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Nuclear reaction rates in plasmas depend on the overlapscontactd probability of the reacting ions. Path-
integral Monte Carlo calculations are used here to determine these contact probabilities,gs0d, for one-
component plasmasOCPd with emphasis on many-body quantum effects which can lead to order of magnitude
changes. An intuitive explanation for these effects is presented. The smallr behavior ofgsrd for quantum
systems and the relation to free energies is then derived and compared to the path-integral results. Going
beyond the uniform background approximation, electron screening effects and the limits of the “constant
energy shift” approximation are discussed. Thermodynamic properties for the quantum OCP are analyzed in a
final section.
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I. INTRODUCTION

Due to its importance in calculating nuclear reaction rates,
the smallr behavior of the radial distribution function,gsrd,
in ionized systems has been a subject of major interest since
the seminal work of Salpeter.1 For the uniform background
model of a classical plasma, simulation studies have pro-
duced a quantitative picture of the role of many-body
effects.2,3 Changes due to quantum effects are less thor-
oughly understood.4,5

This paper expands on previous path-integral Monte
Carlo sPIMCd calculations reported in Ref. 6 wheregsrd and
in particulargs0d was computed for dense plasma models.
Section II presents extensive results for the quantum one-
component plasma model of ions in a charge-neutralizing
background and gives an intuitive explanation for the trends
observed. This paper deals with distinguishable particles, ne-
glecting the fermionic exchange effects of the nuclei. In Ref.
6, it was shown that this approximation is valid since ex-
change effects only lead to a small increase in the many-
body contributions togs0d. For classical systemsgs0d has a
simple connection to a free energy difference. The relation is
more complicated in the quantum case and Sec. III along
with the Appendix discuss the smallr behavior ofgsrd in
general. Section IV goes beyond the uniform background
approximation to consider the effects of electron screening.7

The thermodynamic functions from the simulations are given
in Sec. V.

The ensuing question of how this information on contact
probabilities is ultimately used in a reaction rate calculation8

has not been, to the best of our knowledge, rigorously an-
swered in the literature. The common expression for the
equilibrium nuclear-reaction rate is obtained by multiplying
the experimentally determined cross section for a particular
reaction, usually as a function of incident momentum, by a
particle flux and averaging it over the Maxwellian distribu-
tion for the relative incident momentum. Multiplying by the
target density gives the reaction rate per volume between

species 1 and 2 at temperaturekBT=1/b sRef. 8d;

R12 = n1n2E sspdS p

m
DS b

2pm
D3/2

e−bp2/2md3p, s1d

wherem is the reduced mass,m−1=m1
−1+m2

−1. For charged-
particle reactions, the cross sectionsspd is usually written as
a “nuclear” cross section or astrophysical factor times a term
representing the Coulomb barrier penetration. This last step
has the advantage of permitting cross sections measured at
accessible experimental energies to be more reliably extrapo-
lated down to the lower energies relevant to most astrophysi-
cal applications.

Different prescriptions have been advanced for modifying
this reaction rate to take into account many-body ion and
electron-screening effects. The most common prescription is
to simply multiply the above reaction rate by the relative
change in the contact probability,eHs0d, defined below. For
electron screening effects a constant energy shiftssee Sec.
IV d in the Coulomb barrier penetration term is, however,
frequently used. The work of Brown and Sawyer9 perhaps
provides a starting point for a fuller discussion of this key
question.

Throughout this paper, units of nuclear Bohr radii,a0
="2/mZ2e2, and nuclear Hartrees, Ha=Z2e2/a0, are used.

II. ONE-COMPONENT PLASMA CONTACT
PROBABILITIES

Dense plasma effects on nuclear reaction rates are usually
described in terms of the enhancement in the contact prob-
ability gs0d. gs0d is commonly factored into the two-body
term, gbins0d, and a term,Hs0d, representing many-body ef-
fects,

gsrd = gbinsrdeHsrd. s2d

For a classical systemgbinsrd is juste−bZ1Z2e2/r. For a quantum
systemgbinsrd is obtained from the solution of the Bloch
equation for the density matrix.
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The repulsive Coulomb potentialgbins0d has an analytic
expression,10

gbins0d = Î2pg3/2E
0

` ke−gk2
dk

ep/k − 1
, s3d

with

g = 2mbsZ1Z2e
2/"d2. s4d

A plot of gbins0d is shown in the lower panel of Fig. 1 in Ref.
6. Unlike the classicalgbinsrd which is zero at the origin, the
quantumgbins0d is finite at the origin and increases with tem-
perature. As expectedgbinsrd converges to the classical result
for r larger than the de Broglie thermal wavelength,ld

2

="2/2pmkBT. This is demonstrated in the upper panel of
Fig. 1 in Ref. 6.

In this section, contact probabilities are discussed for the
one-component plasmasOCPd model consisting of a single
ion species in a uniform, charge-neutralizing background. In
the classical limit, the nonideal properties of this model de-
pend only on the dimensionless combination of temperature
and density given by the coupling constantG=bZ2e2/a,
where a is the ion sphere radius defined bys4/3dpa3

=V /N. G is a measure of the relative importance of potential
to kinetic energy. Contact probabilities for this classical
model have been studied starting from the Monte Carlo
simulations of Brush, Sahlin, and Teller.2,11 Empirically Hs0d
is dominated by a linear dependence onG, so it is convenient
to define an enhancement factor,hs0d;Hs0d /G.

When quantum effects are included both density and tem-
perature must be specified, and it is necessary to introduce a
quantum parameterh;G / rs, with rs=a/a0. h rewritten as
h=2pld

2/a2 is seen to be proportional to the squared ratio of
the de Broglie thermal wavelength to the ion sphere radius
and thus provides an appropriate gauge for quantum effects.

The many-bodygsrd is computed here by averaging over
the density matrixe−bH using a path-integral Monte Carlo
calculation based on the identity,

e−bH = fe−bH/MgM , s5d

whereM is an arbitrary integer. Insertion of complete sets of
states between theM factors on the right-hand side of this
equation leads to the usual path integral formulation of the
density matrix, written here in real space,

kRue−bHuR8l ; rsR,R8;bd

=E¯E rsR,R1;td¯rsRM−1,R8;td

3dR1¯dRM−1, s6d

with t=b /M. Each of theM steps in the path now has a
high-temperature density matrixrsRk,Rk+1;td associated
with it. The integrals are evaluated by Monte Carlo methods.
Applied to realistic systems in Ref. 12, the implementation
details may be found in recent reviews.13 In the results pre-
sented here the high-temperature density matrix was taken as
a product of exact pair density matrices. TypicalM values of
10 to 400, depending onb, gave a discretization error well

below the Monte Carlo statistical uncertainties.
Typical examples ofgsrd andhsrd=Hsrd /G are shown in

Fig. 1. Sincegs0d is now finite, thehsrd curves are consid-
erably easier to extrapolate to the origin than for the classical
OCP. A detailed discussion of the formal properties ofgsrd at
small r is given in Sec. III and the Appendix.gs0d, gbins0d,
andhs0d are given in Table I for a range ofG andh and are
displayed in Fig. 2.

A clear reduction inhs0d from the classical valuessolid
circlesd, which becomes more important ash increases, is
seen in Fig. 2. This yields reaction rates that are orders of
magnitude smaller than would be predicted by the classical
value forhs0d at largeG.

Figure 1 in Ref. 6 provides the basis for an intuitive un-
derstanding of this reduction due to quantum effects.Psrd
=−ln gbinsrd can be roughly viewed as proportional to an
“effective” quantum pair potential. Increasingh means that
the near-neighbors of the reacting pair, located approxi-
mately one ion sphere radius away, are within a de Broglie
thermal wavelength. Their effective quantum pair potential is
then much less than the Coulomb potential as seen from the
top panel of Fig. 1 in Ref. 6. This reduced repulsion lessens
the many-body enhancement for the quantum system com-
pared to that of a classical system at the sameG. Reduction
from the classical Coulomb value forhs0d is also seen for
classical screened Coulomb systems14 and for quantum
screened Coulomb systemssSec. IVd. The physical explana-
tion is again the reduced effective repulsion between the re-
acting pair and its surrounding neighbors, due either to
screening or quantum effects or both. This is a common pat-
tern. A softer effective potential, either from quantum effects
or screening, enhances the two body contribution togs0d but
reduces the many-body contribution.

Although hs0d provides a compact way of presenting the
data, the fullgs0d, shown in Fig. 3 gives a more intuitive,
physical picture. Figure 3, shows the transition from the ther-

FIG. 1. Pair correlation functionsgsrd and the corresponding
many-body enhancementhsrd are shown as a function of the cou-
pling parameter,G, for quantum parameter,h=1.
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monuclear, temperature-dependent regime, at lowG shigh
temperatured to the pycnonuclear, density-dependent ground-
state regime at largeG. The low-temperature limit seems to
be reached when the de Broglie thermal wavelength is of the
order of 1/3 the ion sphere radius. The principle feature of
this graph is the smooth behavior ofgs0d. gs0d is seen to be
an increasing function of the temperature and the density. For
this model there are no peculiar combinations of density and
temperature where the contact probability, and by implica-
tion the reaction rate, has an unexpected local maximum.

III. g(r) AT SMALL r AND ITS RELATION TO FREE
ENERGIES

The radial distribution function may be expanded as

gsrd ;
V

N2Ko
iÞ j

dsr − r i jdL = gs0d + Cr2 + Osr4d. s7d

In a classical system the coefficient of ther2 term is propor-
tional to the mean squared force on the two fused particles.

TABLE I. Summary of OCP contact probabilities. The coupling parameterG=b / rs and quantum param-
eter h=G / rs, or, equivalently,b and rs, are listed in columns 1 through 4. The many-body enhancement
factor,hs0d, is defined from the contact probability,gs0d=gbins0deHs0d=e−Ps0d+Ghs0d scolumns 5 through 7d.

h G b rs −lnfgs0dg Ps0d hs0d

0.1 0.5 2.5 5.0 2.205s18d 2.638 0.87s4d
0.1 1.0 10.0 10.0 4.06s3d 5.014 0.95s3d
0.1 2.0 40.0 20.0 7.22s6d 9.243 1.01s3d
0.1 5.0 250.0 50.0 14.61s12d 19.77 1.03s2d
0.1 10.0 1000.0 100.0 23.6s3d 33.79 1.02s3d
0.1 40.0 16000.0 400.0 57.4s14d 93.61 0.91s4d

0.25 0.5 1.0 2.0 1.292s12d 1.707 0.82s2d
0.25 1.0 4.0 4.0 2.37s3d 3.289 0.92s3d
0.25 2.0 16.0 8.0 4.25s5d 6.192 0.97s3d
0.25 5.0 100.0 20.0 8.59s12d 13.50 0.98s2d
0.25 10.0 400.0 40.0 14.33s3d 23.90 0.957s3d
0.25 40.0 6400.0 160.0 34.3s16d 67.32 0.83s4d
0.25 100.0 40000.0 400.0 59.0s4d 129.5 0.71s4d

0.50 0.5 0.5 1.0 0.831s7d 1.218 0.773s14d
0.50 1.0 2.0 2.0 1.504s19d 2.373 0.869s19d
0.50 2.0 8.0 4.0 2.68s5d 4.530 0.92s2d
0.50 5.0 50.0 10.0 5.53s12d 10.17 0.93s2d
0.50 10.0 200.0 20.0 9.32s14d 18.01 0.869s14d
0.50 40.0 3200.0 80.0 23.1s6d 52.45 0.734s16d
0.50 100.0 20000.0 200.0 40.0s2d 101.3 0.61s2d

1.0 0.5 0.25 0.5 0.514s4d 0.8683 0.708s9d
1.0 1.0 1.0 1.0 0.917s11d 1.704 0.787s11d
1.0 2.0 4.0 2.0 1.60s3d 3.289 0.844s14d
1.0 5.0 25.0 5.0 3.29s11d 7.540 0.85s2d
1.0 10.0 100.0 10.0 5.53s19d 13.50 0.797s19d
1.0 40.0 1600.0 40.0 14.8s6d 40.31 0.637s15d
1.0 200.0 40000.0 200.0 41.0s3d 129.5 0.442s14d
1.0 400.0 160000.0 400.0 63.0s3d 210.0 0.369s8d
1.0 600.0 360000.0 600.0 83.0s3d 277.7 0.324s4d

2.0 0.5 0.125 0.25 0.3083s9d 0.6175 0.6184s18d
2.0 1.0 0.5 0.5 0.536s5d 1.218 0.682s5d
2.0 2.0 2.0 1.0 0.923s14d 2.373 0.725s7d
2.0 5.0 12.5 2.5 1.86s6d 5.545 0.737s13d
2.0 10.0 50.0 5.0 3.19s16d 10.17 0.698s16d
2.0 40.0 800.0 20.0 9.1s5d 30.92 0.546s12d
2.0 100.0 5000.0 50.0 17.0s8d 61.34 0.443s8d
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gs0d is related to the difference between the free energy of a
mixture consisting of the fused pair and theN−2 other par-
ticles and the free energy of the original system.15 For a
quantum system the expansion coefficients are more compli-
cated.

Since the delta function in the definition ofgs0d causes
the two “reacting” particles to overlap, it might be thought
that the relation to the hypothetical mixture free energy
which holds in the classical case would be sufficient in gen-
eral. For those comfortable with the path-integral ideas used
in this paper the cartoon in Fig. 4 may give an intuitive
understanding of why this is not true. Others are relegated to
the detailed derivation in the Appendix.

The two panels of the cartoon show the pathssdiscretized
here into ten segmentsd that contribute togs0d for a six-

particle systemsleft paneld and the paths contributing to the
density matrix of a mixture of five particlessright paneld
where the two “reacting” particles have been fused into one
particle with the combined charge and mass of the reacting
particles. In the figure the nodes in the discretized paths of
the reactingsor fusedd pair are shown as open squares. The
obvious difference in the paths is that in thegs0d case the
delta function in the definition causes the paths of the react-
ing particles to overlap at imaginary timest=0 andt=b but
not at other times. In the mixture, by contrast, there is only
one path for the fused particle. Since this fused particle has
the combined mass of the reacting pair it would be a “more
classical” particle and typically have a less fluctuating path.

The scale for the deviation of these paths from straight
vertical lines is set by the de Broglie thermal wavelength.
The different contributions from the two casessleft and right
panelsd comes from the potential energy around the paths of
the reactingsor fusedd pair due its neighbors. In the classical
limit the de Broglie thermal wavelength goes to zero and the
paths reduce to lines. The potential energy of the other par-
ticles at the reacting pairsleft paneld is then the same as for
the fused particle in the mixture casesright paneld. Hence,
the correspondence in the classical limit. This also indicates
that the classical relation betweengs0d and the free energy
difference holds when the reacting particles, but not neces-
sarily the other neighbors, are treated classically.

FIG. 2. sColor onlined The many-body enhancement factorhs0d
as a function ofG and quantum parameterh. Results for the clas-
sical OCP,h=0, are from Ref. 3.

FIG. 3. sColor onlined Contact probabilities,gs0d, versusG for
indicatedrs showing the transition from thermonuclearsstrong tem-
perature dependence, lowGd to pycnonuclear stemperature-
independentd regimes.

FIG. 4. sColor onlined Intuitive illustration of the relationship
betweengs0d and the “mixture” free energy for a quantum system
and its classical limit. The left panel shows a typical set of dis-
cretizedsten stepsd paths which would enter the calculation ofgs0d
for a six-particle system. The nodes for the paths of the two “react-
ing” particlessin centerd are shown as open squares. Nodes of the
surrounding particle paths are shown as filled circles. Because of
the delta function in the definition ofgs0d the two paths for the
reacting pair overlap at imaginary timest=0 andb. The right panel
shows typical paths for the density matrix, integrated to get the free
energy, of a five-particle mixture where the particle in the center
snodes shown as open squaresd has a mass and charge equal to the
combined mass and charge of the reacting particles in the left panel.
In the classical limit, when the de Broglie thermal wavelength goes
to zero, the paths for the reacting pairsleft paneld or mixture par-
ticle sright paneld become straight vertical lines. The potential en-
ergy at the reacting pair or mixture particle due to the four neigh-
bors is then the same for both systems, implying thatgs0d can be
derived from the free energy difference.
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Details for thegsrd expansion are given in the Appendix.
It follows the work of Jancovici16 and Alastuey and
Jancovici.17 We differ in explicitly separating thegbins0d
term, which is given numerically by Eq.s3d, and also the free
energy difference, approximations for which may be avail-
able from other theories. This involves a slight rearrange-
ment of terms.

To the lowest order in the quantum parameterh and r,

Hsrd = − bfFs1,N − 2d − Fs0,Ndg −
G

4a2kr2l, s8d

where the first argument in the interaction free energies,F,
denotes the number of combined mass, combined charge
ions. kr2l is calculated from the relative pair density matrix,

kr2lsr,bd ;
1

b
E

0

b

dsE dr 8
rsr ,r 8;b − sdr82rsr 8,r ;sd

rsr ,r ;bd
.

s9d

In the classical limitkr2l=r2, and the usual result,

Hsrd = − bfFs1,N − 2d − Fs0,Ndg −
G

4a2r2, s10d

is regained. Using the Debye-Hückel free energies18 in Eq.
s10d gives the classical weak coupling limit,hs0d=Î3G. As
suggested in Fig. 5 the classical values will approach this for
Gø0.1. Although simulation results for the classicalhs0d at
G,1 have not been published to our knowledge the ap-
proach to the Debye-Hückel limit is clearly seen in calcula-
tions based on the HNC approximation.19

More generally, Eq.s9d may be written as

kr2lsr,bd ; r2 + asr,bd
"2b

m
, s11d

where the defined functionasr ,bd, multiplying by the free
particle result, tends to 1 asb→0. as0,bd is tabulated in
Table III of the Appendix. Using Eq.s11d together with the
first-order Wigner-Kirkwood quantum correction for the free
energy,20 Eq. s8d gives the lowest order quantum correction
to the enhancement factor,

hs0dfG,hg − hs0dfG,0g < −
h

4
fas0,G2/hd − 1/2g. s12d

The result is shown forh=0.1 in Fig. 5, and it qualitatively
reproduces the PIMC results showing significant reduction
from the classicalhs0d.

IV. ELECTRON SCREENING EFFECTS

The OCP model discussed above is justified when the
electrons are sufficiently degenerate to not respond to the
ionic potential. Small deviations from this may be treated by
linear response leading to an effective ion-ion potential. The
most common such potential is the screened Coulomb poten-
tial,

Vsrd =
Z2e2

r
e−kr , s13d

with screening length 1/k, which we consider in this section.
From the Feynman-Kac formula applied to the pair den-

sity matrix for r =0,

rbins0,0;bd
rbin

frees0,0;bd
= ke−e0

bVfrssdgdslBMP, s14d

where the angular brackets denote an average over all
Brownian motion paths beginning and ending, after a timeb,
at the origin. If the screened Coulomb potential is approxi-
mated as

Vsrd =
Z2e2

r
e−kr < Z2e2S1

r
− kD , s15d

for r ø1/k then Eq.s14d becomes

rbins0,0;bd
rbin

frees0,0;bd
= ebZ2e2kke−e0

bfZ2e2/rssdgdslBMP, s16d

or gbin
k s0d=ebZ2e2kgbin

Coulombs0d. The first factor may be inter-
preted as an energy shiftDE=−Z2e2k. This “constant energy
shift” approximation fails when the de Broglie thermal
wavelength, which gives a scale for the extent of the Brown-
ian motion paths, is larger than the screening length, 1/k, so
the paths sample regions where Eq.s15d does not apply.

Figure 1 of Ref. 6 showsgbins0d for severalk values.
These were computed here by rewriting the Feynman-Kac
formula as

FIG. 5. sColor onlined Debye-Hückel approximation forhs0d
sdashed lined as lowG limit for the classical,h=0, system. PIMC
ssolid diamondsd and semiclassical valuessdot-dashed lined fEq.
s10dg, for hs0d at h=0.1 are also shown. Hypernetted chain integral
equation resultsscrossesd are from Ref. 18.
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rbins0,0;bd
rbin

k=0s0,0;bd
= ke−e0

bhVfrssdg−Z2e2/rssdjdslCMP, s17d

where now the difference between the screened and un-
screened Coulomb potential is integrated over paths distrib-
uted according to the unscreened Coulomb potential density
matrix sCMPd.

The dashed lines show the corresponding constant energy
shift approximation. This constant energy shift approxima-
tion is valid in most astrophysical applications,8 but, as seen
in Fig. 1 of Ref. 6, it can dramatically overestimategbins0d at
low temperatures, giving very misleading, excessive reaction
rates.21

Turning now to many-body effects, screening has been
shown to reducehs0d in the classical OCP.14 Its effect in the
quantum OCP, shown in Fig. 3 of Ref. 6, is similar. The
reduced repulsion from surrounding ions due to screening
again reduces the enhancement effect.

V. QUANTUM OCP THERMODYNAMIC PROPERTIES

The PIMC calculations of the density matrix used to ob-
tain gsrd also yield the kinetic and potential energies. The
results for the computations used in this paper are given in
Table II.

The PIMC and harmonic approximation values for the
kinetic energy,

K =
1

2o
k,j

"v jskdF 1

eb"v jskd − 1
+

1

2
G , s18d

where v jskd, the vibrational frequencies of the body-
centered-cubicsBCCd Wigner lattice,22 are compared in the
table. Even though all simulations tabulated were in the fluid
phase, the agreement at higherG is quite good. This is not
entirely surprising as a similar agreement with other proper-
ties has been often noted for the purely classical system due
to the long-range nature of the interaction. The harmonic
approximation also gives the correct lowest order quantum
correction,

K =
3

2
kBT +

g

8b

h2

G
, s19d

using the Kohn sum rule.g follows from Eq. s4d for two
identical ion species. As expected for fixedG this agreement
worsens ash increases.

The quantum corrections to the kinetic and potential en-
ergy as functions ofG and h are plotted in Fig. 6. As ex-
pected the magnitude of the quantum corrections for both
quantities increases withh. At high G the quantum kinetic
and potential energies are seen to converge. Again, if the
harmonic approximation where these quantum corrections
are equal gives a good description of the thermodynamics
even in the liquid state at highG, then this convergence is
understandable. The slower convergence ash increases for a
fixed G is also understandable since anharmonic corrections
would be larger here.

The quantum contributions to the total energy are com-
pared to the expression for the second order Wigner-

Kirkwood correction as given by Hansen and Viellefosse23 in
Table II and in Fig. 7. Similar limits on the convergence of
this second order approximation were previously seen by
Jones and Ceperley.24 sSee their Fig. 3.d

VI. CONCLUSIONS

In conclusion, quantum effects have been shown to sig-
nificantly reduce the many-body enhancement factor which
influences nuclear reaction rates in dense plasmas. Electron
screening effects produce a further reduction. The contact
probability and reaction rates based on it increase monotoni-
cally with temperature and density. The relation between the
contact probability and free energy differences is derived and
intuitively illustrated.
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APPENDIX: SMALL r EXPANSION OF h(r) IN THE
SEMICLASSICAL LIMIT

In a classical plasmags0d can be related to a free energy
difference2 and a simple, explicit value given for the coeffi-
cient of ther2 expansion term.16 For the quantum plasma no
similar, exact relation has been found; however, an expan-
sion in the ratio of the de Broglie thermal wavelength to the
ion sphere radius forgsrd at small r can be made.16 This
expansion, which reduces to the classical result, is reviewed
here. The principal results are given below in Eqs.sA12d,
sA18d, andsA19d, and in Table III foras0;bd.

Starting from the definition of the radial distribution func-
tion for a one-component system,

gsr d = Vkdsr − r 12dl ; V
Trfe−bHdsr − r 12dg

Trfe−bHg

= V
Trfe−bHdsr − r 12dg

Z , sA1d

where particles 1 and 2 have been singled out, the Hamil-
tonian,

H = o
j=1

N

Kj + o
k

o
j,k

v jk sA2d

with K the kinetic energy operator is rewritten in terms of
center of mass and relative coordinates for the “reacting”
particles, 1 and 2,R=sr 1+r 2d /2, r 12=r 1−r 2. Doing this,
separating out the terms involving only particles 1 and 2, and
adding and subtracting a term representing the interaction of
both particles 1 and 2 at the center of mass position with the
“spectator” particles 3̄ N the Hamiltonian can be rewritten
as
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H = Hrelsr d + HmixsR,r 3,…,r Nd + DVsR,r ,r 3,…,r Nd.

sA3d

The “relative” Hamiltonian,

Hrelsr d = Kr + vsr d, sA4d

commutes with the “mixture” Hamiltonian,

HmixsR,r 3,…,r Nd = KR + o
j=3

N

Kj + o
j=3

N

o
k. j

v jk + 2o
j=3

N

vsR − r jd,

sA5d

which corresponds to a particle of double the mass and
charge at the center of mass position,R, and theN−2 spec-
tator particles. The coupling term,

TABLE II. Excess quantum kineticsK−Kcd, “excess” potentialsV−Vcd, and internalsEd energy per particle from PIMC with 54
distinguishable particles andM time slices.Kc=3/2b andVc is the potential energy for the classical OCP with 54 particles in the periodic
cell, taken asbVc=h−0.24497,−0.57994,−1.32795,−3.7621,−7.9997,−34.2373j for G=h0.5,1,2,5,10,40j and as given by the fitsRef. 25d
bVc=−0.899375G+0.569333G1/3−0.224470−0.017875/G1/3 for largerG values. The subscripth denotes values from the harmonic approxi-
mation for the BCC Wigner lattice. The first- and second-order Wigner-Kirkwood corrections to the energy from Ref. 23 are given in the last
column.

h G b rs M K−Kc Kh−Kc V V−Vc E E−Ec WK

0.1 0.5 2.5 5.0 25 0.0019s8d 0.0023 20.09557s3d 0.00239s3d 0.5063s8d 0.0043s8d 0.00454
0.1 1.0 10.0 10.0 10 0.0010s1d 0.0012 20.056824s5d 0.001170s5d 0.0941s1d 0.0022s1d 0.00238
0.1 2.0 40.0 20.0 40 0.0006s1d 0.00061 20.032631s4d 0.000567s4d 0.0054s1d 0.0012s1d 0.00121
0.1 5.0 250.0 50.0 25 0.000238s8d 0.000244 20.0148247s7d 0.0002235s7d 20.008587s8d 0.000462s8d 0.000480
0.1 10 1000.0 100.0 10 0.000095s1d 0.00012 20.0078895s1d 0.0001102s1d 20.006295s1d 0.000205s1d 0.000236
0.1 40 16000.0 400.0 80 0.000025s1d 0.000028 20.00211452s9d 0.0000253s1d 20.001996s1d 0.000050s1d 0.000053

0.25 0.5 1.0 2.0 10 0.0078s5d 0.015 20.23046s3d 0.014493s3d 1.2773s5d 0.0223s5d 0.02412
0.25 1.0 4.0 4.0 40 0.0058s6d 0.0077 20.13753s3d 0.00745s3d 0.2432s6d 0.0133s6d 0.01381
0.25 2.0 16.0 8.0 16 0.00327s9d 0.00382 20.079355s4d 0.003642s4d 0.01766s8d 0.00691s8d 0.00713
0.25 5.0 100.0 10.0 80 0.00138s8d 0.0015 20.036220s4d 0.001401s4d 20.01984s8d 0.00278s8d 0.002819
0.25 10.0 400.0 40.0 40 0.000791s7d 0.000727 20.0193250s6d 0.0006743s6d 20.014784s7d 0.001465s7d 0.001348
0.25 40.0 6400.0 160.0 80 0.000146s2d 0.000156 20.0052058s1d 0.0001438s1d 20.004826s2d 0.000290s2d 0.000241
0.25 100 40000.0 400.0 200 0.000047s2d 0.000051 20.00213982s9d 0.0000472s1d 20.002056s2d 0.000094s2d 0.000022

0.50 0.5 0.5 1.0 50 0.015s8d 0.016 20.4389s1d 0.05099s1d 2.576s8d 0.066s8d 0.06798
0.50 1.0 2.0 2.0 50 0.014s2d 0.0306 20.26155s4d 0.02842s4d 0.503s2d 0.0424s2d 0.04797
0.50 2.0 8.0 4.0 40 0.0109s4d 0.0151 20.15176s1d 0.01423s1d 0.0466s4d 0.0251s4d 0.02582
0.50 5.0 50.0 10.0 50 0.00491s9d 0.00582 20.069885s4d 0.005356s4d 20.03497s9d 0.01027s9d 0.01005
0.50 10.0 200.0 20.0 50 0.00231s2d 0.00274 20.037492s2d 0.002506s2d 20.02768s2d 0.00482s2d 0.00453
0.50 40.0 3200.0 80.0 80 0.000593s5d 0.000541 20.0102038s6d 0.0004954s6d 20.009142s5d 0.001088s5d 0.000364
0.50 100 20000.0 200.0 100 0.000145s2d 0.000166 20.0042185s2d 0.0001555s2d 20.003998s2d 0.000301s2d 20.000452

1.0 0.5 0.25 0.5 25 0.066s9d 0.245 20.8154s2d 0.1644s2d 5.251s9d 0.230s9d 0.04381
1.0 1.0 1.0 1.0 10 0.041s1d 0.121 20.48277s6d 0.09722s6d 1.059s1d 0.138s1d 0.1338
1.0 2.0 4.0 2.0 40 0.027s2d 0.059 20.28043s5d 0.05156s5d 0.121s2d 0.079s2d 0.0816
1.0 5.0 25.0 5.0 25 0.0141s2d 0.0219 20.13102s2d 0.01947s2d 20.0569s2d 0.0336s2d 0.03044
1.0 10.0 100.0 10.0 80 0.00723s9d 0.0100 20.071170s6d 0.008827s4d 20.04894s9d 0.01606s9d 0.0112
1.0 40.0 1600.0 40.0 128 0.00156s2d 0.00178 20.019772s2d 0.0016270s7d 20.01727s2d 0.00319s3d 20.00334
1.0 100 10000.0 100.0 100 0.000495s2d 0.00052 20.008258s2d 0.0004905s7d 20.007606s2d 0.000986s3d 20.00611
1.0 200 40000.0 200.0 400 0.00021s2d 0.000198 20.004248s3d 0.000172s3d 20.00399s2d 0.00038s2d 20.00697
1.0 400 160000.0 400.0 400 0.000068s4d 0.000074 20.0021575s9d 0.0000662s9d 20.002080s4d 0.000134s4d 20.00735
1.0 600 360000.0 600.0 450 0.000047s6d 0.000041 20.001453s2d 0.0000334s2d 20.001402s7d 0.000080s7d 20.00746

2.0 0.5 0.125 0.25 50 0.14s3d 0.97 21.4797s4d 0.4799s4d 10.66s3d 0.62s3d 21.6495
2.0 1.0 0.5 0.5 50 0.08s2d 0.471 20.8625s3d 0.2974s3d 2.22s2d 0.38s2d 0.07017
2.0 2.0 2.0 1.0 50 0.074s4d 0.224 20.4993s1d 0.1647s1d 0.325s4d 0.239s4d 0.1526
2.0 5.0 12.5 2.5 50 0.035s1d 0.080 20.23622s5d 0.06475s5d 20.081s1d 0.010s1d 0.04349
2.0 10 50.0 5.0 50 0.0184s3d 0.0345 20.13097s2d 0.02902s2d 20.0826s3d 0.0474s3d 20.01006
2.0 40 800.0 20.0 80 0.00387s5d 0.00565 20.037748s4d 0.005049s4d 20.03201s5d 0.00892s5d 20.0517
2.0 100 5000.0 50.0 100 0.00145s2d 0.00158 20.016003s2d 0.001493s2d 20.01425s1d 0.00294s1d 20.0589

EQUILIBRIUM CONTACT PROBABILITIES IN DENSE… PHYSICAL REVIEW B 71, 134303s2005d

134303-7



DVsR,r ,r 3,…,r Nd = o
j=3

N

fvsr 1 − r jd + vsr 2 − r jd − 2vsR − r jdg

=o
j=3

N FvSR +
r

2
− r jD + vSR −

r

2
− r jD

− 2vsR − r jdG
=o

j=3

N

¹ ¹ vsR − r jd:rr /4 + Osr 4d, sA6d

is the difference between the interactions of all other par-
ticles in the system with particles 1 and 2 at their actual
positions minus these interactions when particles 1 and 2 are
fused at their center of mass position.

Using Eq.sA3d in the expression forgsrd and taking the
trace in real space,

gsrd =
V

ZE kR,r ,r 3,…,r Nue−bsHrel+Hmix+DVd

3uR,r ,r 3,…,r NldRdr 3¯dr N. sA7d

When averaged over an isotropic system,

¹ ¹ vsR − r jd = ¹2vsR − r jdIJ. sA8d

The Laplacian is easily evaluated for the Coulomb system
considered here where the interaction, accounting for peri-
odic boundary conditions and charge neutrality, is the Ewald
potential, CEwaldsrd. Using ¹2CEwaldsrd=−4pdsrd+4p /V,
where, physically, the constant comes from the neutralizing
background,

DVsR,r ,r 3,…,r Nd =
4pZ2sN − 2d

V

r2

12
+ Osr4d =

Z2r2

4a3 + Osr4d.

sA9d

The simplification that the coefficient of the lowest order
term in r is constant is unique to Coulomb systems.

With this expansion and using the fact thatHmix com-
mutes withHrel and the above lowest order term forDV,

gsrd =
V

Z kr ue−bsHrel+Cr2dur lE kR,r 3,…,r Nue−bHmix

3uR,r 3,…,r NldRdr 3¯dr N + Oskr4ld

=Ve−bsFmix−Fpuredkr ue−bsHrel+Cr2dur l + Oskr4ld,

where C=Z2e2/4a3. The free energies Fpure, Z
=exps−bFpured, andFmix,

TABLE III. as0,bd as defined in Eqs.sA23d and sA19d.

b as0,bd

0.0 1.0
0.5 1.106
1.0 1.148
2.0 1.206
4.0 1.286
6.0 1.345
8.0 1.394
10.0 1.435
20.0 1.591
30.0 1.703

FIG. 6. sColor onlined Comparison of the quantum kineticK
−Kc sopen symbols and dashed linesd and potential energyV−Vc

ssolid symbols and linesd per particlesdata from Table IId.
FIG. 7. sColor onlined Comparison of the quantum energy per

particle E−Ec for G=1 ssolid circlesd, G=2 ssolid squaresd, G=5,
ssolid diamondsd, G=10 scrossesd, andG=40 ssolid trianglesd with
the second-order Wigner-Kirkwoods" expansiond correctionscor-
responding solid or dashed linesd.
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e−bFmix =E kR,r 3,…,r Nue−bHmixuR,r 3,…,r NldRdr 3,…,dr N,

sA10d

correspond to the original, total Hamiltonian and toHmix,
respectively. They are the fully quantum mechanical free en-
ergies.

Introducing the binary radial distribution function, from
the definition Eq.sA1d applied to a two particle system,

gbinsrd = s4p"2b/md2kr ue−bHrelur l, sA11d

the expansion Eq.sA10d for gsrd becomes

gsrd = gbinsrdVS m

4p"2b
D3/2

e−bsFmix−Fpured
kr ue−bsHrel+Cr12

2 dur l
kr ue−bHrelur l

+ Oskr4ld. sA12d

The term following gbin cancels the remaining “ideal gas
term” in the difference between theN particleFpure and the
N−1 particleFmix. In the following this term is omitted and
the free energies refer only to the nonideal terms.

For the classical case,Hrel andCr2 commute and the last
ratio in the equation above is juste−Cr2, so

gsrd = gbinsrde−bsFmix−Fpure−Cr2d = gbinsrde−bsFmix−Fpured−sG/4dsr/ad2.

sA13d

This relation, with the correctr2 term, was derived in Ref.
16, correcting a factor of 2 error in Ref. 2.

As a simple application consider the weak coupling, the
Debye-Hückel limit. Using the well known interaction free
energy for this model,18

F = −
Vk3

12pb
, sA14d

with the inverse screening length,k,

k2 =
4pb

V
o

j

NjZj
2e2, sA15d

applied to the “pure” casesN1=N,Z1=Zd and the “mixture”
case sN1=N−2,Z1=Z,N2=1,Z2=2Zd gives hs0d
=lnfgs0d /gbins0dg=Î3G. This result also comes from expand-
ing the screened potential in Eq.s13d. The next term in the
expansion, linear inr, is seen to be incorrect, however.

In the quantum mechanical case the termsHrel andCr2 do
not commute. The identity,

e−bsHrel+Cr2d = e−bHrel −E
0

b

e−sb−sdHrelCr2e−ssHrel+Cr2dds

sA16d

=e−bHrel −E
0

b

e−sb−sdHrelCr2e−sHrelds+ Osr4d,

sA17d

leads to

kr ue−bsHrel+Cr2dur l
kr ue−bHrelur l

= 1 −bCkr2l + Oskr4ld, sA18d

where

kr2l ;
1

b
E

0

b

dsE dr 8rrelsr ,r 8;b − sd

3r82rrelsr 8,r ;sd/rrelsr ,r ;bd. sA19d

Unlike the classical casekr2lÞ r2, but, because of the range
of rrel, will differ from it by an amount proportional to the
squared de Broglie thermal wavelength. For example, ifrrel
is approximated by only the free particle term, then

kr2l = r2 + "2b/m. sA20d

When r →0, kr2l and higher order terms are thus nonzero
and the simple, classical relation between the screening func-
tion at r =0 and the free energy difference no longer applies.
What has been generated is a double expansion inr2 and the
squared ratio of the de Broglie thermal wavelength to the ion
sphere radius.

The lowest order quantum correction to the free energy,20

bF = bFclassical+
"2b2

24 Ko
j

¹ j
2U

mj
L , sA21d

whereU is the total potential energy function. When applied
to the uniform background model and following the algebra
leading to Eq.sA9d, it gives

bsFmix − Fpured = bsFmix
classical− Fpure

classicald −
1

8
hG. sA22d

The quantum correction in this term would further increase
the enhancement factor, contrary to what is found.

The bCkr2l term in Eq.sA18d corrects this. We have not
found a simple expression forkr2l in terms of continuum
Coulomb wave functions; however, it is not difficult to
evaluate numerically using the axial symmetry of ther 8 in-
tegral sor radial symmetry whenr =0d. The result can be
expressed as

kr2lsr,bd ; r2 + asr,bd
"2b

m
, sA23d

where the function multiplying the free particle result,
asr ,bd→1 as b→0. As b increases,a slowly increases,
reflecting the tendency of the repulsive Coulomb potential to
emphasize larger radius “paths,” compared to the free par-
ticle limit.

Adding this term to the free energy change, the lowest
order quantum correction in the enhancement factor is

DhQMs0d = −
h

4
fas0,G2/hd − 1/2g. sA24d

This now correctly predicts the decrease inhs0d due to quan-
tum effects.as0,bd is tabulated in Table III. This semiclas-
sical expansion was compared with the PIMC results for the
caseh=0.1 in Fig. 5. For values ofhù0.25 the lowest order
expansion overestimates the quantum effects by almost a fac-
tor of 2.25
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