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Continuous spectra of a family of lattices containing the modified rectangle lattice
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A large body of evidence has accumulated suggesting that the spectrum associated with linear wave dynam-
ics on a typical finitely ramified, hierarchical structure should consist of a Cantor-like portion and a nested
hierarchy of discrete eigenvalues lying in the gaps of the Cantor set. However, careful analysis of renormal-
ization recursion relations of the discrete Schrédinger equation on this family of lattices associated with the
modified rectangle lattice first introduced by Dhar shows that in the large lattice limit the spectra contain only
a continuum with a smooth density of states. In addition, at random energy the Greenwood-Peierls conductance
shows metallic behavior rather than tending to zero with increasing lattice size due to Anderson localization.
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[. INTRODUCTION ronment. In this way these models can be compared roughly
to the more complicated random models.

We report a surprising case of a family of finitely rami-  The dynamical and spectral properties of linear wave
fied, hierarchical lattices with continuous spectra and smootinodels are thoroughly studied for quite a large number of
eigenvalue densities that show evidence of metallic condudinitely ramified, hierarchical structures. Most follow the
tion. We know of no other examples of a heterogeneous higeneral pattern of the 2-simplex case: the spectrum consists
erarchical lattice(i.e., ones in which local environments of of a Cantor-like portion with a sequence of isolated eigen-
individual sites are essentially different for all sites modulo avalues sitting in the gaps of the Cantor $&tn the following
trivial point symmetry of the overall lattigein which the  we present a detailed study of linear wave dynamics on the
eigenvalue spectrum contains a continuum. Moreover, it isnodified rectangle lattice and its family. The spectra associ-
shown below that for a certain energy range the modifiechted with the standard linear models on these structures each
rectangle lattice has a nonvanishing Greenwood-Peierls cogontain a continuum with a smooth density of states, more
ductance sum for the case of one-dimensional lead wirefke that of a periodic structure or Bethe latfiddan that of
attached to distal points on a finite portion lattice, even in they fractal or other finitely ramified, hierarchical structure.
limit that the lattice diameter goes to infinity. The existence |n Sec. Il we introduce briefly the standard linear model
of a spectral continuum and nonvanishing conductance sumind transfer-matrix renormalization method employed in this
appears to contradict what one would expect for any sucltudy. Section Ill contains a description of several members
lattice. of the family of lattices related to the modified rectangle

In the recent past, models of linear wave dynamics orattice of Dhar and includes the results of analyzing the
fractal or hierarchical lattices have received quite a bit ofrenormalization recursions for these examples. In each case,
attention primarily for two reasongi) These models renor- the analysis yields a closed-form expression for the diagonal,
malize exactly and hence can be studied in great detail angivotal Green function, in the large lattice limit, as a function
(ii) they may relate to random systems, such as percolatiogf the dimensionless complex energy parametee+i.
clusters or amorphous materidfs. One early example to The local density of states for each member of the family
appear was the modified rectangle lattice presented by'Dhagtudied in Sec. Il appears in Secs. IV and V presents the
(see Fig. 1 at about the same time that he introduced themethod and analysis extended to any member of the family.
2-simplex lattic€ Section VI includes a discussion of the Kubo-Greenwood

The 2-simplex latticéessentially the Sierpski lattice®)  conductance for the modified rectangle lattice, and the paper
is a prototype for a family of finitely ramified, hierarchical concludes with a brief discussion of the results and the curi-
lattices that are often fractals. On these lattices the locabus properties of this family of hierarchical lattices.
bonding geometry or site environment is basically different
from site to site(modulo a trivial point symmetpy For ex-
ample, each site on an infinite Sietpki lattice is adjacent to Il. THE MODEL
three triangular faces of varying size. As more and more
sensitive measures of local symmetry are employed, more Linear models for lattice vibrations, spin waves or
and more individuality is detected. This is expected to conSchrodinger dynamics of independent electrons are all really
tribute to reflected waves of incommensurate wave lengththe same model, so we present our study in terms of the
and thus induce wave localizatidriTherefore, one expects discrete Schrodinger equation, which also facilitates the
(and almost always find#nderson localizatiohin the regu-  computation of quantum conductance. The energy is scaled
lar, finitely ramified hierarchical models because of this in-in terms of the hopping matrix element so the graph adja-
commenserate superposition due to the fluctuating site envéency matrix
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FIG. 1. Modified rectangle lattice, stage 9 in construction
=9).

Hij ={1 e 1)

0 otherwise,

serves as a model Hamiltonian, where the notait@m indi-
cates that sitesand] of a lattice belong to the same bond.
The discrete Laplacian i§?=H-3, making the dimension-
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FIG. 2. Recursive construction of the linear chain as a hierar-
chical lattice and definition of the pivotal Green functiogaandy,.

graph. The graph matrix representing two identical, discon-
nected generatiofm—1) graphs is the direct sum,

HY =HY & HD, (5)

Additional connections shown in Fig(& correspond to the
addition of a sparse connection matkixsuch that

HY=HD +v. (6)
Using lower case for generation-1 and uppercase far,

9(2) = (z-H"™Y)™, 7

G(2)=(z-H")™ (8)
Matrix algebra yields the standard result
G(2=9(2 +9(29VG(2). 9

For eachn, V always has a small, fixed number of nonzero
entries. One studies physical properties as a function of the
energy parametez and generation number using a small
pivotal set of Green functions and the recursion relations
obtained from Eq(9).

less effective mass negative and in the following discussion
the ground statéwhere wave amplitudes are all of the same
sign) has the highest eigenvalue rather than the lowest. Since
the lattice is regular and bipartite, the spectrum is symmetric
aboutz=0, so the sign of the effective mass can be ignored.
We employ the standard transfer-matrix renormalization
method?!? The retarded Green functio;;(t) for the dis-

crete Schrodinger equation is a matrix eIementh(ﬂ) satis-

fying
da ~
|d—tG(t) —HG(t) =18(t), 2)

with é(t):a(t)é(t). The Fourier transform gives the resol-
vent

9(2) =(z-H)™, €)

defined forz outside the spectrum ¢1. The local density of
states projected on sifeis given by

Dj(e) == = Im(jlgte +in)): @

=d

/

Xn
(@) n
| \\
Vu+1
\)<< Yn+1
Xn+1 o
(b) Un s+ g

The Kubo-Greenwood electrical conductance between one- G, 3. Block connections and definition of Green functions for
dimensional leads attached at sitesd] is simply related t0  the modified rectangle lattice for successive generatiomsid n
gi(2), gij(2) andgj;(2). +1 using generation—1 blocks:(a) generatiom constructed from

Examples of the recursive construction of a lattice arewo-generationn—1 blocks and(b) generationn+1 constructed
illustrated in Figs. 2—4. Consider forming the generation- from two-generatiom blocks as shown in Fig.(a).
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4b
A=6 B=——=, 14
b+ 17 (14
with initial conditions
” 5—Z+2 b_z—2 (15)
°©T 72" O z42°

After studying the orbits of the initial conditions famoutside
the spectral range <2z<2, we find the correct form for the
pivotal Green functiorx.(z) in the large lattice limit as

(a)

Z—-\z-2Vz+2
X(2) = - 5 (16)

B. Modified rectangle

The recursive construction and pivotal set for the modi-
fied rectangle lattice are shown in Fig. 3. The recursion re-

Xn lations simplify modulo the point grodpD, of the rectangle
that is isomorphic taZ, ® Z, with the symmetrized pivotal
(b) set
FIG. 4. Recursive construction for the modified cubic lattice and p=X+y+u+v, gq=X-y+u-v,

graphical definition of the 8 pivotal Green functioria) three suc-
essive generations p_f the modified _cublc lattice dhyl pivotal F=X-y-U+p, S=X+y-U-0, (17)
Green function definitions for generation

and similar definitions for the pivotal sé®,Q,R,S} on gen-

lll. GREEN FUNCTION RECURSIONS OF THE erationn+1. The symmetry-reduced recursidhare
MODIFIED RECTANGLE LATTICE AND RELATED
FAMILY ID_qu—p—q _2rs-r-s
A. Linear chain p+q-2 "' r+s-2°
The first member of the family that we describe is the
linear chain, which has been studied extensively. The recur- R= 2pq+p+q _2s+r+s (18)
sive construction and pivotal set are shown in Fig. 2. The p+q+2 "’ r+s+2
recursion relations obtained from E@®) reduce modulo the
point group® C, that is isomorphic t@, with Note the similarity to the recursions obtained for the linear
chain.
p=X+y, gq=X-Yy. (10) We reduce the order of the recursions by transforming to
The symmetry-reduced recursions are canonical variables following the example of the linear
chain. The symmetry-reduced pivotal set is
P:2pq—p—q :2pq+p+q (11)
p+q-2 ' p+q+2 a=Ptl _(p-D@+D
Prior to analyzing dynamical behavior we reduce the or- p-1 (p+1)(q-1)
der of the recursions by transforming to canonical varidbles
obtained by finding a Lie group that commutes with the _(p-D(r+1) _(p-D(s+1) 19
renormalization map as described by Maétigtudying the €= P+D(r-1" — (p+D(s-1) (19)
fixed and invariant manifold$ of Egs.(11) a set of canoni-
cal coordinates is Further reduction comes from transforming framto the
invariant quantit
LoPtl o _(p-D(@+D) 1 Ay
p-1’ (p+D@-1)° s=abcd. (20)
Further reduction comes by transforming franto the in- Using the canonical coordinatés, b, c,d},
variant
5=a, (13 A=¢6 (21)
from which the dynamical system reduces to and the dynamics are governed by the residual system
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c+d 4b g=X+y-r—-s+t+u-v-w,
B= ’ C= 21
b+1 (b+1)
h=x-y-r-s—-t+u+v+w, (26)
B 4cd

D= b+ Dic+d)’ (22)  obtained from the point-group symmetry of the cube isomor-

phic to Z,® Z,® Z,. Using these combinations in the equa-
The initial conditions tions obtained from Eq(9) and solving for the recursion

relations in terms of the symmetrized pivotal set

_@2+3)+ ) fa,b,c,d,ef,g,h} yields

°(z-3(z-D’
_2ab-a-b _2cd-c-d
z-3 (z-3)(z+3) " a+b-2' =~ c+d-2'
= = y = ) 23
0=G= G (z-1)(z+1) 23
come from computing the Green functions for a dimer or _2ef-e-f _2gh-g-h
computing the Green functions for a unit square and backing T oe+f-2" a g+h-2"
up one step.
From Egs. (17) and (19), the fixed point (b,c,d)
=(1,1,1) corresponds taly,u,v)=(0,0,0, indicating no :m’ :w,
electron propagation across the lattice. Orbits from atb+2 c+d+2
(by,Cy,d,) with z outside the spectral range <¥<3 alll
iterate toward(1,1,1). The Green functiorx is found in Jef+e+f 2gh+g+h
closed form in the largé limit using this fixed point and the G=—"7T", == (27)
e+f+2 g+th+2

invariance of8. The correct expression for in terms of
{6,b,c,d} is the only one of the four possible inverse trans- By the same Lie group technique used to reduce the re-
formations that gives the positive, smooth density of stategursions of the modified rectangle, the combinations

shown in Fig. %b), namely,

_(@+Db+(c+(d+1)

_Vs-1_ Vs,-1

K= = Ty (24) ~(a-1)(b-1)(c-D(d-1)
' N (e+1(f+1)(g+ D(h+1)
in the limit that(b,c,d)—(1,1,1). In terms ofz, (e-1(f-1)(g-1(h-1)’
y (= izt3lze1-Yz-3tz-1 (25
™ _%’z+3%’/z+1+‘\1'/z—3<"z—1' ,_—(a—l)(b+1)

J_ 1
a+1)(b-1
This is the explicit, closed-form solution for the pivotal ( X )

Green functiornx,,(2) in the large lattice limit that-1/z as

700, _(@-1)(c+1)  (a-1(d+1)
(a+1)(c-1)’ (a+1)(d-1)’
C. Modified cube
The final example is the modified cubic lattice that has not _(a-1(e+1) _(a-D(f+1)
appeared previously in the literature. The recursive construc- T (a+De-1)’ T@+n(f-1)°

tion and pivotal set are defined in Fig. 4. The recursions
obtained from Eq.(9) simplify by transforming to the
symmetry-reduced combinations _@-1@g+y q= (@a-(h+1) 28
AZX+YH+T+SHLHUFD W, (a+1)(g-21 (@a+1(h-1)
reduce the recursions to
b=x-y+r+s—-t+u-v-w,

A=,
C=X—y+r—s+t-u-v+w,

_k+l _m+n _p+q
d=x+y+r-s—t-u+v-w, RS TR __j+1'
e=X-y-r+s+t-u+v-w,

4]
M: . 21
f=x+y-r+s—t-u-v+w, (G+1)
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0.60 ~ (Z+ 4)(Z+ 2)2
0.50 * (z-4(z-2?
0.40 _ z-4
— Jo=lo=Ng=0o=—"",
Y 0.30 Z
Q
0.20 ko_mo_(2—4)(2+2)
0.10 2z-2) '
0.00 z-4)(z+4
-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 pO:%. (30)
(a) €
0.35 The behavior of the Green functions in the large lattice
limit can be used to derive an explicit expression for the
0.30 corner-site, diagonal Green functigp{z). Forz outside the
0.25 spectrum, each of the residual pivotal Green functions tend
to 1 asn— o so that(b,c,d,e,f,g,h)—(0,0,0,0,0,0,Din
5 9-20 the large lattice limit. From Eq$28), the values of the piv-
Q 0.15 otal Green functions in the large lattice limit and, substituting
the initial condition fors,
0.10 8 4 8 4
2+ 4Nz +2-\Nz-MNz-2
0.05 Xmd2) = ; l ; l : (31
0. 00 NZ+4NzZ+2+\Nz2—-4\z-2
23,0 -2.0 -1.0 0.0 1.0 2.0 3.0
(b) 3
0.50 IV. LOCAL DENSITY OF STATES
The local density of stated DOS) for a corner site is
0.40 computed from Eq(4) with g;;(e+i7)=x,(2) for a genera-
tion n lattice in the family. Starting with initial conditions
__0.30 and small positiven, the recursions Eq$14), (22) or (29)
u are iteratedn times to obtain final values for the residual
B 4.20 pivotal set that together with the invariant yield the correct
Xn(2). Figure %a) shows the resultin®,,(¢) for a finite-size
0.10 modified rectangle latticey=9, and Fig. %) shows the re-
sult obtained from Eq.25). As the number of sites increases,
0.00 D(e) for each member of the family becomes a smooth

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 curve, characteristic of regular latticéscluding the Bethe
() £ lattice) but very different from the spectrum of a typical fi-

. . . . . 78
FIG. 5. Local density of statestates per site per unit enejgy nitely ramified, hierarchical lattice:

for the modified rectangle vs energy in units of the hopping matrix
element:(a) LDOS for a corner site for generation=9 in the A. Linear chain
construction of the modified rectangle=0.003, (b) LDOS for a
corner site in the limiL — < and »— 0 for the modified rectangle,
and(c) LDOS for an(n-1) bridge-point site in the large lattice of
the modified rectanglén— «, — 0).

Although the linear chain is a member of this family be-
cause of the structure of its Green-function renormalization
recursions, the linear chain is a regular lattice and its LDOS
is well known. We include Fig. 6 for completeness. The Eu-
clidian embedding dimensiod, self-similarity or fractal di-

N = 4kl mensiond; and spectral dimensiot are all equal to 1.
(G+Dk+D’

B. Modified rectangle

Figure 5 shows the local density of states for the modified
_ 4mn Q= 4pq (29  'ectangle lattice. Van Hove singularities exist at—3,
(j+D(m+n)’ (j+D(p+q)’ -1,1,3. Thebond length between adjacent sites is held fixed
for all generations in the recursive construction leading to a
self-similarity dimensiond; (also the mass-scaling dimen-
with initial conditions sion) that is equal to the Euclidian embedding dimensibn
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0.35 0.25
0.30
0.20
0.25
0.20 __0.15
w o w
R 0.15 A 0.10
0.10
0.05
0.05
0.00 0.00
-2.0 -1.0 0.0 1.0 2.0 -4.0-3.0-2.0-1.0 0.0 1.0 2.0 3.0 4.0
(@) € (@) €
2.00 0.50
1.75
0.40
1.50
1.25 __0.30
Y 1.00 \Q‘*i
S 075 0.20
0.50 0.10 J \
0.25
0.00 0.00
_2.0 _1.0 0.0 1.0 2.0 -4.0-3.0-2.0-1.0 0.0 1.0 2.0 3.0 4.0
(b) € (b) €
FIG. 6. Local density of statestates per site per unit enejgy FIG. 7. Local density of statgstates per site per unit energy for

for the linear chain vs energy in units of the hopping matrix ele-the modified cube vs energy in units of the hopping matrix element:

ment: (a) LDOS for the site at the end of a semi-infinite chain and (& LDOS for a corner site in the limit — and 7—0 for the
(b) LDOS for a site in the infinite linear chain. modified cube andb) LDOS for an(n—1) bridge-point site in the

large lattice limit of the modified cuben— o, — 0).

=2. The total density of stateBl°{(e) diverges near the

ground state energy as The total density of states diverges for-4 as
D}gE(S) — |8 _ 3|—1/4 D:'(n)z:(g) -~ |8 - 4‘_1/81

for 3. Thus, the spectral dimensfdri® of the modified ~ S° that the spectral dimensiag="7/4 for themodified cubic
rectangle lattice isl.=3/2. This result is equivalent to that lattice.

ok?ta_lined by Dhdrand aI;o can be obtained by first deter- V. RESULTS FOR d>3
mining the anomalous-diffusion exponety from the con-
ductivity exponenfz or resistance exponegtusing the Ein- The analysis carried out in Sec. Il for the linear chain,

stein relation connecting the dc conductivity to the diffusionmodified rectangle, and modified cube can be carried for-
constant41617 An exact renormalization proceddrgives ~Ward for any member of the family. Consider the lattice em-

. ~_ _ bedded in dimensiod. There are 2pivotal Green functions
trilgld{ﬁgftance exponenf=2/3 and, therefore,d,=8/3 {x} and 2' recursions. The recursions reduce modulo a point-
y group symmetry isomorphic t@yZ, yielding a set of sym-

2d; 3 metry reduced recursions for the symmetrized pivota{jgét
ds= S of the same general form as those for the linear chain, modi-
W fied rectangle, and modified cube. The canonical variables
are of the form
C. Modified cube p+1
Figure 7 shows the local density of states for the modified B p,—-1’
cubic lattice. Van Hove singularities existat -4, -2,2,4.
As in the case of the the modified rectangle, the bond length (PL=D(pi+1) .
between adjacent sites is held fixed for all generations in the g=-————— fori#l. (32)

recursive construction leading to a self-similarity dimension (pr+ Dipi= 1)
that is equal to the Euclidian embedding dimenstbn3.  Transforming to the invariant
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CONTINUOUS SPECTRA OF A FAMILY OF LATTICES. PHYSICAL REVIEW B 71, 134207(2005

i 0i(2) =g;(2) = x,(2),
s=(a)” I &, (33)
e Yn(2)
further reduces the recursions such that gij(2=gi(@=\u(2 , (37
A Un(z)
=4 4 . .
' (34 and the Green function at the end of the leads is
and there are 21 residual recursions of the same general - \”ZTZV"ZTZ
form as those for the linear chain, modified rectangle, and g =yv2)=—m. (38)
modified cube. The diagonal, pivotal Green function in the 2
large lattice limit takes the form The equation fory(z) appearing in Ref. 20 is in error. The
i present form is correct and in agreement with the result in
. = (62" -1) (35) Eqg. (16). The Kubo-Greenwood conductance sum for such a
1= (5124 1) geometry i§°
2
where the initial conditions are determined by computing the cj(e) =4(Im Y2))? %% (39
ij

Green functions for @-dimensional hypercube and backing

up one step or by computing the Green functions for apijth

(d-1)-dimensional hypercube. In either case, the generation

n=1 graph is ad-dimensional hypercube. Aij(2) =[1 - ¥@x(2T - 2)%g(2)?, (40)
For the members of the family, the spectral range iS;nq7=¢+i. The conductance as shown in Fig. 8 is quite

~(d+1)<e=(d+1) with dimensionless ground-state energy compjicated. In each case there is a distinct transition at

(d+1). Van Hove singularities exist ate=—(d+1), =1 (ande=-1 not shown in the figujewith c(e) associated
-(d-1),...,-2,2,...(d=1),(d+1) for odd d and & ity (2) showing an abrupt transition from nonconducting
=—(d+1),-(d-1),...,-1,1,...(d-1),(d+1) for evend. {5 conducting behavior as a function of the dimensionless

The bond length between adjacent sites is held fixed for albnergy. For nonzere, asn— o the amplitude decays expo-
generations in the recursive construction, leading to a selfpentially ~exp(-L/L,) with lattice diametei. ~ 2" as ex-
similarity dimensiond;=d, the Euclidian embedding dimen- yacted.

sion. The total density of states diverges near the ground- giarting with initial conditions for dimensionless energy

state energyspectral maximumas in the range -ke<1 and iterating, one finds a one-
g dimensional attractor shown in Fig. 9 lying in the subspace
D"(e) ~ [e = (d+ 1)|” 2", d-bc=0. The properties of the map on this attractor lead to

_ _ _ the behavior of the conductance seen in Fig. 8 for=l
for e — (d+1). Thus, the spectral dimension as a function of<1. The attractor can be divided into two one-dimensional

dis raysb=1, c=d andc=1, b=d, whered e (-«,0], that map
onto one another under the dynamical system. On this attrac-
do= 24-1 (36) tor the residual system, Eq<€22), solves exactly. Let
sT o1 (by,ci,d;) be an initial point on the attractor. For=1

Note thatd=d;>ds andds— 2 as an upper bound @k (bam, Com) = (1, tank(2™ tanh* V),

in agreement with the general result by Hattetial® for

coarse-grained fractal structures. (Bome1,Coms) = (tantf(2™ tank c), 1), (42)
and forci=1
VI. ONE-ELECTRON CONDUCTANCE OF THE —
MODIFIED RECTANGLE (bam, Com) = (tanif(2™ tanki* vy, 1),
To address the relationship between electrical conduc- Dyt Comey) = (1, tanB (2™ tanh? v”Ei)). (42)

tance and the continuous spectrum and smooth density of

states obtained for the modified rectangle lattice, consider th@n the attractory=0 leading to the insulating behavior seen
Kubo-Greenwood conductance between one-dimensiondih Fig. 8@ and Egs.(41) and (42) yield u,(2) and v,(2),
leads attached at distal sites of the lattice. The method oirhich alternate between zero and nonzero so that the con-
calculation is essentially that of Lee and Fisflewith suit-  ductancec(e) alternates between zero and some finite value
able modificationg® Consider two leads formed from dis- <1 for fixed ¢ as a function ofn. Thus for —1<e<1 the
connected linear chains. The end skeon each chain is conductance is independent of lattice size showing perfect
connected to the lattice by means of a single bond at attacltonductance scaling on a set of nonzero measure, behavior
ment sites andj of the modified rectangle lattice for some that is fundamentally different from the conductance scaling
generatiom. The Green functions before attachment are  commonly exhibited by regular, hierarchical latti¢é€? For
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1.00 27

1.
0.
O
0
0.
-2
0.00
0.0 0.5 1.0 1.5 2.0
(b) €
00 P —— “f’x“i&»'{“.* P -4
e R R
:
0.75 -4 -2 0 2
(b) b
w9 0.50 .. 2
0 v
0.25
0
0 00 it
0.0 0.5 1.0 . .
(© 3 ©
FIG. 8. Kubo-Greenwood conductance in un& (%) be- -2
tween corner sites fon=4000 (=0). Green functions follow the
conventions of Sec. Ill B and the energy is in units of the hopping
matrix elementi(a) c(e) for g;j(2)=ya(2), (b) c(e) for g;j(z)=un(2),
and(c) c(e) for gjj(2)=vn(2). -4
other energies in the spectrum2<e<-1 and l<&<2)
Fig. 8 also shows perfect conductance scaling; however, an -4 -2 0 2
analysis similar to that conducted for the interval <& ¢ ¢

=1 has yielded no similar insights. FIG. 9. One-dimensional attractor for <le <1: (a) plot of the

one-dimensional attractor in the-bc=0 subspace(b) attractor as
VII. THE BETHE LATTICE viewed in theb-d plane, andc) attractor as viewed in the-d plane.

In a glassy material the chemical bonding requirementsjistribution of site environments. The local coordination
tend to keep the coordination constant, resulting in shorthumber is constant, where as a given site is adjacent to three
range order without long-range order. As one can see fromectangular loops of varying size. This distribution of site
Fig. 1, the vertices of the modified rectangle lattice have a&nvironments is shared with typical regular hierarchical lat-
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Gn=Ad™", (44)

between any two sitem andn in the full Bethe lattice where
|m—n|=1 is the graph distance and

z-p(p-1)g,
= - /S0 45
(z-p)(z+p) 49
—_ Since
1
o =——, 46
|90l oot (46)

Egs. (39), (40), and (44) show that forp+# 2 conductance
tends to zero exponentially with distance between the leads.

VIIl. CONCLUSION

Taking the family of lattices related to the modified rect-
FIG. 10. p-fold coordinated Bethe tree with root site. angle lattice together with a typical finitely ramified, fractal
lattice, such as the 2-simplex lattice, we note that long-range,
tices and differs from regular lattices with translational sym-one-electron conductance does not correlate simply with ei-
metry in which every site has exactly the same geometrither the degree of connectivity or the local regularity of the
environment in either the infinite-size limit or with periodic structure. It also seems that no simple correlation exists be-
boundary conditions. This homogeneity of site environmentween conductance and the existence of a spectral continuum
is also a property of the Bethe lattice. One might try to studyas seen from the analysis of the model on the modified rect-
the relationship between finite ramification and wave local-angle lattice.
ization, such as Anderson localization, by comparing the The model presented here shows two different properties
spectral and transport properties of the modified rectangléor a finitely ramified, hierarchical lattice. First, the spectra
lattice and the Bethe lattice. of the model Hamiltonians turn out to be continuous with a
The Green functiorg,(z) for the root site of ap-fold smooth density of states more like that of a regular lattice
coordinated Bethe tree shown in Fig. 10 found using@y. with translational symmetry and homogeneity of site envi-
is ronments. Second, the modified rectangle exhibits perfect
conductance scaling on a set of nhonzero measure, which is
7z KkvVz+K fundamentally different from the typical behavior of this
Vz—kyz+k ) o
— Y, (43 class of lattice models. In addition, although the spectra are
2(p-1) continuous, vanishing conductance or insulating behavior is
observed along the diagonal of the modified rectangle on the
where the generic off-diagonal Hamiltonian matrix elementinterval -1<e<1. The unusual conductance can be ex-
is 1,k=2yp—-1, and the sign is chosen so thgtz) ~1/zas  plained by the existence of the chaotic attractor and the sub-
z—. Connecting two Bethe trees root to root provides ansequent analysis of the residual system for the modified rect-

90(2) =

explicit formula for the Green function angle.
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