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Polaron effects and electron correlations in two-electron systems: Arbitrary value
of electron-phonon interaction
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The energy of two-electron systemisxchange-coupled pairs of paramagnetic centBrs center$ and
bipolarong is calculated for various distances between paramagnetic centers with regard to polaron effects for
arbitrary coupling of electrons with a phonon field. Interaction of electrons with a phonon field is found by the
Buymistrov-Pekar method. The calculations are made with a wave fun@iém in the form of expansion in
Gaussians. Both the electronic correlatiddsect dependence of the WF of a system on the interelectronic
distance and the permutation symmetry of the two-electron WF are taken into account. The Iowestjé‘uéglet
and tripIetSEE terms are considered. Effects of electronic correlations are exemplified by the dependence of the
energy and spatial distribution of the bipolaron WF on the distance between the centers of polaron polarization
wells. A bipolaron corresponding to a two-center configuration is energetically unstable. The only minimum on
the curve for the energy dependence of two polarons on the distance between the centers of their polarization
wells corresponds to a one-center bipolaron configuration. For AgBr and AgCl we present the energies of the
lowest singlet and triplet states b} centers(lEg and®s, terms and those for &y and o, terms ofF; centers
as a function of the distance between th@mith a graph of various contributions into these enerngi€sntrol
calculations performed for a hydrogen molecule with the use of a variational function suggested in the work
yield the energies of the singlet and triplet states equal to —1.17416 and —-0.78315 a.u. respectively, the
equilibrium internuclear distance correspondsRge=1.4011 a.u. The contribution of phonons into the ex-
change interaction between paramagnetic centers has antiferromagnetic character. The exchange interaction
caused by phonons is comparable in the order of magnitude with Coulomb exchange.
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[. INTRODUCTION electron shallow hydrogenlike centers. More simple two-
electron systems are bipolarons dfdcenters in polar crys-
Experimental studies of optical, photoelectric, magnetictals andD™~ centers in semiconductotanalog of arH™ ion in
properties, and impurity conductivity of semiconducting andatomic physics'=° The binding energy oD~ or F’ centers is
ionic crystals show that along with local centers of the sim-significant in crystals with strong electron-phonon interac-
plest type(shallow hydrogenlike centers in semiconductorstion. The field of existence of bipolarons is confined to crys-
and F centers in alkali-halide crystatbese systems contain tals with strong electron-phonon interactiéfor n=«¢../¢,
more complicated formations. The simplest aggregate cen=0, a= a,=6.9),'° wheree,, ande, are high-frequency and
ters are exchange-coupled pairs of paramagnetic ones. Teatic dielectric permittivities, respectively, ands a dimen-
energy spectrum of shallow hydrogenlike centers and theisionless Frohlich coupling constant of electron-phonon
complexes can be described in the framework of the coninteractiont!
tinuum theory. In molecular physics, the nearest analog of Aggregate color center¢exchange-coupled pairs df
this system is a hydrogen molecule. In solids, motion ofcenters orF, center$ in alkali-halide crystals were inten-
electrons in such a “molecule” is a great deal complicated bively studied in Kiev school in the 1950*8.Consideration
interaction of electrons with oscillations of the crystal lattice.of polaron effects reduced considerably the energy of two-
In a crystal, unlike in a molecular system, exchange-couple@lectron states. Subsequently,ancenter served as a model
pairs of paramagnetic centers can occur both in the grountb develop a theory of a two-center bipolargri? In the
singlet statelﬁg, and in the lowest triplet onéE: and the framework of this model, it was proved theoretically that a
distance between the centers is determined by the conditiorssable autolocalized two-electron state can arise in crystals
of the crystal growth, the structure of the crystal lattice andwith strong electron-phonon interaction. Contribution of
impurity doping technology, but not by the minimum of the acoustical phonons into the ground-state energy of shallow
total energy which includes interaction between static Couimpurity centers in crystals was studied by Deigen.
lomb charges. In thermodynamic equilibrium, the population Early works on the study of the energy spectrum of two-
density of triplet states is governed by the temperature. Welectron systems dealt with the lowest singlet states. There-
can get the simplest qualitative description of the energyore effects concerned with exchange interactidids),
spectrum of such a system by introducing effective atomicmamely, polaron effects were out of consideration. Deigen
units instead of atomic ones, just as it is done for oneal.X® were the first to show that phonon contribution into the
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exchange interaction of impurity centers in crystals can béween the centers for an arbitrary electron-phonon coupling,
comparable in the order of magnitude with direct Coulombidentify phonon contribution into the total energy and discuss
exchange. In their work, interaction between large-radius imthe problems concerned with inclusion of interelectronic cor-
purity centers via fields of optical and acoustical phonongelations and their influence on the energy spectrum of an
was constructed by methods of perturbation theory. Kashiexchange-coupled pair. We will also give some examples of
rina and Susliff dealt with polaron effects in an exchange our calculations of Els of large-radius paramagnetic centers
interaction of two-electron systems in polar crystals withjn crystals with an arbitrary value of the electron-phonon
strong electron-phonon coupling. These auttiaused Green jnteraction. The calculations have been performed by the
functions to study temperature dependence of phonon ContrBuymistrov-Pekar method which is valid for an arbitrary
bution into the exchange energy of shallow impurity centerg ;i 6 of the electron-phonon interaction. The method is
in crystals. They showed that in systems with closely Space%idely used to calculate the energy of both one-ele@#ah
electron levels, qualitatively new temperature dependenciegnd two-electron®26.Z7states and gives the beor rather a

can arise in Els of impurity centers due to contribution of rsatile system of variation functiongesults in the calcu-
acoustical phonons into the isotropic exchange energy. Thei@ e sy variati uncti uits | u

systems demonstrated resonance effects leading to occ ?—t'o? of theD‘-cezgter energy an(cji thgr]logest valugs .Of trre

rence of terms in Els with exponential dependence on tem?2'Po'aron energd?’ as compared with direct variationa

perature. methods which imply variation of the WF of the systé#n.
Presently, interest in the study of exchange-coupled pairs

of shallow impurities has regenerated in the context o_f an Il. MAIN RELATIONS

opportunity to use such two-electron systems as a basis for

constructing quantum computers which could operate on Let us consider a pair of shallow impurity centers in a

both spid® and nuclear resonané®?! In both the schemes crystal with ionic coupling. Interaction of the electron sub-

Els between impurities provides interaction between qubitssystem with a phonon field is Frohlich coupling wittD

The results of Ref. 22 show that polarons and bipolarons arphonons. Then, the exchanged coupled pair is described by

good candidates to logical switching in molecular circuits ofthe Hamiltoniah®

conducting polymers. Therefore, theoretical studies of the _

energy spectrum of simplest two-electron systems, such as H=Tio+ Ho+ Hi+ Her, (1)

bipolarons(free and coupledand exchange-coupled pairs in whereT,, is the kinetic energy of the electroridg, includes

crystals are not only of purely academical interest, but ofall Coulomb interactions in the systei; is Hamiltonian of

practical importance as well. the phonon field, and.; is Hamiltonian of the electron-
Up to now no consideration has been given to the energghonon interaction.

spectrum of exchange-coupled pairs in crystals with arbitrary For a two-electron system consisting of two paramagnetic

value of electron-phonon coupling. Arising of a nonlocal ad-centers occurring at points) and (b) in a crystal:

dition (concerned with inclusion of polaron effegtm the 5

energy of a two-electron system makes the study of the sys- T.=— ﬁ—(A +A,) )

tem rather a complicated procedure, as compared with a hy- 27 om Tt T

drogen moleculgwhich presents the closest analog of an

exchange-coupled pair of shallow impurities in a crystal

the strong coupling limit, the energy of exchange pairs has &€ 2,6 7,8 7,6 Z,6 Z,7,6
- _ _ _ _ + ’

been calculated in the framework of Heitler-London method, Hg=
which enables only a qualitative description of the

systemt?17 (3)

ftTht(:].ne.cesl;nygf cotndS|der|r(11g electr]c()t?:c\(/:\?lgre:caudmsrte— wherer ,; is the distance of thih electron from the poina),
arter this implies direct dependence of the ofa system opbi is the same for the poirtb), ry, is the distance between

the interelectronic distantemposes specific requirements the electronsR is the distance between paramagnetic cen-

upon the trial var|z_;1t|onal function of the system. The funC'ters. This notation is traditional for two-center coordinate
tion should be flexible enough to properly describe the ener—ys,[emS which are used for calculations of the molecular

g|tes .Of f}'m.pleit dtwo-electrc;n slyst(re]m|§ n tmolecular t_an ystem energ$? We place the coordinate origin in midposi-
atomic physicshydrogen molecule, helium atom, negative tion between the point&) and (b).

hydrogen ion. At the same time, it should be rather conve-
nient so that one could perform int_egration over the ele_ctron H,= ﬁwz a;ak He= Hélf) + ngf),
coordinates and present the functional of the system in the k

simplest way suitable for treatment by methods of multipa-
rameter functional variation.

In this work we deal with the most general two-electron
system in a crystal, namely, with an exchange-coupled pair
of shallow impurity centers in crystals with ion coupling. where V,=-i(eg/K)\V2mhw/Ve, 1/e=1le.~1lgg, € is an
Simpler systems, such as bipolarons @idcenters can be electron chargeV is the crystal volumeg is the frequency
obtained as its limit cases. We will analyze the dependenciesf optical phononsk is the wave vector of phonong, and
of the ground-state energy of the system on the distance bey are the creation annihilation operator of phonons with the

wherem’ is an electron effective mass.

€xl12 €olar  €ofp1  €ofa2  €ofb2 goR

HY =2 Vi(ay, - alexplik 1)), (4)
k
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wave vectoik, g, is high frequency, and is static dielec- n
tric permittivity i=1,2;r4, r, are the electron coordinates. \If;’u = clexp- ar?-2bz) + exp— ar?+2b2)], (9)
Notice that the continuum consideration used in the work i=1

is val?d only in the framework of adia}batic approximation. \\hare the upper index refers to the lowest, erm and the
That is to say, we believe that nuclei of all the atoms an%Wer index to the lowestd, one.

weakly coupled electrons under study move much slower e terms are denoted in conformity with Ref. 29. The

than strongly coupled electrons of a dielectric. The IatterWF ‘P; is symmetrical and?? is asymmetrical around the

present a quick subsystem and are in the ground state whiGhersjon of the origin placed in between Coulomb centers.
belongs to a discrete level far removed from the electron

levels of the system involved. Then we assume that the quick s SITIONS
subsystem follows adiabatically the slow one. The adiabatic lll. USEFUL LIMIT TRANSITION

approximation has also motivated phenomenological intro- |y order to prove flexibility of our functions we used WF
duction of screening of the interelectronic interaction poten+s) to calculate the energies of singlet and triplet terms of a
tial by high-frequency dielectric permittivity representing the hydrogen molecule, the ground state of a negative hydrogen
inertia-free part of the screening. If these conditions are noH- and the energies of para-helium and ortho-helium and
fulfilled, the effects of spatial and temporal dispersion ofapplied WF(9) to find the energy of two lowesftlo, and
dielectric permittivities should be taken into account as earlm,u) terms of an ionized hydrogen molecule. For atomic and
as at the stage of definition of electron-phonon interactionmoelecular systems we pep=¢..=1.
which would imply going outside the framework of the  Qur calculations with the use of variational WB) for
Frohlich description. n=32 at the equilibium internuclear distanceR

In the early works devoted to consideration of two-=1 4011 a.u. yield a ground state energy of a hydrogen mol-
electron systems in ionic crystafSone more restriction was ecule equal to —1.17416 a.u. and a lowest triplet term equal
imposed which was concerned with the assumption thajg -0.78405 a.u. The result obtained by James and
weakly coupled electrons move much faster than the nucletoolidge® for the ground singlet state is —1.172 a.u. and
of atoms in the crystal cell. Later on, in the work by Buymis- experimental value is -1.174+0.0038%#2 The latest
trov and PEkdrthls restriction was removed. Additional as- Ca|cu|ation§3 based on 80-term wave functions in the Born-
pects concerned with introduction of screening of the interQppenheimer ~ approximation ~ yielded the  value
electronic interaction potential by high-frequency dielectric—1 1744746 a.u(lzg term) and -0.7841501 a.L(?‘Eu term
permittivity and passing on to the limit of weak electron- for R=1.4 a.u). New experimental data and references to the
phonon interaction are discussed in Ref. 5. works concerned with the study of the energy spectrum of a

The trial WF is chosen in the form hydrogen molecule are given in Ref. 34.

WF (5) can also be used to find the energies of one-

10 electron states. If we omit in E@3) the terms standing for
Wy(ry,ry) = =E Ci[1+(- 1)SP;,lexd - aliri interelectronic repulsion, Hamilto_nia(n_) will transform i_nto
VN12i=1 a sum of two one-electron Hamiltonians corresponding to a

molecular hydrogen ion H Variation of the Hamiltonian
with the use of WF(5) (which corresponds to the singlet
term of a two-electron systeryields the double ground state
whereC;, a;;, ay, ag, a4, a5 are variational parameter§,  energy of an ionized hydrogen moleculg.veraging over
=0 for a singlet state of a two-electron system &dl fora  the WF(5) corresponding to the triplet state gives a sum of
triplet one, andP;, is an operator for permutation of electron the energies of the groundo} term and the repulsived,
coordinates. term of H3.

The Hamiltonian of a singly ionized pair of hydrogenlike  If we putR=0 in Eqg.(3) and omit the terms correspond-
paramagnetic centers in ion crystésalog of theH; ion) is  ing to internuclear repulsion, we will get a limit transition to
written as a helium atom. The energies of para-helium and ortho-

helium obtained by us with the use of E) are equal to
. . o —2.903723 and —-2.17515 a.u., respectively. The energy of a
H"=T+Hqg+Hi+Hey, (6) " negative hydrogen ion is calculated to be —0.5027742 a.u.,
while the exact value is —0.5027751 &%u.
5 If we omit the terms corresponding to interelectronic and
T= h A ) internuclear repulsion in E¢3) and putR=0, we will obtain
’ a limit transition to the model one-center system consisting
of two identical singly ionized helium atoms which do not
interact with each other. Symmetrical W) yields the
2,68 2,8 7,7, double ground-state energy, the asymmetrical one gives a
- Tt (8) sum of the energies of the ground and the first excited states
of He* atom. Calculation of the total energy of two identical

To minimize the Hamiltoniari6) we choose a trial WF in  noninteracting one-electron systems with the use of a two-

the form electron WF is the simplest numerical illustration of how the

— 2ay(ry - T9) — 8gl5 — 2842 — 2852, (5)

+ _
Q SOra 80rb SoR
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Pauli principle is realized and in what order energy levels inthe bipolaron problem by traditional methods via direct
a two-electron system are populated. Thus, for the lowestariation of the WF of an electronic systdisee Ref. 38, and
triplet term of a system consisting of two noninteracting He references theretf9 yielded larger values of the bipolaron
atoms located at one point, just the state at which one Heground-state energy as compared to the works were WF cor-
atom is in the ground state and the other is in the first excitedesponding to autolocalized states were BSeth*1-44
one can be realized. Amirkhanovet al*® obtained numerically translationally in-
With the use of WH5), we have succeeded to reproducevariant solutions without variation of the electron WF, how-
classical experimental distance dependencies of the groureler, these authors have not succeeded to reduce the value of
state of a system consisting of two hydrogen atéfiBhe  the bipolaron energy relative to the best results obtained for
trial functions(9) have enabled us to reproduce similar de-autolocalized WF. Combination of Feynman integration over
pendencies for an ionized hydrogen moleclélighly ac-  trajectories with direct variational method also leads to larger
curate values have been obtained for the energy and the eqainergy valueg?
librium internuclear distance of a hydrogen molecule and for In a modern presentation, the Buymistrov-Pekar method
the energy and the equilibrium internuclear distance of a mois reduced to canonical transformation of Hamiltonian
lecular ion H,. Thus, for the WR9) symmetrical about the (1) as expaSH exp-aS) with unitary operator S
inversion operatior{for R=2 a.u) we have -1.102605 a.u., =3,[F(rq,r,)a—F(r;,r,)a;l, whereF(rq,r,) is a func-
and for the asymmetrical one the energy is equal taion of the electronic system co-ordinates. We choose a func-
-0.667510 a.u., while the relevant exact values areion F, in the form
-1.102625 and -0.667535 a.u., respectiv&ff -
In view of the fact that in solids optical and ESR spectra Fr=Cx+ nf(ryra), (10)
of simplest one-electron and two-electron systems are a great ~ .
deal broadened, an accuracy provided by V8F is well whereC,, v are variational parameters. In what follows we

suited to the description of the energy spectrum of such sydVill use Feynman system of units whefe=1, =1, and
tems. 2m =1. Accordingly, the unit of energy %w, and the unit of

length isLo=\%/2m" w.
Variation overC, and vy, yields the following expressions

IV. BUYMISTROV-PEKAR METHOD AS APPLIED TO for the functional of the ground state of an exchanged-

CALCULATIONS OF THE ENERGY OF TWO-ELECTRON

coupled pair:
SYSTEMS IN CRYSTALS WITH AN ARBITRARY
VALUE OF THE ELECTRON-PHONON INTERACTION E=Vs+ Vg, (11)
The Buymistrov-Pekar method was applied to two- ~5
electron systems in ionic crystals with an arbitrary value of Vi = EL (12)
electron-phonon coupling in Ref. 4, where systems without © 2+ o

translational invariancé andF’ center$ and autolocalized
polaron and bipolaron states were considered. Later on Bui- U = (W Fo(Fa EL(E o E )Wy = (B | Fo(F 1) P
mistrov and Pek&f analyzed a more general case when the = (Wadfrurbidrora W) = (Wadlfirara ¥

WF of a polaron state was chosen with regard to translational X(¥ 4 L]:(rl,rz)|\lf12>, (13
invariance of the system. However, their numerical calcula-

tions were performed only for an approximate functiofial L (ri,ro) = exp(—ik -ry) + exp(—ik -r5), (14)
particular, they used an expansion in terms of the wave vec-

tor k which is valid only in the limit case of smakK). The U = (W ol Fi(r 1,1 ) Fr(r 1, F ) [W10) = (W 1ol (1 1,7 2) [ W)
general expressions derived in Ref. 37 for the functional of .

the ground state of a translationally invariant polaron are so X(W 19l i (ry,r2)| 1), (15

complicated that even nowadays they cannot be mi”imize%herevf
numerically without the use of some approximation. At the !
same time, calculations of the energy oba center by the
Buymistrov-Pekar metho(the limit of lacking translational

is an addition which has appeared for intermediate
coupling andV, corresponds to the functional of the system
in the limit of strong electron-phonon interaction

invariance in combination with the Gaussian system of Vs:i2+ BVee— VVze+2V§|<eXp(—ik-rl)
functions yield the Iowgst values for the minimum of the k

corresponding functional.The same refers to the bipolaron . 2

energy obtained by a direct variation of the WF of the +exp-ik o)l (16)
systen?’ Integration over trajectories as applied to the bipo- 2 /(1 1\1

laron problem is currently the only method which gives the a= —<— - —)—, Lo= VAE2M w,
lowest values of bipolaron energy with regard to translational 2hw\e, &o/Lo

symmetry. The region where this advantage holds is rather

narrow (6.8< a<7.05. For «=7.05 the lowest values of 8= € _ 22 &€ _2ap
bipolaron energy were obtained by the Buymistrov-Pekar hows,ly 1-7 4 hosglg 1-7’
method for the case of lacking translational symmétiyu-

merous attempts to find translationally invariant solutions of n=¢e.leg,
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— . analytical expressions derived by Deigéfor the functional
Tio= —J Wap(Ag + AV 07, (17)  of anF, center(strong coupling In their model a bipolaron
was considered as an analog of a hydrogen molecule or a
5 two-center(TC) bipolaron. The possibility of the formation
Vv :f Wy dr (19) of a stable bipolaron state was proved in the framework of
e o the TC bipolaron modéf4 A two-electron WF was con-
structed in the framework of Heitler-London method by

2 7 7 7 77 complete analogy with the WF of a hydrogen molecule:
Vze:f <_1 JAa, % L 1_2)|~1r12|2d7-. (19)

fat Ta2 T e R We(r1,r2) =Na(l)b(2) +a(2)b(1)], (23
V., is the wave function of a two-electron system. where
In the subsequent discussion we will only be interested in
the electronic part of the two-electron system energy, there- a(1) = (\3m)Y%exp(— Aryy),
fore the term in Eq(19) corresponding to the interaction of
static Coulomb charges occurring at poitasand(b) will be b(1) = (\3m)Y2exp(— Arpy),

omitted. Then we puZ;=Z,=1, fi(ry,rz)=Ly(rq,r).

The use of WF(5) enables easy integration over elec-
tronic cqordmatgs: So, the problem is reduced to variation N = 1/\&*2(“52), S:fa(l)b(l)dr.
and finding a minimum for the function of many variables

Ez(R,Ci,ay herek=1,2,3,i=1,... N. . . .
s R,Ci &), wherek=1,2,3,i=1, ..., Table | lists the energies of the bipolaron ground state

obtained with the use of this function and the values of the
V. POLARON EFFECTS AND ELECTRONIC relations EEI,S/ZEP and EEI,S/ZEP: where ERL

b EL- are the
CORRELATIONS IN TWO-ELECTRON SYSTEMS . . P P N
energies of the bipolaron ground state for\,, and A=\,

The role of electronic correlations in two-electron systemsespectively. The variational parametgr minimizes the po-

is clearly demonstrated by the study of a bipolaron spatiajaron functional for a hydrogenlike WE(1), while X, (our
conflgurat!on. quﬂtoman of a system consisting of WO calculationg minimizes the bipolaron functional for the WF
electrons interacting with phonons in an ionic crystal can bq23)_ In Vinetskii's later work? one-electron WE were cho-
obtained from the general Hamiltoniaid) if we put Hy  sen in a more complicated form(1)=(1)=(1+\r)exp
=€/ e,r1,. Within the Buymistrov-Pekar method, the func- ~\r4). The value of the reIationEgL/ZEp, whereEp is the
tiongl of a bipplaron is derived from function&ll) for y polaron energy for WRs(1), was ceﬁculated to be 1.GRef,
=0 in Eq.(16) in the form 14), as for the simplest hydrogenlike function.

The necessity of considering electronic correlations
(namely, electronic correlations concerned with direct depen-
dence of the electron WF on the interelectronic distamees

Vi = Vis+ Vi, demonstrated in Larsen’s work where the energypofcen-
ters in crystals with ionic coupling was calculate@he cal-

_ 2 il T 2 culations were performed for an arbitrary value of electron-
st_gkaeXp( kery) +expi=ik-r)l (20 phonon interaction in the framework of Buymistrov-Pekar

method. The electron WF was chosen in the form
whereV; is just responsible for the phonon contribution into

EBp = T12 + Vee+ Vf, (20)

the bipolaron ground-state eneryy; is the part correspond- W(ry,ry) = (1 +bs)(1 +cujcostip)exp= &), (24
ing to strong coupling, and;; is an addition for intermediate )
coupling determined by Eq€12)—(15). where s=r,+r,, t=r,—r,, u=|r,—r,| are Hylleraas coordi-

A one-centefOC) bipolaron or Pekar bipolaron was first Nates, and, ¢, y, & are variational parameters.
considered in Ref. 2 in the strong coupling limit. There the _Larserf reported a giant growth of the coupling energy of

term “bipolaron” was first introduced to mean a stable staté® P~ center when the WF was chosen with regard to inter-
of two polaronsi?2 The WF of a two-electron system was electronic correlations in semiconductors with ionic coupling

chosen in the multiplicative form and in ionic crystals. Interelectronic correlations were taken
into account by the multiplie(1+cu). In crystals with rela-

Wei(ruro) =a(la2), (22)  tively large value of electron-phonon interaction he used the
) _ approximation withy=0 in Eq.(24). Larsen did not consider

wherea(1) is a polaron wave function. the coupling energy of a free bipolaron, though the applica-

For this WF, a bipolaron functionals is equal to the sum  tjon of the WF(24) to the bipolaron problem must have led
of two polaron functionals. Therefore a bound state of a bitg one of the lowest values of the ground-state energy for an
polaron is lacking. Multiplicative form of the WF was also grhitrary value of electron-phonon interaction. In Ref. 43 the

used in Ref. 4. _ WF of a one-center bipolaron was taken in the form
Vinetskii and Gitermat? calculated the energy of bipo-
laron in ionic crystals with the use of the method and W(ry,ry) =(1+ary)(1+ar,)(1+pBuexp—-as). (25
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TABLE I. Energies(for »=0) and domains of existence of bipolarons obtained by various methods in the
strong coupling limit. HL, MO, Heitler-London method, and the method of molecular orbitals accordingly
[without variation ovei in WF (23) and(28)], HL", MO"—the same with variation ovex. TC(C), OC(C)
are two-center and one-center configurations of a bipolaron with regard for electronic correltioBg,
are the energies of a polaron and a bipolaron, respectiRglis the equilibrium state between the centers of
polarization wells of two poIaronELp:—25/512,E,")":—0.0542564 is the exact value of the polaron energy
in the strong coupling limit(in the strong coupling limit effective atomic energy uni®’ =e?/za” and
lengthsa” =% /m’e? were useyl 7, 7;; are critical values of the parametgy calculated with respect t, ,
andE}' accordingly,Q=Egy/2Ep, andQ" =Eg,/2E}.

Method, Ref.  HL, Ref. 12 HL MO MO" Ref. 46 Ref. 48  Ref. 48
WF TC TC TC TC 0GO) TC(C) TC
~Eg,p 0.10612 0.10784  0.10024  0.10071  0.134624  0.136512  0.11503
R 45518 41155 25149  2.5538 0 0 5.0225
-E, Eip Eip Eip Eip 0.05351 E} S
7 0.0535 0.0542  0.0142  0.0150 0.1392 0.1432 0.016
7 0 0 0 0 0.1322 0.1432 0.016
Q 1.0866 1.1043  1.0265  1.0313 1.2579 1.2581 1.0602
Q 0.9779 0.9938  0.9238  0.9281 1.2406 1.2581 1.0602

Calculations were performed by the strong couplingandy, vary along horizontal axes. The vertical axis repre-
method. Earlier the same function was used in Ref. 3 tsents the WF density. The density of the two-electron
calculate the energy of aR’ center in the strong coupling WF in the coordinate origin chosen as a product of polaron
approximation. There bipolaron states were not treated eMWF (1+\ry)(1+hrp)exd—-A(ry+r,)] is taken to be unity. Itis
ther. In view of the fact that Suprun and Moyzfhesigured  seen that the multiplicative approximatid@2) [Fig. 1(a)]
only the bipolaron energy dependence on the paramgter corresponds to the maximum density of the WF at the point
but the value of the bipolaron ground-state energy obtainewhere both the electrons occr;=r,=0), on the contrary,
with the use of the WK25) was not given, we have carried the density of the WK25) at this poinFig. 1(b)] has a deep
out these calculations independently. Table | lists theminimum.
energy of the bipolaron ground state calculated with the Generally, multipliers in a two-electron WF taking into
WF (25). Figure 1 illustrates fundamental difference of the account interelectronic correlations reduce a relative role of
multiplicative WF[B=0 in Eq. (25)] from the two-electron the regions where the electrons are closely spaced and raise
WEF chosen with regard to interelectronic correlations. Boththe role of the regions where the electrons are spaced apart.
the WF correspond to parameters which minimize theln this case the bipolaron WF can have a maximum at the
bipolaron functional. One electron is placed in the coordinateoint r;=r,=0. As an example we refer to the WF of a
origin. For the other we putz,=0 and coordinatesx,  one-center bipolaron such that

0.014-]
_ SSSSASSSSS:
T W i
0.0121 AR
' NS,
0.0101 \\|
il
,/:,,:,’,/llll 0.008 1
iy
’:":":'I""';.:,",?. LR
2 0.006°
(b) %

FIG. 1. (a) Density of the WF of a one-center bipolaron without regard for interelectronic correlgjen® in WF (25)]. (b) The same
for the case of WHK25), chosen with regard to interelectronic correlations. One electron is placed in the coordinatérqrgth, 0,G) and

the radius vector of the other electrorris={x,,y,,0}. The density of the two-electron WF in the origin chosen as a product of polaron WF
is taken to be unity.
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(b)

FIG. 2. (a) Density of the WF of a one-center bipolaron without regard to interelectronic correl@éirg26) for a;;=ag;, ay=0]. (b)
The same for WR26) of the most general forrfay; # ag;, ag # 0).

n laron trial WF was chosen in the framework of a molecular
D(rq,rp) = >, Ciexd—ayr? — 2a,(ry -r,) — agral. orbital (MO) method without regard for configurational in-
i=1 teraction:
(26) B1,=W(ry)W(r;) =Ny fa(l) + b(D)][a@) +b(2)],
This choice of the WF provides the lowest bipolaron en- (28)

ergies in the strong coupling linfit:*6 Table | lists relevant
characteristics of a bipolaron. Electronic correlations arévhere

taken into account by the multipliers dx2a,(r1-r,)]. a(1) =\ m)exp— Aryy),
Figure 2 shows the densities of the W) (vertical axis
corresponding to the parameters which minimize the bipo- b(1) = (A\3/m)2exp(= Aryy),

laron functional(20) in the strong coupling limit for the case
when correlation terms are lacking in the trial WiFe., ay

=0, ay;=ag) [Fig. 28] and relevant figures for the WF of Np,=1N2(1+9), S= f a(1)b(1)dr.
the most general form for which the lowest values of the
ground-state functional were obtaingelg. 2(b)]. The mean- The results of Ref. 48 obtained a0 andR,, equal to

ingS of the electron coordinates are the same as in F|g 1. Th:ﬂe bipolaron functional minimum, are the fo”owing:

scale of the graphs along the vertical axis is taken such th@Bp(Zm)/ZELfl-ZZ, Zn=AmRy=4.720, where \,,=5/16,

unity corresponds to the density of a WF chosen withoufg =-25/512(in the strong coupling limit effective atomic

regard_for correlation termEl_Zlg. 2a)] at the pointry=r,  energy unitsHa' =€Z/za’ and lengthsa’ =42 /m’eZ were

=0. Itis seen that the profile of the bipolaron WF which yseq."The critical valuen,=s../ s, below which bound bi-

takes electronic correlations into account has a larger W'dﬂbolaron states exist, was found to be 0.14. A simplest quali-

and a shallower maximum at zero as compared to the WF ifytive analysis suggests that these calculations contain a nu-

which electronic correlations are neglected. Note also thafyerical error. As is known, with no regard for

minimization of the polaron functional with the WF configurational interaction, the MO method yields overesti-
mated values of the ground-state energy of a hydrogen mol-

n ecule as compared with the Heitler-London metfbdhe
v,= > C exp(—ayr) (27)  reason is overestimation of the role of OC configurations in a
i=1 molecular system. If a OC configuration corresponding to the

bound state of a negative hydrogen ion leads to overestima-

leads to an exact numerical value of the polaron energy ition of the total energy of a hydrogen molecule, the lack of a
the strong coupling limit as early as at5 in Eqg. (27).  bound OC bipolaron state corresponding to the WF chosen in
We obtained for the polaron energy in this casemultiplicative form [for a one-center configuratiom(1)
E,=-0.054256408a" (where Ha'=m'ej/#%2, &l=e! =b(1), ¥(1,2)=a(l)a(2)] all the more must lead to overes-
-g5Y). This value completely coincides with the exact po-timated results of the bipolaron ground-state energy as com-
laron energyE'=-0.0542564 which was found in Ref. 47 pared with relevant values obtained by Heitler-London
for the strong coupling limit as a result of numerical solution method.
of a relevant Eiler equation. With the use of the MO method we can find a bipolaron

Sahoo and Mitré reported the lowest energy values for functional for the WF given by Eq(28), from a relevant
the spatial configuration corresponding to a TC bipolarorfunctional of a hydrogen moleculsee Ref. 29, p. 87, Eq.
(strong coupling limit. There the electron part of the bipo- (4.7) for Hy;]. For this purpose we should omit the terms
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corresponding to interaction of electrons with protons anch=1,2,..) appropriate limit transitions to both OC and TC
protons with each other. The part of the functional corre-configurations as well as to polarons infinitely distant from
sponding to electron-electron interaction should be multi-each other. To pass on to the one-center configuration, we put
plied by (¢;1-271). Sahoo and Mitr# varied a functional R=0 in Eq.(29) and get the WF26). For R— o, variation of
which contained an error in the part corresponding to thea bipolaron functional with the WK29) (ay=0, a;;=ay;)
bipolaron kinetic energy. Table | lists the energy values ofleads[for N=n? n=1,2,..., in Eq.(29)] to double polaron
the TC bipolaron ground-state and critical valueszpfob-  energy, calculated with the use of WE7).

tained by Heitler-London method as well as the relevant val- Table | also lists the values of the ground-state energy of
ues obtained by us by the MO method. The valuegaind  a OC bipolaronwhich we independently reproduced within
Q=Eg,/ 2E, (whereEg,, E, are the energies of bipolaron and the strong coupling method relying on the results of Ref. 43
polaron, respective)ywere calculated with respect to the po- and the data which were obtained in Ref. 44 in the strong
laron energyE, found within the same approximation as the coupling limit with the WF(29) for OC and TC configura-
bipolaron energy, the values of, and Q" were calculated tions corresponding to equilibrium distance between the cen-
with respect to the exact value of the polaron energy in thders of polarization wells for a WF of a less general form
strong coupling limitEM. As would be expected, by com- without electronic correlationy =0, a;;=a). Note that in
plete analogy with a hydrogen molecule, the MO method a®rder to compare various calculation methods realized within
applied to the bipolaron, yields higher values of the groundthe variational approach, we should compare just the energy
state energy, than the HL method. Discussion of an overef the bipolaron ground-state but not the values @f
timated value of the ground-state energy of a OC bipolarorr Esp/ 2E, and 7, where the polaron energy is generally cal-
obtained in Ref. 49 as a result of variation of an erroneousulated in the framework of the same approximation as the
functional is given in Refs. 28 and 39. bipolaron energ\Eg, e.g., Refs. 26 and 43. .

So, bipolaron states were considered in the framework of Figures 3a) and 3b) illustrates the dependencies of the
two models, i.e., OC and TC ones. The OC model yielded &ipolaron energyand various contributions into this energy,
deeper minimum, therefore most of the works on bipolarorfig- 3b)] on the distance between the centers of polarization
subject matter that came out after Suprun and MoizhesWells for =9 and=0. These dependencies correspond to
publicatiof® dealt with just the OC bipolaron Minimization of the bipolaron functiondR0) with WF (29)
configuration?6:28.3841505However, the drawback of the OC for N=5. Curve C in Fig. &) and all the dependencies
model as compared to the TC one lied in the fact that the triaphown in Fig. 3b) were obtained with the trial WE29) of
OC WF were chosen in the form which did not enable re-the most general forntey # 0, a;; # a). Figure 3b) shows
searchers to get an appropriate limit transition to spacedhe dependencies of various contributidits Ve, Vs are ki-
apart polarons. They could not construct a dependence of tHeetic, Coulomb energies and phonon contributidnto the
energy of the interaction between two electrons on the disbipolaron energyEg, on the distance between the centers of
tance between the centers of the polarization wells either. |ROlarization wells. The curv¥s corresponds to the strong
addition, the studies cited did not touch upon the question ofoupling contribution of phonons to the total energy deter-
the kind of the extremum corresponding to a one-center corflined by the equatiofg,=T+V+ V.
figuration. If an additional parameter corresponding to the Within Buymistrov-Pekar method, the use of Eg7) for
distance between the polarons had been entered into a tridi=5 anda=9 yields the polaron energy to li§=-10.564.
function, the OC configuration might have appeared to corHaving performed variational calculations with the W&9)
respond not to the minimum but to the maximum on theOf @ less general fornta,; =0, a;;=ag), we model a two-
energy-vs-distance curve and, despite the fact that the nece&enter bipolaron configuratiofcurve A Fig. 3a)]. In this
sary condition of the existence of a bound bipolaron is ful-case the distance between the centers of polarization wells
filled (Eg,<2E,), this configuration may appear unstable.can be considered as a variational parameter. At the point

This problem can be solved with the trial WF of the form R=0 this distance has a maximum which coincides in size
N with double polaron energy calculated in the framework of

this approximation. The results of calculations carried out in

q)(rl’rZ):ECi (1+Pyy) the strong coupling limit(minimization of the bipolaron
- functional with V=0, a5 =0, a;;=ag) are listed in Table I.
XexH— ayr2; — 2ay(r a1 - Fpp) — Agiley). Thus, for »=0 the minimum of the functional is reached for

(29) R=R,=5.022%" and is equal to —0.1156&". As is seen
from Table I, this minimum is the deepest of all the results
Note that since the bipolaron functioné20) does not obtained by now with the use of the TC bipolaron model.
contain any terms depending on the distaRcketween the  Figure 4(strong coupling demonstrates lines of equal den-
centers of polarization wells, the WF of the most generakity of the WF for a two-centdiFig. 4(a)] bipolaron configu-
form (5) cannot be used to calculate the bipolaron energyration R=R,, and for two polarons spaced at a considerable
The distanceR can be entered there artificially, by applying distancgFig. 4(b)] R=10. Note that for the distand®,, cor-
additional restrictions to the function. Thus, with the choiceresponding to a TC configuratidiess general form of the
o~ _ o o9a _ WF (29), a,=0, a;;=ag] the shape of the bipolaron WF
Ci=Ci exrl~ 0.25ay; - 2a5 + 25)F’], (30 resembles an ellipsoid of revolution rather than a dumbbell
ay,=—-0.5a;-ay)R, a5=0.5ag—ay)R, the WF(5) changes as it is generally believed. A visual separation of the WF into
to the WF (29). The WF (29) provides (for N=n? the system with two maxima corresponding to spaced away
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FIG. 3. (a) Dependence of the bipolaron energy on the distance between the centers of polarization wells of two (gtons9).
Curves A, B, C correspond to variation of the functional of the bipolaron ground-state with the use @YWwith (a;;=ag;, a,=0),
(a1 # ag, ay=0), (ay; # agj, ay #0), respectively.(b) Dependencies of various contributions into the bipolaron energy on the distance
between the centers of polarization wells of two polarons for (28F of the most general formay; # ag;, a5 # 0. T is the kinetic energy,,
is the Coulomb interelectronic repulsio¥; is the contribution of the terms corresponding to strong coupling in(Ef, and Vi=Vig
+Vj; is the total phonon contribution into the ground-state energy of a bipoBggnT +Vq+V;.

polarons takes place at much largeas compared with the fact that the necessary condition of the bipolaron existence
equilibrium distancér;,,. This behavior is also typical for the Eg,<2E; is fulfilled, the OC configuration appears unstable.
bipolaron WF chosen in the framework of Heitler-London  With the most general choice of the WF in the fo(&9),
method with the use of a hydrogenlike WF. the minimum corresponding to the TC bipolaron configura-
If we choose the WK29) with a,=0, a;; # a5 we will get  tion disappears, and only one minimum holdsRat0 [Fig.
a curve B in Fig. 8a) which also corresponds to the bipo- 3(a), curve Q. This behavior of the functional shows that a
laron configuration. For this WHdirect dependence of the stable TC bipolaron configuration appears due to the choice
WF on the interelectronic distance is lackinpe OC con-  of insufficiently flexible WF which does not take account of
figuration corresponds to a maximum. Therefore, despite thelectronic correlations concerned with direct dependence of

10 10
5 et
3 0 ]

>

5 o

-10 T | T | T | T -10 T | T | T | T
-10 5 0 5 10 -10 -5 0 5 10

(a) z, (b) %,

FIG. 4. (a) Lines of equal density for a two-center bipolardnterelectronic correlations are lacking aag=as;, a;=0 in WF (29)] in
the case of equilibrium distance between the centers of polarization Rgglisorresponding to the minimum of the ground-state endlgy.
The same for two polarons separated by a dist&®re&0. The axiSOZ is chosen along the line joining the centers of polarization wells of
two polarons. The coordinate origin is chosen in the middle of the fragment joining these centers.
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TABLE Il. Energy values of the ground state Bf (S=0) and D° centers,E~ and E° calculated for
crystals of AgBr and AgCI, respectively. The coupling energy is designatezadll the energies are
expresses ihw units. The upper indicels andA mark the values obtained in Refs. 5 and 6, respectively. The
number of terms in the WI26) and(27), used to calculate the energy Bf andDC centers is equal to 12.

ho,
o R (meV) E- Eo Eg ES Eg/ES
AgBr 1.64 1.68 15.4 -5.656 -3.818 0.198 2.178 0.091
-5.63%* -3.81* 0.18¢ 2.17F 0.083
0.132 2.166" 0.061
AgCl 1.9 1.9 24.4 -6.668 -4.483 0.285 2.583 0.110
-6.643 -4.482 0.261 2.582 0.101+
-6.662 0.202 2.560" 0.078
the electron WF on the interelectronic distance. AgCl) there exist shallow donorlike centers for which our

So, taking account of the direct dependence of the WF omodel is accurate enoudi*2° Therefore we will illustrate
the interelectronic distance gives rise to a single minimunour approach by computations of the energyFo6f(or D7),
corresponding to a OC configuration. This energy pattern of, and F;-centers.
a two-electron systeninamely, only one minimum on the Figure 5a) and 8b) shows the ground-state energy, ki-
curve for the distance dependence of the energy of a twaaetic, Coulomb energies, and contribution of phonons into
electron system in a polar crystdiolds for the whole region the total energy of a pair of shallow hydrogenlike centers and
of the bipolaron existence with respect to the parameter those for a singly ionized pair in AgBr for various distances

Notice that the variation parametar(r,-r,) which is  between paramagnetic centers. Figures &nd &b) demon-
treated in Ref. 10 as the mean distance at which electrorgirates relevant distance dependencies in AgCl. Polaron ef-
fluctuate is analogous to the variation paraméeused in  fects in an exchange interaction are to be treated in an indi-
this paper. Our results correlate well with the fact that thevidual paper. Note only that the energy of a triplet state can
only energy minimum of a bipolaron correspondsate0.1°  be calculated with the WE5), corresponding to the WF an-
However, the dependencies of the bipolaron energy on théisymmetrical about electron coordinates. In this case the ex-
parametera are not given in Ref. 10 because for aay 0 change energy corresponds to the difference between the en-
the criterion of the existence of a stable bipolaron skgg ergies of a singlet and triplet states. Figure 7 illustrates the
<2E, is not fulfilled in the cited work. energy dependence of triplet terms of a pair of shallow hy-

Table Il illustrates energy values of the ground stat®of drogenlike centers in AgBr and AgCl, calculated by us for
(S=0) andD° centersE~ and EY, respectively, calculated by various distances between the centers and the same fqr a 1
us for crystals of AgBr and AgCl. The coupling energy is term of singly ionized pairs. For all the distances between
designated aBjg. All the energies are expressesfim units.  paramagnetic centers the phonon contribution into the EI has
The upper indices andA mark the values obtained in Refs. antiferromagnetic character and is comparable in the order of
5 and 6, respectively. The number of terms in the WF  magnitude with direct Coulomb exchange. The EI of two
and(27), used to calculate the energydf andDP centers is ~ polarons has antiferromagnetic character4vo.
equal to 12. As is seen from Table Il, Buimistrov-Pekar
method in combination with the WER26) yields the lowest

VIl. CONCLUSION
values for the ground-state energy oba center(or bound

bipolaron. Variational calculations performed with the use of a
Gaussian system of functionl) with regard to interelec-
V1. PAIRS OF LARGE-RADIUS PARAMAGNETIC tronic correlations has enable(_j us to get .spectroscopmally
CENTERS accurate results for the energies of the singlet and lowest

triplet states of simplest two-electron systems in atomic
While the TC configuration of a free bipolaron has ap-physics and a hydrogen molecule. The use of the proposed
peared energetically unstable, the bound two-center bipcsystem of variational functions in solids has allowed us to
laron corresponds to a stable state. We mean pairs of largebtain the energies of a two-electron system in crystals with
radius paramagnetic centers in crystals with ionic couplingaccount of polaron effects for a an arbitrary value of
Since Hamiltonian(1), used in this work is based on the electron-phonon coupling. The system of functions that we
continuum approach, we cannot expect that it would corhave applied to calculate the energy of the most complicated
rectly describe the energy spectrumFgf andF’ centers in  two-electron system, namely, an exchange-coupled pair of
alkali halides. However, in semiconductors with ionic cou-paramagnetic centers in isotropic crystals can also be used to
pling (for example, in 1I-VI and IlI-V semiconducting com- find the energy spectrum of exchange-coupled pairs and
pounds$ and, e.g., in high-purity silver halideg\gBr and  more simple two-electron systenfisipolarons and>~ cen-
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F,in AgBr F, inAgBr

FIG. 5. () Dependencies of various contributions into the ground-state energy B} .z:‘.tanter(lig term) in AgBr on the distance
between the centers of polarization wells of two polarons for BJFT is the kinetic energyy,, corresponds to Coulomb interactions in the
system,Vy; is the phonon contribution of the terms corresponding to intermediate coupling i@ BgandV;=V;s+V5; is the total phonon
contribution into the ground-state energy of Bsicenter, determined by minimization of functior@fl) (E=T+Vy+V). (b) The same for
the 1oy term of anF; center in AgBr.

ters in crystals with anisotropic effective masses and dielecand the ground-state energﬁzg term). The energy spectrum
tric permittivities and in low-dimensional systems. The of the neighboring pairs of shallow hydrogenlike centers
Buymistrov-Pekar method used in our calculations yields thenore closely resembles a helium atom than a molecular sys-
lowest values of the ground-state energy of two-electron sysem. In a singlet state, interelectronic interaction enhances
tems as compared to other approaches implying direct variahe electron energy of a molecular formation as compared
tion of the WF of the systerfi?” with the coupling energy of an isolated donor. In a triplet
The energy of electron coupling in an exchange coupledtate the opposite situation occurs.

pair can be calculated as a difference between the sum of Using the graphic dependencies of Figs. 5 and 6 we can
energies of a polaron and a singly ionized pdioy term) calculate coupling energies of such formations. The polaron

o F,inAgCl _ F,inAgCI — 02
] —1-05
-2 ] -
. )
4 ] -1.0
6 A5
-8 —
10 -2.0
W2 g
B 25
14 |
16 3.0
18 — -35
20 —
22 ] ) ]
o 7] [ [T [T
0 1 2 3 4 5 0 1 2 3 4 5
(a) R (b) R

FIG. 6. (a) Dependencies of various contributions into the ground-state energy@fca;nter(lzg term) in AgCl on the distance between
the centers of polarization wells of two polarons for . T is the kinetic energyy,, corresponds to Coulomb interactions in the system,
Vs is the phonon contribution of the terms corresponding to intermediate coupling ii2Bq.and V;=Vis+Vjy; is the total phonon
contribution into the ground-state energy of enicenter, determined by minimization of the functiondl) (E=T+V,+V;). (b) The same
for the 1oy term of anF; center in AgCI.
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35 1cu the parameters of the theory. With the parameters of the
5] “ A ] 36 AgBr used by Buimistrov for the transition in question the
_ Fz(AgBr) ‘ energy difference was found to kEE=15 meV. We have
7 — 38 reproduced Buimistrov’s calculations for the parameters used
8] in our work and also in Refs. 5 and 6 and obtained the energy
i Fz(AgCI) -4.0 difference between self-consisterg 4nd 2 states in AgBr
-9 — to be AE=22.7 meV. If it is remembered that no fitting pa-
10 . 42 rameters were used in the theory, the agreement with the
" i F, (AgBr) 44 experimental results should be assessed to be very good. The
11— parameter which is the most difficult to determine is the
— -4.6 effective mass of a band electron because here we need to
12 ] invoke the polaron theory. We can choose just this parameter
13 | -4.8 as fitting. Thus, according to our estimates, for the maximum
- of the absorption band corresponding to the transition be-
14 — 50 tween self-consistentsland 2 states in a pure AgCI to
15 — T 5.2 coincide WiEh the _experimen}al value of_ 33.5meV, we
0 1 3 4 5 should putm =0.25 instead ofm =0.3, used in our work. In
R Ref. 25 the effective mass in AgCl was calculated by

. Buimistrov-Pekar method with the use of hydrogenlike trial
FIG. 7. Energy dependencies ¥, terms ofF, centers andd,  functions to bem'=0.22. In Ref. 23 the Buimistrov-Pekar
terms Oﬂ:g centers in AgBI’ and AgCl on the distance between themethod was used to determ|ne thls parameter |n GaN from
: 3 : . .

F centers. Curves A, B represent the energies of \pterm in - 5 experimentally found coupling energy of a shallow donor.
AgBr and AgCl, respectively. Curves C, D correspond to the energy  pormation of nearby pairs of impurity centers is observed
of the 1o, term in AgBr and AgCl, respectively. as the concentration of alloying impurities in a crystal grows.
At low concentrations, interaction between impurity centers

energy of the StUd'eq crystals is given bye) W!th a good leads to widening of absorption bands due to exchange inter-
accuracy. The energies of the ground state of isolated donots

and corresponding counlina eneraies in AdBr and AaCl Cal_action. This effect shows itself even at relatively low concen-
culated b E)he inte?rmed?ategcou Ifcrjw methc?d are regented itrations of alloying impurity, when, according to Bates’

y € coupiing ; P! Dssessmerfs the distance between impurities iR
Table Il. For example, foR=0.5, the coupling energies of an

. : =(20-29a’, wherea’ is the effective Bohr radius. As th
electron in donor pairs in singlet and triplet states are equaT( 0-29a, wherea s the effective Bohr radius. As the

; . Impurity concentration further increases, small-scale fluctua-
o 2394, 032102 i Agr and 2583 and 028581 Han o i crarg e ke on s, s
24.4 meV in AgBr and AgCl, respectively is especially true for exchange pairs of impurity ce_m(ems
By way of illustration, in this work we have calculated greatly compensated mategaélg_smgly lonized pairs analo-
relaxed'S.; and®,, terms of exchange pairs of shallow hy- gous to an f-molecule ion.*"°% . .
drogenlike centers as a function of distance between the cen- Consideration of interelectronic correlations considerably

n
; L r he energy of a two-electron m for one-center
ters. The'S, term can also be calculated in a similar way. decreases the energy of a two-electron system for one-cente

The spectra of infrared absorption by neutral molecules Con(_:onﬂguranons and for neighboring pairs of hydrogenlike

sisting of donor pairs in ll-V semiconducting Compounds’Zinttr?ésd;rs]t;r?clzt?algt\/\:/veletgnSttrzgngareelricatr%r:a—gg ggﬂ?erlgterrg\(/:vtéor:ﬁe
associated with optical transitions betwe and’%, terms role of interelectronic correlati%ns dec?reases We be?ieve t,hat
were observed by Stradiingt al>* and Bajajet al™ and our results obtained in relation with the roblem of spatial
considered theoreticallgwithout regard for polaron effedts . ) ; P P
54 configuration of a free bipolaron are proof that the two-
by Golka: . . : :
center configuration of a free bipolaron is unstable as com-

The spectrum of isolatel centers of AgBr and AgCl was pared to the one-center configuration.

studied by Sakuragi and KanzaRiAccording to their re-
sults, the lines in AgBr corresponding to the2p transition
of a bound polaron fal{for various impurities in the range
of 19.8—-22.4 meV. For AgCl the corresponding range is The authors are thankful to Dr. V. I. Sheka for his interest
30.5-35 meV. The energy of this transition was calculatedn the work, advisory activity and useful comments. The
by Buimistrov* and subsequently by Brandt and Brown. work was carried out with the support from the RFBR Grant
The quantities under consideration are extremely sensitive thlos. N03-04-49225, N04-07-90402, N04-02-17368.
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