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A layered system of charges with logarithmic interaction parallel to the layers and random dipoles in each
layer is studied via a variational method and an energy rationale. These methods reproduce the known phase
diagram for a single layer where charges unbind by increasing either temperature or disorder, as well as a
freezing first order transition within the ordered phase. Increasing interlayer coupling leads to successive
transitions in which charge rods correlated inN.1 neighboring layers are unbounded by weaker disorder.
Increasing disorder leads to transitions between differentN phases. The method is applied to flux lattices in
layered superconductors in the limit of vanishing Josephson coupling. The unbinding charges are point defects
in the flux lattice, i.e., vacancies or interstitials. We show that short range disorder generates random dipoles for
these defects. We predict and accurately locate a disorder-induced defect-unbinding transition with loss of
superconducting order, upon increase of disorder. WhileN=1 charges dominate for most system parameters,
we propose that in multilayer superconductors defect rods can be realized.
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I. INTRODUCTION

There is considerable current interest in topological phase
transitions induced by quenched disorder, a problem relevant
for numerous physical systems. Such transitions are likely to
shape the phase diagram of type II superconductors. It was
proposed1 that the flux latticesFLd remains topologically or-
dered in a Bragg glasssBrGd phase at low field, and becomes
unstable to the proliferation of dislocations above some
threshold disordersor fieldd. The increased effect of disorder
may lead to increased critical current, this providing one sce-
nario for the ubiquitous and controversial “second peak”2,3

line in the phase diagram. Another scenario was proposed
recently4 and is based on a disorder-induced decoupling tran-
sition sDTd associated with the loss of superconducting or-
der, responsible for a sharp drop in the FL tilt modulus. An
important question then is whether this DT occurs before the
BrG instability si.e., within the BrG phased or whether both
occur simultaneously.

Theoretically, two types of phase transitions were shown
to be specific for pure layered superconductors. The first is
decoupling5–7 at which the Josephson coupling as well as the
critical current between layers vanishes. The second is the
proliferation of point “pancake” vortices, vacancies and in-
terstitials sVI d in the FL above a temperatureTdef which,
above some field, is distinct from melting, as shown in the
absence of Josephson coupling.8 It is believed that this pure
system topological transition merges with the decoupling
transition6,7 as the bare Josephson coupling is increased, be-
ing two anisotropic limits of the same transition.9 This tran-
sition induces a loss of superconducting ordersparallel to the
layers by VI and perpendicular to them by the layer decou-
plingd while the positional correlations of the pure flux lattice
is maintained.10 This transition has also been studied in both

limits in presence of point impurity disorder7,11 as well as
columnar disorder.12 In particular, we have recently
demonstrated11 the existence of disorder-induced, VI unbind-
ing transition with loss of superconductivity in
3-dimensionals3Dd layered superconductors, which would
be particularly relevant to many layered superconductors and
multilayer systems.2,13

Topological phase transitions in two dimensional systems
are conveniently studied using mapping onto Coulomb gases
of charges interacting via a long range logarithmic potential.
Studying general three dimensional systems, even for pure
systems, is considerably more difficult. The limit of layered
superconductors with magnetic coupling only, provides one
rare example where the problem can be studied analytically
in 3D in a controlled way. Indeed in this limit the problem
amounts to coupled layers with 2D Coulomb interactions. In
the presence of quenched disorder, the problem becomes
quite subtle already in 2D because charges can freeze into
inhomogeneous configurations. Progress was made recently
and it was shown14–17 that quenched random dipoles lead to
a phase transition, via proliferation of defects at a finite
threshold value of disorder, even at temperatureT=0. New
analytical methods, based on RG for the charge fugacity
probability distribution, and mapping onto a solvable model
of directed polymer on the Cayley tree were developed in
2D.16,17 In a short account of the present work11 we have
extended some of these techniques to study the 3D system in
presence of disorder. Although a complete RG study along
the lines of Ref. 17 is possible in principle, we have used
simpler, and we believe largely equivalent, methods. The
first is an energy rationale which generalizes the Cayley tree
mapping. Second, we have introduced11 a Gaussian varia-
tional method which incorporates the effect of the broad
fugacity distribution, a feature previously revealed by the
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RG.15,17 This method was also applied to the single and two
layer case in a related work on a random Dirac model rel-
evant to quantum Hall systems.18

The aim of this paper is to present details of our previous
Letter11 as well as present results focusing on two themes.
First we consider a general disordered coupled Coulomb gas
sDCCGd model system defined by integer ±1 charges onM
layers in which the interaction energy between two charges
on layersn andn8 is 2Jn−n8 ln r with r the charge separation
parallel to the layers; in addition the charges couple to
quenched random dipoles. A general study of this system is
performed both via an energy rationale and by a variational
method, with consistent results. These methods are explained
in detail and results are presented on the freezing transition
within the ordered phase, on a phase with two length scales
and on successive transitions between rod phases. Second,
we apply this study to various physical situations, mainly to
layered superconductors in an external field. We justify, stat-
ing clearly the assumptions, that VI in the vortex lattice of
layered superconductors with no Josephson coupling and in
the presence of pinning disorder can be described by the
DCCG model with quenched random dipoles. In particular
our derivation is valid in the presence of BrG nonlinearities.

In Sec. II we present the DCCG model and its mapping to
a sine-Gordon type problem. In Sec. III we develop aT=0
energy rationale by an approximate mapping to Cayley tree
problem. For the one layer case we find the well known
critical disorder value ofscr=1/8 for theonset of VI. For the
many layer case we find that as the anisotropyh=−J1/J0
increases a cascade of phase transitions appear at which the
number of correlated charges onN neighboring layers in-
creases. These “rod” phases appear at an decreasing critical
disorder value until ath→1/2 we findN→` andscr→0. In
Sec. IV we develop an efficient variational method which is
tested on the one layer system, allowing for fugacity distri-
butions, known17 to be important in 2D since disorder be-
comes broad at low temperature. We reproduce the phase
boundary in disorder-temperature plane separating an or-
dered phasesbound chargesd and a disorderedsunbound
charges, i.e., finite VI densityd; the critical disorder param-
eter atT=0 is scr=1/8 is recovered. We also find a first
order line within the ordered phasesseen in the dynamics
study17d which becomes a crossover line in the disordered
phase. In Sec. V we extend our method to the 2-layer system
and find for the anisotropyh a critical valuehc=1−1/Î2
above which the single layer type transition is preempted by
a transition induced by bound states of two vortices on the
two layers withscr,1/8, in agreement with the energy ra-
tionale of Sec. III. However, in a limited range of1−1/Î2
,h,1/3 we find coexistence with a two gap state, which is
not captured by the energy rational in its simplest form, but
does not change the value ofscr. Of course, all of these
above results truly involve renormalized values of coupling
Jn

ren and disordersren. Although we have not attempted a full
RG study, one main additional effect of RG is simply to
substitute bare by renormalized values accounting for screen-
ing effects, which on the basis of the two layer case can be
assumed to be small for our present purposesi.e., identifying
transition lines at low temperatured.

In Sec. VI we develop the effective theory of layered
superconductors with magnetic coupling between layers, but

without Josephson coupling. We show that point disorder for
the FL leads to quenched dipoles for the VI, hence the
DCCG problem. For typical layered superconductors we pre-
dict the one layer type transition with an effective disorder
parameter. However, by increasing the separation between
layers, as in multilayer systems2,13 to exceed the lattice pa-
rameter of the FL, one may realize the newN.1 rod phases.

II. MODEL FOR DISORDERED LAYERED COULOMB
GAS

In this section we define the model forM coupled layers
of disordered Coulomb gases and also in terms of an equiva-
lent sine-Gordon model. Considernsr , ld integer charges on
the lth layer at positionr within the layer. The two-
dimensionals2Dd positionr is defined on a lattice of spacing
j, which for the superconducting system is the coherence
length. We study the Hamiltonian:

H = −
1

2 o
rÞr8

o
l,l8

2Jll8nsr ,ldGsr − r 8dnsr 8,l8d

− o
r ,l

Vlsr dnsr ,ld + Eco
r ,l

n2sr ,ld, s1d

whereEc is the core energy, accounting for short scale ener-
gies r ,j. Charges on the same or different layers interact
with a 2D Coulomb interaction, with

Gsr d<ur u→`ln
ur u
j

, Gq<q→0
2p

q2 , s2d

with Gsr d=eqGqs1−eiq·rd andeq=efd2q/ s2pd2g (on a square
lattice Gq

−1=s1/pdf2−cossqxjd−cossqyjdg). Neutrality is as-
sumed in each layer. The disorder potentialVlsr d can be con-
sidered as due to random dipoles. A dipole has a potential
,1/r or ,1/q in Fourier space; hence the disorder potential
on thelth layerVlsr d has long range correlations:

VlsqdVl8sq8d<q→02Dll8
2p

q2 s2pd2ds2dsq + q8d, s3d

fVlsr d − Vlsr 8dgfVl8sr d − Vl8sr 8dg<ur−r8u→`4Dll8 ln
ur − r 8u

j
,

s4d

whereDll8ù0. This logarithmically correlated disorder is the
one which exhibits a phase transition—other types of disor-
der with either weaker or stronger correlations result in either
ordered or disordered phases, respectively, hence no phase
transition as function of the disorder strength. One simpler
case, which we will study in details, is the case of uncorre-
lated disorder from plane to plane, namelyDll8=sJ0

2dll8. In
that case one has

fVlsr d − Vlsr 8dg2<ur−r8u→`4sJ0
2 ln

ur − r 8u
j

. s5d

It is clear that the model on a square lattice defined by its
partition sumZlatt=ohnsr ,ldje

−bH can also be seen as a neutral
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2D Coulomb gas model forM-component vector charges. A
given configuration of charges is thus defined by a set of
vector chargeshnsr , ldjl=1,. . .,M on a 2D lattice.

We define the Fourier transform:

nsq,kd = do
l

o
r

nsr ,ldeiq·r+ikdl, s6d

whered is the spacing between layers and in a continuum
limit dol →edzandj2o →ed2r. The inverse formula for the
charge densitysper unit aread is

nsr ,ld/j2 =E
k
E

q
nsq,kde−iq·r−ikdl, s7d

with eq=efd2q/ s2pd2g, k=2pm̃/Md with m̃ integer,
−fM /2g+1øm̃ø fM /2g, andek=s1/Mddok→e−p/d

p/d sdk/2pd
at largeM.

We perform disorder averages via the replica method, i.e.,
from the replicated partition functionZm in the limit m→0,
disorder averaged correlations and free energy are obtained.
For integerm we have

Zm = o
hnasr ,ldj

e−bHsmd
, s8d

with b=1/T, which on a lattice isexactlya Mm-component
2D vector Coulomb gas with integer charges at each siter
with integer entriesnasr , ld at eacha=1, . . . ,m, l =1, . . . ,M.
The replicated Hamiltonian is19

bHsmd = − o
rÞr8

Kla,l8bnasr ,ldGsr − r 8dnbsr 8,l8d

+ bEco
r ,l,a

na
2sr ,ld, s9d

Kla,l8b = bJll8dab − b2Dll8. s10d

Summation over repeated indices is assumed unless other-
wise specified.

For system which is cyclic andsstatisticallyd translation-
ally invariant in thez direction, i.e.,

Jll8 = Jul−l8u, Dll8 = Dul−l8u s11d

it is convenient to work with a Fourier space version which
reads

bHsmd =
1

2d2E
k
E

q

nasq,kdsG0dabsq,kdnb
*sq,kd

+ bEco
r ,l,a

na
2sr ,ld, s12d

sG0dabsq,kd =
4p

q2 fgskdda,b − b2Dskdg. s13d

For later convenience we have definedgskd=bJskd, Jskd
=dolJl expsikdld, with Jl =ekJskdexp−ikdl. Similarly Dskd
=dolDl,0 expsikdld, i.e., for disorder uncorrelated between
layersDskd=dsJ0

2.

We proceed to define an equivalent sine-Gordon system.
We first rewrite the logarithmic interaction by using a scalar
field xasr , ld,

Zm = K o
hna„r ,ldj

p
r ,l,a

e−ixasr ,ldnasr ,ld−bEcor ,l,ana
2sr ,ldL

x

. s14d

The average is done with the weight expf−1
2ekeqxasq ,kd

3sG0
−1dabsq ,kdxb

*sq ,kdg; performing this Gaussian average
one readily recovers Eq.s8d. The inverse of Eq.s13d is de-
rived by the inversion formulasAdab+Bd−1=s1/Addab

−B/ fAsA+Bmdg, which for m→0 yields

sG0
−1dabsq,kd =

q2

4p
F 1

gskd
da,b + b2 Dskd

g2skdG . s15d

The product in Eq.s14d at each lattice pointr can be written
as a sum of all ±1,0 values ofnasr , ld, i.e., a sum on all
integer vectorn=hna,lj; a=1, . . . ,m, l =1, . . . ,M,

Zm = Kp
r
F1 + o

hnÞ0j
Yfngeioa,lna,lxasr ,ldGL

x

, s16d

where the fugacity isYfng=expf−bEcoa,lna,l
2 g. At this point

we make an approximation of small fugacitiesYfng sdilute
limit d and write the above as an exponent

Zm = Kp
r

expF o
hnÞ0j

Yfngeioa,lna,lxasr ,ldGL
x

. s17d

This approximation neglects harmonics of expfn ·xg, i.e., it
neglects vector charges with entriesuna,lu.1. These harmon-
ics are irrelevant near the actual phase transition.17 Here and
below we definen ·x=olana,lxasr , ld. The result Eq.s17d can
now be identified as the partition sum for a sine-Gordon type
Hamiltonian,

bHSG=
1

2
E

k
E

q

xasq,kdsG0
−1dabsq,kdxb

*sq,kd

− o
r

o
n

Yfngexpin · xsr d, s18d

wherexasq ,kd=j2dorolxasr , ldeikdl+iq·r . We note that the1
sign for the off diagonal replica term in Eq.s15d corresponds
to imaginary gauge disorder in a related Dirac problem.18

The validity of the approximations leading to Eq.s18d are
discussed in Ref. 17 in the context of a single layer. As also
shown below, it is important, as done here, to retain replica
charges with several nonzero entries in order to describe the
freezing transitions at low temperatures.

III. ENERGY RATIONALE

In this section we consider the Coulomb gas problem at
T=0 and develop an energy rationale to determine the phase
diagram of the coupled layer system. The problem amounts
to find minimal energy configurations of charges in a loga-
rithmically correlated random potential. To ascertain theXY
ordered phasessbound defectsd and the transitions out of it
sdefect unbindingd, a first step is to study the dilute limit of a
single chargesor dipoled. Even then, the full analytical solu-
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tion is difficult, but various approximations have been argued
to give exact leading order results. For a single layer it was
studied either using14,20–22a “random energy model”sREMd
approximation, or more accurately using a representation in
terms of directed polymers on a Cayley treesDPCTd, intro-
duced in Refs. 16 and 23. The continuous version of the
DPCT representationsbranching processd was shown to
emerge17 from the one loop Coulomb gas RG of the single
layer problem, both for the single chargesor dipoled problem
and for the many charges problem including screening ef-
fects. It is thus expected to be accurate.

Schematically, one considers a tree with independent ran-
dom potentialssFig. 1 insetd vi on each bond with variance
v̄i

2=2sJ0
2. For definiteness we can discuss a tree of coordina-

tion e2, the choice being immaterial for our present consid-
erations. Afterp generations one has,e2p sites which are
mapped onto a 2D layer: each pointr corresponds to a
unique path on the tree withv1, . . . ,vp potentials and is as-
signed a potentialVsr d=v1+¯ +vp. Two pointsr , r 8, sepa-

rated by ur −r 8u,ep8 in Euclidean space, have a common
ancestor at the previousp8< lnur −r 8u generation Since all
bonds previous to the common ancestor are identical
fVsr d−Vsr 8dg2=2oi=1

p v̄i
2=4sJ0

2 lnsur −r 8ud, reproducing Eq.
s5d on each layer. Thus the growth of correlations on the tree
and in Euclidean space is by construction the same, and the
single charge problem corresponds to a single directed poly-
mer. Exact solution of DPCT24 yields the best energy gained
from disorder Vmin=minrVsr d<−Î8sJ0 ln L for a volume
L2, with only Os1d fluctuations,17 i.e., −Î8sJ0 per generation
p=ln L. It is argued that this is also the exact result for the
Euclidean problem. For a dipole in a single layer, one con-
siders two directed polymers on the same Cayley tree. For
opposite sign charge see opposite disorder −vi, the gain from
disorder −Vmax behaving identically. The configurations of
the two oppositely charged polymers can however being ar-
gued to be essentially independentsi.e., determining maxi-
mum and minimum of a log-correlated landscape can be per-
formed independentlyd.

To generalize the Cayley tree argument we construct op-
timal energy charge configurations forM coupled layers as
follows. ConsiderN neighboring layers with a1,2 pair on
each layer and no charges on the otherM −N layers. We
assume, for convenience, thatJ0.0 and JlÞ0ø0 so that
equal charges on different layers attract. The DPCT repre-
sentation now involves on a single treeN+polymersseach
seeing different disorderd andN−polymersseach seeing op-
posite disorder −vi to their + partnerd. A plausible configura-
tion is that the1 charges bind within a scaleLe s0øeø1d,
so do the2 charges, while the1 to 2 charge separations
define the scaleL. Its tree representationfFig. 1sadg has 2N
branches withe ln L generations, i.e., an optimal energy of
−2NÎ8sJ0e ln L. On the scale betweenLe and L the 1
charges act as a single charge with a potentialol=1

N Vlsr d sthe
N polymers share the same branchd of varianceNs hence the
optimal energy is −2Î8NsJ0s1−edln L. Note that the rod for-
mation limits the disorder optimization leading to a disorder
energy,ÎN,N. The total energy gain from the disorder
potential is thus estimated as

Edis < − 2J0
Î8sfeN + s1 − edÎNgln L. s19d

It is clearly exact for bothe=0 ande=1, sufficient for our
purpose. This result can also be obtained from the REM
approximation, i.e., replacing theVsr d by L2 variablesuncor-
related in r , with the same on-site varianceV2sr d
,2sJ0

2 ln L also yielding20 Vmin,−Î8sJ0 ln L.
The competing interaction energy from the couplingsJl is

for the 12 pairs f2J0N+4ol=1
N JlsN− ldgln L while for the

11 and 22 pairs it is −4ol=1
N JlsN− lde ln L. Hence the in-

teraction energy is

Eint = 2J0NF1 − 2o
l=1

N

hls1 − l/Nds1 − edGln L, s20d

wherehl =−Jl /J0. The total energyEtot=Edis+Eint is linear in
e, hence the minimum is at eithere=1 or at e=0. Sincee
=1 implies that the1 charges unbind, it is sufficient to con-
sidere=0 with all Nù1, i.e., a rod is aligned withN corre-
lated charges at distanceOs1d and has energy

Etot = 2J0NF1 − 2o
l=1

N

hlS1 −
l

N
D −Î8s

N Gln L. s21d

One can introduce more scalesLe8 to describe the multi-
charges, however, as the energy is linear ine8 the result is the
same rod structure.

Consider first the case with only nearest neighbor cou-
pling h1 and only intralayer disorder correlationsJ0

2. Disor-
der induces theN vortex statesi.e., Etot vanishesd at the criti-
cal value

scr
sNd =

N

8
F1 − 2h1S1 −

1

N
DG2

. s22d

The system is thus fully stable to disorder only fors,scr
with

FIG. 1. Critical disorder values with only nearest neighbor cou-
pling J1 vs the anisotropyh=−J1/J0. Transitions between different
N phases are marked with arrows. Inset: the Cayley tree represen-
tation sfor N=3 neighboring layersd with 1 chargessat the tree end
pointsd separated byLe along the layers, and separated byL from
the N=3− charges.
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scr = min
N

N

8
F1 − 2h1S1 −

1

N
DG2

. s23d

Whens reachesscr the first instability is to one of theN rod
state, whereN depends on the value of the anisotropyh1. If
h1,h1

s1d=1−1/Î2 thenscr
sNd is minimal atN=1 and the first

instability is similar to the one of a single layer withscr

=1/8. For largeranisotropiesh1
sN−1d,h1,h1

sNd, the first in-
stability occurs atscr=scr

sNd towards a N-rod state with
1/s1−2h1

sNdd=1+ÎNsN+1d,N, thus with divergingN as
h1

sNd→ 1
2 sFig. 1d sfor h1.

1
2Etot,0 even without disorder

and the defects would form a lattice atT=0d.
Upon increasings beyondscr

sNd a given rod phaseN.1
would eventually decompose into theN=1 phase. In particu-
lar the energies of theN=1,2 phases become equal at
scr

s1,2d=h1
2/ f4sÎ2−1d2g which equals 1/8 ath1=1−1/Î2.

Hence ath1.1−1/Î2 theN=2 rods disintegrate intoN=1
charges ats.scr

s1,2d. The variational solutionsSec. V Bd
shows that this secondary line is actually at a somewhat
lower scr

s1,2d ssee Fig. 5 belowd.
In the general case with all couplingsJl the critical value

is

scr
sNd =

N

8F1 − 2o
l=1

N

hlS1 −
l

N
DG2

. s24d

We consider in particularJl with range ofl0 constrained
by olJl =0, as relevant for the superconductor systemsSec.
VI d. An illustrative example ishl =h1 exp(−sl −1d / l0), con-
strained ash1= 1

2f1−exps−1/l0dg (note that ol=1
N hl =

1
2f1

−exps−N/ l0dg). One then has

scr
sNd =

1

8N

f1 − exps− N/l0dg2

f1 − exps− 1/l0dg2 . s25d

For largel0@1, eachhlÞ0 is small: scr
sNd as a function ofN

starts by increasing and forN& l0 the lowestscr
sNd is at N

=1. However, the combined strength ofN< l0 vortices being
significant, it has a maximum and then decreases back to
zero forN. l0 asscr

sNd< l0
2/8N. Hencescr

sNd→0 asN→` and
any small disorder seems to nucleate such vortices. This is
because of the perfect screening of the zero modeolJl =0
which implies that an infinite charge rod has a vanishing lnr
interaction; hence a logarithmically correlated disorder is al-
ways dominant.

In practice, the realization of these largeN states depends,
however, on the type of thermodynamic limit. Adding to Eq.
s21d the core energy 2EcN yields

Etot8 = 2J0
ÎNsÎ8scr

sNd − Î8sdln L + 2EcN s26d

which becomes negative only beyond the scale

LN < exphEc
ÎN/fJ0sÎ8s − Î8scr

sNddgj. s27d

This LN is the typical distance between rod vortices. Hence
even if s.scr

sNd only for system sizeL.LN the energy gain
from disorder wins over coresand interactiond energy. Hence
ass→0 such states are only achievable in a thermodynamic
limit where L /N diverges exponentially. Usingscr

sNd< l0
2/8N,

for N. l0
2/8s the lowest scaleL in this range is achieved at

N= l0
2/2s and leads to assystem sized lower boundLmin

<expfEcl0/4J0sg for observing largeN states with a given
s,

1
8. For layered superconductors25 Ec/J0@1 and l0@1

and this largeN instability occurs at unattainable scales, thus
N=1 dominates. One needsl0<2−3 to realize theN.1
states, attainable in multilayersssee discussion in Sec. VIId.

We finally generalize the energy argument for thee=0
configuration to the case of arbitrary correlationsgl =Dl /D0.
The disorder energy can be found from the variance of
oi=1,NVlsr d leading to the replacement s→sf1
+2ol=1

N sDl,0/D0ds1−l /Ndg in Eq. s21d. A more compact form
can be obtained by writing directly

Etot = 2Fo
l=1

N

o
l8=1

N

Jll8 −Î8o
l=1

N

o
l=1

N

Dll8Gln L. s28d

Using that

o
l=1

N

o
l8=1

N

Jll8 =E
k

JskdfNskd, s29d

fNskd = o
ll8

N

eikdsl−l8d =
sin2sNkd/2d
sin2skd/2d

. s30d

One has the criticality condition for aN rod:

E
k

DskdfNskd =
1

8SEk

JskdfNskdD2

, s31d

which in terms ofs=D0/J0
2 has the critical value

scr
sNd =

1

8

SE
k

sin2sNkd/2d
sin2skd/2d

Jskd/J0D2

E
k

sin2sNkd/2d
sin2skd/2d

Dskd/D0

. s32d

For fixed anisotropiesJskd /J0, Dskd /D0 this relates the over-
all critical disorder strengthscr

sNd to the rod lengthN.

IV. VARIATIONAL METHOD—THE SINGLE LAYER

We develop here a variational method which allows for
fugacity distributions, an essential feature in the one-layer
problem. The method is developed in this section for the
one-layer system and it is shown that one recovers in a
simple way all the important known features for this prob-
lem. Furthermore, insight is gained for a critical line within
the orderedscharge boundd phase, as well as a crossover line
in the disorderedscharge unboundd phase, at which the the
functional dependence of the charge density changes.

The single layer replicated Coulomb gas Hamiltonian is

bHsmd =
1

2
E

q

nasqd
4p

q2 fKdab − sK2gnb
*sqd + bEco

r ,a
na

2sr d,

s33d

wherenasqd=ornasr deiq·r . Note thats.0 is here essential;
the same 2D system withs,0 has been shown to have a
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different phase diagram.26,27 The equivalent sine-Gordon
system is now

bHSG=
1

2
E

q

xasqdsG0
−1dabsqdxb

*sqd

− o
r

o
n

Yfngexpin · xsr d, s34d

sG0
−1dabsqd =

q2

4p
F 1

K
dab + sG , s35d

where xasqd=j2orxasr deiq·r and bare fugacitiesYfng
=exps−bEcoana

2d. Here one has simplyn ·xsr d=oanaxasr d,
with n a nonzero vector with entriesna= ±1,0.

The variational method represents the full Hamiltonian
s34d by an optimal Gaussian one of the form

bHvar =
1

2
E

q

Gab
−1sqdxasqdxbs− qd, s36d

whereGab is to be determined by a variational principle. The
variational free energy isFvar=F0+kHSG−HvarlHvar with
bF0=−ln Z0=−1

2 Tr ln G is found to read

bFvar

L2 = −
1

2
E

q

Tr ln Gsqd +
1

2
E

q

Tr„G0
−1sqdGsqd…

− j−2o
nÞ0

Yfnge−s1/2deqn·Gsqd·n s37d

up to an unimportant constant, where the Tr is in replica
indices. Taking the derivatived /dGabsqd one obtains the
saddle point equation:

sab = j−2o
nÞ0

nanbYfnge−s1/2dn·G·n, s38d

where we have defined

Gab
−1sqd = sG0dab

−1sqd + sab. s39d

We recall first some technical relations.15,17 In the follow-
ing we represent relevant operators as averages which de-
pend only onn+,n−, which are the number of1 or 2 entries
in n, respectively. The averages have the form

Afng =E dudvFsu,vdeusn++n−d+vsn+−n−d, s40d

where z±=eu±v can be interpreted as fugacities for the6
charges, henceFsu,vd is a fugacity distribution. A sum on
all nÞ0 can be written in terms of the variablesn+,n− with
a combinatorial factor for the number ofn vectors with a
given n+,n−,

lim
m→0

1

m
o
nÞ0

Afng

= lim
m→0

1

m
o

0,n++n−øm

m!

n+!n−!sm− n+ − n−d!
kesu+vdn++su−vdn−lF

s41d

= lim
m→0

ks1 + eu+v + eu−vdm/mlF = klns1 + eu+v + eu−vdlF

s42d

and the binomial expansion has been used andk¯lF denotes
an average with the weightFsu,vd. Similarly one has

lim
m→0

1

m
o
nÞ0

o
a

na
2Afng = Ko

nÞ0
sn+ + n−deusn++n−d+vsn+−n−dL

F

= k]u lns1 + eu+v + eu−vdlF

=K eu+v + eu−v

1 + eu+v + eu−vL
F

s43d

and

lim
m→0

1

m
o
nÞ0

o
a,b

nanbAfng = Ko
nÞ0

sn+ − n−d2eusn++n−d+vsn+−n−dL
F

= k]v
2 lns1 + eu+v + eu−vdlF

=Keu+v + eu−v + 4e2u

s1 + eu+v + eu−vd2L
F

. s44d

In our case we consider a replica symmetric parametriza-
tion sab=scdab+s0 so thatGab=eqGabsqd has the formGab

=Gcdab−A, where

Gc =E
q

1

q2

4pK
+ sc

= K ln
L2

4pKsc
, s45d

A =E
q

s0 +
sq2

4p

S q2

4pK
+ scD2 = K2s ln

L2

4pKsc
− K2s +

Ks0

sc
,

s46d

whereL,j−1@Ksc is a cutoff on theq integration. Since
eqn ·Gsqd ·n=Gcoana

2−Gsoanad2 we can now identify the
weight function from the interaction term in Eq.s37d,

Yfnge−s1/2deqn·Gsqd·n = e−fs1/2dGc+bEcgsn++n−d+s1/2dAsn+ − n−d2

=E dvFsvdeusn++n−d+vsn+−n−d, s47d

where here the weight function depends here only onv

Fsvd =
1

Î2pA
e−v2/s2Ad s48d

andu=−bEc− 1
2Gc. We recall that

y = e−bEc s49d

is the bare fugacity of the charge, while thez± corresponds to
the renormalized onessthey become random variables be-
cause of the quenched disorder in the systemd. The bare
model can be generalized by introducing short-ranged ran-
domness in the bare core energiessof width E0d,15,17resulting
in the replica symmetric form Yfng=expf−bEcoana

2
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− 1
2b2E0

2oabnanbg. This corresponds to the changeA→A
+b2E0

2 in the averages above. SinceA is divergent at criti-
cality a finiteE0 can be ignored.

The interaction term in Eq.s37d is therefore

o
nÞ0

Yfnge−1/2eqn·Gsqd·n = klns1 + eu+v + eu−vdlF. s50d

To identify sc, s0 we consider the variational equation
s38d and note that Eq.s44d in the limit m→0 is sc, while Eq.
s43d is sc+s0, hence

sc = j−2Keu+v + eu−v + 4e2u

s1 + eu+v + eu−vd2L
F

, s51d

s0 = j−2K seu+v − eu−vd2

s1 + eu+v + eu−vd2L
F

. s52d

These equations, together with Eqs.s48d and s46d form the
closed set of self-consistent equations that we want to solve.
On general grounds one expects an ordered phase where the
self-energysc vanish corresponding to zero charge density
and zero renormalized fugacitysXY phased. The solution
with sc.0 corresponds to a phase with finite density of
chargessdisordered phased, the typical correlation lengthfsee
Eq. s39dg being,sc

−1/2, the typical distance between charges.
We will thus perform the analysis near the critical line,
wheresc is small. We will first neglect thes0 term in Eq.
s46d and later show that it is indeed negligible in all regimes
of interest.

To analyze these equations we note that thev integration
is dominated by largeuuu andA which diverge at criticality,
sc→0. The function displayed in Eq.s51d is maximal atv
=−u with a widthOs1d, while the gaussianFsvd is maximal
at v=0 with a widthOsÎAd. Consider thenv.0 where the
eu+v term dominates and is either very smallsu+v,0d or
very largesu+v.0d, hence

j2sc < 2E
0

` eu+v−v2/2A

1 + eu+v

dv
Î2pA

< 2E
0

−u

eu+v−v2/2A dv
Î2pA

+ 2E
−u

`

e−u−v−v2/2A dv
Î2pA

.

s53d

In the second term the saddle point atv=−A is outside of the
integration range, hence it is dominated by the lower limit,
i.e., it is of order exps−u2/2Ad. The first term has a saddle
point at v=A which is within the integration range ifA
,−u and then

sc , eu+A/2 , ysc
sK−K2sd/2, A , − u. s54d

For A,−u the second term of Eq.s53d is indeed smaller,
exps−u2/2Ad,expsud!expsu+A/2d. The range wheresc is
finite, i.e., the charge density is finite and behaves as a
plasma is where the exponent in the solution is positivesboth
sc andy being smalld,

sc , y2/s2−K+K2sd, K − K2s − 2 . 0, s , 2/K2 s55d

and the critical line wheresc vanishes isK−K2s−2=0 sFig.
2d; the conditionA,−u becomess,2/K2 ssee belowd. This
is the first, or high temperature regime. In that regime a
standard small fugacity expansion works, the effects of the
width of Fsvd are unimportant, both at the transition and in
the disordered phase.

Considering now the second, or low temperature, regime
A.−u. Then the first term of Eq.s53d is dominated by the
upper limit, hence both terms of Eq.s53d yield

sc , e−u2/2A , y1/4Kssc
1/8s, s .

1

8
, A . − u. s56d

Note that this corresponds to the distributionFsvd being
very broad and then the maximum atv=−u dominates the
result. For the finite charge density phase we have now

sc , ys2/Kd/s8s−1d, s .
1

8
, s . 2/K2, s57d

so that the critical line iss= 1
8 sFig. 2d; the conditionA

.−u becomess.2/K2 ssee belowd.
The boundary between the regimess55d and s57d is A

=−u, which for sc→0 is s=1/4K, i.e., s= 1
8, K=2 on the

critical line. The forms55d is then valid at high temperatures
K,2 and a sum on single replica, single charge excitations
is sufficient. In the low temperature regimesK.2d, where
Eq. s57d is valid, the summation on all charges in all replicas
na=s0, ±1d is essential in obtaining the correct result. It cor-
responds to the physics of the freezing, or prefered localisa-
tion of the charges in deep minima of the random potential.28

It is instructive to evaluate the boundary between the re-
gimes s55d and s57d for arbitrary small bare fugacityy!1
also away from the critical line. The nonanalytic behavior of
the integral in Eq.s53d is related to the divergence ofu, i.e.,
it exists in the ordered phase, while it becomes a crossover
line in the disordered phase; this is further discussed below.

FIG. 2. Phase diagram for one layer in terms ofs and T/J0

=1/K variables. The full line is the defect transition given byK
−K2s−2=0 at 1

4 ,1/K,
1
2 and by s= 1

8 at 1/K,
1
4. The dashed

line s=2/K2 is a first order transition within the orderedslow Td
phase and a crossover line in the disordered phase.
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Consider then a finitesc and definesc,yg. For y!1 the
condition A=−u becomess=s1/2Kd+s1/gK2d. For A,−u
we have from Eq.s55d g=2/s2−K+sK2d, hence the bound-
ary is s=2/K2. Similarly, for A.−u, using u=sKg /2
+1dln y yieldsg=s2/Kd / sÎ8s−1d and again the boundary is
at s=2/K2. Hence there is a unique boundary between the
two regimesfas included in the conditions for Eqs.s55d and
s57dg which intersects the critical line ats= 1

8, K=2. The
sharpness of this boundary, as mentioned above, depends on
sc→0, hence in the disordered phase it depends on the
smallness ofy, i.e., it is a crossover line where the charge
densities,sc change from Eq.s55d to Eq. s57d, a crossover
whose width shrinks withy. In the ordered phasesc=0 and
formally the boundary is sharp, although the relevant observ-
able, i.e., the density, vanishes. One may still observe this
transition by a finite size effect where theq→0 singularity is
cutoff by the inverse area 1/L2 instead of sc, i.e., sc

,s1/LdK−sK2
or ,s1/Ld1/4s in the two regimes, respectively.

This transition is termed as a freezing transition; it is related
to the single directed polymer transition on a Cayley tree,24

to a dynamic transition,17 and also to a phase transition in a
random gauge Dirac system.18

Consider nexts0, Eq. s52d. The integral is again domi-
nated by largeuvu, hence

s0 < E
0

` e2u+2v − v2/2A

s1 + eu+vd2

dv
Î2pA

< E
0

−u

e2u+2v−v2/2A dv
Î2pA

+E
−u

`

e−v2/2A dv
Î2pA

. s58d

The second term is,exps−u2/2Ad while the first term has a
saddle point atv=2A which is inside the integration range if
2A,−u, and then

s0 , y2e2u+2A , y2sscdK−2sK2
, s , 2/3K2. s59d

2A,−u implies s, s1/4Kd+1/s2bK2d and since alsoA
,−u we can useb=2/s2−K+sK2d, hences,2/3K2. Note

that s0,sc
2−sK2

!sc whens,2/3K2, so thats0/sc in Eq.
s46d can be neglected. Consider next 2A.−u where the in-
tegrals fors0 are dominated by the end pointsv=−u. The
range −u,2A,−2u which corresponds to 2/3K2,s
,2/K2 yields

s0 , sscds1 + sK2/2d2/s2sK2d, 2/3K2 , s , 2/K2, s60d

for which agains0!sc while at s.2/K2 we haves0,sc.
At s=2/3K2 the functional form ofs0 changes, but since
near this lines0!sc there is no observable singularity.

To conclude, comparison with RG studies15,17 shows that
the present variational method, which accounts for broad
fugacity distributions, gives a remarkably accurate descrip-
tion of the transition and in particular of the freezing phe-
nomena at low temperature in the single layer model. This is
presumably because the screening effectssneglected in the
variational approachd was shown, via higher order RG, to be
very small at low temperature. In addition it provides a de-
scription of the disordered phase. The RG methods can be
extended to many layers but following the joint distribution

of the large set of random fugacities becomes rapidly diffi-
cult asM increases. We thus now turn to the extension of the
variational method to several layers.

V. VARIATIONAL METHOD—MANY LAYERS

A. General case

We study now the full many-layer system, Eq.s18d. We
develop a variational method forM coupled layers which
allows for fugacity distributions, an essential feature in the
one-layer problem. It is explicitly worked out for two layers,
describing the various rod transitions as found by the energy
rationale in Sec. III, as well as a narrow transition region.

We note in particular the form of the interaction term
expin ·xsr d; the naive approach would be to restrict to
chargesn with a single nonzero entry, leading to a uniform
fugacity term −yor ,n,acos(xnasr d) and a diagonal
k-independent replica mass term. Instead we keepall com-
posite chargesn, which allow for variational solutions with
off diagonal andk-dependent replica mass terms. This corre-
sponds respectively to fluctuations of fugacity andN.1
charge rods being generated and becoming relevant.

We note first that a rod solution is readily obtained from
Eq. s12d, i.e., we look forN correlated charge on nearest
layers so that

unasq,kdu2 = Unasqddo
l=0

N−1

eikdlU2

= d2unasqdu2fNskd, s61d

wherefNskd was defined in Eq.s30d. With this replacement
Eq. s12d has the form of a one-layer system Eq.s33d with
effective parameters

Kef f =E
k

gskdfNskd, s62d

sef f =

E
k

b2DskdfNskd

FE
k

gskdfNskdG2 . s63d

The system than has the same phase diagram as for one layer
sFig. 2d with these effective parameters. In particular theT
=0 transition is atsef f=

1
8, in agreement with Eq.s31d.

We proceed with the variational scheme and define an
optimal Gaussian Hamiltonian to approximate Eq.s18d as

H0 =
1

2
E

k
E

q
xasq,kdGabsq,kdxb

*sq,kd, s64d

Gab
−1sq,kd = sG0dab

−1sq,kd + scskddab + s0skd, s65d

i.e., the self-energy can now depend onk.
The variational free energy isFvar=F0+kHSG−H0l0

wherek¯l is an average with respect toH0 andF0 is its free
energybF0=−1

2 Tr ln Gabsq ,kd. The Gaussian average has
the form
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Ffng ; kexpin · xsr dl0

= expH−
1

2
E

k
o
a
Uo

l

nl,ae
ikdlU2

Gcskd

+
1

2
E

k
Uo

l,a
nl,ae

ikdlU2
AskdJ , s66d

where we recall that ek;s1/Mddok and eqGabsq,kd
=Gcskddab−Askd, with

Gcskd =E
q

Gcsq,kd = gskdlnfL2/„4pgskdscskd…g,

Askd =E
q

Gsq,kd = b2DskdlnfL2/„4pgskdscskd…g − b2Dskd

+ gskds0skd/scskd. s67d

Extremization ofFvar yields the saddle point equation:

sscdll8dab + ss0dll8 = j−2d−2o
n

nalnbl8YfngFfng. s68d

Since the dependence is onl − l8, a corresponding Fourier
transform yields

scskddab + s0skd = j−2d−1o
n

o
l−l8

nalnbl8e
ikdsl−l8dYfngFfng.

s69d

We can now definesaskd=dolnl,ae
ikdl. The Askd term can

be written as an average over Gaussian distributions of
fugacities:

p
k

expS 1

2Md3usaskdu2AskdD
=E p

k

d2wk

2p
expS 1

Md2o
k

Refvksa
*skdg

−
1

2MAskdd
uvku2D

=p
k
KexpS 1

Md2Refvksa
*skdgDL

v

. s70d

This form allows to decoupleosFfsg=kZmlv with

Z = o
hsn=0,±1j

expS−
1

2d2E
k

G̃cskdusskdu2 +
1

d
E

k

Refvks
*skdgD .

s71d

The variational equations form→0 become

scskd = j−2dK ]2 ln Z

]vk]vk
*L

v

, s0skd = j−2dKU ] ln Z

]vk
U2L

v

.

s72d

We will not attempt to solve the general case but rather
present a solution forM =2.

B. Detailed solution for two layers

We consider now two layers with uncorrelated and equal
disorder on each layer. The partition sum depends now on
the number of1 and2 charges on each layer, i.e., on the 8
numbersna,b wherea ,b= ±1,0,excludingn00. For the vec-
torsn1, n2 in replica space for each layer, their number for a
given collection ofna,b is the combinatorial factor in the
following sum:

o
n1,n2

Yfn1,n2gFfn1,n2g

= o
na,b

m!

n00!n+0! . . . n++!
expF− bEco

a

sna1
2 + na2

2 d

−
1

4d
Gcs0do

a

sna1 + na2d2 −
1

4d
Gcspdo

a

sna1 − na2d2

+
1

2
A1So

a

na1 + na2D2
+

1

2
A2So

a

na1 − na2D2G , s73d

whereA1=As0d /2d, A2=Aspd /2d and the sum is restricted
to oa,bna,b=m. We need then two fugacity distributions,

expF1

2
AiSo

a

na1 ± na2D2G =E ev1oasna1±na2de−vi
2/2Ai

dvi

Î2pAi

,

s74d

where the upperslowerd signs corresponds toi =1 or i =2,
respectively. The sum overna,b has the form of a “ninomial”
expansion, i.e., a power of 9 terms,

o
n1,n2

Yfn1,n2gFfn1,n2g = kZmlv, s75d

where the average is on bothv1, v2. In terms of u1

=−1
2bEc−s1/4ddGcs0d and u2=−1

2bEc−s1/4ddGcspd we
have

Z = 1 +eu1+u2+v1+v2 + eu1+u2+v1−v2 + eu1+u2−v1+v2

+ eu1+u2−v1−v2 + e4u1+2v1 + e4u2+2v2 + e4u1−2v1 + e4u2−2v2.

s76d

The equations for thesdimensionlessd self mass termssc1
=sj2d/2dscs0d, sc2=sj2d/2dscspd and similarly fors0i are

sci =K ]2 ln Z

]vi
2 L

v

, s77d

s0i =Ks]Z/]vid2

Z2 L
v

. s78d

These self-masses correspond to length scales, i.e.,sc1
−1/2 is

the typical distance betweens11d charge rodssi.e., a1 in
layer 2 is on top of a1 in layer 1d, while sc2

−1/2 is the typical
distance betweens12d charge rods. In generalsc2,fsc1ga

so thata=0 corresponds tosc1=0 with N=2 s12d rod de-
fects, a=` corresponds tosc2=0 with N=2 s11d rod de-
fects,a=1 corresponds to the two length scales being equal
hence anN=1 state, while other values ofa imply the pres-
ence of two independent length scales.
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An N=2 rod solution is readily obtained bysc2=0 so that
u2→` andZ=1+e4u1+2v1+e4u1−2v1. This is equivalent to the
one layer system with

Kef f = 2sK0 ± K1d, sef f =
sK0

2

2sK0 ± K1d2 , s79d

where the lower sign corresponds to the1, 2 rod solution
sc1=0.

Consider now a general solution of the formsc2
,fsc1ga so that near criticality

u1 → −
1

4
sK0 + K1dlnsL2/sc1d, A1 → 1

2
sK0

2 lnsL2/sc1d,

u2 → −
1

4
asK0 − K1dlnsL2/sc1d, A2 → 1

2
asK0

2 lnsL2/sc1d.

s80d

Near criticality thev integrals are dominated by large values
so that positive and negative integration ranges are equiva-
lent; furthermore, thev1,v2.0 integral is dominated by ex-
ponents wherev1,v2 appear with positive sign,

sc1 =K ]

]v1

]Z/]v1

Z
L

v

< 4K ]

]v1

eu1+u2+v1+v2 + 2e4u1+2v1

1 + eu1+u2+v1+v2 + e4u1+2v1 + e4u2+2v2
L

v1,v2.0
.

s81d

We focus here on the low temperature behavior whereKi
→` and the integrals are dominated by the maxima of the
above] /]v1. The fraction in Eq.s81d has values 0, 1, 2 as
indicated in Fig. 3 with boundaries shown by the full lines,
assuming for nowu2.u1 sthe solution foru2,u1 can be
inferred by the symmetry of the phase diagram under
K0,K1,a→K1,−K0,1 /ad. At the full lines in Fig. 3] /]v1 is
maximal and dominate the integral at low temperatures since
the Gaussian averaging factors are very flat. More precisely,

we have separated thev1 integral into ranges left and right of
these lines and check in each range that it has no saddle point
and is therefore dominated byv1 at the line position. Thus
for v2,−2u2 the integral is dominated byv1=−v2−u1−u2
leading to a contribution

sc1
s1d , E

0

−2u2

dv2e
−sv2 + u1 + u2d2/2A1−v2

2/2A2, s82d

while for v2.−2u2 the intgeral is dominated byv1=v2
+3u2−u1 with the contribution

sc1
s2d , E

−2u2

dv2e
−sv2 + 3u2 − u1d2/2A1−v2

2/2A2. s83d

The saddle point of this integral is below −2u2, hence it is
dominated byv2=−2u2, i.e., is the same assc1

s1d if the latter is
also dominated byv2=−2u2, or less thansc1

s1d if the latter has
a saddle point within the integration range. Hencesc1

s1d deter-
mines the result with

sc1 , e−su1 + u2d2/s2A1+2A2d, su2 − u1dA2 , − 2u2A1,

sc1 , e−su1 − u2d2/s2A1d−2u2
2/A2, su2 − u1dA2 . − 2u2A1.

s84d

Consider nextsc2 which for v1,v2.0 is dominated by

sc2 =K ]

]v2

]Z/]v2

Z
L

v

< 4K ]

]v2

eu1+u2+v1+v2 + 2e4u2+2v2

1 + eu1+u2+v1+v2 + e4u1+2v1 + e4u2+2v2
L

v1,v2.0
.

s85d

The fraction above has values 0, 1, 2 is indicated in Fig. 3
with boundaries shown by the arrowed lines; at these lines
] /]v2 is maximal and the correspondingv2 dominate the
integral. Hence forv1,u2−u1 the integral is dominated by
v2=−2u2 leading to a contribution

sc2
s1d , E

0

u2−u1

dv1e
−v1

2/2A1e−2u2
2/A2 , e−2u2

2/A2. s86d

The next range isu2−u1,v1,−u2−u1 wherev2=−v1−u1
−u2 dominates, contribution

sc2
s2d , E

u2−u1

−u2−u1

dv1e
−sv1 + u1 + u2d2/2A2e−v1

2/2A1. s87d

This has a maximum within integration range ifsu2−u1dA2

,−2u2A1 with the result

sc2
s2d , e−su1 + u2d2/s2A1+2A2d, su2 − u1dA2 , − 2u2A1,

s88d

while if su2−u1dA.−2u2A1 the integral is dominated by its
lower limit u2−u1 which is then always smaller thensc2

s2d. In
the range −u1−u2,v1,−3u1+u2 the line of maximumv2
=v1−3u2+u1 is at large values ofv2 ssee Fig. 3d so should

FIG. 3. Integration ranges forsc1 and sc2 when u2.u1 si.e.,
uu1u. uu2ud. For sc1 the numbers indicate the fraction value in Eq.
s81d and the full lines are where thev1 integral is dominant. Forsc2

the numbers in parenthesis indicate the fraction value in Eq.s85d
and the arrowed lines are where thev2 integral is dominant.
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give a small contribution; in fact integrating this line even
from u2−u1 yields

sc2
s3d , E

u2−u1

dv1e
−sv1 + u1 − 3u2d2/2A2e−v1

2/2A1

, e−2u2
2/A2−su2 − u1d2/2A1, s89d

where the integrand has a maximum below the integration
range and is therefore dominated by the lower integration
limit. The result in Eq.s89d equals also to that of the inte-
grand in Eq.s87d at its lower limit, hencesc2

s3døsc2
s2d. Finally,

the range −3u1+u2,v1 has the line of maximum atv2
=v1+3u1−u2, hence

sc2
s4d , E

−3u1+u2

dv1e
−sv1 + 3u1 − u2d2/2A2e−v1

2/2A1 , e−s3u1 − u2d2/A1,

s90d

where again the integral is dominated by its lower limit. This
result is smaller than Eq.s88d fit is smaller than the integrand
of Eq. s87d at v1=−u1−u2, hence the latter is bigger if it has
a maximum within integration rangeg.

Collecting all terms we have

sc2 , maxfe−2u2
2
,e−su1 + u2d2/s2A1+2A2dg,

su2 − u1dA2 , − 2u2A1,

sc2 , maxfe−2u2
2
,e−s3u1 − u2d2/A1g, su2 − u1dA2 . − 2u2A1.

s91d

Equationss84d ands91d can be written in terms ofa and an
anisotropy parameterh=K1/K0.0 sfor h,0 we note that
the solutions are symmetric underh ,a→−h ,1 /ad. For h
, s1+ad / s3+ad

sc1 , fsc1gs1 + a + h − had2/16s1+ads,

sc2 , maxhfsc1gas1 − hd2/4s,fsc1gs1 + a + h − had2/16s1+adsj,

s92d

while for h. s1+ad / s3+ad we have

sc1 , fsc1gfs1 − a + h + had2+4as1 − hd2g/16s,

sc2 , maxhfsc1gas1 − hd2/4s,fsc1gs3 + 3h − a + had2/16sj.

s93d

Some inspection shows that the latter equation has no solu-
tions sexcept witha=0; see belowd while for Eq. s92d we
have the following solutionsssee Fig. 4d: sid The second term
of sc2 s,sc1

a d identifiessc1 exponents and leads toa=1 and
criticality at scr=

1
8, i.e., the independent layer solutionN

=1. The 2nd term of thesc2 line is the maximal one ifh
,1−1/Î2. sii d The 1st term ofsc2 identifies exponents as
s1−hd2/4=s1+a+h−had2/16s1+ad. This term dominates
in the sc2 line if a,1, hence the solution

h =
2 −Î1 + a

2 +
1 − a

Î1 + a

s94d

exists for1−1/Î2,h,1/3 with scr=
1
4s1−hd2. siii d Finally

a=0 is possible, i.e.,sc1;0 and an onset of just thek=p
componentsc2. The solution is then of charges correlated
between layers, i.e., theN=2 rod phase. Criticality is atscr

= 1
4s1−hd2, and from both Eqs.s92d ands93d this solution is

valid at all h provided it precedes the solutionsid with scr

,
1
8, henceh.1−1/Î2.
The solutionssid and siii d reproduce the energy rationale.

We have found here an additional solutionsii d with a non-
trivial new exponenta in a narrow range1−1/Î2,h
,1/3. This solution is a continuous interpolation ina be-
tween theN=1 solution sa=1 at h,1−1/Î2d and theN
=2 rod solutionsa=0 at h.1/3d. Both solutionssii d and
siii d have the samescr, hence they may be degenerate.

Solutionsiii d allows for an additional phase transition cor-
responding to the onset ofsc1, i.e., theN=2 rods decompose
into independentN=1 charges on each layer. Whensc2Þ0,
u2 andA2 are finite, hence the divergent terms in the expo-

nent of Eq. s84d yield sc1,e−u1
2/2A1,sc1

s1+hd2/16s, hence
scr

s1,2d=s1+hd2/16 allows the onset ofsc1 at h.1/3 sdashed
line in Fig. 5d. The energy rationale gives a somewhat higher
scr

s1,2d=h1
2/ f4sÎ2−1d2g for this N=2 to N=1 transition.

Finally we consider the disorder-temperature phase dia-
gram. The high temperature part of the phase boundary is
determined by low order renormalization group as disorder is
well behaved. Thus, in either Coulomb gas formulation17 or
in sine-Gordon formulation we find the recursion with
scale,

]Yfng
],

= YfngH2 − o
l,l8,a

na,lna,l8Kl−l8 + sK0
2o

l
Fo

a

na,lG2J .

s95d

TheN=1 solution is determined by one nonzero entry, hence
2−K0+sK0

2=0; for N=2 the solution corresponds to one

FIG. 4. Two layer solutions for the exponent insc2,fsc1ga in
terms of the anisotropyh. In the range1−1/Î2,h,1/3 two so-
lutions coexist.
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nonzero entry per two layers, with the relative sign7, hence
2−2K0±2K1+2sK0

2=0. For h.0 the dominant transition
si.e., the one at lower temperatured has the upper sign, cor-
responding tos2c with k=p. At s=0 this has a critical tem-
perature lower than that ofN=1 sinceK0=1/s1−hd,2 for
h,

1
2. Therefore the range of lows is dominated by the

usual N=1 transition. In Fig. 6 we demonstrate the phase
diagram withh=0.35 where the phasesN=1,2 compete.

VI. APPLICATION TO SUPERCONDUCTORS

A. Layered superconductor without disorder

The standard model for layered superconductors is the
Lawrence Doniach model in terms of the superconducting
phases on each layer and the electromagnetic vector poten-
tial. The latter can be integrated out9 leading to an effective

Hamiltonian in terms of pancake vortices, i.e., point singu-
larities in each layer, and a nonsingular Josephson phase. We
consider here the case without Josephson coupling, where
the pancake vortices are not coupled to the Josephson phase.
If nsr , ld is an integer field of ±1,0 corresponding to the
location of pancake vortices then the vortex Hamiltonian is9

Hv =
1

2 o
rÞr8

o
ll8

nsr ,ldGvsr − r 8,l − l8dnsr 8,l8d + Eco
r ,l

nsr ,ld2,

s96d

with

Gvsq,kd =
F0

2d2

4plab
2

1

q2

1

1 + fsq,kd
, s97d

fsq,kd =
d

4lab
2 q

sinhsqdd

sinh2Sqd

2
D + sin2Skd

2
D , s98d

wherelab is the magnetic penetration length parallel to the
layers andGvsq,kd=dol ed2rGvsr , ldeikdl+iq·r . The core en-
ergy is estimated as29,30 Ec<s0.04–0.2dt where t
=F0

2d/ s4p2lab
2 d.

Note that thek=0 mode is screened, i.e.,Gvsq,kd is non-
singular atq=0. All the other modes are unscreened and lead
to logarithmic interactions. This is because no screening cur-
rent can go alongz sin the absence of Josephson couplingd
and thus two pancakes in two different layers cannot screen
each others.

In presence of an external fieldB along z a flux lattice
with a unit cell areaa2=F0/B is formed. The flux lattice is
composed of pancake vortices, i.e., point singularities, which
are displaced from thepth line positionRp at the lth layer
into Rp+up

l ; its Fourier transform is

usq,kd = da2o
l

o
p

up
l eiq·Rp+ikdl. s99d

Expanding Eq.s96d to second order inup
l yields the elastic

Hamiltonian of the form

Hel =
1

2
E

k
E

q
fDLsq,kduuLsq,kdu2 + DTsq,kduuTsq,kdu2g.

s100d

We will be mainly interested in the case of no Josephson
coupling, where the following exact expression holds:

DLsq,kdPab
L sqd + DTsq,kdPab

T sqd

=
1

a4d2SqaqbGvsq,kd

+ o
QÞ0

fsQ + qdasQ + qdbGvsQ + q,kd

− QaQbGvsQ,0dgD s101d

provided we add a short distance cutoff in plane, i.e., replace

FIG. 5. The critical disorderscr for a two layer system. Ath
,1−1/Î2 the transition is to aN=1 phase atscr=

1
8. For h.1

−1/Î2 atscr=
1
4s1−hd2 the transition is either to anN=2 rod phase

at h.1/3 or, for 1−1/Î2,h,1/3, a mixed phasesc2,fsc1ga is
possible. Ath.1/3 theN=2 rod solution disintegrates into theN
=1 phase atscr

s1,2d=s1+hd2/16.

FIG. 6. Phase diagram for the onset of theN=1,2 instabilities
for anisotropyh=0.35. At low T two distinct transitions are pos-
sible, the first being to the rodN=2 phase. At highT the indepen-
dent layerN=1 transition dominates and eliminates theN=2 phase.
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Gvsq,kd→Gvsq,kde−q2j2/2. The conventional elastic moduli
are then identified as

DLsq,kd = q2c11sq,kd + kz
2c44

L sq,kd, s102d

DTsq,kd = q2c66sq,kd + kz
2c44

T sq,kd, s103d

wherekz
2=s4/d2dsin2skd/2d. For zero Josephson coupling it

is found,31 where leading terms inq2 are retained,

c66sq,kd =
BF0

s8plabd2 , s104d

c11sq,kd + c66sq,kd =
B2

4p

1

1 + lab
2 sq2 + kz

2d
, s105d

c44
L sq,kd =

B2

4p

1

1 + lab
2 sq2 + kz

2d
+ c44

T skd, s106d

c44
T skd =

1

2
S 1

da2D2 1

kz
2 o

QÞ0
fGvsQ,kd − GvsQ,0dgQ2

<
2BF0

s8plab
2 d2

1

kz
2 ln

1 + kz
2/Q0

2

1 + j2kz
2 , s107d

and the last form is in the limitd!a,lab. We note that with
Josephson coupling the results forc66,c11 are unchanged,
while c44

L,T are modified with a stronger effect31 on c44
T .

We consider first the defect transition in the pure system.8

This refers to the proliferation of vacancy interstitial pairs
sVI d, thereby destroying the superconducting order parallel
to the layers. These defects correspond to additional pancake
vortices, denoted byslsr d on top of the ones forming the flux
lattice. These defects couple to the lattice via the same cou-
pling of Eq. s96d,

Hvac = o
r ,p,l,l8

slsr dGvsRp + up
l8 − r ,l − l8d. s108d

To 0th order inul
n the defects feel a periodic potential:

Hvac
s0d = o

r ,p,l,l8

slsr dGvsRp − r ,l − l8d, s109d

which fixes the defect position in a unit cell, hence fluctua-
tions ofssq ,kd=dolorslsr deikdl+iq·r involve onlyq in the first
Brillouin zonesBZd; in the following fand in Eq.s100dg all q
integrals are restricted to the first BZ. Note that for vacancies
the periodic potential has minima on the flux lines, while for
interstitials the minima are in the middle of the unit cell.
Hence, the core energies of vacancies and interstitials differ,
but as they come in pairs,Ec refers to an average of these
core energies. For an isolated pancake vortex29 Ec
<s0.1–0.2dt, while in presence of a flux lattice with local
relaxation leads to30 Ec<0.04t.

Expanding to first order, one finds with the above defini-
tions:

Hvacss,ud = Hvac
s0d ssd + Hvac

s1d ss,ud + Ossu2d, s110d

Hvac
s1d ss,ud =

1

a2d2E
k
E

q

ssq,kdGvsq,kds− iqd ·us− q,− kd.

s111d

The total energy is thus

Helsud + Hvac
s1d ss,ud + Hvssd

=
1

2
E

k
E

q

DTsq,kduuTsq,kdu2

+
1

2
E

k
E

q
FSDLsq,kduuLsq,kdu2

+
1

d2ssq,kdGvsq,kdss− q,− kd

+
2

a2d2ssq,kdGvsq,kds− iqduLs− q,− kdDG .

s112d

One can either minimize it to find thespurely longitudinald
deformation of the lattice induced by the defect,

uvacsq,kd = iqssq,kdGvsq,kd/a2d2DLsq,kd s113d

and computeHel+Hvac+Hv at the minimum or, since it is
Gaussian, simply integrate out the displacementsuLsq ,kd.
One finds that the screening of the vortices by the longitudi-
nal displacements of the lattice results in an effective inter-
action energy between the defects:

Hv
ef fssd =

1

2d2E
k
E

q

ssq,kdGv
ef fsq,kdss− q,− kd, s114d

Gv
ef fsq,kd = Gvsq,kdS1 −

q2Gvsq,kd
a4d2DLsq,kdD . s115d

One can connect with the notations of the previous sec-
tions sb=1/kBTd:

gskd =
b

4p
lim
q→0

q2Gv
ef fsq,kd. s116d

The pure defect transition thus occurs when

Kef f =E
k

gskd = 2↔ Tdef =
1

8p
E

k

Gv
ef fskd, s117d

where we define

Gvskd = lim
q→0

fq2Gvsq,kdg =
F0

2d2

4p

kz
2

1 + lab
2 kz

2 , s118d

Gv
ef fskd = lim

q→0
fq2Gv

ef fsq,kdg = GvskdS1 −
Gvskd

a4d2DLs0,kdD ,

s119d

where we recallkz
2=s4/d2dsin2skd/2d.

It is instructive to consider the “unscreened defect transi-
tion” temperature, i.e., formation of pancake vortices in the
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absence of an external field. This is denoted as the vortex
transition9 with the onset temperature at

Tv =
1

8p
E

k

Gvskd =
F0

2d

2s4plabd2h„d/s2labd…, s120d

hsyd =
1

2p
E

−p

p

dx
1

1 +
y2

sin2sx/2d

= 1 −
y

Î1 + y2
. s121d

In particular ford!l one has

Tv <
F0

2d

2s4plabd2 = t/8. s122d

The actual superconducting transition is atTc with Tv,Tc
,Tf where Tf is the fluxon transition temperature, where
Josephson decoupling would occur in the absence of pancake
defects.9

To compare the vortex transition with melting we use a
Lindemann type criterionswith only transverse modesd

cL
2a2 = ku2l = TmE

k
E

q,BZ

1

c66q
2 + c44

T kz
2

=
Tm

4pc66
E

k

lnS1 +
4pc66

c44
T a2kz

2D . s123d

Using a circular BZ of volumes2p /ad2, hence 0,q2

,4p /a2,

Tm <
4pcL

2

A
c66a

2d =
4pcL

2

A

F0
2d

s8plabd2 ,

A = dE
k

lnS1 +
4pc66

c44
T a2kz

2D = dE
k

lnS1 +
f0

2

16pa4l2DTs0,kd
D ,

s124d

where in the last equation we have used the dispersionless
value of c66 valid for a@d. The scales of the vortex and
melting transitions are the same, their ratio beingTdef

0 /Tm
=A/4pcL

2. Hence the condition that the defect transition oc-
curs before melting and can thus be consistently described is
that Gv

ef fsq,kd!Gvsq,kd.
Let us now study the true transition with screening. One

denotesDL,Tskd=DL,Ts0,kd=kz
2c44

L,Ts0,kd, respectively. Using
the above result, one finds in theq→0 limit the exact ex-
pressions:

DTskd =
1

2
S 1

da2D2

o
QÞ0

fGvsQ,kd − GvsQ,0dgQ2, s125d

DLskd = DTskd +
1

a4d2Gvskd. s126d

One thus has

Gv
ef fskd = Gvskd

DTskd
DLskd

=
F0

2d2

4p

kz
2

1 + lab
2 kz

2

eskd
1 + eskd

,

s127d

eskd = a4d2DTskd/Gvskd. s128d

Hence the condition forTdef!Tm, which justifies our de-
scription of the defect transition, iseskd!1. We note also
that for a single 2D layer there is no tilt modulus for the FL
ande=0; hence a 2D FL has VI’s at any finite temperature.

Let us first consider the regime 2pd!a,l relevant for
layered superconductors. As shown in the Appendix one has
in this regime

DTskd <
F0

2

32p2lab
4 a2 ln

1 + kz
2/Q0

2

1 + d̄2kz
2

+
F0

2d2

8Q0
2a4lab

4 kz
2usd − j/2pd,

s129d

whered̄=maxsd,j /2pd and ford,j only the first term con-
tributes. This yields

eskd <
a2

8plab
4

1 + lab
2 kz

2

kz
2 lnS1 + kz

2/Q0
2

1 + d̄2kz
2 D +

pd2s1 + lab
2 kz

2d
2Q0

2lab
4

3usd − j/2pd. s130d

Note that the relative contribution of the second term be-
comes significant only fork,1/d. The condition thateskd
!1 for all k is thus met forl /a sufficiently largeshigh
enough fieldd as

l2

a2 .
1

4p
lnS 2c

dQ0
D , s131d

wherec is a constant of orderOs1d swhich can be estimated
from above, withc=1 whend,j /2pd. As long aseskd!1
we find that in all regimes one can estimate

Gv
ef fskd <

F0
2d2

4p

kz
2

1 + lab
2 kz

2eskd <
F0

2a2d2

32p2lab
4 lns1 + kz

2/Q0
2d.

s132d

This yields the estimate of the defect transition for 2pd!a
,l, using Eq.s117d at 2pd!a,

T0 = Tdef <
F0

2da2

128p3lab
4 lnsa/dd, 1 !

a

d
!

p

c
e4plab

2 /a2
.

s133d

We use thisT0 as a convenient scale below. We note that Eq.
s132d is weaklyk dependent, hence small anisotropyh sFig.
1d and the one-layerN=1 transition dominates.

We now estimate the defect transition temperature in the
other limit 2pd.a relevant for multilayers. As shown in the
Appendix one has then
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DTskd =
F0

2Q0d

2pa4 kz
2 e−Q0d

S1 +
2l2Q0

d
D2 . s134d

This yields

eskd = Q0de−Q0d 1 + l2kz
2

2S1 +
2l2Q0

d
D2 . s135d

The condition foreskd!1 for all k is satisfied when 2pd
@a. Thus in this limit one finds

Gv
ef fskd <

f0
2d2

2p
kz

2 dQ0e
−dQ0

S1 +
2l2

d2 Q0dD2 s136d

yielding

Tdef <
f0

2

8p2d

dQ0e
−dQ0

S1 +
2l2

d2 Q0dD2 s137d

usingekkz
2=2/d3. If in addition l.Îad one finds

Tdef <
f0

2d2a

64p3l4e−2pd/a. s138d

The melting criteria Eq.s124d has nowc44
T which is expo-

nentially small,e−Q0d, however it enters the logarithm in
Eq. s124d, i.e., A<2pd/a is large and Tm
<cL

2f0
2a/ s32p2lab

2 d, henceTdef!Tm for all 2pd@a. We note
that Eq.s136d implies a significant interlayer coupling withh
ssee Fig. 1d close to 0.5; hence disorder favors rod phases at
low temperatures.

B. Model with disorder

We have seen in Sec. IV that disorder can affect a Cou-
lomb gas transition if its correlation diverges at least loga-
rithmically with distance. Therefore, disorder that couples
directly to pancake defects has a finite correlation and has no
effect on the defect transition. In particular the vortex tran-
sition Eq.s120d in the absence of an external field is disorder
independent. The presence of a flux lattice deformed by point
disorder leads to a significant change in the disorder as seen
by pancake defects. Since each pancake composing the flux
lattice is a charge interacting logarithmically with the pan-
cake defects, a displaced pancake is equivalent to an addition
of 1, 2 charges, i.e., a dipole. Hence a disorder deformed
flux lattice leads to a quenched dipole disorder seen by the
defects, leading to logarithmically correlated disorder.

We consider first disorder within the finite Larkin scale
where one can expand in displacement, resulting in a random
force f lsr d

Hdis = − o
l
E d2rf lsr duLsl,r d, s139d

f lsr df l8sr 8d = Fl−l8d
2sr − r 8d, s140d

where we display only the coupling to the longitudinal com-
ponent,uLsl ,r d sbeing a suitable continuation ofup

l d and f lsr d
is the longitudinal disorder component; only the longitudinal
mode uLsl ,r d couples to the defectsfEq. s111dg. One can
write it in Fourier components:

Hdis = −
1

d
E

k
E

q

fsk,qdu*sk,qd, s141d

fsk,qdfsk8,q8d = s2pd3d2sq + q8ddsk + k8dFskd, s142d

where Fskd=dolFle
ikdl; note that for finiteM one hasek

;s1/dMdok and 2pdsk+k8d;dMdk,k8. It is useful to relate
Fskd to a previously used4,7 dimensionless disorder param-
eters representing point disorder uncorrelated between lay-
ers. The replicated action has s32psT0

2/
da4deq,kuasq ,kdub

*sq ,kd with T0 from Eq. s133d. Replicating
Eq. s141d identifiesFskd=64psdT0

2/a4.
We now consider the total energyHelsud+Hvacss,ud

+Hdissud and determine theu configuration in presence of
both disorder and defects. The part involving longitudinal
displacements reads

Htot =E
q,k

1

2d2ssq,kdGvsq,kdssq,kd* +
1

d2a2ssq,kdGvsq,kd

3s− iqduL
* sq,kd +

DLsq,kd
2

uuLsq,kdu2 −
1

d
fsq,kduL

* sq,kd

and we neglect the random potential seen by the defect itself
swhich is short ranged. The relaxed phonon field at the mini-
mum energy is

uLsq,kd = iqssq,kd
Gvsq,kd

a2d2DLsq,kd
+

1

dDLsq,kd
fsq,kd. s143d

Computing the energy for the defects at the minimumsor
equivalently integrating out the displacementsd yields the
same screened interactionGv

ef fsq,kd between defects as be-
fore and in addition yields the coupling of the vacancy to
disordersthrough the latticed as in the starting model which
allows to identify the correlatorDskd introduced in Sec. II:

Hvdis = − o
r ,l

Vlsr dslsr d = −
1

d
E

k,q
Vsq,kds*sq,kd, s144d

Vsq,kd = iq · fsq,kd
Gvsq,kd

a2d2DLsq,kd
, s145d

Vsq,kdVsq8,k8d = s2pd2dsq + q8ds2pddsk + k8d
4p

q2 Dsq,kd,

s146d

Dsq,kd =
q4Gvsq,kd2

4pd4a4DL
2sq,kd

Fskd. s147d

Thus in the limitq→0 one obtains in general
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Dskd =
1

4p
Fskd

Gvskd2

d4a4DL
2skd

s148d

with Dskd=Ds0,kd. In the almost fully screened case of in-
terest s2pd!a,l or 2pd@ad we haveGvskd /a4d2DLskd
<1; hence

Dskd =
a4

4p
Fskd. s149d

For usual layered superconductors 2pd!a we have from
Eqs. s132d and s133d for almost allk sk&1/ad gskd=2bT0,
hencesef f of Eq. s63d with N=1 becomessef f=4s. Note that
sef f,B, hence defect formation is induced at a fixed disor-
der by increasing the fieldB.

We proceed now to study the full disorder problem on all
scales allowing for Bragg glasssBrGd properties.1 The basic
assumption is that the long range extra displacement induced
in the BrG configuration by the defect is very small and one
can expand in it. Consider thenHBGsud as the BrG Hamil-
tonian for theu field in presence of disorder but in the ab-
sence of point defects. We add to itshereu=uLd:

Hsud = HBGsud +E
q,k

hsq,kdusq,kd. s150d

In particular for the flux lattice problem we identify from Eq.
s111d

hsq,kd =
1

d2a2iqssq,kdGvsq,kd. s151d

The next order in the displacement expansion isOssu2d and
after integrating outuLsq ,kd leads tos3 and higher order
terms; these are neglected in our low density treatment of
defects, i.e., largebEc.

Then one has the exactsalthough formald expansion for
the free energyF=−T ln Z:

F = FBG +E
q,k

hsq,kdkusq,kdl −
1

2T
E

q,q8,k,k8
hsq,kdhsq8,k8d

3kusq,kdusq8,k8dlc + Osh3d, s152d

where k¯l is thermal average in a particular disorder con-
figuration with no defects andFBG is the free energy of the
BG in that configuration andc denotes connected averages;
disorder average will follow below.

In the absence of disorder the second term in Eq.s152d is
zero and the third one yields the energy which screens the
initial defect-defect interaction:

Fscreen= −
1

2d2E
q,k

q2Gvsq,kd2

d2a4Dsq,kd
ussq,kdu2 s153d

using kusq ,kdusq8 ,k8dlc=T/Dsq,kd, i.e., the screening term
in Eq. s115d.

In presence of disorder, the disorder average of the third
term in Eq.s152d still yields exactly the samescreening part
of the interaction between defects. This is guaranteed by the
so-called statistical tilt symmetry of the Bragg glass model in
the absence of defects, i.e., the statistical invariance of the

disorder term in the Hamiltonian underusr , ld→usr , ld
+fsr , ld wherefsr , ld is an arbitrary functionssee, e.g., Ref.
1d so that kusq ,kdusq8 ,k8dlc,ud2F /df2uf=0 is independent
of disorder.

Since this is an expansion in defect densityssq ,kd we can
now identify the random potential coupling linearly to the
defect via the second termfa response of the third term in
Eq. s152d to defects results in higher orderOss3d termsg:

Vsq,kd = −
1

da2Gvsq,kdiq · kusq,kdlBG. s154d

The correlations are thussoverbar is disorder averaged

Vsq,kdVsq8,k8d = s2pd2dsq + q8ds2pddsk + k8d
4p

q2 Dsq,kd,

s155d

Dsq,kd =
1

4pd2a4q4Gvsq,kd2CBGsq,kd, s156d

whereCBGsq,kd denotes the disconnected average:

kusq,kdlkusq8,k8dl = s2pd2d2sq + q8ds2pddsk + k8dCBGsq,kd.

s157d

At all temperatures except near melting one haskulkul
<kuul as thermal fluctuations are subdominant. Therefore
we replace the left hand side of Eq.s157d by1

CBGsq,kd , 1/sq̄4 + q̄3/Rcd, s158d

whereq̄2=c66q
2+c44

L k2 andRc is a Larkin length alongc. For
q=0 and largek*1/Rc, i.e., on short distances compared
with Rc, this reduces to the previous result Eq.s149d, while
at longer scales the BrG induces interlayer disorder correla-
tion as seen by the defects. Replacing 1/DL

2skd in Eq. s148d
by CBGsq ,kd at q=0 we obtainfusing Gvskd /a4d2DLskd<1
as in Eq.s149dg

Dskd =
a4

4p
Fskd

k4

sk4 + Rc
−1k3d

. s159d

It is instructive to present another derivation ofDskd,
valid at T=0. In general, the disorder potentialVsr , ld
couples to the flux densityr(r ,usr , ld) and leads to a Bragg
glass configurationuBGsr , ld. The addition of a vacancy at
position R on layer l leads to an energy ofUsRd
=ol8ed2ruvacsr −R , l8− ld ·=r(r ,uBGsr , l8d)Vsr , l8d. One can
now see that the force=r(r ,uBGsr , ld)Vsr , ld has short range
correlations. Indeed, atT=0 we can minimize the disorder
energyol ed2rr(r ,usr , ld)Vsr , ld with the elastic energy Eq.
s100d to yield uBGsr , ld, hence =r(r ,uBGsr , ld)Vsr , ld
,¹2uBGsr , ld, the latter quantity having clearly short range
correlations,q̄4/ fq̄4+Rc

−1q̄3g. The potentialUsRd is thus the
convolution of a short range correlated random force with
the displacementuvac which has a long range form: for a
single vacancyuuvacsq ,kdu2,1/q2 from Eq. s113d. Thus one
finds thatUsRd is logarithmically correlated withDskd of Eq.
s159d. Hence the BrG induces an effective disorder correla-
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tion between layers on scales longer thanRc. For weak dis-
orderRc@d and the effect inekDskd is negligible, hence the
results of the Larkin regime are valid.

The application of our results to flux lattices depends on
the interlayer form of Eq.s97d which for a@d has the form9

Gvsr , ld,e−ld/a ln r, i.e., a range ofl0<a/d. For usual lay-
ered superconductors2 with a/d<10–100, we find that the
N=1 phase dominates andscr=1/8. Thephase diagram has
then the form of Fig. 2 with the magnetic fieldB in the
vertical axis.

To achieveNÞ1 phases the nearest layer coupling should
increase. We note thatgsk=0d=0 since for a straight pancake
rod the logarithmic interaction is fully screened. Hence
olJl =0 and when the rangel0 is reducedJ0, J1 dominate the
sum, i.e.,h1→ 1

2 whend@a, as in Eq.s136d. Direct evalua-
tion of h1 shows that it crosses the critical value1−1/Î2
when d/a<1, depending weakly on the ratioa/lab. We
therefore propose that flux lattices in multilayer supercon-
ductors, whered.a can be achieved, may show a rich phase
diagram withN.1 phases.

VII. DISCUSSION

We have developed here a variational method and a Cay-
ley tree rationale and applied these to the layered Coulomb
gas. The variational method is shown to reproduce the defect
transition of the single layer as well as demonstrate a first
order transition within the ordered phase. The latter was so
far inferred in the Caylee tree problem24 or in the dynamic
problem.17 To observe this transition one needs to induce
defects in the system, e.g., by finite size or dynamics. We
also show that this line survives in the disordered phase,
showing a crossover in the defect density dependence on
temperature or disorder.

The variational scheme has been extended to two layers,
confirming essentially the energy rationale. Near the onset to
the N=2 rod phase we find in a narrow interval a curious
phase with a new exponent relating the two components of
the order parameter. We consider then the variational scheme
as reliable for the main features of the phase diagram, i.e.,
the sequence of transitions into rod phasessFig. 1d.

Our results are relevant to flux lattices where we find the
phase boundaries and propose that for 2pd*a new N.1
phases can be manifested. Our derivation assumessid dislo-
cations are neglected, andsii d the Josephson coupling is ne-
glected. Assumptionsid implies that the melting transition is
at higher temperature or disorder than those of the defect
transition. This has been justified for the pure case in Sec.
VI A showing that Tdef!Tm if either 2pd!a,l or 2pd
@a. We assume that the same holds for disorder induced
melting, though the latter is less understood.

We discuss next assumptionsii d, i.e., the effect of the
interlayer Josephson couplingJ. In the absence of VI a layer
decoupling was found6,7 whereJ vanishes on long scales. At
this transition the width of a Josephson flux line diverges and
its fluctuations renormalizeJ to zero. A complete description
should allow for both VI defects and Josephson vortex loops
which would combine to form 3-dimensional defect loops.
We expect then that the defect and decoupling transitions

merge into one transition atTc, above which both the renor-
malizedJ is zero as well as a finite VI densitynd appears.

In fact a transition to a “supersolid” phase in a flux lattice
in isotropic superconductors was proposed10 where a finite
density of defect loops proliferate and a related “quartet”
dislocation scenario was suggested.32 In the supersolid des-
ription a finite line energy competes with the entropy of the
wandering line, both being linear in the defect length. The
resulting transition temperature is comparable to that of
melting,10 hence it is uncertain if this scenario is possible.

In our VI transition the competing energies and entropies
are logarithmic in the VI separation, rather than linear. If a
Josephson coupling is added, naively a linear term is added
since a flux line connecting the VI pair is formed. However,
near decoupling the renormalizedJ varies as a power of
scale, hence we expect that the free energy of a flux loop to
be nonlinear in size, modifying significantly the supersolid
transition at least in the smallJ case. We also show now that,
in contrast with the supersolid scenario,Tc can be well below
melting.

We note first that in the pure system the decoupling tran-
sition is atTdec=8Tdef sfor d!a!ld while its critical disor-
der sat T=0d is at7 sdec=2=16sdef, hence thes−T boundary
of the defect transition is below that of decoupling in both
the s, T coordinates. The disorder-temperature “phase dia-
gram” has therefore 3 regions, separated by the two lines
Tdefssd andTdecssd: sid decoupled and defected phase at high
T or highs, sii d between the linesTdefssd, Tdecssd, andsiii d a
coupled defectless phase at smallT and smalls. This “phase
diagram” is inconsistent in the sense thatTdefssd is derived
in the absence ofJ, while Tdecssd is derived in the absence of
VI defects.

We show next thatTdef,Tc,Tdec. In phasesid J→0 and
nd is relevant in the RG sense. This is a consistent descrip-
tion sinceJ=0 is assumed in the VI description, hence region
sid is a disordered phase. In regionsiii d nd→0 while J is
relevant, again a consistent scenario sinceJ being relevant is
shown assumingnd=0. However, in regionsii d bothnd andJ
are relevant, hence seperate “decoupling” and “defect” de-
scriptions are inconsistent and a single combined transition
within regionsii d is expected, i.e.,Tdef,Tc,Tdec. Since both
Tdef, Tdec are well below melting fora!l, we conclude that
Tc is also well below melting.

In fact we can estimateTc by an argument as used in the
B=0 case.9 Consider the VI correlation lengthjd<nd

−1/2 for
J=0 swhich diverges atTdefd and the Josephson correlation
lengthjJ swhich diverges atTdecd. Consider a temperature for
which jJ,jd; jJ is the scale at whichJ/T is renormalized to
strong coupling<1, e.g., in 1st order RG7

jJ < asT/Jd1/f2s1−T/Tdecdg. s160d

The Josephson termJ cossuns+usd involves both the nonsin-
gular phaseuns and the singular oneus due to VI pairs. If
jJ,jd VI pairs are not seen on the scale betweena andjJ,
renormalization ofJ cossunsd can proceed till strong coupling
is achieved, i.e., the phase is ordered. If insteadjJ.jd VI
defects interfere in theJ renormalization and disorder the

DISORDER-INDUCED TRANSITIONS IN LAYERED… PHYSICAL REVIEW B 71, 134202s2005d

134202-17



system. HenceTc is estimated byjJ<jd. From Eq.s55d for
the pure case,

jd < asebEcd1/f2s1−Tdef/Tdg, s161d

henceTc is nearTdef if J is sufficiently small,

J ! Te−Ec/T. s162d

For Bi2Sr2CaCu2O8 we estimate2,9 J<0.1 K, Ec<103 K
which for relevantT=10–100 K does not satisfy Eq.s162d,
i.e., the transition is nearTdec. However, for multilayers such
as sBi2Sr2CaCu2O8dmsBi2Sr2CuO6dn, the semiconducting
layers of Bi2Sr2CuO6 reduceJ by a factore−d/j whered,n
includes now the thickness of the semiconducting layers.
Hence, for a few such layers the conditions162d is already
satisfied andTc is nearTdef. Therefore, multilayer systems
are excellent candidates for observing the VI transition with
interlayer defects being either uncorrelated, when 2pd,a,
or in correlatedN.1 rod phases, when 2pd.a. The latter
condition is in fact easier to realize in these multilayers
whered is larger. Increasingd too much will push down the
coupled phase to very low temperatures, hence the optimal
case for study are multilayers with 2pd<a.
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APPENDIX A: EVALUATION OF SOME QUANTITIES

Let us estimate

DTskd =
1

2
S 1

da2D2

o
QÞ0

fGvsQ,kd − GvsQ,0dgQ2 sA1d

in various regimes. Implicit in the sum is a cutoff at large
Q<2p /j. One has

DTskd = S 1

da2D2 f0
2d2

8pl2 o
QÞ0

S 1

1 + fsQ,kd
−

1

1 + fsQ,0dD
sA2d

=
f0

2

8pl2a4 o
QÞ0 1 1

1 +
d

4l2Q

sinhsQdd
sinh2sQd/2d + sin2skd/2d

−
1

1 +
d

4l2Q

sinhsQdd
sinh2sQd/2d

2 . sA3d

Let us first consider the cased,j0, d/a!1. Then it sim-
plifies into

DTskd <
f0

2

8pl2a4 o
QÞ0

S − l2Q2

1 + l2Q2 +
l2sQ2 + kz

2d
1 + l2sQ2 + kz

2d
D .

sA4d

If we now further consider the case wherel.a it becomes

DTskd <
f0

2

8pl4a4 o
QÞ0

S 1

Q2 −
1

sQ2 + kz
2dD

<
f0

2

8pl4a4S a

2p
D2

pE
1

a/j

dxS1

x
−

1

x + sakz/2pd2D .

sA5d

Thus we find, ford,j0, d/a!1 andl.a that

DTskd <
f0

2

32p2l4a2 lnS 1 + skz/Q0d2

1 + sj0kz/2pd2D , sA6d

whereQ0=2p /a is the lowest term in theQ sum. In general
for d.j one has

DTskd <
f0

2

8pl2a4_ o
QÞ0

Q,1/d S − l2Q2

1 + l2Q2 +
l2sQ2 + kz

2d
1 + l2sQ2 + kz

2d
D

+ o
QÞ0

Q.1/d

1 1

1 +
d

2l2Q

1

1 + 4e−Qd sin2skd/2d

−
1

1 +
d

2l2Q
2+ . sA7d

The first term can be estimated forl.a and the second
with no assumption:

DTskd <
f0

2

8pl2a43_ 1

l2 o
QÞ0

Q,1/d S 1

Q2 −
1

sQ2 + kz
2dD

+ kz
2 o

QÞ0

Q.1/d

e−Qd 2l2Qd

S1 +
2l2

d
QD2+4 . sA8d

Using the previous calculation this yields

DTskd <
f0

2

32p2l4a2 lnS1 + skz/Q0d2

1 + sdkzd2 Du„d − a/s2pd… + Fskd

sA9d

and one can computeFskd in two limits:
In the case 2pd!a one finds

Fskd <
f0

2

2Q0
2d2a4kz

2FF d

j0
,
2l2

d2 G , sA10d

Ffx,yg =E
1

x

du
u2

s1 + yud2e−u. sA11d

Sincel@d seems natural in that case one gets
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Fskd <
f0

2d2

8Q0
2a4l4kz

2. sA12d

In the opposite case 2pd@a the sum is dominated by the
two shortestQ of lengthQ0; hence

DTskd < Fskd <
f0

2Q0d

2pa4 kz
2e−Q0d 1

S1 +
2l2

d
Q0D2 .

sA13d
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