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Equilibrium contact probabilities in dense plasmas
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Nuclear reaction rates in plasmas depend on the ovédaptac} probability of the reacting ions. Path-
integral Monte Carlo calculations are used here to determine these contact probalgilllesfor one-
component plasmgDCP with emphasis on many-body quantum effects which can lead to order of magnitude
changes. An intuitive explanation for these effects is presented. The srhahavior ofg(r) for quantum
systems and the relation to free energies is then derived and compared to the path-integral results. Going
beyond the uniform background approximation, electron screening effects and the limits of the “constant
energy shift” approximation are discussed. Thermodynamic properties for the quantum OCP are analyzed in a

final section.
DOI: 10.1103/PhysRevB.71.134303 PACS nunt®er26.20+f, 52.27.Gr, 71.10.Ca
I. INTRODUCTION species 1 and 2 at temperatlggd=1/8 (Ref. 8);
L . . . 312
Due to its importance in calculating nuclear reaction rates, Roas=11n J o'(p)<E>< B ) e_sz/z,Ldsp (1)
the smallr behavior of the radial distribution functiog(r), 12 m)\2mu ’

in ionized systems has been a subject of major interest since

; “1— 1yl _
the seminal work of SalpetérFor the uniform background Where . s the reduced masg ~=mj, +m, . For charged

model of a classical plasma, simulation studies have proparticle reactions, the cross secti@(p) is usually written as

duced a quantitative picture of the role of many-bodya “nuclear” cross section or astrophysical factor times a term
effects?® Changes due to quantum effects are less thor[epresenting the Coulomb barrier penetration. This last step
oughly.understoodf’ has the advantage of permitting cross sections measured at

This paper expands on previous path-integral Mont ccessible experimental energies to be more reliably extrapo-

Carlo (PIMC) calculations reported in Ref. 6 whegér) and ated down to the lower energies relevant to most astrophysi-
X cal applications.

_ Different prescriptions have been advanced for modifying

. TR . %0 simply multiply the above reaction rate by the relative
O e DDl s Wi el e able P, Shange n the coact probabiy . defined below, For
giecting ) ge etiects ot S ‘electron screening effects a constant energy ghdée Sec.
6, it was shown that this approximation is valid since ex-

. . IV) in the Coulomb barrier penetration term is, however,
change effects only lead to a small increase in the many,

o j frequently used. The work of Brown and Sawy/g@erhaps
bpdy contrlbutlgns teg(0). For cIasspaI systeng(0) has & provides a starting point for a fuller discussion of this key
simple connection to a free energy difference. The relation |§

: ) uestion.
more complicated in the quantum case and Sec. Ill alon

) R . . 9 Throughout this paper, units of nuclear Bohr ragij,
with the Appe_ndlx discuss the smallbehaymr ofg(r) in =#2/mZ2€2, and nuclear Hartrees, HZ2?/a,, are used.
general. Section IV goes beyond the uniform background

approximation to consider the effects of electron screehing. Il. ONE-COMPONENT PLASMA CONTACT
The thermodynamic functions from the simulations are given PROBABILITIES
in Sec. V.

The ensuing question of how this information on contact Dense plasma effects on nuclear reaction rates are usually

. . . . . described in terms of the enhancement in the contact prob-
probabilities is ultimately used in a reaction rate calculdtion ability g(0). g(0) is commonly factored into the two-body

has not been, to the best of our knowledge, rigorously an- 0 q 0 . body ef
swered in the literature. The common expression for thd€"™M. Gbin(0), and a termH(0), representing many-body ef-

equilibrium nuclear-reaction rate is obtained by multiplying "€€tS:

the experimentally determined cross section for a particular g(r) = gyin(r)e®. 2
reaction, usually as a function of incident momentum, by a 5

particle flux and averaging it over the Maxwellian distribu- For a classical systegy;(r) is juste #4%¢"" For a quantum
tion for the relative incident momentum. Multiplying by the systemgy,(r) is obtained from the solution of the Bloch
target density gives the reaction rate per volume betweesquation for the density matrix.
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The repulsive Coulomb potentigl,;,(0) has an analytic 2 : ' o8 [ ' ' ]
expressior? T =05 06 b ]
/”_ 04 r 4
— o, [ ke ¥ dk . ‘ ' . .
Goin(0) = \27773/2] ok 1 (3 zo 05 1 15 %o 05 . 15
0 ' ‘ R ' ' ]
res 0.8
with 1+ 06 1 1
0.4 .
— 2 . ‘

¥= 2pBZiZE 1), ) = Zo 5 10 15 02, 5 10 15
A plot of gy;,(0) is shown in the lower panel of Fig. 1 in Ref. ° a0 ' < o8| ' R
6. Unlike the classical;,(r) which is zero at the origin, the 1t { 06 \
guantumgy,,(0) is finite at the origin and increases with tem- o4 r ]

perature. As expectegh;,(r) converges to the classical result Zo 50 100 02, 50 100
for r larger than the de Broglie thermal wavelengitj, r—zool ‘ o8| ' ' 1
=#2/2mmksT. This is demonstrated in the upper panel of ;| 4 06 F .
Fig. 1 in Ref. 6. R e

In this section, contact probabilities are discussed for the © 02
one-component plasm@CP model consisting of a single r r
ion SpeCi?S in.a.uniform, charge-neutrqlizing bgckground. In FIG. 1. Pair correlation functiong(r) and the corresponding
the classical limit, the nonideal properties of this model de'many-body enhancemehtr) are shown as a function of the cou-
pend only on the dimensionless combination of temperaturSIing parameterT', for quantum parameter=1
and density given by the coupling constait 8Z%€?/a, ' '

. . . , 3
where a is the ion sphere radius defined b¢/3)7a® a0y the Monte Carlo statistical uncertainties.

=Q/N. T is a measure of the relative importance of potential Typical examples of(r) andh(r)=H(r)/T" are shown in
to kinetic energy. Contact probabilities for this cIassicaIFig_ 1. Sinceg(0) is now finite, theh(r) curves are consid-

model have been studied starting from the Monte Carlo, : e -

. . . 1 g y easier to extrapolate to the origin than for the classical
;lmulapons of Brush, Sahlin, and Telfef: ErT‘P'“Ca”yH(_O) OCP. A detailed discussion of the formal propertieg@f at
is dominated by a linear dependencelgrso it is convenient smallr is given in Sec. Il and the Appendig(0), gu,,(0),

to define an enhancement factb(Q) =H(0)/T. : .
When quantum effects are included both density and temg:;?;a(‘g)egrii ?:Ii\éenzm Table [ for a range éf and» and are

perature must be specified, and it is necessary to introduce a A clear reduction irh(0) from the classical valuésolid

quantum parametep=1I'/r,, with r¢=a/ay. » rewritten as . . : . :
~ 2, 5 . -~ _circles, which becomes more important asincreases, is
n=2m\g/ac is seen to be proportional to the squared ratio of A o .
the de Broglie thermal wavelenath to the ion sphere radiuSEe" N Fig. 2. This yields reaction rates that are orders of
gle =Ng P magnitude smaller than would be predicted by the classical
and thus provides an appropriate gauge for quantum effects,
i . value forh(0) at largeT".

The many-bodyg(r) is computed here by averaging over

the density matrixe®" using a path-intearal Monte Carlo Figure 1 in Ref. 6 provides the basis for an intuitive un-
Sity ing a p 9 derstanding of this reduction due to quantum effeéts.)
calculation based on the identity,

=-Ingin(r) can be roughly viewed as proportional to an
g Pt = [gAHMIM (5)  “effective” quantum pair potential. Increasingmeans that

the near-neighbors of the reacting pair, located approxi-
mately one ion sphere radius away, are within a de Broglie
thermal wavelength. Their effective quantum pair potential is
&hen much less than the Coulomb potential as seen from the
top panel of Fig. 1 in Ref. 6. This reduced repulsion lessens

whereM is an arbitrary integer. Insertion of complete sets of
states between th®l factors on the right-hand side of this

density matrix, written here in real space,

(RlePHR") = p(R,R"; B) the many-body enhancement for the quantum system com-
pared to that of a classical system at the sdmReduction
_ . . from the classical Coulomb value fé0) is also seen for
= R.R ---0(Ry-1,R"; .
f fp( Ri;7)p(Ru-1,R"7) classical screened Coulomb systémand for quantum

<dR+--dR ©6) screened Coulomb systertB8ec. I\). The physical explana-

1 M-1» tion is again the reduced effective repulsion between the re-
with 7=8/M. Each of theM steps in the path now has a acting pair and its surrounding neighbors, due either to
high-temperature density matrip(R,,Ry.1;7) associated screening or quantum effects or both. This is a common pat-
with it. The integrals are evaluated by Monte Carlo methodstern. A softer effective potential, either from quantum effects
Applied to realistic systems in Ref. 12, the implementationOr screening, enhances the two body contributiog(® but
details may be found in recent revied¥in the results pre- reduces the many-body contribution.
sented here the high-temperature density matrix was taken as Although h(0) provides a compact way of presenting the
a product of exact pair density matrices. Typibhlhalues of ~ data, the fullg(0), shown in Fig. 3 gives a more intuitive,
10 to 400, depending of3, gave a discretization error well physical picture. Figure 3, shows the transition from the ther-
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TABLE |. Summary of OCP contact probabilities. The coupling paramgteB/rs and quantum param-
eter p=I'/rg, or, equivalently,3 andr, are listed in columns 1 through 4. The many-body enhancement
factor, h(0), is defined from the contact probability(0) = gp,,(0)e"(@ =g PO+ (columns 5 through 7

7 r B r's =In[g(0)] P(0) h(0)
0.1 0.5 25 5.0 2.2088) 2.638 0.874)
0.1 1.0 10.0 10.0 4.48) 5.014 0.9%3)
0.1 2.0 40.0 20.0 7.28) 9.243 1.03)
0.1 5.0 250.0 50.0 14.612) 19.77 1.082)
0.1 10.0 1000.0 100.0 239 33.79 1.023)
0.1 40.0 16000.0 400.0 51w 93.61 0.914)
0.25 0.5 1.0 2.0 1.2922) 1.707 0.822)
0.25 1.0 4.0 4.0 2.33) 3.289 0.923)
0.25 2.0 16.0 8.0 4.25) 6.192 0.973)
0.25 5.0 100.0 20.0 8.592) 13.50 0.982)
0.25 10.0 400.0 40.0 14.83 23.90 0.95W)
0.25 40.0 6400.0 160.0 341%) 67.32 0.8%4)
0.25 100.0 40000.0 400.0 5940 129.5 0.714)
0.50 0.5 0.5 1.0 0.831) 1.218 0.77814)
0.50 1.0 2.0 2.0 1.5@49) 2.373 0.86919)
0.50 2.0 8.0 4.0 2.68) 4.530 0.922)
0.50 5.0 50.0 10.0 5.582) 10.17 0.982)
0.50 10.0 200.0 20.0 9.8%4) 18.01 0.86914)
0.50 40.0 3200.0 80.0 238) 52.45 0.73416)
0.50 100.0 20000.0 200.0 4020 101.3 0.612)
1.0 0.5 0.25 0.5 0.514) 0.8683 0.708)
1.0 1.0 1.0 1.0 0.9111) 1.704 0.78711)
1.0 2.0 4.0 2.0 1.68) 3.289 0.84414)
1.0 5.0 25.0 5.0 3.291) 7.540 0.8%2)
1.0 10.0 100.0 10.0 5.5B9) 13.50 0.79719)
1.0 40.0 1600.0 40.0 148 40.31 0.63715)
1.0 200.0 40000.0 200.0 413) 129.5 0.44214)
1.0 400.0 160000.0 400.0 633) 210.0 0.3698)
1.0 600.0 360000.0 600.0 833 277.7 0.3244)
2.0 0.5 0.125 0.25 0.3083 0.6175 0.618418)
2.0 1.0 0.5 0.5 0.536) 1.218 0.6815)
2.0 2.0 2.0 1.0 0.9234) 2.373 0.7257)
2.0 5.0 12.5 2.5 1.86) 5.545 0.73713)
2.0 10.0 50.0 5.0 3.126) 10.17 0.69816)
2.0 40.0 800.0 20.0 93 30.92 0.54612)
2.0 100.0 5000.0 50.0 1718 61.34 0.448)
monuclear, temperature-dependent regime, at Iovthigh Il. g(r) AT SMALL r AND ITS RELATION TO FREE
temperaturgto the pycnonuclear, density-dependent ground- ENERGIES

state regime at largE. The low-temperature limit seems to R )

be reached when the de Broglie thermal wavelength is of the The radial distribution function may be expanded as
order of 1/3 the ion sphere radius. The principle feature of

this_ graph _is the sn_100th behavior gf0). g(0) is seen to _be g(r = %<E S(r - rij)> =g(0) +Cr2+0(r%).  (7)

an increasing function of the temperature and the density. For N\ 7%

this model there are no peculiar combinations of density and

temperature where the contact probability, and by implicain a classical system the coefficient of tifeterm is propor-
tion the reaction rate, has an unexpected local maximum. tional to the mean squared force on the two fused particles.
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1.2 T T T T 3 9(0) paths "mixture” paths
= t=
."."..._,. B
1 _ -
0.8 ]
g
<
06 ]
t=0 t=0
0.4 F ]
X X
0.0 b . . . FIG. 4. (Color onling Intuitive illustration of the relationship
' 0.1 1.0 10.0 100.0 1000.0 betweeng(0) and the “mixture” free energy for a quantum system
r and its classical limit. The left panel shows a typical set of dis-

. cretized(ten stepypaths which would enter the calculation g(0)

FIG. 2. (Color onling The many-body enhancement factd) o 5 six-particle system. The nodes for the paths of the two “react-
as a function ofi” and quantum parametez. Results for the clas- g particles(in centey are shown as open squares. Nodes of the
sical OCP,7=0, are from Ref. 3. surrounding particle paths are shown as filled circles. Because of

the delta function in the definition a§(0) the two paths for the
g(0) is related to the difference between the free energy of @eacting pair overlap at imaginary times0 andg. The right panel
mixture consisting of the fused pair and tNe-2 other par-  shows typical paths for the density matrix, integrated to get the free
ticles and the free energy of the original systénfor a  energy, of a five-particle mixture where the particle in the center
guantum system the expansion coefficients are more complinodes shown as open squarkas a mass and charge equal to the
cated. combined mass and charge of the reacting particles in the left panel.

Since the delta function in the definition gf0) causes In the classical limit, when the de Broglie thermal wavelength goes
the two “reacting” particles to overlap, it might be thought to zero, the paths for the reacting péft pane) or mixture par-
that the relation to the hypothetical mixture free energytlcle (right panel _beconje stral_ght vertlcgl lines. The potential en-
which holds in the classical case would be sufficient in gen€rdy at the reacting pair or mixture particle due to the four neigh-
eral. For those comfortable with the path-integral ideas usegm_S is then the same for both systems, implying §{@ can be
in this paper the cartoon in Fig. 4 may give an intuitive erived from the free energy difference.
understanding of why this is not true. Others are relegated to o
the detailed derivation in the Appendix. particle systenileft pane) and the paths contributing to the

The two panels of the cartoon show the paftiscretized ~ density matrix of a mixture of five particlegight pane]
here into ten segmentshat contribute tog(0) for a six- where the two “reacting” particles have been fused into one
particle with the combined charge and mass of the reacting

particles. In the figure the nodes in the discretized paths of

0 ' g ' the reacting(or fused pair are shown as open squares. The
107 — - obvious difference in the paths is that in tged) case the
- M delta function in the definition causes the paths of the react-
10° ‘l ing particles to overlap at imaginary times0 andt=g4 but
A not at other times. In the mixture, by contrast, there is only
R one path for the fused particle. Since this fused particle has
s 10 3 the combined mass of the reacting pair it would be a “more
5 classical” particle and typically have a less fluctuating path.
10 The scale for the deviation of these paths from straight
vertical lines is set by the de Broglie thermal wavelength.
107 E The different contributions from the two cas@dsft and right
panel$ comes from the potential energy around the paths of
107° 5 the reactingor fused pair due its neighbors. In the classical
limit the de Broglie thermal wavelength goes to zero and the
107 ' s s paths reduce to lines. The potential energy of the other par-
0 10 T_o 30 40 ticles at the reacting paiteft pane) is then the same as for

the fused particle in the mixture cageght panel. Hence,
FIG. 3. (Color online Contact probabilitiesg(0), versusl for ~ the correspondence in the classical limit. This also indicates
indicatedr showing the transition from thermonucleatrong tem-  that the classical relation betweef0) and the free energy
perature dependence, loW) to pycnonuclear (temperature- difference holds when the reacting particles, but not neces-
independentregimes. sarily the other neighbors, are treated classically.
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1.2 7 T T T 2 2 ﬁzB
// r.,_.--‘--._..___. <r >(rlﬂ) =r-+ a(r,B)?, (11)
1F / == ]
/ p ” N where the defined function(r, 8), multiplying by the free
[ ¥ N, particle result, tends to 1 88— 0. «(0,8) is tabulated in
08 / F Table 11l of the Appendix. Using Eq11) together with the
/ first-order Wigner-Kirkwood quantum correction for the free
Sost / ] energy?® Eqg. (8) gives the lowest order quantum correction
< / — —- Debye Huckel to the enhancement factor,
/ ®--@1=00
04 // ¢—on=01 ) ) ] n
/ g e h(O)[T', 7] = h(O)[T',0] = - [a(0.I%7) - 1/2). (12)
/
0.2 -// 3
The result is shown for=0.1 in Fig. 5, and it qualitatively
reproduces the PIMC results showing significant reduction
%7 o 0 0 pre ppo from the classicah(0).
T
FIG. 5. (Color onling Debye-Hiickel approximation fohn(0) IV. ELECTRON SCREENING EFFECTS

(dashed lingas lowI limit for the classical,7=0, system. PIMC . R,
(solid diamonds and semiclassical valugslot-dashed ling[Eq. The OCP model discussed above is justified when the

(10)], for h(0) at =0.1 are also shown. Hypernetted chain integral,ele,Ctrons are Sufficiently' degenerate t9 not respond to the
equation resultécrossesare from Ref. 18. ionic potential. Small deviations from this may be treated by
linear response leading to an effective ion-ion potential. The

Details for theg(r) expansion are given in the Appendix. most common such potential is the screened Coulomb poten-

. t I!
It follows the work of JancoviéP and Alastuey and a
Jancovicit’ We differ in explicitly separating theg,;,(0) 2
term, which is given numerically by E¢3), and also the free V(r) = TG‘_”, (13

energy difference, approximations for which may be avail-
able from other theories. This involves a slight rearrange
ment of terms.

To the lowest order in the quantum paramefeandr,

with screening length 1d, which we consider in this section.
From the Feynman-Kac formula applied to the pair den-
sity matrix forr=0,

- _o)- LA Poin0,08) _/ _ Burrieyias
H(r) == BIF(LN=2) = F(O,N)] = 7 5(r?), (8) m:(emvwmwp' (14)

where the first argument in the interaction free enerdies, where the angular brackets denote an average over all
denotes the number of combined mass, combined charggownian motion paths beginning and ending, after a tne
ions.(r?) is calculated from the relative pair density matrix, at the origin. If the screened Coulomb potential is approxi-

mated as
1(” p(r,r’:B=9)r"?p(r',r;s)
2.8 == ds| dr’ . 7% 1
ro.p) Bfo Sf r o(r,r:B) V(r) = e e~ Zze2<F - K), (15
© fi 1/ then Eq.(14) b
< .
In the classical limiKr?=r?, and the usual result, orr « then Eq.(14) becomes
i (0101 ) _ B
r pftr“er; 0 O.IB = eﬁzzez'((e fo[zzeZ/r(s)]ds>BMP, (16)
H(N == AFLN-2-FON]- 5% (10 Poin(0,0:5)

or g, (0)=efZgCouomiy) The first factor may be inter-
is regained. Using the Debye-Hiickel free enerdfiés Eq.  preted as an energy shifE=-Z?¢?«. This “constant energy
(10) gives the classical weak coupling limh(0)=v3I'. As  shift” approximation fails when the de Broglie thermal
suggested in Fig. 5 the classical values will approach this fowavelength, which gives a scale for the extent of the Brown-
I'=0.1. Although simulation results for the classité&D) at  ian motion paths, is larger than the screening lengtlr, &6
I'<1 have not been published to our knowledge the apthe paths sample regions where Eb5) does not apply.
proach to the Debye-Huickel limit is clearly seen in calcula- Figure 1 of Ref. 6 shows),;,(0) for severalx values.
tions based on the HNC approximatith. These were computed here by rewriting the Feynman-Kac

More generally, Eq(9) may be written as formula as
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(0,0; B 2 Kirkwood correction as given by Hansen and Viellefd3se
% :<e foMriel-2 ezlr(s)}ds>cmp1 (17 Table Il and in Fig. 7. Similar limits on the convergence of
in e this second order approximation were previously seen by

where now the difference between the screened and urones and Ceperlé§.(See their Fig. 3.
screened Coulomb potential is integrated over paths distrib-
uted according to the unscreened Coulomb potential density
matrix (CMP). VI. CONCLUSIONS

The dashed lines show the corresponding constant energy |n conclusion, quantum effects have been shown to sig-
shift approximation. This constant energy shift approxima-nificantly reduce the many-body enhancement factor which
tion is valid in most astrophysical applicatiohbut, as seen jnfluences nuclear reaction rates in dense plasmas. Electron
in Fig. 1 of Ref. 6, it can dramatically overestimaig,(0) at  screening effects produce a further reduction. The contact
low temperatures, giving very misleading, excessive reactioprobability and reaction rates based on it increase monotoni-
rates?! cally with temperature and density. The relation between the

Turning now to many-body effects, screening has beerontact probability and free energy differences is derived and
shown to reduc&(0) in the classical OCP Its effect in the intuitively illustrated.

quantum OCP, shown in Fig. 3 of Ref. 6, is similar. The
reduced repulsion from surrounding ions due to screening

again reduces the enhancement effect. ACKNOWLEDGMENTS
We thank H. DeWitt for numerous conversations and for
V. QUANTUM OCP THERMODYNAMIC PROPERTIES several of the classicl(0) values displayed in Fig. 2. This

The PIMC calculations of the density matrix used to ob—WOrk was performed under the auspices of the U.S. Depart-

tain g(r) also yield the kinetic and potential energies. TheMent of Energy by University of California LLNL Contract

results for the computations used in this paper are given ipl0- W-7405-Eng-48.

Table II.
The PIMC and harmonic approximation values for the ~ APPENDIX: SMALL r EXPANSION OF h(r) IN THE
kinetic energy, SEMICLASSICAL LIMIT

In a classical plasmg(0) can be related to a free energy
differencé and a simple, explicit value given for the coeffi-
cient of ther? expansion term® For the quantum plasma no
where wj(k), the vibrational frequencies of the body- similar, exact relation has been found; however, an expan-
centered-cubi¢BCC) Wigner lattice3” are compared in the sjon in the ratio of the de Broglie thermal wavelength to the
table. Even though all simulations tabulated were in the fluidon sphere radius fog(r) at smallr can be madé® This
phase, the agreement at higheis quite good. This is not expansion, which reduces to the classical result, is reviewed
entirely surprising as a similar agreement with other properhere. The principal results are given below in E¢512),
ties has been often noted for the purely classical system dy@a18), and(A19), and in Table IlI fora(0;B).

to the long-range nature of the interaction. The harmonic  starting from the definition of the radial distribution func-
approximation also gives the correct lowest order quantunion for a one-component system,

correction,
Tr{ePMs(r —ryy)]

1 1 1
K:EKE’j ﬁwj(k)[m+§i|, (18)

3 ? g(r) = Qa(r —r1p) =Q -
K= kT + 7. 19 1 e 7]
TrePHar —rq,)]
using the Kohn sum ruley follows from Eq. (4) for two =0 = : (A1)
identical ion species. As expected for fixEdhis agreement
worsens agy increases. where particles 1 and 2 have been singled out, the Hamil-

The quantum corrections to the kinetic and potential entonian,
ergy as functions of" and » are plotted in Fig. 6. As ex- N
pected the magnitude of the quantum corrections for both H=S K +3S S
quantities increases withy. At high I' the quantum kinetic - i Uik
and potential energies are seen to converge. Again, if the
harmonic approximation where these quantum correctionwith K the kinetic energy operator is rewritten in terms of
are equal gives a good description of the thermodynamicsenter of mass and relative coordinates for the “reacting”
even in the liquid state at high, then this convergence is particles, 1 and 2R=(r1+r,)/2, ri,=r;—r,. Doing this,
understandable. The slower convergencey ascreases for a  separating out the terms involving only particles 1 and 2, and
fixed I" is also understandable since anharmonic correctionadding and subtracting a term representing the interaction of
would be larger here. both particles 1 and 2 at the center of mass position with the

The quantum contributions to the total energy are com-spectator” particles -3-N the Hamiltonian can be rewritten
pared to the expression for the second order Wigneras

(A2)
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TABLE II. Excess quantum kineti¢K-K), “excess” potentialV-V,), and internal(E) energy per particle from PIMC with 54
distinguishable particles ard time slices K.=3/28 andV, is the potential energy for the classical OCP with 54 particles in the periodic
cell, taken ag3V.={-0.24497,-0.57994,-1.32795,-3.7621,-7.9997,-34 PRi*3"={0.5,1,2,5,10,4Pand as given by the fiRef. 25
BV,=-0.89937F +0.56933F/3-0.224470-0.01787F M2 for largerT values. The subscrifit denotes values from the harmonic approxi-
mation for the BCC Wigner lattice. The first- and second-order Wigner-Kirkwood corrections to the energy from Ref. 23 are given in the last

column.

n T B r« M K-K. Kn—Ke \Y V-V, E E-E, WK
0.1 0.5 2.5 50 25 0.0019 0.0023 —0.095573) 0.002393) 0.50638) 0.00438) 0.00454
0.1 1.0 10.0 10.0 10 0.001D 0.0012 —0.0568245) 0.0011705) 0.09411) 0.00221) 0.00238
0.1 2.0 40.0 20.0 40 0.000p 0.00061 —0.0326314) 0.0005674) 0.00541) 0.00121) 0.00121
0.1 5.0 250.0 50.0 25 0.0002@3 0.000244 —0.01482477) 0.000223%7) —0.0085878) 0.0004628) 0.000480
0.1 10 1000.0 100.0 10 0.00009% 0.00012 -—0.007889%1) 0.00011021) —0.00629%1) 0.00020%1) 0.000236
0.1 40 16000.0 400.0 80 0.000G25 0.000028 —0.0021145%) 0.00002581) —0.0019961) 0.0000501) 0.000053
0.25 0.5 1.0 2.0 10 0.007® 0.015 —0.230463) 0.0144983) 1.27735) 0.02235) 0.02412
0.25 1.0 4.0 40 40 0.009® 0.0077 —0.137533) 0.0074%3) 0.24326) 0.01336) 0.01381
0.25 2.0 16.0 8.0 16 0.003@ 0.00382 —0.07935%4) 0.0036424) 0.017668) 0.006918) 0.00713
0.25 5.0 100.0 10.0 80 0.001®@ 0.0015 —0.0362204) 0.0014014) —0.019848) 0.002788) 0.002819
0.25 10.0 400.0 40.0 40 0.000791 0.000727 —0.01932506) 0.0006748) —0.0147847) 0.00146%7) 0.001348
0.25 40.0 6400.0 160.0 80 0.000125 0.000156 —0.00520581) 0.00014381) —0.0048262) 0.0002902) 0.000241
0.25 100 40000.0 400.0 200 0.00002)7 0.000051 —0.0021398%) 0.00004721) —0.0020562) 0.0000942) 0.000022
0.50 0.5 0.5 1.0 50 0.018 0.016 —0.43891) 0.050991) 2.5768) 0.0668) 0.06798
0.50 1.0 2.0 20 50 0.012) 0.0306 —0.26155%4) 0.028424) 0.5032) 0.04242) 0.04797
0.50 2.0 8.0 40 40 0.0109 0.0151 —0.151761) 0.014231) 0.04664) 0.02514) 0.02582
0.50 5.0 50.0 10.0 50 0.004@® 0.00582 —0.06988%4) 0.0053564) —0.034979) 0.010279) 0.01005
0.50 10.0 200.0 20.0 50 0.00221 0.00274 —0.0374922) 0.0025062) —0.027682) 0.004822) 0.00453
0.50 40.0 3200.0 80.0 80 0.000%98 0.000541 —0.0102038) 0.00049546) —0.0091425) 0.0010885) 0.000364
0.50 100 20000.0 200.0 100 0.0001ZH 0.000166 —0.004218%2) 0.000155%2) —0.0039982) 0.0003012) —0.000452
1.0 0.5 0.25 0.5 25 0.069) 0.245 —0.81542) 0.16442) 5.2519) 0.23Q9) 0.04381
1.0 1.0 1.0 1.0 10 0.041) 0.121 —0.4827176) 0.097226) 1.0591) 0.1381) 0.1338
1.0 2.0 4.0 2.0 40 0.022) 0.059 —0.280435) 0.051565) 0.1212) 0.0792) 0.0816
1.0 5.0 25.0 50 25 0.0140 0.0219 —0.131022) 0.019472) —0.05692) 0.03342) 0.03044
1.0 10.0 100.0 10.0 80 0.0072 0.0100 —0.0711706) 0.0088274) —0.048949) 0.016069) 0.0112
1.0 40.0 1600.0 40.0 128 0.0012p 0.00178 —0.0197722) 0.00162707) —0.017272) 0.003193) —0.00334
1.0 100 10000.0 100.0 100 0.000426 0.00052 —0.0082582) 0.000490%7) —0.0076062) 0.0009863) —0.00611
1.0 200 40000.0 200.0 400 0.00@21 0.000198 —0.0042483) 0.0001723) —0.003992) 0.000382) —0.00697
1.0 400 160000.0 400.0 400 0.000048 0.000074 —0.002157%9) 0.00006629) —0.0020804) 0.0001344) —0.00735
1.0 600 360000.0 600.0 450 0.0000&7 0.000041 —0.0014532) 0.00003342) —0.0014027) 0.00008Q7) —0.00746
2.0 0.5 0.125 0.25 50 0.13) 0.97 —1.47974) 0.47994) 10.643) 0.623) —1.6495
2.0 1.0 0.5 0.5 50 0.@48) 0.471 —0.8625%3) 0.29743) 2.222) 0.392) 0.07017
2.0 2.0 2.0 1.0 50 0.074) 0.224 —0.49931) 0.16471) 0.3254) 0.2394) 0.1526
2.0 5.0 12.5 25 50 0.08H) 0.080 —0.236225) 0.0647%5) —0.0811) 0.0101) 0.04349
2.0 10 50.0 50 50 0.0183 0.0345 —0.130972) 0.029022) —0.08263) 0.04743) —0.01006
20 40 800.0 20.0 80 0.003& 0.00565 —0.0377484) 0.0050494) —0.032015) 0.008925) —0.0517
2.0 100 5000.0 50.0 100 0.0012» 0.00158 —0.0160082) 0.0014982) —0.0142%1) 0.002941) —0.0589

H=H )+ Hpnix(R,r3,....,rn) +AV(R,r,I3,...,T\).

N N N
A3 HmRora i) =Ket 2K+ 2 2 v+ 22 v(R =),
j=3 j=3

=3 k>j

The “relative” Hamiltonian, (A5)

which corresponds to a particle of double the mass and
charge at the center of mass positi&),and theN—-2 spec-
tator particles. The coupling term,

Hrel(r) =K, + v(r), (A4)
commutes with the “mixture” Hamiltonian,
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FIG. 6. (Color onlin@ Comparison of the quantum kinetk¢

-K. (open symbols and dashed linemnd potential energy/ -V,
(solid symbols and lingger particle(data from Table ).

FIG. 7. (Color online Comparison of the quantum energy per
particle E-E. for I'=1 (solid circles, I'=2 (solid squares I'=5,
(solid diamondg I'=10 (crosses andI"=40 (solid triangle$ with
the second-order Wigner-Kirkwood: expansioh correction(cor-

N
responding solid or dashed lines
AV(R,I, T3, 1) = 2 [ury 1) +0(ry—1)) = 20(R - 1))]
j=3

47 (N-2) 1? Z°r?
N AV(R,r,r3,...,rN):M—+0(r4):—+O(r4).
r r Q 12 4a°
:E UR+__r]' +v R___r]'
i=3 2 2 (A9)
- 20(R —r-)] The simplification that the coefficient of the lowest order
J term inr is constant is unique to Coulomb systems.

With this expansion and using the fact thdt,, com-

N .
mutes withH,. and the above lowest order term faw,

=>V Vo(R=r)r/4+0(r%),  (A6)
i=3

g(r) = %<r|e‘ﬂ(Hrel+Crz)|r>J <R,r3, ___,rN|e_ﬁHmix
is the difference between the interactions of all other par-
ticles in the system with particles 1 and 2 at their actual X|R,r3,...,r \YdRdr 5 - -dr + O((r))
positions minus these interactions when particles 1 and 2 are
fused at their center of mass position. )
Using Eq.(A3) in the expression fog(r) and taking the = Qe AP Fourd(r g AHer e ) + O((r%),

trace in real space, .
P where C=7%?/4a®>. The free energies Fpo Z

= qu_,BFpure)y and Fmixs

g(r) = QJ (R,I,I3, ...,I’N|e_B(HreI+Hmix+AV)
Z TABLE Ill. «(0,B) as defined in EqgA23) and (A19).

X|R,r,ra,...,r)dRdr 5 - -dr . (A7)

| 3 N 3 N B a(O,ﬂ)

When averaged over an isotropic system, 0.0 1.0
0.5 1.106
< 1.0 1.148
VVu(R=-r1)=V(R~-1)l. (A8) 20 1.206
4.0 1.286
The Laplacian is easily evaluated for the Coulomb system 6.0 1.345
considered here where the interaction, accounting for peri- 8.0 1.394
odic boundary conditions and charge neutrality, is the Ewald 10.0 1.435
potential, Ve, adr). Using VW, adr)=—478(r)+4m/(Q, 20.0 1591
where, physically, the constant comes from the neutralizing 30.0 1.703

background,
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(r |e_E(HreI+Cr2)|r>

e_ﬁ':mix:f<R,r3,,__,rN|e_'8HmiX|R,r3,...,rN>der3,...,drN, :1—BC<r2>+O(<r4)), (A18)

<I’ |e_BHreI|r>
(A10) where
correspond to the original, total Hamiltonian and Hig,y, 1 (B
respectively. They are the fully quantum mechanical free en- (ry= —f dsf dr'pee((r,r’;B-19)
ergies. BJo
Intro_dL_J(_:mg the binary _radlal dlstrlbutlon function, from X 200119 praf(FoT 3 B). (A19)
the definition Eq.(Al) applied to a two particle system,
~ 2 2 Unlike the classical cas@?) +#r?, but, because of the range
Gbin(r) = (4ar” BIm)X(r| e Frelr), (A11) of p.e, Will differ from it by an amount proportional to the
the expansion EqA10) for g(r) becomes squared de Broglie thermal wavelength. For examplg,ejf
is approximated by only the free particle term, then
m \%? <r|e_B(er'+Cr§2)|r> D=2, 22
g(r) :gbin(r)Q< ) e BFmxFoud = 1/ (r¥y=r*+a<g/m. (A20)
47h?B (r|e PHrelr)

Whenr —0, (r?) and higher order terms are thus nonzero
+0((r"). (A12)  and the simple, classical relation between the screening func-
tion atr=0 and the free energy difference no longer applies.
What has been generated is a double expansiofiand the
squared ratio of the de Broglie thermal wavelength to the ion
sphere radius.

The lowest order quantum correction to the free enétgy,

The term following gy;, cancels the remaining “ideal gas
term” in the difference between th¢ particle F,, and the
N-1 particleF. In the following this term is omitted and
the free energies refer only to the nonideal terms.

For the classical casél,, andCr? 2Commute and the last
ratio in the equation above is just®", so 12 B2 VAU

q 2 : 2 BF = IBFcIassicaI"' 2_§<2 _rjn_> ) (A21)

9(r) = Gpin(r) & AFmxFoureCr) = gy (r) @ AFmixFpurd (TR, J

(A13) whereU is the total potential energy function. When applied

to the uniform background model and following the algebra

This relation, with the correat? term, was derived in Ref. leading to Eq(A9), it gives

16, correcting a factor of 2 error in Ref. 2.

. A 1
As a simple application consider the weak coupling, the B(Frmix = Fpurd = BFaae ™= Foesic?) — g (A22)
Debye-Huckel limit. Using the well known interaction free
energy for this modet® The quantum correction in this term would further increase
Y the enhancement factor, contrary to what is found.
F=_—K , (A14) The BC(r?) term in Eq.(A18) corrects this. We have not
127 found a simple expression fdr?) in terms of continuum
with the inverse screening length, Coulomb wave functions; however, it is not difficult to
evaluate numerically using the axial symmetry of thdn-
2= 477,32 N 7262 (A15) tegral (or radial symmetry whem =0). The result can be
Q 4 = expressed as

ﬁZ
applied to the “pure” caséN,;=N,Z;=2) and the “mixture” ()(r,B)=r’+ a(r,ﬁ)?ﬁ, (A23)
case (N;=N-2,2,=Z,N,=1,2,=27) gives  h(0)
:|n[g(o)/gbm(o)]:\y§_ This result also comes from expand- where the function multiplying the free particle result,
ing the screened potential in E€L3). The next term in the @(r,8)—1 asB—0. As B increasesa slowly increases,

expansion, linear im7 is seen to be incorrect, however. reﬂeCting the tendency of the repUISive Coulomb potential to
In the quantum mechanical case the tettas andCr? do gmph_agze larger radius “paths,” compared to the free par-
not commute. The identity, ticle limit.
5 Adding this term to the free energy change, the lowest
e BHrerCrd) = gBHrel f o (B-9HreCr2esHrer € g order quantum correction in the enhancement factor is
0
__7 2
Ah =—— I'“/n) -1/2]. A24

8 This now correctly predicts the decreasénif) due to quan-
=g BHrel = J g (B-9HeiCr2e sHeds + O(r4), tum effects.«(0,p) is tabulated in Table Ill. This semiclas-
0 sical expansion was compared with the PIMC results for the
(A17) casen=0.1in Fig. 5. For values of=0.25 the lowest order
expansion overestimates the quantum effects by almost a fac-
leads to tor of 225
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