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A large body of evidence has accumulated suggesting that the spectrum associated with linear wave dynam-
ics on a typical finitely ramified, hierarchical structure should consist of a Cantor-like portion and a nested
hierarchy of discrete eigenvalues lying in the gaps of the Cantor set. However, careful analysis of renormal-
ization recursion relations of the discrete Schrödinger equation on this family of lattices associated with the
modified rectangle lattice first introduced by Dhar shows that in the large lattice limit the spectra contain only
a continuum with a smooth density of states. In addition, at random energy the Greenwood-Peierls conductance
shows metallic behavior rather than tending to zero with increasing lattice size due to Anderson localization.
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I. INTRODUCTION

We report a surprising case of a family of finitely rami-
fied, hierarchical lattices with continuous spectra and smooth
eigenvalue densities that show evidence of metallic conduc-
tion. We know of no other examples of a heterogeneous hi-
erarchical latticesi.e., ones in which local environments of
individual sites are essentially different for all sites modulo a
trivial point symmetry of the overall latticed in which the
eigenvalue spectrum contains a continuum. Moreover, it is
shown below that for a certain energy range the modified
rectangle lattice has a nonvanishing Greenwood-Peierls con-
ductance sum for the case of one-dimensional lead wires
attached to distal points on a finite portion lattice, even in the
limit that the lattice diameter goes to infinity. The existence
of a spectral continuum and nonvanishing conductance sum
appears to contradict what one would expect for any such
lattice.

In the recent past, models of linear wave dynamics on
fractal or hierarchical lattices have received quite a bit of
attention primarily for two reasons:sid These models renor-
malize exactly and hence can be studied in great detail and
sii d they may relate to random systems, such as percolation
clusters or amorphous materials.1–4 One early example to
appear was the modified rectangle lattice presented by Dhar1

ssee Fig. 1d at about the same time that he introduced the
2-simplex lattice.2

The 2-simplex latticesessentially the Sierpiński lattice3,4d
is a prototype for a family of finitely ramified, hierarchical
lattices that are often fractals. On these lattices the local
bonding geometry or site environment is basically different
from site to sitesmodulo a trivial point symmetryd. For ex-
ample, each site on an infinite Sierpiński lattice is adjacent to
three triangular faces of varying size. As more and more
sensitive measures of local symmetry are employed, more
and more individuality is detected. This is expected to con-
tribute to reflected waves of incommensurate wave lengths
and thus induce wave localization.5 Therefore, one expects
sand almost always findsd Anderson localization6 in the regu-
lar, finitely ramified hierarchical models because of this in-
commenserate superposition due to the fluctuating site envi-

ronment. In this way these models can be compared roughly
to the more complicated random models.

The dynamical and spectral properties of linear wave
models are thoroughly studied for quite a large number of
finitely ramified, hierarchical structures. Most follow the
general pattern of the 2-simplex case: the spectrum consists
of a Cantor-like portion with a sequence of isolated eigen-
values sitting in the gaps of the Cantor set.7,8 In the following
we present a detailed study of linear wave dynamics on the
modified rectangle lattice and its family. The spectra associ-
ated with the standard linear models on these structures each
contain a continuum with a smooth density of states, more
like that of a periodic structure or Bethe lattice9 than that of
a fractal or other finitely ramified, hierarchical structure.

In Sec. II we introduce briefly the standard linear model
and transfer-matrix renormalization method employed in this
study. Section III contains a description of several members
of the family of lattices related to the modified rectangle
lattice of Dhar and includes the results of analyzing the
renormalization recursions for these examples. In each case,
the analysis yields a closed-form expression for the diagonal,
pivotal Green function, in the large lattice limit, as a function
of the dimensionless complex energy parameterz=«+ ih.
The local density of states for each member of the family
studied in Sec. III appears in Secs. IV and V presents the
method and analysis extended to any member of the family.
Section VI includes a discussion of the Kubo-Greenwood
conductance for the modified rectangle lattice, and the paper
concludes with a brief discussion of the results and the curi-
ous properties of this family of hierarchical lattices.

II. THE MODEL

Linear models for lattice vibrations, spin waves or
Schrödinger dynamics of independent electrons are all really
the same model, so we present our study in terms of the
discrete Schrödinger equation, which also facilitates the
computation of quantum conductance. The energy is scaled
in terms of the hopping matrix element so the graph adja-
cency matrix
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Hij = H1 if i@j ,

0 otherwise,
J s1d

serves as a model Hamiltonian, where the notationi@j indi-
cates that sitesi and j of a lattice belong to the same bond.
The discrete Laplacian is¹2=H−3, making the dimension-
less effective mass negative and in the following discussion
the ground stateswhere wave amplitudes are all of the same
signd has the highest eigenvalue rather than the lowest. Since
the lattice is regular and bipartite, the spectrum is symmetric
aboutz=0, so the sign of the effective mass can be ignored.

We employ the standard transfer-matrix renormalization

method.5,10 The retarded Green functionĜijstd for the dis-

crete Schrödinger equation is a matrix element ofĜstd satis-
fying

i
d

dt
Ĝstd − HĜstd = Idstd, s2d

with Ĝstd=ustdĜstd. The Fourier transform gives the resol-
vent

gszd = sz− Hd−1, s3d

defined forz outside the spectrum ofH. The local density of
states projected on sitej is given by

Djs«d = −
1

p
Imk j ugs« + ihdu jl. s4d

The Kubo-Greenwood electrical conductance between one-
dimensional leads attached at sitesi and j is simply related to
giiszd, gijszd andgjjszd.

Examples of the recursive construction of a lattice are
illustrated in Figs. 2–4. Consider forming the generation-n

graph. The graph matrix representing two identical, discon-
nected generation-sn−1d graphs is the direct sum,

Ho
snd = Hsn−1d

% Hsn−1d. s5d

Additional connections shown in Fig. 3sad correspond to the
addition of a sparse connection matrixV such that

Hsnd = Ho
snd + V. s6d

Using lower case for generationn−1 and uppercase forn,

gszd = sz− Hsn−1dd−1, s7d

Gszd = sz− Hsndd−1. s8d

Matrix algebra yields the standard result

Gszd = gszd + gszdVGszd. s9d

For eachn, V always has a small, fixed number of nonzero
entries. One studies physical properties as a function of the
energy parameterz and generation numbern using a small
pivotal set of Green functions and the recursion relations
obtained from Eq.s9d.

FIG. 1. Modified rectangle lattice, stage 9 in constructionsn
=9d.

FIG. 2. Recursive construction of the linear chain as a hierar-
chical lattice and definition of the pivotal Green functionsxn andyn.

FIG. 3. Block connections and definition of Green functions for
the modified rectangle lattice for successive generationsn and n
+1 using generationn−1 blocks:sad generationn constructed from
two-generationn−1 blocks andsbd generationn+1 constructed
from two-generationn blocks as shown in Fig. 3sad.
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III. GREEN FUNCTION RECURSIONS OF THE
MODIFIED RECTANGLE LATTICE AND RELATED

FAMILY

A. Linear chain

The first member of the family that we describe is the
linear chain, which has been studied extensively. The recur-
sive construction and pivotal set are shown in Fig. 2. The
recursion relations obtained from Eq.s9d reduce modulo the
point group10 C2 that is isomorphic toZ2 with

p = x + y, q = x − y. s10d

The symmetry-reduced recursions are

P =
2pq− p − q

p + q − 2
, Q =

2pq+ p + q

p + q + 2
. s11d

Prior to analyzing dynamical behavior we reduce the or-
der of the recursions by transforming to canonical variables11

obtained by finding a Lie group that commutes with the
renormalization map as described by Maeda.12 Studying the
fixed and invariant manifolds13 of Eqs.s11d a set of canoni-
cal coordinates is

a =
p + 1

p − 1
, b =

sp − 1dsq + 1d
sp + 1dsq − 1d

. s12d

Further reduction comes by transforming froma to the in-
variant

d = a2b, s13d

from which the dynamical system reduces to

D = d, B =
4b

sb + 1d2 , s14d

with initial conditions

do =
z+ 2

z− 2
, bo =

z− 2

z+ 2
. s15d

After studying the orbits of the initial conditions forz outside
the spectral range −2øzø2, we find the correct form for the
pivotal Green functionxlcszd in the large lattice limit as

xlcszd =
z− Îz− 2Îz+ 2

2
. s16d

B. Modified rectangle

The recursive construction and pivotal set for the modi-
fied rectangle lattice are shown in Fig. 3. The recursion re-
lations simplify modulo the point group10 D2 of the rectangle
that is isomorphic toZ2 % Z2 with the symmetrized pivotal
set

p = x + y + u + v, q = x − y + u − v,

r = x − y − u + v, s= x + y − u − v, s17d

and similar definitions for the pivotal sethP,Q,R,Sj on gen-
erationn+1. The symmetry-reduced recursions13 are

P =
2pq− p − q

p + q − 2
, Q =

2rs − r − s

r + s− 2
,

R=
2pq+ p + q

p + q + 2
, S=

2rs + r + s

r + s+ 2
. s18d

Note the similarity to the recursions obtained for the linear
chain.

We reduce the order of the recursions by transforming to
canonical variables following the example of the linear
chain. The symmetry-reduced pivotal set is

a =
p + 1

p − 1
, b =

sp − 1dsq + 1d
sp + 1dsq − 1d

,

c =
sp − 1dsr + 1d
sp + 1dsr − 1d

, d =
sp − 1dss+ 1d
sp + 1dss− 1d

. s19d

Further reduction comes from transforming froma to the
invariant quantity

d = a4bcd. s20d

Using the canonical coordinateshd ,b,c,dj,

D = d s21d

and the dynamics are governed by the residual system

FIG. 4. Recursive construction for the modified cubic lattice and
graphical definition of the 8 pivotal Green functions:sad three suc-
essive generations of the modified cubic lattice andsbd pivotal
Green function definitions for generationn.
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B =
c + d

b + 1
, C =

4b

sb + 1d2 ,

D =
4cd

sb + 1dsc + dd
. s22d

The initial conditions

do =
sz+ 3dsz+ 1d
sz− 3dsz− 1d

,

bo = do =
z− 3

z+ 1
, co =

sz− 3dsz+ 3d
sz− 1dsz+ 1d

, s23d

come from computing the Green functions for a dimer or
computing the Green functions for a unit square and backing
up one step.

From Eqs. s17d and s19d, the fixed point sb,c,dd
=s1,1,1d corresponds tosy,u,vd=s0,0,0d, indicating no
electron propagation across the lattice. Orbits from
sbo,co,dod with z outside the spectral range −3øzø3 all
iterate towards1,1,1d. The Green functionx is found in
closed form in the largeL limit using this fixed point and the
invariance ofd. The correct expression forx in terms of
hd ,b,c,dj is the only one of the four possible inverse trans-
formations that gives the positive, smooth density of states
shown in Fig. 5sbd, namely,

xmr =
Î4 d − 1
Î4 d + 1

=
Î4 do − 1
Î4 do + 1

, s24d

in the limit that sb,c,dd→ s1,1,1d. In terms ofz,

xmrszd =
Î4 z+ 3Î4 z+ 1 −Î4 z− 3Î4 z− 1
Î4 z+ 3Î4 z+ 1 +Î4 z− 3Î4 z− 1

. s25d

This is the explicit, closed-form solution for the pivotal
Green functionxmrszd in the large lattice limit that,1/z as
z→`.

C. Modified cube

The final example is the modified cubic lattice that has not
appeared previously in the literature. The recursive construc-
tion and pivotal set are defined in Fig. 4. The recursions
obtained from Eq.s9d simplify by transforming to the
symmetry-reduced combinations

a = x + y + r + s+ t + u + v + w,

b = x − y + r + s− t + u − v − w,

c = x − y + r − s+ t − u − v + w,

d = x + y + r − s− t − u + v − w,

e= x − y − r + s+ t − u + v − w,

f = x + y − r + s− t − u − v + w,

g = x + y − r − s+ t + u − v − w,

h = x − y − r − s− t + u + v + w, s26d

obtained from the point-group symmetry of the cube isomor-
phic to Z2 % Z2 % Z2. Using these combinations in the equa-
tions obtained from Eq.s9d and solving for the recursion
relations in terms of the symmetrized pivotal set
ha,b,c,d,e, f ,g,hj yields

A =
2ab− a − b

a + b − 2
, B =

2cd− c − d

c + d − 2
,

C =
2ef − e− f

e+ f − 2
, D =

2gh− g − h

g + h − 2
,

E =
2ab+ a + b

a + b + 2
, F =

2cd+ c + d

c + d + 2
,

G =
2ef + e+ f

e+ f + 2
, H =

2gh+ g + h

g + h + 2
. s27d

By the same Lie group technique used to reduce the re-
cursions of the modified rectangle, the combinations

d =
sa + 1dsb + 1dsc + 1dsd + 1d
sa − 1dsb − 1dsc − 1dsd − 1d

3
se+ 1dsf + 1dsg + 1dsh + 1d
se− 1dsf − 1dsg − 1dsh − 1d

,

j =
sa − 1dsb + 1d
sa + 1dsb − 1d

,

k =
sa − 1dsc + 1d
sa + 1dsc − 1d

, l =
sa − 1dsd + 1d
sa + 1dsd − 1d

,

m=
sa − 1dse+ 1d
sa + 1dse− 1d

, n =
sa − 1dsf + 1d
sa + 1dsf − 1d

,

p =
sa − 1dsg + 1d
sa + 1dsg − 1d

, q =
sa − 1dsh + 1d
sa + 1dsh − 1d

, s28d

reduce the recursions to

D = d,

J =
k + l

j + 1
, K =

m+ n

j + 1
, L =

p + q

j + 1
,

M =
4j

s j + 1d2 ,
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N =
4kl

s j + 1dsk + ld
,

P =
4mn

s j + 1dsm+ nd
, Q =

4pq

s j + 1dsp + qd
, s29d

with initial conditions

do =
sz+ 4dsz+ 2d2

sz− 4dsz− 2d2 ,

jo = lo = no = qo =
z− 4

z
,

ko = mo =
sz− 4dsz+ 2d

zsz− 2d
,

po =
sz− 4dsz+ 4d

z2 . s30d

The behavior of the Green functions in the large lattice
limit can be used to derive an explicit expression for the
corner-site, diagonal Green functionxmcszd. For z outside the
spectrum, each of the residual pivotal Green functions tend
to 1 asn→` so thatsb,c,d,e, f ,g,hd→ s0,0,0,0,0,0,0d in
the large lattice limit. From Eqs.s28d, the values of the piv-
otal Green functions in the large lattice limit and, substituting
the initial condition ford,

xmcszd =
Î8 z+ 4Î4 z+ 2 −Î8 z− 4Î4 z− 2
Î8 z+ 4Î4 z+ 2 +Î8 z− 4Î4 z− 2

. s31d

IV. LOCAL DENSITY OF STATES

The local density of statessLDOSd for a corner site is
computed from Eq.s4d with gjjs«+ ihd=xnszd for a genera-
tion n lattice in the family. Starting with initial conditions
and small positiveh, the recursions Eqs.s14d, s22d or s29d
are iteratedn times to obtain final values for the residual
pivotal set that together with the invariant yield the correct
xnszd. Figure 5sad shows the resultingDmrs«d for a finite-size
modified rectangle lattice,n=9, and Fig. 5sbd shows the re-
sult obtained from Eq.s25d. As the number of sites increases,
Ds«d for each member of the family becomes a smooth
curve, characteristic of regular latticessincluding the Bethe
latticed but very different from the spectrum of a typical fi-
nitely ramified, hierarchical lattice.7,8

A. Linear chain

Although the linear chain is a member of this family be-
cause of the structure of its Green-function renormalization
recursions, the linear chain is a regular lattice and its LDOS
is well known. We include Fig. 6 for completeness. The Eu-
clidian embedding dimensiond, self-similarity or fractal di-
mensiondf and spectral dimensionds are all equal to 1.

B. Modified rectangle

Figure 5 shows the local density of states for the modified
rectangle lattice. Van Hove singularities exist at«=−3,
−1,1,3. Thebond length between adjacent sites is held fixed
for all generations in the recursive construction leading to a
self-similarity dimensiondf salso the mass-scaling dimen-
siond that is equal to the Euclidian embedding dimensiond

FIG. 5. Local density of statessstates per site per unit energyd
for the modified rectangle vs energy in units of the hopping matrix
element: sad LDOS for a corner site for generationn=9 in the
construction of the modified rectanglesh=0.005d, sbd LDOS for a
corner site in the limitL→` andh→0 for the modified rectangle,
and scd LDOS for ansn−1d bridge-point site in the large lattice of
the modified rectanglesn→` ,h→0d.
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=2. The total density of statesDmr
tots«d diverges near the

ground state energy as

Dmr
tots«d , u« − 3u−1/4

for «→3. Thus, the spectral dimension14,15 of the modified
rectangle lattice isds=3/2. This result is equivalent to that
obtained by Dhar1 and also can be obtained by first deter-
mining the anomalous-diffusion exponentdw from the con-

ductivity exponentm̃ or resistance exponentz̃ using the Ein-
stein relation connecting the dc conductivity to the diffusion
constant.14,16,17 An exact renormalization procedure4 gives

the resistance exponentz̃=2/3 and, therefore,dw=8/3
yielding14

ds =
2df

dw
=

3

2
.

C. Modified cube

Figure 7 shows the local density of states for the modified
cubic lattice. Van Hove singularities exist at«=−4, −2,2,4.
As in the case of the the modified rectangle, the bond length
between adjacent sites is held fixed for all generations in the
recursive construction leading to a self-similarity dimension
that is equal to the Euclidian embedding dimensiond=3.

The total density of states diverges for«→4 as

Dmc
tots«d , u« − 4u−1/8,

so that the spectral dimensionds=7/4 for themodified cubic
lattice.

V. RESULTS FOR d.3

The analysis carried out in Sec. III for the linear chain,
modified rectangle, and modified cube can be carried for-
ward for any member of the family. Consider the lattice em-
bedded in dimensiond. There are 2d pivotal Green functions
hxij and 2d recursions. The recursions reduce modulo a point-
group symmetry isomorphic to%dZ2 yielding a set of sym-
metry reduced recursions for the symmetrized pivotal sethpij
of the same general form as those for the linear chain, modi-
fied rectangle, and modified cube. The canonical variables
are of the form

a1 =
p1 + 1

p1 − 1
,

ai =
sp1 − 1dspi + 1d
sp1 + 1dspi − 1d

for i Þ 1. s32d

Transforming to the invariant

FIG. 6. Local density of statessstates per site per unit energyd
for the linear chain vs energy in units of the hopping matrix ele-
ment: sad LDOS for the site at the end of a semi-infinite chain and
sbd LDOS for a site in the infinite linear chain.

FIG. 7. Local density of statessstates per site per unit energy for
the modified cube vs energy in units of the hopping matrix element:
sad LDOS for a corner site in the limitL→` and h→0 for the
modified cube andsbd LDOS for ansn−1d bridge-point site in the
large lattice limit of the modified cubesn→` ,h→0d.

W. A. SCHWALM AND B. J. MORITZ PHYSICAL REVIEW B71, 134207s2005d

134207-6



d = sa1d2dp
iÞ1

2d

ai , s33d

further reduces the recursions such that

D = d, s34d

and there are 2d−1 residual recursions of the same general
form as those for the linear chain, modified rectangle, and
modified cube. The diagonal, pivotal Green function in the
large lattice limit takes the form

x1 =
sds1/2dd − 1d

sds1/2dd + 1d
, s35d

where the initial conditions are determined by computing the
Green functions for ad-dimensional hypercube and backing
up one step or by computing the Green functions for a
sd−1d-dimensional hypercube. In either case, the generation
n=1 graph is ad-dimensional hypercube.

For the members of the family, the spectral range is
−sd+1dø«ø sd+1d with dimensionless ground-state energy
sd+1d. Van Hove singularities exist at«=−sd+1d ,
−sd−1d , . . . ,−2,2, . . . ,sd−1d ,sd+1d for odd d and «
=−sd+1d ,−sd−1d , . . . ,−1,1, . . . ,sd−1d ,sd+1d for even d.
The bond length between adjacent sites is held fixed for all
generations in the recursive construction, leading to a self-
similarity dimensiondf =d, the Euclidian embedding dimen-
sion. The total density of states diverges near the ground-
state energysspectral maximumd as

Dtots«d , u« − sd + 1du− s1/2dd,

for «→ sd+1d. Thus, the spectral dimension as a function of
d is

ds =
2d − 1

2sd−1d . s36d

Note thatd=df .ds andds→2 as an upper bound asd→`
in agreement with the general result by Hattoriet al.18 for
coarse-grained fractal structures.

VI. ONE-ELECTRON CONDUCTANCE OF THE
MODIFIED RECTANGLE

To address the relationship between electrical conduc-
tance and the continuous spectrum and smooth density of
states obtained for the modified rectangle lattice, consider the
Kubo-Greenwood conductance between one-dimensional
leads attached at distal sites of the lattice. The method of
calculation is essentially that of Lee and Fisher19 with suit-
able modifications.20 Consider two leads formed from dis-
connected linear chains. The end sitek on each chain is
connected to the lattice by means of a single bond at attach-
ment sitesi and j of the modified rectangle lattice for some
generationn. The Green functions before attachment are

giiszd = gjjszd ; xnszd,

gijszd = gjiszd ; 5ynszd
unszd
vnszd

6 , s37d

and the Green function at the end of the leads is

gkkszd ; gszd =
z− Îz− 2Îz+ 2

2
. s38d

The equation forgszd appearing in Ref. 20 is in error. The
present form is correct and in agreement with the result in
Eq. s16d. The Kubo-Greenwood conductance sum for such a
geometry is20

cijs«d = 4sIm gszdd2U gijszd
Di jszd

U2

s39d

with

Di jszd = f1 − gszdxnszdg2 − gszd2gijszd2, s40d

and z=«+ ih. The conductance as shown in Fig. 8 is quite
complicated. In each case there is a distinct transition at«
=1 sand«=−1 not shown in the figured with cs«d associated
with ynszd showing an abrupt transition from nonconducting
to conducting behavior as a function of the dimensionless
energy. For nonzeroh, asn→` the amplitude decays expo-
nentially ,exps−L /Lod with lattice diameterL,2n/2 as ex-
pected.

Starting with initial conditions for dimensionless energy
in the range −1ø«ø1 and iterating, one finds a one-
dimensional attractor shown in Fig. 9 lying in the subspace
d−bc=0. The properties of the map on this attractor lead to
the behavior of the conductance seen in Fig. 8 for −1ø«
ø1. The attractor can be divided into two one-dimensional
raysb=1, c=d andc=1, b=d, wheredP s−` ,0g, that map
onto one another under the dynamical system. On this attrac-
tor the residual system, Eqs.s22d, solves exactly. Let
sbi ,ci ,did be an initial point on the attractor. Forbi =1

sb2m,c2md = s1,tanh2s2m tanh−1 Îcidd,

sb2m+1,c2m+1d = stanh2s2m tanh−1 Îcid,1d, s41d

and forci =1

sb2m,c2md = stanh2s2m tanh−1 Îbid,1d,

sb2m+1,c2m+1d = s1,tanh2s2m+1 tanh−1 Îbidd. s42d

On the attractor,y=0 leading to the insulating behavior seen
in Fig. 8sad and Eqs.s41d and s42d yield unszd and vnszd,
which alternate between zero and nonzero so that the con-
ductancecs«d alternates between zero and some finite value
ø1 for fixed « as a function ofn. Thus for −1ø«ø1 the
conductance is independent of lattice size showing perfect
conductance scaling on a set of nonzero measure, behavior
that is fundamentally different from the conductance scaling
commonly exhibited by regular, hierarchical lattices.21,22 For
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other energies in the spectrums−2ø«ø−1 and 1ø«ø2d
Fig. 8 also shows perfect conductance scaling; however, an
analysis similar to that conducted for the interval −1ø«
ø1 has yielded no similar insights.

VII. THE BETHE LATTICE

In a glassy material the chemical bonding requirements
tend to keep the coordination constant, resulting in short-
range order without long-range order. As one can see from
Fig. 1, the vertices of the modified rectangle lattice have a

distribution of site environments. The local coordination
number is constant, where as a given site is adjacent to three
rectangular loops of varying size. This distribution of site
environments is shared with typical regular hierarchical lat-

FIG. 8. Kubo-Greenwood conductance in unitse2/ sp"d be-
tween corner sites forn=4000 sh=0d. Green functions follow the
conventions of Sec. III B and the energy is in units of the hopping
matrix element:sad cs«d for gij szd=ynszd, sbd cs«d for gij szd=unszd,
and scd cs«d for gij szd=vnszd.

FIG. 9. One-dimensional attractor for −1ø«ø1: sad plot of the
one-dimensional attractor in thed−bc=0 subspace,sbd attractor as
viewed in theb-d plane, andscd attractor as viewed in thec-d plane.
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tices and differs from regular lattices with translational sym-
metry in which every site has exactly the same geometric
environment in either the infinite-size limit or with periodic
boundary conditions. This homogeneity of site environment
is also a property of the Bethe lattice. One might try to study
the relationship between finite ramification and wave local-
ization, such as Anderson localization, by comparing the
spectral and transport properties of the modified rectangle
lattice and the Bethe lattice.23

The Green functiongoszd for the root site of ap-fold
coordinated Bethe tree shown in Fig. 10 found using Eq.s9d
is

goszd =
z− Îz− kÎz+ k

2sp − 1d
, s43d

where the generic off-diagonal Hamiltonian matrix element
is 1, k=2Îp−1, and the sign is chosen so thatgoszd→1/z as
z→`. Connecting two Bethe trees root to root provides an
explicit formula for the Green function

Gmn= Ago
um−nu, s44d

between any two sitesm andn in the full Bethe lattice where
um−nu= l is the graph distance and

A =
z− psp − 1dgo

sz− pdsz+ pd
. s45d

Since

ugou =
1

Îp − 1
, s46d

Eqs. s39d, s40d, and s44d show that forpÞ2 conductance
tends to zero exponentially with distance between the leads.

VIII. CONCLUSION

Taking the family of lattices related to the modified rect-
angle lattice together with a typical finitely ramified, fractal
lattice, such as the 2-simplex lattice, we note that long-range,
one-electron conductance does not correlate simply with ei-
ther the degree of connectivity or the local regularity of the
structure. It also seems that no simple correlation exists be-
tween conductance and the existence of a spectral continuum
as seen from the analysis of the model on the modified rect-
angle lattice.

The model presented here shows two different properties
for a finitely ramified, hierarchical lattice. First, the spectra
of the model Hamiltonians turn out to be continuous with a
smooth density of states more like that of a regular lattice
with translational symmetry and homogeneity of site envi-
ronments. Second, the modified rectangle exhibits perfect
conductance scaling on a set of nonzero measure, which is
fundamentally different from the typical behavior of this
class of lattice models. In addition, although the spectra are
continuous, vanishing conductance or insulating behavior is
observed along the diagonal of the modified rectangle on the
interval −1ø«ø1. The unusual conductance can be ex-
plained by the existence of the chaotic attractor and the sub-
sequent analysis of the residual system for the modified rect-
angle.
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