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We consider in detail the point-dipole approximation of surface plasmon polaritonsSPPd scattering and its
limitations imposed by the energy conservation. In the framework of the point-dipole approach, we analytically
calculate the scattered electric fields of both the waves propagating away from a metal-dielectric interface and
SPP waves. This allows us to establish the relation between the scalar and vectorial models of SPP scattering
by dipolar particle. The differential and total scattering cross sections related to SPP-to-SPP scattering and
scattering of SPP’s into waves propagating away from the interface are studied with respect to the configura-
tion and material parameters of the system. Using the Poynting theorem, we show that the condition of
constant field inside a dipolelike scatterer is also essential for the energy conservation in the scattering process,
resulting in additional requirements on the sphere radius and other system parameters. In addition to the
general case, different limiting cases are considered exemplifying the relative importance of these
requirements.
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I. INTRODUCTION

Surface plasmon polaritonssSPP’sd are confined electro-
magnetic waves that propagate along a dielectric-metal inter-
face with amplitudes that decay exponentially with increas-
ing distance into both of the neighboring media.1 SPP’s
exhibit a very high sensitivity to surface properties, e.g., sur-
face roughness and adsorbates. The SPP behavior has been
extensively studied, especially the SPP scattering into the
far-field zone by surface random roughness.1 Renewed inter-
est in SPP’s comes from recent advances in nanotechnology
that allow one to fabricate artificial surface microstructures
and nanostructures in order to control and manipulate SPP
properties. One of the most attractive aspects of SPP’s is the
possibility of concentrating and guiding electromagnetic ra-
diation using subwavelength structures.2 Extensive theoreti-
cal and experimental investigations of SPP properties have
been carried out during the last ten years. Thus various the-
oretical simulations of SPP scattering and reflection by sur-
face defects have been reported.3–7 The SPP propagation
along one-dimensional surface structure8,9 and the coupling
between SPP’s on a homogeneous thin film and modes sus-
tained by metal stripes10 have been experimentally investi-
gated. Demonstrations of SPP microcomponents, such as
mirrors, beam splitters, etc., made of individual microscatter-
ers have been reported,11,12 including the realization of an
efficient SPP interferometer.13 Properties of SPP’s at tera-
hertz frequencies, that might be interesting for direct and
simple biosensing, have been experimentally investigated.14

Quite recently, periodical microstructures of gold nanopar-
ticles have been shown to exhibit band gap properties for
SPP’s.15–17Furthermore, SPP waveguiding along straight and
bent line defects in the periodic structures has also been
demonstrated.17–19 In general, the SPP band-gapsBGd

phenomenon20,21 is similar to the photonic band-gap effect.22

However the progress in SPP optics of artificialsand spe-
cifically designedd systems of nanoparticles raises new prob-
lems that should be solved for the potential of SPP optics to
be fully realized. For example, the process ofsinelasticd SPP
scattering out of the surface planesinto waves propagating
away from the surfaced should be investigated in detail in
order to minimize the inelastic SPP scattering while maxi-
mizing the efficiency of the in-planeselasticd SPP scattering
by surface nanostructures. This issue becomes especially im-
portant in the case of strong multiple SPP scattering, occur-
ring, for example, in the aforementioned band-gap structures.
In general, the task of SPP scattering by surface inhomoge-
neities is very complicated, and even a relatively simple case
of the SPP scattering by a single symmetric defect requires
elaborate numerical simulations.23 The problem becomes
even more complicated when one considers sophisticated
surface structures consisting of surface nanoparticles as in
various optical microcomponents, e.g., line mirrors and beam
splitters24,25 and band-gap structures.15,16 In order to ap-
proach the problem of multiple SPP scattering by a compli-
cated system of scatterers one is forced to seek a compromise
between the complexity of a system considered and the ac-
curacy of a model employed. This means that when treating
an ensemble ofsmanyd scatterers one usually opts for asrela-
tivelyd simple description of SPP scattering by an individual
scatterer. A possible approach in such a case is to make use
of the point-dipole approximation. In the framework of this
approach, the local spectroscopy of noble metal nanoparticle
structure deposited on a transparent sample with surface
electromagnetic evanescent field has been theoretically ana-
lyzed in Ref. 26. The SPP local excitation and scattering
sboth in and out of the surface planed by surface particles
have been described and simulated in the context of near-
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field sforbidden-lightd microscopy.27 In addition, scalar and
vectorial models of micro-optical SPP components24 and
band-gap structures15,16 have been developed. These models
allowed one to circumvent a complicated problem of scatter-
ing inside surface particles and concentrate the efforts on
modeling of sstrong multipled scattering between the par-
ticles, simulating various scattering phenomena that were ex-
perimentally observed. However, up to now the potential of
the point-dipole approximation for SPP scattering has not
been fully explored, and the limits of its validity have not
been established.

The main purpose of this paper is to consider in detail the
point-dipole approximation of SPP scattering and its limita-
tions imposed by the energy conservation. The point-dipole
approximation is based on the assumption of constant field
inside a scatterersspherical particled so that the excitation of
higher-order multipole components in the scattering field can
be neglected. The usual requirement is that the radiusRp of a
spherical particle should be sufficiently small in comparison
with both the light wavelength and the distancezp between
the center of the particle and the surface.28–31Here, it will be
shown that the condition of constant field is also essential for
the energy conservation that results in additional require-
ments on the sphere radius and other system parameters. In
order to express the main relations in an analytic form we
will have to neglect the material absorption in some cases
that will be explicitly indicated. This assumption can be jus-
tified by the fact that the SPP propagation length along the
plane surface of noble metals is about two orders of magni-
tude larger than the wavelength of light in visible and even
larger in infrared.2

The paper is organized as follows. In Sec. II, the main
formulas of the SPP scattering by a point dipole are given,
and the relation between the scalar and vectorial models is
established. In Sec. III, we calculate the differential and total
cross sections for the two SPP scattering mechanisms. The
results of the preceding sections are used to consider the
energy conservation in scattering processes, establishing the
conditions that should be fulfilled in Sec. IV. The results are
summarized and the conclusions are offered in Sec. V.

II. SPP SCATTERING BY A POINT DIPOLE:
MAIN FORMULAE

Let us consider the following physical systemsFig. 1d. A
small spherical particle with radiusRp and dielectric constant
«p is located in a reference system, which consists of a di-
electric sin the regionz.0d with dielectric constant«r .0
and a metalsin the regionz,0d with dielectric constant«m.
The particle is located above the metal surface in the dielec-
tric half space, its position being given byr p=s0,0,zpd. The
metal-dielectric interface is assumed to support the propaga-
tion of SPP’s, implying that Res«md,−«r. A plane SPP wave
sat frequencyvd is propagated along the surface in thex
direction, incident on and scattered by the particlesFig. 1d.
The incident SPP electric fieldE0 field can be represented in
the following form:16,31

E0 = expsikSPPx − akSPPzds− iax̂,0,ẑd, z. 0, s1d

where a=Î«r / s−«md; kSPP=k0Î«r«m/ s«r +«md is the SPP
wave number;k0 is the wave number in the vacuum;x̂, ŷ, ẑ

are the coordinate unit vectors; and 1/sakSPPd and a/kSPP

determine the SPP penetration depths in the dielectric and
metal, respectively.

In the electric point-dipole approximation,16,27,32the par-
ticle is treated as a dipolar scatterer located atr p, and the
total electric field everywhere outside the particle can be ex-
pressed as

Etotalsr d = E0sr d +
k0

2

«0
Ĝsr ,r pdp, s2d

whereE0sr d is the electric field of the incident SPP wave at
point r , «0 is the vacuum permittivity, the vectorp denotes

the dipole moment of the particle, andĜsr ,r 8d is the dyadic
Green’s function of the reference system, i.e., the physical
system without the particle. The second term on the right-
hand side of Eq.s2d is the scattered fieldEscsr d. Sometimes

it is convenient to splitĜsr ,r 8d into two separate contribu-
tions, viz. the Green’s function of the homogeneous medium

Ĝ0sr ,r 8d and that related to the reflection from the interface

Ĝssr ,r 8d.27 However, if one considers scattering processes
involving SPP’s, it is more convenient to apply another ap-
proach that has been recently reported.31 In this formulation,
the Green’s tensor is divided into the part that governs the

excitation of SPP’s,ĜSPPsr ,r 8d, those describings- and
p-polarized waves that propagate away from the interface,

ĜT
s-polsr ,r 8d and ĜT

p-polsr ,r 8d, and the quasistaticsneard field

contributions Ĝq
0sr ,r 8d+Ĝq

ssr ,r 8d, corresponding, respec-
tively, to the two aforementioned contributions:

Ĝsr ,r 8d = Ĝq
0sr ,r 8d + Ĝq

ssr ,r 8d + ĜT
s-polsr ,r 8d + ĜT

p-polsr ,r 8d

+ ĜSPPsr ,r 8d. s3d

In order to calculate the scattered field one has to deter-
mine the dipole moment of the scatterer as well. The induced
dipole moment of a small particle can be expressed as fol-
lows:

p = âdE0, s4d

whereâd is the polarizability tensor accounting for the sur-
face dressing effect16,33

FIG. 1. Schematic representation of physical system: SPP wave
is scattered by a spherical particle with radiusRp and dielectric
constant«p.
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âd = a0X Î − k0
2a0

«0
· Ĝssr p,r pdC−1

s5d

and Î is the unit dyadic tensor. The polarizability of a spheri-
cal small particle with the volumeVp=4pRp

3/3 is given by

a0 = «0«rVp3
«p − «r

«p + 2«r
. s6d

Finally, using the electrostatic approximation of the Green’s

function Ĝssr ,r 8d,32,34–36we obtain

âd = a0S 1

1 + jb
x̂x̂ +

1

1 + jb
ŷŷ +

1

1 + 2jb
ẑẑD , s7d

where we introduced two parameters of the surface dressing
effect, viz. a geometrical parameterb=fRp/ s2zpdg3 and a ma-
terial one j=fs«r −«mds«p−«rdg / fs«r +«mds«p+2«rdg. These
parameters reflect the fact that the dressing effect can be
equally influenced by adjusting the system geometry and di-
electric susceptibilities involved.

In general, the calculation of different contributions in the
scattering field involves numerical integrations of the
Sommerfeld-type integrals.27,31 The procedure is rather time
consuming especially with many combinations of observa-
tion points and source points being considered. However, if
one considers fractions of the scattered field that correspond
to SPP waves and electromagnetic waves propagating away
from the interface, i.e., to the scattered far-field components,
one can replace the Green’s tensor of the reference system by
its far-field approximation. Relatively simple analytical

representations forĜSPPsr ,r 8d and ĜT
s-polsr ,r 8d+ĜT

p-polsr ,r 8d
have been obtained in Refs. 31 and 37, respectively. These
representations are especially useful when dealing with ar-
rays of scatterers, e.g., forming a periodic lattice exhibiting
the band-gap effect for SPPs.16,25

A. Scattered SPP waves

In the case where the distance along the interface between
a source and an observation point is large, with both points
being close to the surface planesin comparison with the light
wavelength in both casesd, an analytical approximation of

ĜSPPsr ,r 8d can be written down in the cylindrical
coordinates31

ĜSPPsr ,r 8d =
iakSPPH0

s1dskSPPrde−akSPPsz+z8d

2s1 − a4ds1 − a2d

3fẑẑ+ a2r̂r̂ + sẑr̂ − r̂ẑdiag, s8d

wherer =sx,y,zd points to the observation point in the upper
half-spacez.0, r 8=s0,0,z8d points to the source of scatter-
ing, r̂=r /r fr=sx,yd, r= urug, and H0

s1d is the zero-order
Hankel function of the first kind. The approximations8d was
found very useful for evaluating multiple scattering between
particles located close to a metal surface and modeling of the
corresponding SPP scattering phenomena.16,25 Thus, it has
been used for simulations of finite SPP band-gap structures
and the SPP waveguiding along channels in these

structures,16 replicating main features of the experimentally
observed phenomena.17

It is interesting to note that successfulsto a certain extentd
attempts to simulate SPP scattering by various configurations
of surface scatterers including band-gap structures have been
carried out in the framework of a scalar approximation.15,24

In this approximation, the SPP-to-SPP scattering by a small
particle located near the metal-dielectric interface is de-
scribed with the following relation:

Escsr d = aeE0sr pdGsr ,r pd, s9d

whereGsr ,r pd= iH0
s1dskSPPrd /4, E0 andEsc are the electricz

components of the incident and scattered SPP fields at the
metal surface, andae is the effective polarizability of a scat-
terer located atr p. Note that, in this model, the SPP scatter-
ing by an individual dipolelike particle is isotropic.

In order to relate the vectorial and scalar models of the
SPP-to-SPP scattering let us write down thez component of
the scattered SPP electric field in the framework of the vec-
torial approach by making use of Eqs.s4d and s8d:

Ezsr,w,zd = AH0
s1dskSPPrd

a0

1 + 2jb

3s1 + hp coswde−akSPPsz+2zpd, s10d

wherer andw are cylindrical in-plane coordinates,

A =
iak0

2kSPP

2«0s1 − a4ds1 − a2d
, s11d

hp =
a2s1 + 2jbd

1 + jb
. s12d

Note that the other nonzero SPP field component isEr

=−iaEz. Comparison of the SPP fieldz components used in
the two modelsfcf. Eqs.s9d ands10dg shows that the vecto-
rial approach reduces to the scalar one, if the inequalityuau
!1 is satisfied. Indeed, in this case, thestransversed z com-
ponent of the SPP electric field becomes much larger than
the longitudinal one, and the SPP part of the Green’s tensor
reduces to a scalar function. As a result, one can consider the
SPP-to-SPP scattering with reasonable accuracy by using the
scalar model. For example, in the scalar model of finite-size
SPP band-gap structures,15 this parameter wasuau<0.2, and
the simulations were found in qualitative agreement with the
experimental results.

The vectorial model31 allows one, however, not only to
accurately take into account all components of SPP fields but
also to correctly introduce the polarizability of a scatterer, as
well as to analytically evaluate the effective polarizabilityae
used in the scalar model. The latter can be conveniently ex-
pressed under the condition ofuau!1 as follows:

ae .
6ak0

3«r
3/2Vps«p − «rd

s«p + 2«r − 2s«p − «rdbd
. s13d

It is interesting to estimate, with the help of Eq.s13d, the size
of a scatterer that would correspond to the effective polariz-
ability used in Ref. 24, in which the scalar model for the SPP
scattering was first introduced. Using the appropriate param-
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eter values ae=3, light wavelength l=633 nm, «m=«p
=−16+i, «r =1,24 and assuming thatRp=zp, we obtain the
scatterer radiusRp<70 nm. This value seems reasonable24

and sufficiently smallswith respect to the wavelengthd, so
that the point-dipole approach can be considered adequate
for the modeling of SPP scattering phenomena.

B. Scattereds- and p-polarized waves

Scattereds- and p-polarized waves propagating away
from the surface into medium with«r are composed of the
waves directly scattered by a particle and those reflected by
the surface. Using the results obtained by Novotny37 for the
layered structures and transforming it for a one-interface sys-
tem, we obtain the following expressionssin the spherical
coordinatesd for the components of the scattered electric
field:

Ew =
i

a

k0
2

«0

a0

1 + 2jb
hp sinws1 + r ssdeikr2zp cosud

3
eikrr

4pr
e−akSPPzp−ikrzp cosu, s14d

Eu = −
k0

2

«0

a0

1 + 2jb
H i

a
hp cosw cosus1 − r spdeikr2zp cosud

+ sinus1 + r spdeikr2zp cosudJ eikrr

4pr
e−akSPPzp−ikrzp cosu,

s15d

wherer is the distance to the observation point,kr =k0
Î«r, w

and u are the azimuthal and polar angles of the spherical
coordinate system, respectively, the reflection coefficients
r spd and r ssd for p- ands-polarized waves are given by

r spd =
«m cosu − «riÎsin2 u − «m/«r

«m cosu + «riÎsin2 u − «m/«r

, s16d

r ssd =
cosu − iÎsin2 u − «m/«r

cosu + iÎsin2 u − «m/«r

. s17d

Although in the next part of this paper we will restrict our
consideration to the case of real dielectric constants, the
above expressions for the fields can be also used in the case
of metals with complex dielectric constants.31

III. SCATTERING CROSS-SECTIONS

In order to compare the efficiency of the SPP-to-SPP scat-
tering with that of the SPP scattering into the waves propa-
gating away from the metal surface, let us calculate the dif-
ferential and total cross sections for the both scattering
channels. In the following, only the case of real dielectric
constants will be considered.

A. SPP-to-SPP scattering

The differential cross section of the SPP-to-SPP scattering
can be determined by relating the time-averaged Poynting

vectors of incident and scattered SPP waves:23

sSPPswddw =

E
−`

`

kSSPPlrdzrdw

E
y1

y2E
−`

`

kSinldydz/sy2 − y1d
, s18d

where the nominator integral expresses the power scattered
into the SPP wave in the direction defined by the anglew,
and the denominator integral

Pin =E
y1

y2E
−`

`

kSinldydz/sy2 − y1d =
1

2k0
Î «0

m0

1 − a2

2a
s1 − a4d

s19d

is the incident SPP power per unit length. Herem0 is the
vacuum permeability. Note that the terma4 in the brackets of
Eq. s19d stems from the energy flux below the surface, i.e., in
the metal. Therefore, ifa4=s«r /«md2!1 we can neglect the
SPP power concentrated in the metal and restrict the consid-
eration of SPP scattering to the dielectric half-space.

Using the results of the preceding section and the far-field
approximation of the Hankel function, one can obtain the
following expression for thesonlyd nonzero component of
the time-averaged Poynting vector associated with the scat-
tered SPP wave:

kSSPPlr =
1

k0
Î «0

m0
uAu2S a0

1 + 2jb
D2

e−2akSPPsz+2zpd

3
s1 + hp coswd2s1 − a2d

pr
, z. 0. s20d

Combining the above relations and carrying the integration
out, results in the explicit expression for the differential cross
section

sSPPswd =
2uAu2s1 + hp coswd2

pkSPP
S a0

1 + 2jb
D2

e−4akSPPzp.

s21d

The angular dependence of the scattering cross section is
given bys1+hp coswd2, with the SPP incident direction cor-
responding tow=0 andhp being determined by the geometry
and material parameters of the surface dressingfEq. s12dg.
Typical dependencies are shown in Fig. 2 for a gold38 spheri-
cal particle located close to the gold surface at different dis-
tances with the incident SPP being excited at the light wave-
length of 800 nm. It is seen that the SPP-to-SPP scattering
sby a small sphered is in fact anisotropic with the most effi-
cient scattering occurring in the forward directionsw=0d.
Note that the anisotropy is more pronounced for smaller
particle-surface distances and, in general, for stronger sur-
face dressing. When comparing the above cross sectionsSPP
with that obtained in Ref. 23 for a finite-size indentation, it is
seen that both exhibit similar sizessSPP,Rp

6d and wave
number ssSPP,k0

5d dependencies with the scattering being
closer to isotropic for smaller scatterers.
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The total cross section for the SPP-to-SPP scattering is
finally obtained by angular integration of the differential
cross section given by Eq.s21d, resulting in

sscat
SPP=

a2k0
4kSPPs2 + hp

2d
2«0

2s1 − a4d2s1 − a2d2S a0

1 + 2jb
D2

e−4akSPPzp. s22d

It should be mentioned that the SPP-to-SPP scattering cross
section is exponentially decreasing with the increase of the
particle-surface distance in accord with the SPP penetration
depth in dielectric as one would have expected.

B. SPP scattering away from the surface

The flux of radiation into the medium above the surface
corresponds to the time-averaged Poynting vectorkSspacel
that, in the far field, can be expressed in terms ofEsc:

sspacesw,ud =
kSspacelr2

Pin
=

2kra

s1 − a2ds1 − a4d
uEscu2r2, s23d

whereEsc is determined by Eqs.s14d and s15d.
The angular distribution of SPP scattering into the dielec-

tric half-space is strongly dependent upon the particle-
surface distancesFig. 3d. When this distance is relatively
small fFigs. 3sad and 3sbdg the particle scatters better in the
forward directionsw=0d. At the same time, the polar angleu
dependence indicates that the scattering is most efficient at
oblique angles. With the increase of the particle-surface dis-
tance, the scattering in the backward directionsw=pd be-
comes more appreciable and the polar angle dependence,
more complicatedfFigs. 3scd and 3sddg. Note that the angular
characteristics of scattering by an individual surface defect
calculated in Ref. 23 are rather similar to those shown in Fig.
3sad.

The total cross sections for the SPP scattering into the
waves propagating away from the surface for the two polar-
izations are given, respectively, by

sscat
fsspd-polg =E

0

2p E
0

p/2 2krauEwsudsr,w,udu2

s1 − a2ds1 − a4d
r2 sinudwdu.

s24d

Let us now consider the total cross section that includes all
channels of scattering into far-field components

FIG. 2. The differential SPP-to-SPP scattering cross section as a
function of the in-plane anglew for a spherical gold particle with
the radiusRp=10 nm located near the gold surface at different dis-
tances:zp=s1d 50, s2d 100, s3d 150, ands4d 250 nm. Other system
parameters are the light wavelengthl=800 nm and the dielectric
constants of air«r =1 and gold«m=«p<−26.3 sRef. 38d.

FIG. 3. Differential cross sectionsspacesw ,ud s310−6 nmd for
the SPP scattering into the waves propagating away from the gold
surface as a function of the in-planeswd and polarsud angles for a
gold spherical particle located near the surface at different distances
zp=sad 50, sbd 150, scd 250, andsdd 350 nm. Other system param-
eters are as in Fig. 2.
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sscat
total = sscat

SPP+ sscat
ss-pold + sscat

sp-pold. s25d

Total cross sections for different scattering channelssfor a
particular scattering configurationd are shown in Fig. 4 as
functions of the bulk dielectric constant. It is seen that the
SPP-to-SPP scattering can be significantly more efficient
than the SPP scattering into the waves propagating away
from the metal surface. In general, however, the relative ef-
ficiency of SPP-to-SPP scattering decreases with the increase
of u«mu. Similar tendencies have been noted also for the be-
havior of the normalized extinction cross section.31 In the
next section, we will determine conditions for the total scat-
tering cross section to be exactly equal to the total extinction
cross section within the framework of the point-dipole ap-
proximation, establishing thereby limits for its validity.

IV. SPP SCATTERING AND EXTINCTION

Let us apply the integral Poynting’s theorem for our case
of the SPP scattering by a small spherical particle. After av-
eraging in time one obtains the equation

1

2
ReHE

S

fE0sr d 3 Hsc
* sr dgds+E

S

fEscsr d 3 H0
*sr dgds

+E
S

fEscsr d 3 Hsc
* sr dgdsJ = 0, s26d

whereS is a closed surface surrounding the scatterer. Here
the total electric and magnetic fields are represented as sums
of the incident and scattered fields, i.e.,Etotal=E0+Esc and
H total=H0+Hsc. The expressions26d reflects the fact that the
stime-averagedd energy should be conserved in the scattering
process. The sum of the first two integrals of the left-hand
side of Eq. s26d determines the extinction cross section,
whereas the last integral corresponds to the scattering cross
section. In the absence of absorption, the extinction and scat-
tering cross sections should be equivalent.39 We shall use this
requirement to establish the validity domain of the point-
dipole approximation. Neglecting the SPP scattering into the
metal results in

1

2Pin
ReHE

S

fEscsr d 3 Hsc
* sr dgdsJ = sscat

total, s27d

where the incident powerPin is given by Eq.s19d, and the
total scattering cross sectionsscat

total is the sum of the cross
sections corresponding to the three different scattering chan-
nels fEq. s25dg.

The first two terms in Eq.s26d are related to the interfer-
ence and can be evaluated using the divergence theorem40

and considering the scattered field produced by a point-
dipole scatterer having the dipole momentp=«0s«p

−«rdVpEtotalsr pd. After some tedious but straightforward
transformations one obtains

1

2
ReHE

S

fE0sr d 3 Hsc
* sr dgds+E

S

fEscsr d 3 H0
*sr dgdsJ

= −
v«0s«p − «rdVp

2
ImfE0

*sr pdEtotalsr pdg. s28d

Note that the left-hand side of Eq.s28d being equal to
−Pinsext ssext is the total extinction cross sectiond is fre-
quently used in considerations of the extinction, i.e., scatter-
ing and absorption, of an isolated scatterer.39,41,42 Thus, in
order to calculate the extinction cross section we should de-
termine the totalsself-consistentd field Etotalsr d inside the
scatterer.

In order to find the total field inside the particle let us
make use of the Lippmann-Schwinger equation

Etotalsr d = E0sr d + k0
2E

Vp

Ĝsr ,r 8ds«p − «rdEtotalsr 8ddr 8,

s29d

where Ĝsr ,r 8d is the dyadic Green’s function of the refer-
ence system. Note that in the framework of the point-dipole
approximation, the field inside a scatterer is considered to be
constant. It is further convenient to decompose the Green’s
function into the separate contributionsfEq. s3dg whose inte-
grals should be evaluated. Using the result for a spherical
particle

E
Vp

Ĝq
0sr p,r ddr = −

1

3k0
2«r

Î s30d

and the approximationsR!zpd

E
Vp

Ĝq
ssr p,r ddr . VpĜq

ssr p,r pd, s31d

one obtains from Eq.s29d

Etotalsr pd <
3«r

«p + 2«r
F Î −

k0
2

«0
a0Ĝq

ssr p,r pdG−1S Î +
k0

2

«0Vp
a0

3F Î −
k0

2

«0
a0Ĝq

ssr p,r pdG−1

3 E
Vp

fĜT
s-polsr p,r d

+ ĜT
p-polsr p,r d + ĜSPPsr p,r dgdrDE0sr pd. s32d

FIG. 4. The total cross sectionss1d sscat
SPP, s2d sscat

sp-pold, and s3d
sscat

ss-pold as functions of the bulk dielectric constant«m for a gold
spherical particle located near the metal surface at the distancezp

=300 nm. Other system parameters are as in Fig. 2.
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Here the contribution of the transverse and SPP wave com-
ponents is assumed to be small in comparison with the qua-
sistatic one. The conditions for the validity of this assump-
tion will be formulated below. Note that if we considered
only the qusistatic contribution, the interference term would
have been equal to zerosthe quasistatic field do not carry the
energy away from the scattererd.

Inserting Eq.s32d in the right-hand side of Eq.s28d and
taking into account that imaginary parts of the transverse and
SPP contributions to the Green’s function are nonsingular
and can be therefore considered constant inside a small par-
ticle, one obtains

Pinsext =
vk0

2

2«0
âdâdE0

*sr pdImhĜT
s-polsr p,r pd + ĜT

p-polsr p,r pd

+ ĜSPPsr p,r pdjE0sr pd. s33d

The imaginary parts of the tensorsĜT
s-polsr p,r pd

+ĜT
p-polsr p,r pd andĜSPPsr p,r pd have been calculated in Ref.

31. The total extinction cross section can be represented as
the sum of different parts corresponding to the SPP scattering
into s-polarized andp-polarized waves propagating away
from the surface and SPP’s:

sext = sext
ss-pold + sext

sp-pold + sext
SPP. s34d

In the absence of absorption, the following relation should be
valid fEq. s26dg:

sscat
s-pol + sscat

p-pol + sscat
SPP= sext

s-pol + sext
p-pol + sext

SPP. s35d

Comparison of the expressions for the extinction cross
sections31 with those for the scattering cross sectionsfEqs.
s22d and s24dg shows that this is indeed the case, validating
thereby the energy conservation in the considered scattering
process.

In this context the main additional assumption used is
related to the possibility of neglecting the contributions of
the transverse and SPP scattered fields in comparison with
that of the quasistatic field inside the scatterer. The corre-
sponding requirements can be obtained from Eq.s32d and the
explicit expressions for the transverse Green’s tensor of ho-
mogeneous medium43 with «r in the limit Rpkr !1 and for
the SPP part of the metal-dielectric interface Green’s
function.31 There are two conditions related to the SPP field:

U1 −
s1 + a2ds«p − «rd

8s1 − a2ds«p + 2«rd
SRp

zp
D3U

@
3

2
k0

3VpU «p − «r

«p + 2«r
U a3«r

3/2FsakSPPzpd
s1 − a2d3/2s1 − a4d

, s36d

U1 −
s1 + a2ds«p − «rd

4s1 − a2ds«p + 2«rd
SRp

zp
D3U

@ 3k0
3VpU «p − «r

«p + 2«r
U a«r

3/2FsakSPPzpd
s1 − a2d3/2s1 − a4d

, s37d

and two conditions for the fields propagating away from the
surface

U1 −
s1 + a2ds«p − «rdRp

3

8s1 − a2ds«p + 2«rdzp
3U @ skrRpd2U «p − «r

«p + 2«r
U , s38d

U1 −
s1 + a2ds«p − «rdRp

3

4s1 − a2ds«p + 2«rdzp
3U @ skrRpd2U «p − «r

«p + 2«r
U . s39d

Here we introducedfEqs. s36d and s37dg the function
FsakSPPzpd determined as follows:

F = mUPE
0

` x2e−xakSPP2zpdx

ps1 − x2d U + n
e−akSPP2zp

2
, s40d

where the principal value integral and second term stem from

the real and imaginary parts ofĜSPPsr p,r pd, respectively, and
m=1 andn=0 for the magnitude of the principal value inte-
gral being equal to or greater than 0.5 exps−akSPP2zpd and
m=0 andn=1 otherwise. For the estimations, it is conve-
nient to use the following simple approximation:

F . H 1/f2pzpakSPPg, zpakSPP, 1,

1/f4pszpakSPPd3g, zpakSPP@ 1.
J s41d

Note that 1/sakSPPd gives the SPP penetration depth in the
dielectric.

Another sconventionald assumption is that the quasistatic
electric field can be considered constant inside the scatterer.
This leads to the following requirements:Rp!1/kSPP and
Rp!zp, where the first inequality allows one to neglect varia-
tions of the incident field inside the scatterer and the second
one ensures that the role of higher-order multipoles appear-
ing due to the proximity of the metal-dielectric interface is
negligibly small.31 It is seen that the inequalities expressed
by Eqs. s36d–s39d represent indeed the additional require-
ments for the point-dipole approximationsin the particular
case of the SPP scatteringd. Finally, it should be noted that
the above consideration cannot be applied under the condi-
tions of the so-called configuration resonances,32 since in this
case the series expansion used to obtain Eq.s32d is no longer
valid. The conditions expressed in Eqs.s36d–s39d can be
simplified in several practical cases.

A. Noble metal-air interface

For vast majority of experiments,8–19,24 scatterers are
made of the same noble metal as the bulk with the dielectric
medium being air:u«mu= u«pu@«r =1. The two conditions

Rp !
1

k0
, s42d

1

4
SRp

zp
D3

! 1, s43d

then replaceRp!1/kSPPandRp!zp, respectivelysnote that,
in this case,kSPP.k0d. Since, at the same time, the scatterers
are relatively small and placed on the metal surface, one can
safely use the inequalityzp!l, that in turn means that
zpak0ø1. In such a case, the conditions expressed by Eqs.
s36d–s39d become superfluous. Moreover, ifzpk0!1 then the
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condition of Eq.s43d is dominant. And vice versa, ifzpk0
ù1 then the condition of Eq.s42d is sufficient.

For relatively large particle-surface distances, so that
zpak0@1 then the conditions in Eqs.s36d and s37d are re-
duced to

u«muSRp

zp
D3

! 1. s44d

This requirement is stronger than that of Eq.s43d and the
conditions of Eqs.s42d and s44d should be appliedsthe
former whenzp. u«mu1/3/k0 and the latter otherwised.

B. Weak surface dressing

The SPP propagation length becomes larger when the
imaginary part of a metal dielectric constant becomes
smaller. For this reason, it is often chosen to operate in the
wavelength range being away from the SPP resonant fre-
quency. In this range, surface dressing effects are weak, and
one can assume that

U s1 + a2ds«p − «rd
4s1 − a2ds«p + 2«rd

SRp

zp
D3U ! 1. s45d

The conditions of Eqs.s36d–s39d can then be reduced result-
ing in the following sfor the SPP fieldd:

3k0
3VpU «p − «r

«p + 2«r
U a«r

3/2FsakSPPzpd
s1 − a2d3/2s1 − a4d

! 1 s46d

and, for the fields propagating away from the interface,

skrRpd2U «p − «r

«p + 2«r
U ! 1. s47d

Thus, in the case of weak surface dressingfEq. s45dg, the
point-dipole approach can be used if the conditions ex-
pressed by Eqs.s46d and s47d, along with Rp!1/kSPP are
satisfied. Numerical evaluations of the radiusRp of a gold
ssilverd38 particle placed in vacuum above a goldssilverd
substrate, which would satisfy the above requirements im-
posed by the point-dipole approximation, are presented in
Table I.

It is seen that the requirements of Eqs.s45d and s46d are
dominant for small values of the particle-surface distances
zp. For relatively largezp, the condition of Eq.s47d becomes
dominant. One notices also thatsat least for these system
parametersd the condition of weak surface dressingfEq. s45dg
and Rp!1/kSPP are sufficient for the validity of the point-
dipole approximation. At the same time, the strong particle-

surface interactionsstrong surface dressingd would inevitably
result in a strongly inhomogeneous total field that would, in
turn, increase the contribution of higher-order multipoles in
the scattering process.

V. CONCLUSION

In conclusion, we have considered the SPP scattering by a
dipolelike spherical particle located near a metal-dielectric
interface, focusing on the differential cross sections for dif-
ferent scattering channels and limitations of the point-dipole
approximation. The main formulas of the vectorial and scalar
SPP scattering models have been reviewed and compared. It
has been shown that the two models become very close in
the limit of large magnitude of the real part of metal dielec-
tric constant, and the corresponding relation between the
main parameters of scalar and vectorial models has been es-
tablished. We have further shown that the differential cross
section for the SPP-to-SPP scattering is anisotropic, with the
strongest scattering occurring in the direction of SPP inci-
dence and with the anisotropy decreasing with the increase
of the particle-surface distance. The differential cross section
for the SPP scattering into the waves propagating away from
the surface has been found to exhibit similar angular behav-
ior for relatively small particle-surface distances. The total
cross sections for these scattering channels have been com-
pared for different values of the metal dielectric constant. In
general, the results obtained were found in good agreement
with the results of previous theoretical considerations in
Refs. 23 and 31. Finally, verification of the energy conserva-
tion in the scattering process allowed us to establish the con-
ditions for the validity of the point-dipole approach for the
SPP scattering by a small spherical particle. We have ob-
tained the additional requirements imposed on the system
parameters that have been further simplified for two practical
configurations. We believe that the results obtained can be
used in order to justify the usage of thesrelatively simpled
point-dipole approximation, perhaps even in the scalar form,
for modeling of various SPP scattering phenomena, e.g., oc-
curring in SPP micro-optical elements. It should be borne in
mind, however, that our consideration concerns an individual
particle illuminated by a plane SPP and that the situation
with closely placedsor even touchingd particles is quite dif-
ferent, because the field incident on a particle can no longer
be considered constant across the particle. Still, if the inter-
particle distance is sufficiently larger than the particle size,
one can neglect the latter effect and make use of the results
obtained in our paper.

TABLE I. The conditions for the point-dipole approachsthe light wavelength is equal to 800 nmd.

Metal
Res«md,
Res«pd Rp!1/kSPP Eq. s45d

Eq. s46d,
zp=50 nm

Eq. s46d,
zp=200 nm Eq.s47d

Gold −26.3 Rp!125 nm Rp!1.487zp Rp!71 nm Rp!132 nm Rp!120 nm

Silver −28 Rp!126 nm Rp!1.493zp Rp!71 nm Rp!131 nm Rp!120 nm
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