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The energy of two-electron systemsfexchange-coupled pairs of paramagnetic centerssD− centersd and
bipolaronsg is calculated for various distances between paramagnetic centers with regard to polaron effects for
arbitrary coupling of electrons with a phonon field. Interaction of electrons with a phonon field is found by the
Buymistrov-Pekar method. The calculations are made with a wave functionsWFd in the form of expansion in
Gaussians. Both the electronic correlationssdirect dependence of the WF of a system on the interelectronic
distanced and the permutation symmetry of the two-electron WF are taken into account. The lowest singlet1Sg

+

and triplet3Su
+ terms are considered. Effects of electronic correlations are exemplified by the dependence of the

energy and spatial distribution of the bipolaron WF on the distance between the centers of polaron polarization
wells. A bipolaron corresponding to a two-center configuration is energetically unstable. The only minimum on
the curve for the energy dependence of two polarons on the distance between the centers of their polarization
wells corresponds to a one-center bipolaron configuration. For AgBr and AgCl we present the energies of the
lowest singlet and triplet states ofF2 centerss1Sg and3Su termsd and those for 1sg and 1su terms ofF2

+ centers
as a function of the distance between themswith a graph of various contributions into these energiesd. Control
calculations performed for a hydrogen molecule with the use of a variational function suggested in the work
yield the energies of the singlet and triplet states equal to −1.17416 and −0.78315 a.u. respectively, the
equilibrium internuclear distance corresponds toRm=1.4011 a.u. The contribution of phonons into the ex-
change interaction between paramagnetic centers has antiferromagnetic character. The exchange interaction
caused by phonons is comparable in the order of magnitude with Coulomb exchange.

DOI: 10.1103/PhysRevB.71.134301 PACS numberssd: 71.38.Mx, 31.15.Pf, 76.30.Mi

I. INTRODUCTION

Experimental studies of optical, photoelectric, magnetic
properties, and impurity conductivity of semiconducting and
ionic crystals show that along with local centers of the sim-
plest typesshallow hydrogenlike centers in semiconductors
and F centers in alkali-halide crystalsd these systems contain
more complicated formations. The simplest aggregate cen-
ters are exchange-coupled pairs of paramagnetic ones. The
energy spectrum of shallow hydrogenlike centers and their
complexes can be described in the framework of the con-
tinuum theory. In molecular physics, the nearest analog of
this system is a hydrogen molecule. In solids, motion of
electrons in such a “molecule” is a great deal complicated by
interaction of electrons with oscillations of the crystal lattice.
In a crystal, unlike in a molecular system, exchange-coupled
pairs of paramagnetic centers can occur both in the ground
singlet state1Sg

+, and in the lowest triplet one3Su
+ and the

distance between the centers is determined by the conditions
of the crystal growth, the structure of the crystal lattice and
impurity doping technology, but not by the minimum of the
total energy which includes interaction between static Cou-
lomb charges. In thermodynamic equilibrium, the population
density of triplet states is governed by the temperature. We
can get the simplest qualitative description of the energy
spectrum of such a system by introducing effective atomic
units instead of atomic ones, just as it is done for one-

electron shallow hydrogenlike centers. More simple two-
electron systems are bipolarons andF8 centers in polar crys-
tals andD− centers in semiconductorssanalog of anH− ion in
atomic physicsd.1–9 The binding energy ofD− or F8 centers is
significant in crystals with strong electron-phonon interac-
tion. The field of existence of bipolarons is confined to crys-
tals with strong electron-phonon interactionsfor h=«` /«0
=0, aùac=6.8d,10 where«` and«0 are high-frequency and
static dielectric permittivities, respectively, anda is a dimen-
sionless Fröhlich coupling constant of electron-phonon
interaction.11

Aggregate color centerssexchange-coupled pairs ofF
centers orF2 centersd in alkali-halide crystals were inten-
sively studied in Kiev school in the 1950’s.12 Consideration
of polaron effects reduced considerably the energy of two-
electron states. Subsequently, anF2 center served as a model
to develop a theory of a two-center bipolaron.13,14 In the
framework of this model, it was proved theoretically that a
stable autolocalized two-electron state can arise in crystals
with strong electron-phonon interaction. Contribution of
acoustical phonons into the ground-state energy of shallow
impurity centers in crystals was studied by Deigen.15

Early works on the study of the energy spectrum of two-
electron systems dealt with the lowest singlet states. There-
fore effects concerned with exchange interactionssEIsd,
namely, polaron effects were out of consideration. Deigenet
al.16 were the first to show that phonon contribution into the
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exchange interaction of impurity centers in crystals can be
comparable in the order of magnitude with direct Coulomb
exchange. In their work, interaction between large-radius im-
purity centers via fields of optical and acoustical phonons
was constructed by methods of perturbation theory. Kashi-
rina and Suslin17 dealt with polaron effects in an exchange
interaction of two-electron systems in polar crystals with
strong electron-phonon coupling. These authors18 used Green
functions to study temperature dependence of phonon contri-
bution into the exchange energy of shallow impurity centers
in crystals. They showed that in systems with closely spaced
electron levels, qualitatively new temperature dependencies
can arise in EIs of impurity centers due to contribution of
acoustical phonons into the isotropic exchange energy. These
systems demonstrated resonance effects leading to occur-
rence of terms in EIs with exponential dependence on tem-
perature.

Presently, interest in the study of exchange-coupled pairs
of shallow impurities has regenerated in the context of an
opportunity to use such two-electron systems as a basis for
constructing quantum computers which could operate on
both spin19 and nuclear resonance.20,21 In both the schemes
EIs between impurities provides interaction between qubits.
The results of Ref. 22 show that polarons and bipolarons are
good candidates to logical switching in molecular circuits of
conducting polymers. Therefore, theoretical studies of the
energy spectrum of simplest two-electron systems, such as
bipolaronssfree and coupledd and exchange-coupled pairs in
crystals are not only of purely academical interest, but of
practical importance as well.

Up to now no consideration has been given to the energy
spectrum of exchange-coupled pairs in crystals with arbitrary
value of electron-phonon coupling. Arising of a nonlocal ad-
dition sconcerned with inclusion of polaron effectsd in the
energy of a two-electron system makes the study of the sys-
tem rather a complicated procedure, as compared with a hy-
drogen moleculeswhich presents the closest analog of an
exchange-coupled pair of shallow impurities in a crystald. In
the strong coupling limit, the energy of exchange pairs has
been calculated in the framework of Heitler-London method,
which enables only a qualitative description of the
system.12,17

The necessity of considering electronic correlationsshere-
after this implies direct dependence of the WF of a system on
the interelectronic distanced imposes specific requirements
upon the trial variational function of the system. The func-
tion should be flexible enough to properly describe the ener-
gies of simplest two-electron systems in molecular and
atomic physicsshydrogen molecule, helium atom, negative
hydrogen iond. At the same time, it should be rather conve-
nient so that one could perform integration over the electron
coordinates and present the functional of the system in the
simplest way suitable for treatment by methods of multipa-
rameter functional variation.

In this work we deal with the most general two-electron
system in a crystal, namely, with an exchange-coupled pair
of shallow impurity centers in crystals with ion coupling.
Simpler systems, such as bipolarons andD− centers can be
obtained as its limit cases. We will analyze the dependencies
of the ground-state energy of the system on the distance be-

tween the centers for an arbitrary electron-phonon coupling,
identify phonon contribution into the total energy and discuss
the problems concerned with inclusion of interelectronic cor-
relations and their influence on the energy spectrum of an
exchange-coupled pair. We will also give some examples of
our calculations of EIs of large-radius paramagnetic centers
in crystals with an arbitrary value of the electron-phonon
interaction. The calculations have been performed by the
Buymistrov-Pekar method which is valid for an arbitrary
value of the electron-phonon interaction. The method is
widely used to calculate the energy of both one-electron23–25

and two-electron5,9,26,27states and gives the bestsfor rather a
versatile system of variation functionsd results in the calcu-
lation of theD−-center energy and the lowest values of the
bipolaron energy9,27 as compared with direct variational
methods which imply variation of the WF of the system.28

II. MAIN RELATIONS

Let us consider a pair of shallow impurity centers in a
crystal with ionic coupling. Interaction of the electron sub-
system with a phonon field is Fröhlich coupling withLO
phonons. Then, the exchanged coupled pair is described by
the Hamiltonian16

H = T12 + HQ + Hf + Hef, s1d

whereT12 is the kinetic energy of the electrons,HQ includes
all Coulomb interactions in the system,Hf is Hamiltonian of
the phonon field, andHef is Hamiltonian of the electron-
phonon interaction.

For a two-electron system consisting of two paramagnetic
centers occurring at pointssad and sbd in a crystal:

T12 = −
"2

2m* sD1 + D2d, s2d

wherem* is an electron effective mass.

HQ =
e2

«`r12
−

Z1e
2

«0ra1
−

Z2e
2

«0rb1
−

Z1e
2

«0ra2
−

Z2e
2

«0rb2
+

Z1Z2e
2

«0R
,

s3d

whererai is the distance of theith electron from the pointsad,
rbi is the same for the pointsbd, r12 is the distance between
the electrons,R is the distance between paramagnetic cen-
ters. This notation is traditional for two-center coordinate
systems which are used for calculations of the molecular
system energy.29 We place the coordinate origin in midposi-
tion between the pointssad and sbd.

Hf = "vo
k

ak
+ak, Hef = Hef

s1d + Hef
s2d,

Hef
sid = o

k
Vksak − a−k

+ dexpsik · r id, s4d

where Vk =−ise0/kdÎ2p"v /V«̃, 1 /«̃=1/«`−1/«0, e0 is an
electron charge,V is the crystal volume,v is the frequency
of optical phonons,k is the wave vector of phonons,ak

+ and
ak are the creation annihilation operator of phonons with the
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wave vectork, «` is high frequency, and«0 is static dielec-
tric permittivity i =1,2; r 1, r 2 are the electron coordinates.

Notice that the continuum consideration used in the work
is valid only in the framework of adiabatic approximation.
That is to say, we believe that nuclei of all the atoms and
weakly coupled electrons under study move much slower
than strongly coupled electrons of a dielectric. The latter
present a quick subsystem and are in the ground state which
belongs to a discrete level far removed from the electron
levels of the system involved. Then we assume that the quick
subsystem follows adiabatically the slow one. The adiabatic
approximation has also motivated phenomenological intro-
duction of screening of the interelectronic interaction poten-
tial by high-frequency dielectric permittivity representing the
inertia-free part of the screening. If these conditions are not
fulfilled, the effects of spatial and temporal dispersion of
dielectric permittivities should be taken into account as early
as at the stage of definition of electron-phonon interaction
which would imply going outside the framework of the
Fröhlich description.

In the early works devoted to consideration of two-
electron systems in ionic crystals2,3 one more restriction was
imposed which was concerned with the assumption that
weakly coupled electrons move much faster than the nuclei
of atoms in the crystal cell. Later on, in the work by Buymis-
trov and Pekar4 this restriction was removed. Additional as-
pects concerned with introduction of screening of the inter-
electronic interaction potential by high-frequency dielectric
permittivity and passing on to the limit of weak electron-
phonon interaction are discussed in Ref. 5.

The trial WF is chosen in the form

CSsr 1,r 2d =
1

ÎN12
o
i=1

n

Cif1 + s− 1dSP12gexpf− a1ir1
2

− 2a2isr 1 · r 2d − a3ir2
2 − 2a4iz1 − 2a5iz2g, s5d

whereCi, a1i, a2i, a3i, a4i, a5i are variational parameters,S
=0 for a singlet state of a two-electron system andS=1 for a
triplet one, andP12 is an operator for permutation of electron
coordinates.

The Hamiltonian of a singly ionized pair of hydrogenlike
paramagnetic centers in ion crystalssanalog of theH2

+ iond is
written as

H+ = T + HQ
+ + Hf + Hef

s1d, s6d

T = −
"2

2m* D, s7d

HQ
+ = −

Z1e
2

«0ra
−

Z2e
2

«0rb
+

Z1Z2e
2

«0R
. s8d

To minimize the Hamiltonians6d we choose a trial WF in
the form

Cg,u
+ = o

i=1

n

cifexps− air
2 − 2bizd ± exps− air

2 + 2bizdg, s9d

where the upper index refers to the lowest 1sg term and the
lower index to the lowest 1su one.

The terms are denoted in conformity with Ref. 29. The
WF Cg

+ is symmetrical andCu
+ is asymmetrical around the

inversion of the origin placed in between Coulomb centers.

III. USEFUL LIMIT TRANSITIONS

In order to prove flexibility of our functions we used WF
s5d to calculate the energies of singlet and triplet terms of a
hydrogen molecule, the ground state of a negative hydrogen
H−, and the energies of para-helium and ortho-helium and
applied WFs9d to find the energy of two lowests1sg and
1sud terms of an ionized hydrogen molecule. For atomic and
molecular systems we put«0=«`=1.

Our calculations with the use of variational WFs5d for
n=32 at the equilibrium internuclear distanceR
=1.4011 a.u. yield a ground state energy of a hydrogen mol-
ecule equal to −1.17416 a.u. and a lowest triplet term equal
to −0.78405 a.u. The result obtained by James and
Coolidge30 for the ground singlet state is −1.172 a.u. and
experimental value is −1.174±0.003a.u.31,32 The latest
calculations33 based on 80-term wave functions in the Born-
Oppenheimer approximation yielded the value
−1.1744746 a.u.s1Sg termd and −0.7841501 a.u.s3Su term
for R=1.4 a.u.d. New experimental data and references to the
works concerned with the study of the energy spectrum of a
hydrogen molecule are given in Ref. 34.

WF s5d can also be used to find the energies of one-
electron states. If we omit in Eq.s3d the terms standing for
interelectronic repulsion, Hamiltonians1d will transform into
a sum of two one-electron Hamiltonians corresponding to a
molecular hydrogen ion H2

+. Variation of the Hamiltonian
with the use of WFs5d swhich corresponds to the singlet
term of a two-electron systemd yields the double ground state
energy of an ionized hydrogen molecule H2

+. Averaging over
the WF s5d corresponding to the triplet state gives a sum of
the energies of the ground 1sg term and the repulsive 1su
term of H2

+.
If we put R=0 in Eq. s3d and omit the terms correspond-

ing to internuclear repulsion, we will get a limit transition to
a helium atom. The energies of para-helium and ortho-
helium obtained by us with the use of Eq.s5d are equal to
−2.903723 and −-2.17515 a.u., respectively. The energy of a
negative hydrogen ion is calculated to be −0.5027742 a.u.,
while the exact value is −0.5027751 a.u.35

If we omit the terms corresponding to interelectronic and
internuclear repulsion in Eq.s3d and putR=0, we will obtain
a limit transition to the model one-center system consisting
of two identical singly ionized helium atoms which do not
interact with each other. Symmetrical WFs5d yields the
double ground-state energy, the asymmetrical one gives a
sum of the energies of the ground and the first excited states
of He+ atom. Calculation of the total energy of two identical
noninteracting one-electron systems with the use of a two-
electron WF is the simplest numerical illustration of how the
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Pauli principle is realized and in what order energy levels in
a two-electron system are populated. Thus, for the lowest
triplet term of a system consisting of two noninteracting He+

atoms located at one point, just the state at which one He+

atom is in the ground state and the other is in the first excited
one can be realized.

With the use of WFs5d, we have succeeded to reproduce
classical experimental distance dependencies of the ground
state of a system consisting of two hydrogen atoms.29 The
trial functionss9d have enabled us to reproduce similar de-
pendencies for an ionized hydrogen molecule.29 Highly ac-
curate values have been obtained for the energy and the equi-
librium internuclear distance of a hydrogen molecule and for
the energy and the equilibrium internuclear distance of a mo-
lecular ion H2

+. Thus, for the WFs9d symmetrical about the
inversion operationsfor R=2 a.u.d we have −1.102605 a.u.,
and for the asymmetrical one the energy is equal to
−0.667510 a.u., while the relevant exact values are
−1.102625 and −0.667535 a.u., respectively.29,36

In view of the fact that in solids optical and ESR spectra
of simplest one-electron and two-electron systems are a great
deal broadened, an accuracy provided by WFs5d is well
suited to the description of the energy spectrum of such sys-
tems.

IV. BUYMISTROV-PEKAR METHOD AS APPLIED TO
CALCULATIONS OF THE ENERGY OF TWO-ELECTRON

SYSTEMS IN CRYSTALS WITH AN ARBITRARY
VALUE OF THE ELECTRON-PHONON INTERACTION

The Buymistrov-Pekar method was applied to two-
electron systems in ionic crystals with an arbitrary value of
electron-phonon coupling in Ref. 4, where systems without
translational invariancesF andF8 centersd and autolocalized
polaron and bipolaron states were considered. Later on Bui-
mistrov and Pekar37 analyzed a more general case when the
WF of a polaron state was chosen with regard to translational
invariance of the system. However, their numerical calcula-
tions were performed only for an approximate functionalsin
particular, they used an expansion in terms of the wave vec-
tor k which is valid only in the limit case of smallkd. The
general expressions derived in Ref. 37 for the functional of
the ground state of a translationally invariant polaron are so
complicated that even nowadays they cannot be minimized
numerically without the use of some approximation. At the
same time, calculations of the energy of aD− center by the
Buymistrov-Pekar methodsthe limit of lacking translational
invarianced in combination with the Gaussian system of
functions yield the lowest values for the minimum of the
corresponding functional.9 The same refers to the bipolaron
energy obtained by a direct variation of the WF of the
system.27 Integration over trajectories as applied to the bipo-
laron problem is currently the only method which gives the
lowest values of bipolaron energy with regard to translational
symmetry. The region where this advantage holds is rather
narrow s6.8øaø7.05d. For aù7.05 the lowest values of
bipolaron energy were obtained by the Buymistrov-Pekar
method for the case of lacking translational symmetry.27 Nu-
merous attempts to find translationally invariant solutions of

the bipolaron problem by traditional methods via direct
variation of the WF of an electronic systemssee Ref. 38, and
references therein39,40d yielded larger values of the bipolaron
ground-state energy as compared to the works were WF cor-
responding to autolocalized states were used.26–28,41–44

Amirkhanovet al.45 obtained numerically translationally in-
variant solutions without variation of the electron WF, how-
ever, these authors have not succeeded to reduce the value of
the bipolaron energy relative to the best results obtained for
autolocalized WF. Combination of Feynman integration over
trajectories with direct variational method also leads to larger
energy values.39

In a modern presentation, the Buymistrov-Pekar method
is reduced to canonical transformation of Hamiltonian
s1d as expsaSdH exps−aSd with unitary operator S
=SkfFk

* sr 1,r 2dak −Fksr 1,r 2dak
+g, whereFksr 1,r 2d is a func-

tion of the electronic system co-ordinates. We choose a func-
tion Fk in the form

Fk = C̃k + gk fsr 1,r 2d, s10d

whereC̃k, gk are variational parameters. In what follows we
will use Feynman system of units where"=1, v=1, and
2m* =1. Accordingly, the unit of energy is"v, and the unit of
length isL0=Î" /2m*v.

Variation overC̃k andgk yields the following expressions
for the functional of the ground state of an exchanged-
coupled pair:

E = Vs + Vfi , s11d

Vfi = o
k

Vk
2 Ũk

2

2k2 + Ukv
, s12d

Ũk = kC12ufksr 1,r 2dLk
* sr 1,r 2duC12l − kC12ufksr 1,r 2duC12l

3kC12uLk
* sr 1,r 2duC12l, s13d

Lk
* sr 1,r 2d = exps− ik · r 1d + exps− ik · r 2d, s14d

Uk = kC12ufksr 1,r 2dfk
* sr 1,r 2duC12l − kC12ufksr 1,r 2duC12l

3kC12ufk
* sr 1,r 2duC12l, s15d

whereVfi is an addition which has appeared for intermediate
coupling andVs corresponds to the functional of the system
in the limit of strong electron-phonon interaction

Vs = T̄12 + bVee− gVZe+ o
k

Vk
2ukexps− ik · r 1d

+ exps− ik · r 2dlu2, s16d

a =
e2

2"v
S 1

«`

−
1

«0
D 1

L0
, L0 = Î"2m*v,

b =
e2

"v«`L0
=

2a

1 − h
, g =

e2

"v«0L0
=

2ah

1 − h
,

h = «`/«0,
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T̄12 = −E C12sD1 + D2dC12
* dt, s17d

Vee=E uC12u2

r12
dt, s18d

Vze=E S Z1

ra1
+

Z1

ra2
+

Z2

rb1
+

Z2

rb2
−

Z1Z2

R
DuC12u2dt. s19d

C12 is the wave function of a two-electron system.
In the subsequent discussion we will only be interested in

the electronic part of the two-electron system energy, there-
fore the term in Eq.s19d corresponding to the interaction of
static Coulomb charges occurring at pointssad andsbd will be
omitted. Then we putZ1=Z2=1, fksr 1,r 2d=Lksr 1,r 2d.

The use of WFs5d enables easy integration over elec-
tronic coordinates. So, the problem is reduced to variation
and finding a minimum for the function of many variables
EBpsR,Ci ,akid, wherek=1,2,3,i =1, . . . ,N.

V. POLARON EFFECTS AND ELECTRONIC
CORRELATIONS IN TWO-ELECTRON SYSTEMS

The role of electronic correlations in two-electron systems
is clearly demonstrated by the study of a bipolaron spatial
configuration. Hamiltonian of a system consisting of two
electrons interacting with phonons in an ionic crystal can be
obtained from the general Hamiltonians1d if we put HQ
=e2/«`r12. Within the Buymistrov-Pekar method, the func-
tional of a bipolaron is derived from functionals11d for g
=0 in Eq. s16d in the form

EBp = T̄12 + bVee+ Vf , s20d

Vf = Vfs + Vfi ,

Vfs = o
k

Vk
2ukexps− ik · r 1d + exps− ik · r 2dlu2, s21d

whereVf is just responsible for the phonon contribution into
the bipolaron ground-state energy,Vfs is the part correspond-
ing to strong coupling, andVfi is an addition for intermediate
coupling determined by Eqs.s12d–s15d.

A one-centersOCd bipolaron or Pekar bipolaron was first
considered in Ref. 2 in the strong coupling limit. There the
term “bipolaron” was first introduced to mean a stable state
of two polarons.1,2 The WF of a two-electron system was
chosen in the multiplicative form

CBpsr 1,r 2d = as1das2d, s22d

whereas1d is a polaron wave function.
For this WF, a bipolaron functionalVs is equal to the sum

of two polaron functionals. Therefore a bound state of a bi-
polaron is lacking. Multiplicative form of the WF was also
used in Ref. 4.

Vinetskii and Giterman13 calculated the energy of bipo-
laron in ionic crystals with the use of the method and

analytical expressions derived by Deigen12 for the functional
of anF2 centersstrong couplingd. In their model a bipolaron
was considered as an analog of a hydrogen molecule or a
two-centersTCd bipolaron. The possibility of the formation
of a stable bipolaron state was proved in the framework of
the TC bipolaron model.13,14 A two-electron WF was con-
structed in the framework of Heitler-London method by
complete analogy with the WF of a hydrogen molecule:

CBpsr 1,r 2d = Nfas1dbs2d + as2dbs1dg, s23d

where

as1d = sl3pd1/2exps− lra1d,

bs1d = sl3pd1/2exps− lrb1d,

N = 1/Î2s1 + S2d, S=E as1dbs1ddt.

Table I lists the energies of the bipolaron ground state
obtained with the use of this function and the values of the

relations EBp
HL /2EP and ẼBp

HL /2EP, where EBp
HL, ẼBp

HL are the

energies of the bipolaron ground state forl=lm and l= l̃m
respectively. The variational parameterlm minimizes the po-

laron functional for a hydrogenlike WFas1d, while l̃m sour
calculationsd minimizes the bipolaron functional for the WF
s23d. In Vinetskii’s later work14 one-electron WF were cho-
sen in a more complicated formas1d=ws1d=s1+lra1dexps
−lra1d. The value of the relationEBp

HL /2EP, whereEP is the
polaron energy for WFws1d, was calculated to be 1.08sRef.
14d, as for the simplest hydrogenlike function.

The necessity of considering electronic correlations
snamely, electronic correlations concerned with direct depen-
dence of the electron WF on the interelectronic distanced was
demonstrated in Larsen’s work where the energy ofD− cen-
ters in crystals with ionic coupling was calculated.5 The cal-
culations were performed for an arbitrary value of electron-
phonon interaction in the framework of Buymistrov-Pekar
method. The electron WF was chosen in the form

Csr 1,r 2d = s1 + bsds1 + cudcoshsgtdexps− dsd, s24d

where s=r1+r2, t=r1−r2, u= ur 1−r 2u are Hylleraas coordi-
nates, andb, c, g, d are variational parameters.

Larsen5 reported a giant growth of the coupling energy of
a D− center when the WF was chosen with regard to inter-
electronic correlations in semiconductors with ionic coupling
and in ionic crystals. Interelectronic correlations were taken
into account by the multipliers1+cud. In crystals with rela-
tively large value of electron-phonon interaction he used the
approximation withg=0 in Eq.s24d. Larsen did not consider
the coupling energy of a free bipolaron, though the applica-
tion of the WFs24d to the bipolaron problem must have led
to one of the lowest values of the ground-state energy for an
arbitrary value of electron-phonon interaction. In Ref. 43 the
WF of a one-center bipolaron was taken in the form

Csr 1,r 2d = s1 + ar1ds1 + ar2ds1 + budexps− asd. s25d
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Calculations were performed by the strong coupling
method. Earlier the same function was used in Ref. 3 to
calculate the energy of anF8 center in the strong coupling
approximation. There bipolaron states were not treated ei-
ther. In view of the fact that Suprun and Moyzhes43 figured
only the bipolaron energy dependence on the parameterh
but the value of the bipolaron ground-state energy obtained
with the use of the WFs25d was not given, we have carried
out these calculations independently. Table I lists the
energy of the bipolaron ground state calculated with the
WF s25d. Figure 1 illustrates fundamental difference of the
multiplicative WF fb=0 in Eq. s25dg from the two-electron
WF chosen with regard to interelectronic correlations. Both
the WF correspond to parameters which minimize the
bipolaron functional. One electron is placed in the coordinate
origin. For the other we putz2=0 and coordinatesx2

and y2 vary along horizontal axes. The vertical axis repre-
sents the WF density. The density of the two-electron
WF in the coordinate origin chosen as a product of polaron
WF s1+lr1ds1+lr2dexpf−lsr1+r2dg is taken to be unity. It is
seen that the multiplicative approximations22d fFig. 1sadg
corresponds to the maximum density of the WF at the point
where both the electrons occursr 1=r 2=0d, on the contrary,
the density of the WFs25d at this pointfFig. 1sbdg has a deep
minimum.

Generally, multipliers in a two-electron WF taking into
account interelectronic correlations reduce a relative role of
the regions where the electrons are closely spaced and raise
the role of the regions where the electrons are spaced apart.
In this case the bipolaron WF can have a maximum at the
point r 1=r 2=0. As an example we refer to the WF of a
one-center bipolaron such that

TABLE I. Energiessfor h=0d and domains of existence of bipolarons obtained by various methods in the
strong coupling limit. HL, MO, Heitler-London method, and the method of molecular orbitals accordingly
fwithout variation overl in WF s23d ands28dg, HL*, MO*—the same with variation overl. TCsCd, OCsCd
are two-center and one-center configurations of a bipolaron with regard for electronic correlations.Ep, EBp

are the energies of a polaron and a bipolaron, respectively.Rm is the equilibrium state between the centers of
polarization wells of two polarons,ELp=−25/512,Ep

M =−0.0542564 is the exact value of the polaron energy
in the strong coupling limitsin the strong coupling limit effective atomic energy unitsHa* =e2/ «̃a* and
lengthsa* ="2«̃ /m*e2 were usedd, hc, hc

* are critical values of the parameterh, calculated with respect toELp

andEp
M accordingly,Q=EBp/2EP, andQ* =EBp/2EP

M.

Method, Ref. HL, Ref. 12 HL* MO MO* Ref. 46 Ref. 48 Ref. 48

WF TC TC TC TC OCsCd TCsCd TC

−EBp 0.10612 0.10784 0.10024 0.10071 0.134624 0.136512 0.11503

Rm 4.5518 4.1155 2.5149 2.5538 0 0 5.0225

−Ep ELp ELp ELp ELp 0.05351 Ep
M Ep

M

hc 0.0535 0.0542 0.0142 0.0150 0.1392 0.1432 0.016

hc
* 0 0 0 0 0.1322 0.1432 0.016

Q 1.0866 1.1043 1.0265 1.0313 1.2579 1.2581 1.0602

Q* 0.9779 0.9938 0.9238 0.9281 1.2406 1.2581 1.0602

FIG. 1. sad Density of the WF of a one-center bipolaron without regard for interelectronic correlationsfb=0 in WF s25dg. sbd The same
for the case of WFs25d, chosen with regard to interelectronic correlations. One electron is placed in the coordinate originsr 1=h0,0,0jd and
the radius vector of the other electron isr 2=hx2,y2,0j. The density of the two-electron WF in the origin chosen as a product of polaron WF
is taken to be unity.
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Fsr 1,r 2d = o
i=1

n

Ci expf− a1ir1
2 − 2a2isr 1 · r 2d − a3ir2

2g.

s26d

This choice of the WF provides the lowest bipolaron en-
ergies in the strong coupling limit.44,46 Table I lists relevant
characteristics of a bipolaron. Electronic correlations are
taken into account by the multipliers expf−2a2isr 1·r 2dg.

Figure 2 shows the densities of the WFs26d svertical axisd
corresponding to the parameters which minimize the bipo-
laron functionals20d in the strong coupling limit for the case
when correlation terms are lacking in the trial WFsi.e., a2i
=0, a1i =a3id fFig. 2sadg and relevant figures for the WF of
the most general form for which the lowest values of the
ground-state functional were obtainedfFig. 2sbdg. The mean-
ings of the electron coordinates are the same as in Fig. 1. The
scale of the graphs along the vertical axis is taken such that
unity corresponds to the density of a WF chosen without
regard for correlation termsfFig. 2sadg at the pointr 1=r 2
=0. It is seen that the profile of the bipolaron WF which
takes electronic correlations into account has a larger width
and a shallower maximum at zero as compared to the WF in
which electronic correlations are neglected. Note also that
minimization of the polaron functional with the WF

Cp = o
i=1

n

Ci exps− aird s27d

leads to an exact numerical value of the polaron energy in
the strong coupling limit as early as atn=5 in Eq. s27d.
We obtained for the polaron energy in this case
Ep=−0.054256401Ha* swhere Ha* =m*e0

4/"2«̃2, «̃-1=«`
−1

−«0
−1d. This value completely coincides with the exact po-

laron energyEp
M =−0.0542564 which was found in Ref. 47

for the strong coupling limit as a result of numerical solution
of a relevant Eiler equation.

Sahoo and Mitra48 reported the lowest energy values for
the spatial configuration corresponding to a TC bipolaron
sstrong coupling limitd. There the electron part of the bipo-

laron trial WF was chosen in the framework of a molecular
orbital sMOd method without regard for configurational in-
teraction:

F12 = Csr1dCsr2d = N12fas1d + bs1dgfas2d + bs2dg,

s28d

where

as1d = sl3/pd1/2exps− lra1d,

bs1d = sl3/pd1/2exps− lrb1d,

N12 = 1/Î2s1 + Sd, S=E as1dbs1ddt.

The results of Ref. 48 obtained ath=0 andRm equal to
the bipolaron functional minimum, are the following:
EBpsZmd /2ELp=1.22, Zm=lmRm=4.720, where lm=5/16,
ELp=−25/512sin the strong coupling limit effective atomic
energy unitsHa* =e0

2/ «̃a* and lengthsa* ="2«̃ /m*e0
2 were

usedd. The critical valuehc=«` /«0 below which bound bi-
polaron states exist, was found to be 0.14. A simplest quali-
tative analysis suggests that these calculations contain a nu-
merical error. As is known, with no regard for
configurational interaction, the MO method yields overesti-
mated values of the ground-state energy of a hydrogen mol-
ecule as compared with the Heitler-London method.29 The
reason is overestimation of the role of OC configurations in a
molecular system. If a OC configuration corresponding to the
bound state of a negative hydrogen ion leads to overestima-
tion of the total energy of a hydrogen molecule, the lack of a
bound OC bipolaron state corresponding to the WF chosen in
multiplicative form ffor a one-center configurationas1d
=bs1d, Cs1,2d=as1das2dg all the more must lead to overes-
timated results of the bipolaron ground-state energy as com-
pared with relevant values obtained by Heitler-London
method.

With the use of the MO method we can find a bipolaron
functional for the WF given by Eq.s28d, from a relevant
functional of a hydrogen moleculefsee Ref. 29, p. 87, Eq.
s4.7d for H11g. For this purpose we should omit the terms

FIG. 2. sad Density of the WF of a one-center bipolaron without regard to interelectronic correlationsfWF s26d for a1i =a3i, a2i =0g. sbd
The same for WFs26d of the most general formsa1i Þa3i, a2i Þ0d.
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corresponding to interaction of electrons with protons and
protons with each other. The part of the functional corre-
sponding to electron-electron interaction should be multi-
plied by s«`

−1−2«̃−1d. Sahoo and Mitra48 varied a functional
which contained an error in the part corresponding to the
bipolaron kinetic energy. Table I lists the energy values of
the TC bipolaron ground-state and critical values ofhc ob-
tained by Heitler-London method as well as the relevant val-
ues obtained by us by the MO method. The values ofhc and
Q=EBp/2Ep swhereEBp, Ep are the energies of bipolaron and
polaron, respectivelyd were calculated with respect to the po-
laron energyEp found within the same approximation as the
bipolaron energy, the values ofhc

* and Q* were calculated
with respect to the exact value of the polaron energy in the
strong coupling limitEp

M. As would be expected, by com-
plete analogy with a hydrogen molecule, the MO method as
applied to the bipolaron, yields higher values of the ground-
state energy, than the HL method. Discussion of an overes-
timated value of the ground-state energy of a OC bipolaron
obtained in Ref. 49 as a result of variation of an erroneous
functional is given in Refs. 28 and 39.

So, bipolaron states were considered in the framework of
two models, i.e., OC and TC ones. The OC model yielded a
deeper minimum, therefore most of the works on bipolaron
subject matter that came out after Suprun and Moizhes’
publication43 dealt with just the OC bipolaron
configuration.26,28,38,41,50,51However, the drawback of the OC
model as compared to the TC one lied in the fact that the trial
OC WF were chosen in the form which did not enable re-
searchers to get an appropriate limit transition to spaced-
apart polarons. They could not construct a dependence of the
energy of the interaction between two electrons on the dis-
tance between the centers of the polarization wells either. In
addition, the studies cited did not touch upon the question of
the kind of the extremum corresponding to a one-center con-
figuration. If an additional parameter corresponding to the
distance between the polarons had been entered into a trial
function, the OC configuration might have appeared to cor-
respond not to the minimum but to the maximum on the
energy-vs-distance curve and, despite the fact that the neces-
sary condition of the existence of a bound bipolaron is ful-
filled sEBp,2Epd, this configuration may appear unstable.
This problem can be solved with the trial WF of the form

Fsr 1,r 2d = o
i=1

N

Ci8s1 + P12d

3expf− a1ira1
2 − 2a2isr a1 · r b2d − a3irb2

2 g.

s29d

Note that since the bipolaron functionals20d does not
contain any terms depending on the distanceR between the
centers of polarization wells, the WF of the most general
form s5d cannot be used to calculate the bipolaron energy.
The distanceR can be entered there artificially, by applying
additional restrictions to the function. Thus, with the choice

Ci = Ci8 expf− 0.25sa1i − 2a2i + a3idR2g, s30d

a4i =−0.5sa1i −a2idR, a5i =0.5sa3i −a2idR, the WFs5d changes
to the WF s29d. The WF s29d provides sfor N=n2,

n=1,2, . . .d appropriate limit transitions to both OC and TC
configurations as well as to polarons infinitely distant from
each other. To pass on to the one-center configuration, we put
R=0 in Eq.s29d and get the WFs26d. ForR→`, variation of
a bipolaron functional with the WFs29d sa2i =0, a1i =a3id
leadsffor N=n2, n=1,2, . . ., in Eq.s29dg to double polaron
energy, calculated with the use of WFs27d.

Table I also lists the values of the ground-state energy of
a OC bipolaronswhich we independently reproduced within
the strong coupling method relying on the results of Ref. 43d
and the data which were obtained in Ref. 44 in the strong
coupling limit with the WFs29d for OC and TC configura-
tions corresponding to equilibrium distance between the cen-
ters of polarization wells for a WF of a less general form
without electronic correlationssa2i =0, a1i =a3id. Note that in
order to compare various calculation methods realized within
the variational approach, we should compare just the energy
of the bipolaron ground-state but not the values ofQ
=EBp/2Ep andhc, where the polaron energy is generally cal-
culated in the framework of the same approximation as the
bipolaron energyEBp, e.g., Refs. 26 and 43.

Figures 3sad and 3sbd illustrates the dependencies of the
bipolaron energyfand various contributions into this energy,
Fig. 3sbdg on the distance between the centers of polarization
wells for a=9 andh=0. These dependencies correspond to
minimization of the bipolaron functionals20d with WF s29d
for N=5. Curve C in Fig. 3sad and all the dependencies
shown in Fig. 3sbd were obtained with the trial WFs29d of
the most general formsa2i Þ0, a1i Þa3id. Figure 3sbd shows
the dependencies of various contributionssT, Vq, Vf are ki-
netic, Coulomb energies and phonon contributionsd into the
bipolaron energyEBp on the distance between the centers of
polarization wells. The curveVfs corresponds to the strong
coupling contribution of phonons to the total energy deter-
mined by the equationEBp=T+Vq+Vf.

Within Buymistrov-Pekar method, the use of Eq.s27d for
N=5 anda=9 yields the polaron energy to beEp=−10.564.
Having performed variational calculations with the WFs29d
of a less general formsa2i =0, a1i =a3id, we model a two-
center bipolaron configurationfcurve A Fig. 3sadg. In this
case the distance between the centers of polarization wells
can be considered as a variational parameter. At the point
R=0 this distance has a maximum which coincides in size
with double polaron energy calculated in the framework of
this approximation. The results of calculations carried out in
the strong coupling limitsminimization of the bipolaron
functional withVfi =0, a2i =0, a1i =a3id are listed in Table I.
Thus, forh=0 the minimum of the functional is reached for
R=Rm=5.0225a* and is equal to −0.11503Ha* . As is seen
from Table I, this minimum is the deepest of all the results
obtained by now with the use of the TC bipolaron model.
Figure 4sstrong couplingd demonstrates lines of equal den-
sity of the WF for a two-centerfFig. 4sadg bipolaron configu-
ration R=Rm, and for two polarons spaced at a considerable
distancefFig. 4sbdg R=10. Note that for the distanceRm cor-
responding to a TC configurationfless general form of the
WF s29d, a2i =0, a1i =a3ig the shape of the bipolaron WF
resembles an ellipsoid of revolution rather than a dumbbell
as it is generally believed. A visual separation of the WF into
the system with two maxima corresponding to spaced away
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polarons takes place at much largerR as compared with the
equilibrium distanceRm. This behavior is also typical for the
bipolaron WF chosen in the framework of Heitler-London
method with the use of a hydrogenlike WF.

If we choose the WFs29d with a2i =0, a1i Þa3i we will get
a curve B in Fig. 3sad which also corresponds to the bipo-
laron configuration. For this WF,sdirect dependence of the
WF on the interelectronic distance is lackingd the OC con-
figuration corresponds to a maximum. Therefore, despite the

fact that the necessary condition of the bipolaron existence
EBp,2Ep is fulfilled, the OC configuration appears unstable.

With the most general choice of the WF in the forms29d,
the minimum corresponding to the TC bipolaron configura-
tion disappears, and only one minimum holds atR=0 fFig.
3sad, curve Cg. This behavior of the functional shows that a
stable TC bipolaron configuration appears due to the choice
of insufficiently flexible WF which does not take account of
electronic correlations concerned with direct dependence of

FIG. 3. sad Dependence of the bipolaron energy on the distance between the centers of polarization wells of two polaronssh=0, a=9d.
Curves A, B, C correspond to variation of the functional of the bipolaron ground-state with the use of WFs29d with sa1i =a3i, a2i =0d,
sa1i Þa3i, a2i =0d, sa1i Þa3i, a2i Þ0d, respectively.sbd Dependencies of various contributions into the bipolaron energy on the distance
between the centers of polarization wells of two polarons for WFs29d of the most general forma1i Þa3i, a2i Þ0. T is the kinetic energy,Vq

is the Coulomb interelectronic repulsion,Vfs is the contribution of the terms corresponding to strong coupling in Eq.s21d, and Vf =Vfs

+Vfi is the total phonon contribution into the ground-state energy of a bipolaronEBp=T+Vq+Vf.

FIG. 4. sad Lines of equal density for a two-center bipolaronfinterelectronic correlations are lacking anda1i =a3i, a2i =0 in WF s29dg in
the case of equilibrium distance between the centers of polarization wellsRm, corresponding to the minimum of the ground-state energy.sbd
The same for two polarons separated by a distanceR=10. The axisOZ is chosen along the line joining the centers of polarization wells of
two polarons. The coordinate origin is chosen in the middle of the fragment joining these centers.
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the electron WF on the interelectronic distance.
So, taking account of the direct dependence of the WF on

the interelectronic distance gives rise to a single minimum
corresponding to a OC configuration. This energy pattern of
a two-electron systemsnamely, only one minimum on the
curve for the distance dependence of the energy of a two-
electron system in a polar crystald holds for the whole region
of the bipolaron existence with respect to the parametera.

Notice that the variation parametera=kr1−r2l which is
treated in Ref. 10 as the mean distance at which electrons
fluctuate is analogous to the variation parameterR used in
this paper. Our results correlate well with the fact that the
only energy minimum of a bipolaron corresponds toa=0.10

However, the dependencies of the bipolaron energy on the
parametera are not given in Ref. 10 because for anya.0
the criterion of the existence of a stable bipolaron stateEBp
,2Ep is not fulfilled in the cited work.

Table II illustrates energy values of the ground state ofD−

sS=0d andD0 centersE− andE0, respectively, calculated by
us for crystals of AgBr and AgCl. The coupling energy is
designated asEB. All the energies are expresses in"v units.
The upper indicesL andA mark the values obtained in Refs.
5 and 6, respectively. The number of terms in the WFss26d
ands27d, used to calculate the energy ofD− andD0 centers is
equal to 12. As is seen from Table II, Buimistrov-Pekar
method in combination with the WFs26d yields the lowest
values for the ground-state energy of aD− centersor bound
bipolarond.

VI. PAIRS OF LARGE-RADIUS PARAMAGNETIC
CENTERS

While the TC configuration of a free bipolaron has ap-
peared energetically unstable, the bound two-center bipo-
laron corresponds to a stable state. We mean pairs of large-
radius paramagnetic centers in crystals with ionic coupling.
Since Hamiltonians1d, used in this work is based on the
continuum approach, we cannot expect that it would cor-
rectly describe the energy spectrum ofF2 andF8 centers in
alkali halides. However, in semiconductors with ionic cou-
pling sfor example, in II-VI and III-V semiconducting com-
poundsd and, e.g., in high-purity silver halidessAgBr and

AgCld there exist shallow donorlike centers for which our
model is accurate enough.5,24,25 Therefore we will illustrate
our approach by computations of the energy ofF8 sor D−d,
F2 andF2

+-centers.
Figure 5sad and 5sbd shows the ground-state energy, ki-

netic, Coulomb energies, and contribution of phonons into
the total energy of a pair of shallow hydrogenlike centers and
those for a singly ionized pair in AgBr for various distances
between paramagnetic centers. Figures 6sad and 6sbd demon-
strates relevant distance dependencies in AgCl. Polaron ef-
fects in an exchange interaction are to be treated in an indi-
vidual paper. Note only that the energy of a triplet state can
be calculated with the WFs5d, corresponding to the WF an-
tisymmetrical about electron coordinates. In this case the ex-
change energy corresponds to the difference between the en-
ergies of a singlet and triplet states. Figure 7 illustrates the
energy dependence of triplet terms of a pair of shallow hy-
drogenlike centers in AgBr and AgCl, calculated by us for
various distances between the centers and the same for a 1su
term of singly ionized pairs. For all the distances between
paramagnetic centers the phonon contribution into the EI has
antiferromagnetic character and is comparable in the order of
magnitude with direct Coulomb exchange. The EI of two
polarons has antiferromagnetic character too.46

VII. CONCLUSION

Variational calculations performed with the use of a
Gaussian system of functionss5d with regard to interelec-
tronic correlations has enabled us to get spectroscopically
accurate results for the energies of the singlet and lowest
triplet states of simplest two-electron systems in atomic
physics and a hydrogen molecule. The use of the proposed
system of variational functions in solids has allowed us to
obtain the energies of a two-electron system in crystals with
account of polaron effects for a an arbitrary value of
electron-phonon coupling. The system of functions that we
have applied to calculate the energy of the most complicated
two-electron system, namely, an exchange-coupled pair of
paramagnetic centers in isotropic crystals can also be used to
find the energy spectrum of exchange-coupled pairs and
more simple two-electron systemssbipolarons andD− cen-

TABLE II. Energy values of the ground state ofD− sS=0d and D0 centers,E− and E0 calculated for
crystals of AgBr and AgCl, respectively. The coupling energy is designated asEB. All the energies are
expresses in"v units. The upper indicesL andA mark the values obtained in Refs. 5 and 6, respectively. The
number of terms in the WFs26d ands27d, used to calculate the energy ofD− andD0 centers is equal to 12.

a R
"v,

smeVd E− E0 EB
− EB

0 EB
− /EB

0

AgBr 1.64 1.68 15.4 −5.656 −3.818 0.198 2.178 0.091

−5.637L −3.817L 0.180L 2.177L 0.083L

0.132A 2.166A 0.061A

AgCl 1.9 1.9 24.4 −6.668 −4.483 0.285 2.583 0.110

−6.643L −4.482L 0.261L 2.582L 0.101L

−6.662A 0.202A 2.560A 0.078A
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tersd in crystals with anisotropic effective masses and dielec-
tric permittivities and in low-dimensional systems. The
Buymistrov-Pekar method used in our calculations yields the
lowest values of the ground-state energy of two-electron sys-
tems as compared to other approaches implying direct varia-
tion of the WF of the system.9,27

The energy of electron coupling in an exchange coupled
pair can be calculated as a difference between the sum of
energies of a polaron and a singly ionized pairs1sg termd

and the ground-state energys1Sg termd. The energy spectrum
of the neighboring pairs of shallow hydrogenlike centers
more closely resembles a helium atom than a molecular sys-
tem. In a singlet state, interelectronic interaction enhances
the electron energy of a molecular formation as compared
with the coupling energy of an isolated donor. In a triplet
state the opposite situation occurs.

Using the graphic dependencies of Figs. 5 and 6 we can
calculate coupling energies of such formations. The polaron

FIG. 5. sad Dependencies of various contributions into the ground-state energy of anF2 centers1Sg termd in AgBr on the distance
between the centers of polarization wells of two polarons for WFs5d. T is the kinetic energy,Vq corresponds to Coulomb interactions in the
system,Vfi is the phonon contribution of the terms corresponding to intermediate coupling in Eq.s21d, andVf =Vfs+Vfi is the total phonon
contribution into the ground-state energy of anF2 center, determined by minimization of functionals11d sE=T+Vq+Vfd. sbd The same for
the 1sg term of anF2

+ center in AgBr.

FIG. 6. sad Dependencies of various contributions into the ground-state energy of anF2 centers1Sg termd in AgCl on the distance between
the centers of polarization wells of two polarons for WFs5d. T is the kinetic energy,Vq corresponds to Coulomb interactions in the system,
Vfi is the phonon contribution of the terms corresponding to intermediate coupling in Eq.s21d, and Vf =Vfs+Vfi is the total phonon
contribution into the ground-state energy of anF2 center, determined by minimization of the functionals11d sE=T+Vq+Vfd. sbd The same
for the 1sg term of anF2

+ center in AgCl.
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energy of the studied crystals is given bys−ad with a good
accuracy. The energies of the ground state of isolated donors
and corresponding coupling energies in AgBr and AgCl cal-
culated by the intermediate coupling method are presented in
Table II. For example, forR=0.5, the coupling energies of an
electron in donor pairs in singlet and triplet states are equal
to 2.594 and 0.35102 in AgBr and 2.8589 and 0.29551 in
AgCl. All the energies are in units of"v s=15.4 and
24.4 meV in AgBr and AgCl, respectivelyd.

By way of illustration, in this work we have calculated
relaxed1Sg and3Su terms of exchange pairs of shallow hy-
drogenlike centers as a function of distance between the cen-
ters. The1Su term can also be calculated in a similar way.
The spectra of infrared absorption by neutral molecules con-
sisting of donor pairs in III-V semiconducting compounds,
associated with optical transitions between1Sg and1Su terms
were observed by Stradlinget al.52 and Bajajet al.53 and
considered theoreticallyswithout regard for polaron effectsd
by Golka.54

The spectrum of isolatedF centers of AgBr and AgCl was
studied by Sakuragi and Kanzaki.55 According to their re-
sults, the lines in AgBr corresponding to the 1s-2p transition
of a bound polaron fallsfor various impuritiesd in the range
of 19.8–22.4 meV. For AgCl the corresponding range is
30.5–35 meV. The energy of this transition was calculated
by Buimistrov24 and subsequently by Brandt and Brown.25

The quantities under consideration are extremely sensitive to

the parameters of the theory. With the parameters of the
AgBr used by Buimistrov for the transition in question the
energy difference was found to beDE=15 meV. We have
reproduced Buimistrov’s calculations for the parameters used
in our work and also in Refs. 5 and 6 and obtained the energy
difference between self-consistent 1s and 2p states in AgBr
to beDE=22.7 meV. If it is remembered that no fitting pa-
rameters were used in the theory, the agreement with the
experimental results should be assessed to be very good. The
parameter which is the most difficult to determine is the
effective mass of a band electron because here we need to
invoke the polaron theory. We can choose just this parameter
as fitting. Thus, according to our estimates, for the maximum
of the absorption band corresponding to the transition be-
tween self-consistent 1s and 2p states in a pure AgCl to
coincide with the experimental value of 33.5 meV, we
should putm* =0.25 instead ofm* =0.3, used in our work. In
Ref. 25 the effective mass in AgCl was calculated by
Buimistrov-Pekar method with the use of hydrogenlike trial
functions to bem* =0.22. In Ref. 23 the Buimistrov-Pekar
method was used to determine this parameter in GaN from
an experimentally found coupling energy of a shallow donor.

Formation of nearby pairs of impurity centers is observed
as the concentration of alloying impurities in a crystal grows.
At low concentrations, interaction between impurity centers
leads to widening of absorption bands due to exchange inter-
action. This effect shows itself even at relatively low concen-
trations of alloying impurity, when, according to Bates’
assessments56 the distance between impurities isR
>s20–25da* , wherea* is the effective Bohr radius. As the
impurity concentration further increases, small-scale fluctua-
tions of the charge densitysRøa*d take on significance. This
is especially true for exchange pairs of impurity centerssin
greatly compensated materials—singly ionized pairs analo-
gous to an H2

+-molecule iond.57,58

Consideration of interelectronic correlations considerably
decreases the energy of a two-electron system for one-center
configurations and for neighboring pairs of hydrogenlike
centers in crystals with strong electron-phonon interaction.
As the distance between the paramagnetic centers grows, the
role of interelectronic correlations decreases. We believe that
our results obtained in relation with the problem of spatial
configuration of a free bipolaron are proof that the two-
center configuration of a free bipolaron is unstable as com-
pared to the one-center configuration.
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FIG. 7. Energy dependencies of3Su terms ofF2 centers and 1su

terms ofF2
+ centers in AgBr and AgCl on the distance between the

F centers. Curves A, B represent the energies of the3Su term in
AgBr and AgCl, respectively. Curves C, D correspond to the energy
of the 1su term in AgBr and AgCl, respectively.
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