easy-plane
come exponentially small as the renormalization proceedsanisotropies. In any case, due to the fact that the critical
indicating that asymptotic results obtained from the MDH exponents(including the correlation-length exponent of
method should be essentially exact. Taking into account théhe uniform XXZ chain are known to vary with the aniso-
scaling behavior of the characteristic distangesr,7, Eqs.  tropy along the whole critical line ~& A <12%22it remains
(24) lead to the dynamical scaling form an open question how the present results fit into the frame-
work of the Harris-Luck criterion.

Of course, Eqgs(24) are valid for all anisotropies € A
<1 only if the bond distribution generated by the MDH
method is independent af. This is certainly the case for

FIG. 21. Leftmost 24 sites in the first six generationsXaZ

pj+1=Cp}< and Aj+1=f1fj2pfAj, (24)

A}~ it s PO gt — gu(i0”(25)

with ¢ and x' nonuniversal constants,

_ In(c™*p") strong enough modulatiofiHow strong this modulation has
B k(k-1) ' to be depends on the various block sizes produced by the
) ] ) sequenceg.However, from numerical implementations of the
p being the bare coupling ratio, and method, we find that, even when the blocks selected for
In k renormalization in the first few lattice sweeps dependpa
wzm- universal distribution is eventually reached, in much the

same way as when we choodg>J, instead ofJ,<<J.
Note thatw has the same form as the exact wandering expoThus, we expect that, for general binary substitution rules
nent for XX chains with nondimerizing aperiodic couplings, inducing relevant aperiodicity, the scaling form in Eg5)
given in Eq.(7). Moreover,o depends only on the topology holds for all coupling ratiogp # 1.
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An approximate picture of the ground state and of the Jndr Jo, Ao Jry A
lowest excitations in the presence of aperiodic couplings can
also be deduced from the MDH scheme, and is revealed by —— o - _\
the behavior of the pair correlation functions. As the energy
Si §i hY3 S

scale is reduced, two types of behavior can be identified.
Either the RG process produces a hierarchy of singéstsn

the Fibonacci, silver-mean, marginal-tripling, and 6-3 se-
guence} or a hierarchy of effective spings in the bronze-
mean, spin-triple, Rudin-Shapiro, and fivefold-symmetry se- \ ’

r

guences The first type reveals a kind of self-similar,

aperiodic-singlet phase, from whidlsinglet-triple} excita- TN

tions involve strongly coupled pairs composed of spins sepa- S Sy

rated by well defined characteristic distances. In the second

type, since the number of spins contributing to an effective FIG. 22. Renormalization step involving the decimation of a

spin increases exponentially along the hierarchy, excitationgvo-spin block.

of a certain energy involve spins separated by a wide range

of distances, giving rise to a fractal structure of the Co”e|aDasgupta-Hu method t&XXZ chains with aperiodic cou-

tion functions. Notice that, contrary to the finite temperaturep"ng& Contrary to the random-bond chains discussed in Sec.

behavior, there is no relation between the ground-state PrORr when couplings follow aperiodic sequences generated by

erties and the marginal or relevant character of the aperiogyation rules we generally need to consider spin blocks with

ICity. - . . . . more than one strong bond, and thus more than two spins.
For aperiodic sequences inducing strictly marginal 1‘Iuc-FOr instance, in the Fibonacci sequence wigh- J, (see Fig.

tuations, we could account for the nonuniversality of thez) there appear blocks with one or twig bonds. Since we
correlation-function decay exponents by a numerical calcu= pp . . "
sume that all couplings are antiferromagnetic, the local

lation based on a second-order expansion of the ground-sta"f'é d . inalet for blocks with ber of
vectors. This compares quite well with results from numeri-9"0und state is a singlet for blocks with an even number o

cal diagonalization in th&X limit, which indeed show that sp?nsélbut a doublet if the blocks contain an odd number of

the zeroth-order MDH predictions are reproduced in theSPINS: , _ _

strong-modulation regime. Let us consider a block ywth spins S, throughsnl con-
The results on relevant aperiodic couplings show that geobected by equal bond, with anisotropyAo. This is de-

metrical fluctuations, measured by the wandering exponerficribed by the local Hamiltonian

w, are not determinant for ground-state properties, although ne1

they control the low-energy scaling of thermodynamic quan- Ho= JOEJ.ﬂ (Sj - Sj+)ay:

tities. In particular, both random bonds and Rudin-Shapiro ) )

couplings are characterized hy=%; however, correlations Where we introduced the notation

in the random-singlet phase are entirely different from those o

in XXZ chains with Rudin-Shapiro couplings. This is a con- (S-S =SS+ 95 +ASS.

sequence of the inflation symmetry induced by substitutionrne gapA , between the ground-state energy of the block and

rules, which is clearly absent in random chaiidnalo- s |owest excited multiplet depends dg and A. For two-
gously, comparative studi®s® between random-bond and spin and three-spin blocks we have

Rudin-Shapiro quantum Ising chains show that, although the

corresponding scaling properties are similar at the critical @ _1+4, 31 ——

point, only randomness is capable of producing the off- Ag :T‘]O d Ag :Z(Ao*'\*”Ao*'S)Jo-

critical Griffiths singularities->%9 Nevertheless, aperiodic

and randomXXZ chains share the feature that the averagaye define the strongest bonds in the chain as those produc-
and typical behaviors are strikingly distinct, and that averageng spin blocks with the largest gaps,.

correlations decay as power laws. Finally, aperiodic ground- An n-spin block to be renormalized is connected to its

state phases are unstable towards random perturbationseighboring spins§ andS by weaker bonds), andJ,. The
which break inflation symmetry, and the random-singlet berelevant part of the chain Hamiltonian is

havior is ultimately recovered.

H=Ho+Hy,
ACKNOWLEDGMENTS
This work has been supported by the Brazilian agenciegvIth
CAPES and FAPESP. The author is indebted to T. A. S. H, =3(S S +3:(S,-S)s - (A1)
Haddad, E. Miranda, J. A. Hoyos, A. P. S. de Moura, F. C. : '
Alcaraz, and S. R. Salinas for helpful conversations. The idea of the MDH method is to obtain recursion relations

for the couplings by treatingl,, as a perturbation tél,,.
APPENDIX A: RENORMALIZATION If nis even(as in the two-spin case shown in Fig.)2the
OF MULTI-SPIN BLOCKS ground state oH, is a singlet, which we denote B ),
In this appendix, we derive the expressions for the renorwith a corresponding enerdy,. In the space of this singlet,
malized coupling constants used in the extension of the Mathe states o§ andS are arbitrary. In the space spanned by
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the eigenstateb¥;) of Hy (with energlesE) and the states where the summation spans the excited sties |m/’,m’)
Im,m)=|m)®|m) of S, (m,=+3), the stategg(m,m))  ®|¥)([i=1,...,2"-1). In terms of the raising and lowering
=|m,m,)®| ¥, are degenerate. The first-order perturbauveoperatorssl:S"tiSy we have

corrections to the ground-state energy are zero, but the

second-order corrections are given by the eigenvalues of the

matrix

_ Z <g(mamr)|le|e><e|le|g(

v m,my))
mmem . m = = Eo-E )

(S-S = (A2)

J(S5+55) +ASS,

and a little algebra shows that

1
JJ<m|,mr|$ SIm’,m

le m;my,m -
i#0

,>2 <‘I’O|S|‘I’i><‘l'i|52|‘l'o> + <‘I’O|S;|‘Pi><‘1’i|51|‘l’o>

EO_ Ei

1
+ ZJ|Jr<m|mISS?|m’-mr’>

i#0

D (Wo|S[WNW|S|Wo) + (ol S| WiV S| W)

Eo-E

+ AIArJIJr<mIamr|SZ$|mI’ ’ m;)
i#0

Since the first two terms on the right-hand side of E&B)
are complex conjugates, and noting tli&t—E; is propor-
tional to Jy, we can write

‘]l‘] [
Vm|,mr;m|’,mr’ = YnJ_r<m|imr|SX$(+ SIm,my)

+yn5AA

<m|’mr|szsrz|mli r>

wherey, and &, depend om\, [Wlth 6y=1 for Ag=1, where
SU(2) symmetry is recoverdd The above matrix elements
are precisely the ones corresponding to the Hamiltonian

H' =J(SS+95+4'SS),

with the effective paramete® andA’ given by

JJ
J =, JO’ and A'=5AA,. (A4)
For two-spin blocks we have
= and &,= 1+8
27154, 2=

For larger blocks the parameters can be evaluated numeri-

cally as a function ofAy; however, for four-spin blocks we
can analytically determing,=1 in the XX limit and y,=
-V3/6=0.378 in the Heisenberg chain.

If nis odd(as in the three-spin case shown in Fig),23,
has two degenerate ground states, which we denot#gy
These can be associated with an effective Sp&; whose

D (Wo|SHW (WS Wo) + (Wo| S W)W S| W) .

EO - Ei (A3)

My, SO that|mO:J_r%>:|\If§>. In the spacdl spanned by the
states ofS,, S, and S, the stategm;,m,,my)=|m)®|m;)
®|mg) are degenerate. The introduction 8§ lifts this de-
generacy, and we expect that, to ordgr/Jy, perturbation
theory leads to an effective Hamiltoni&fi, with matrix el-
ements giveriapart from a constapby

!

_ [
Hml'mr*mo;m(’mr’*m(’) - <m|1mr!rnO|H|r|mI vmr 1n10>

Restricting ourselves to the spaHe it is possible to write
H'=3/(S - Soly +3/(So- S,

provided
J(S - S)a =S - Soy; (A5)

and

states can be described by the azimuthal quantum number FIG. 23. Renormalization step involving a three-spin block.
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J(Sn-S)a, = (S0 S

We now expand Eq(A5) with the help of Eq.(A2), and
notice that

<mlamr1m()|3+%|m,'mr,!m(,)> = 5m|’,m|—15mr’,m 5m(’) mg+1
<mlamrva|S+SI|mI,!mrl’m(,)> = 5m|',m|—15mr’,mr<mo|$|m(,)>'
<mlvm"nb|sz%|mlrin\f'm(,)> = ml”b5m|’,m| 5mr’,mr5m6,m0:

(my, M, mo| S|y, my,mg) = my 5m|’,m|5mr/,m,<mO|§|mc,)>:

6, being the Kronecker symbol. By the Wigner-Eckart theo-

rem, we can write

<%|SI| m(I)> = 'Ynémé,mo+1,

<mO|Si|m(,)> = (5n')’n)mo‘sm('),moa

with vy, and 8, depending o\, and we formally obtain the

renormalized parameters,

J|, = 'yn\]| and A( = 5nA| . (AG)
Analogously, by symmetry we have
J =y, and Al =5A,. (A7)

For three-spin blocks we obtain
(Ag+ VAZ+8)
V3= 1 )
* Z(Ao +\a3+8)°

and

1
3= 80+ (32+9),

while for larger blocks the parameters can be calculated nu-
merically. In particular, for five-spin blocks we have, in the

XX limit (for which analytical results are availahleys
=3/3=0.577, and in the Heisenberg chajp=0.512.

In blocks with an odd number of spins, the original spins

S (i
“weights” given by the coefficients! and cf
through the operator identitiggalid in H)

§=¢,&% and §=c.S.

=1,...,n) are represented by the effective sy with
defined

1,n’

These are useful in the calculation of correlation functions.

Note thatcy ,=c},= ¥, and ci,=c;,=8,y,. For three-spin
blocks we have

1

+ %(Ao +VAG+ 8)’

X —_
C23=

and

1 ———
Co3= ZAO(AO + A+ S)Cé 3

PHYSICAL REVIEW B 71, 134408(2005

Equations(A4), (A6), and (A7) constitute the recursion
relations defining the RG steps in the MDH scheme.

APPENDIX B: SECOND-ORDER CALCULATION
OF CORRELATION FUNCTIONS

Let us assume that a two-spin block, such as the one
shown in Fig. 22, is selected for renormalization at some
point of the RG process. In terms of the stateSpand S,,
the eigenstates of the block Hamiltonikig, with the corre-
sponding energies, are

1 11
9 = (1) =111, Eo:—<5+ZAo)Jo,

1
(T =11), [¥2=]L]), E1:E2:ZAO\]01

and

1 1
|‘I’3>:E(|Tl>+|“>), Es= (2 4A0>Jo

The connection between the two-spin block and the rest of
the chain, through the neighboring spi§sand S, is de-
scribed by the Hamiltoniahl;, in Eq. (Al).

Denoting by|A) the states of all other spins in the chain,
and assuming that in the thermodynamic limit there is a
unique ground stati\,), the ground state of the whole chain
can be written, at the zeroth order in perturbation theory, as
|90)=|Ag, ¥¢. Up to the second order i) ,/J, we obtain a
corrected state,

(ALY H i [ A, Wo)

Eo_ Ek
(AL H AL (A, Hy Ao, W)
(Eo—E(Eo—Ep)

<A| ‘Pk|HIr|Aja‘PO><AJ:\PO|HIr|AO “PO>
- E?

gy =lgo) + 2 X |A, P
i k-0

+2 > ATy

ij k0

- DAY

i,j k#0 (

(B1)

A second-order estimate of the expectation value of any op-
eratorO is simply given by

(dlOlg)
(dg)

For the calculation of correlation functions involving
spins in the block, we writ®=0y0,, whereOy, andO,4 are
operators acting on the subspaces defined by the stifes
and|A)), respectively. Expanding E¢B1), we obtain an ex-
pression for(g|O|g) with terms containing combinations
such agW;|Oy|¥;) and(Ay|S OaAy), which is rather cum-
bersome to write here. As examples of the final results ob-
tained in the Heisenberg limit, we have

(O)g=

3F+F
16 J2

133

(doy=gt=1+— 2 7 —(AJS - SH|AY,
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3 1 JI 32 133, interesting to notice that the correlation between two spins
<Sl'82>g:_zg 6 2 (Ao|5| SA» | which are not decimated in the same block is at most of
0 orderJ, ./ Jo.
S 5 1g[<1 .1 10, + 2J|> <AO|S‘ SiA Similarly, in the XX limit we have, for instance,
T91/gT 5 2
2 3 4 ] _ 1J +J; JJ
(glg) =g =1+27 " - 4 A5 SIA),
1( 3 J| ) | :| ‘J ‘JO
—_ — l +——|— ,
4 439/ Jo
1
and (SIS)g=- 29
(S, S) ——lg[(l ) A (S, SlAg
97 2 43,) 3y 13+ 33,
(SIS)g=-70|1- ET + 4?<A0|3X8f|A0> :
0

R

433, Al S1A0

S, being any spin other tha8, S, S; andS,. These expres- <§,r§s§,2>g =— 9<%<%|3§3fr|Ao> - %(AOHSJMO)),
0 0

sions depend explicitty on expectation values like

(Ag|S-S;|Ap), Which in turn depend on expectation values

involving spins neighboring the blocks in which and S,

will be decimated. As the RG proceeds, this generates a hi- (§SL2¢= gjrzhl<Ao|3i§,||Ao>-

erarchical structure, which can be solved backwards by as- 0

suming that the correlation between the spins in the very lagdtlotice that expressions for the correlations may involve
block to be renormalized takes it zeroth-order value. It isother expectation values of bokx and zz correlations.
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