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A layered system of charges with logarithmic interaction parallel to the layers and random dipoles in each
layer is studied via a variational method and an energy rationale. These methods reproduce the known phase
diagram for a single layer where charges unbind by increasing either temperature or disorder, as well as a
freezing first order transition within the ordered phase. Increasing interlayer coupling leads to successive
transitions in which charge rods correlatedNn>1 neighboring layers are unbounded by weaker disorder.
Increasing disorder leads to transitions between diffekephases. The method is applied to flux lattices in
layered superconductors in the limit of vanishing Josephson coupling. The unbinding charges are point defects
in the flux lattice, i.e., vacancies or interstitials. We show that short range disorder generates random dipoles for
these defects. We predict and accurately locate a disorder-induced defect-unbinding transition with loss of
superconducting order, upon increase of disorder. WKitel charges dominate for most system parameters,
we propose that in multilayer superconductors defect rods can be realized.
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l. INTRODUCTION limits in presence of point impurity disordef as well as
columnar disordel? In particular, we have recently
There is considerable current interest in topological phasdemonstrateld the existence of disorder-induced, VI unbind-
transitions induced by quenched disorder, a problem relevantg transition with loss of superconductivity in
for numerous physical systems. Such transitions are likely t8-dimensional(3D) layered superconductors, which would
shape the phase diagram of type Il superconductors. It wase particularly relevant to many layered superconductors and
proposed that the flux latticFL) remains topologically or- multilayer systemg:*3
dered in a Bragg glag8rG) phase at low field, and becomes  Topological phase transitions in two dimensional systems
unstable to the proliferation of dislocations above someare conveniently studied using mapping onto Coulomb gases
threshold disordefor field). The increased effect of disorder of charges interacting via a long range logarithmic potential.
may lead to increased critical current, this providing one sceStudying general three dimensional systems, even for pure
nario for the ubiquitous and controversial “second pédk” systems, is considerably more difficult. The limit of layered
line in the phase diagram. Another scenario was proposesuuperconductors with magnetic coupling only, provides one
recently and is based on a disorder-induced decoupling tranrare example where the problem can be studied analytically
sition (DT) associated with the loss of superconducting or-in 3D in a controlled way. Indeed in this limit the problem
der, responsible for a sharp drop in the FL tilt modulus. Anamounts to coupled layers with 2D Coulomb interactions. In
important question then is whether this DT occurs before thehe presence of quenched disorder, the problem becomes
BrG instability (i.e., within the BrG phaseor whether both  quite subtle already in 2D because charges can freeze into
occur simultaneously. inhomogeneous configurations. Progress was made recently
Theoretically, two types of phase transitions were showrand it was showt#~1”that quenched random dipoles lead to
to be specific for pure layered superconductors. The first i& phase transition, via proliferation of defects at a finite
decoupling~’ at which the Josephson coupling as well as thethreshold value of disorder, even at temperaflired. New
critical current between layers vanishes. The second is thanalytical methods, based on RG for the charge fugacity
proliferation of point “pancake” vortices, vacancies and in-probability distribution, and mapping onto a solvable model
terstitials (V1) in the FL above a temperaturBEye; which,  of directed polymer on the Cayley tree were developed in
above some field, is distinct from melting, as shown in the2D.1617 In a short account of the present workve have
absence of Josephson couplihli.is believed that this pure extended some of these techniques to study the 3D system in
system topological transition merges with the decouplingoresence of disorder. Although a complete RG study along
transitior’ as the bare Josephson coupling is increased, behe lines of Ref. 17 is possible in principle, we have used
ing two anisotropic limits of the same transitidhis tran-  simpler, and we believe largely equivalent, methods. The
sition induces a loss of superconducting or@earallel to the first is an energy rationale which generalizes the Cayley tree
layers by VI and perpendicular to them by the layer decouimapping. Second, we have introduted Gaussian varia-
pling) while the positional correlations of the pure flux lattice tional method which incorporates the effect of the broad
is maintained? This transition has also been studied in bothfugacity distribution, a feature previously revealed by the
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RG 1517 This method was also applied to the single and twowithout Josephson coupling. We show that point disorder for
layer case in a related work on a random Dirac model relthe FL leads to quenched dipoles for the VI, hence the
evant to quantum Hall systert. DCCG problem. For typical layered superconductors we pre-
The aim of this paper is to present details of our previousdict the one layer type transition with an effective disorder
Letter'" as well as present results focusing on two themesparameter. However, by increasing the separation between
First we consider a general disordered coupled Coulomb gagyers, as in multilayer systef$ to exceed the lattice pa-

(DCCG_) model system defir_led by integer +1 chargesMn  ameter of the FL, one may realize the nsw» 1 rod phases.
layers in which the interaction energy between two charges

on layersn andn’ is 2J,_, Inr with r the charge separation

parallel to the layers; in addition the charges couple to ||. MODEL FOR DISORDERED LAYERED COULOMB
quenched random dipoles. A general study of this system is GAS

performed both via an energy rationale and by a variational

method, with consistent results. These methods are explained In this section we define the model fdt coupled layers

in detail and results are presented on the freezing transitiodf disordered Coulomb gases and also in terms of an equiva-
within the ordered phase, on a phase with two length scaldent sine-Gordon model. Considaetr 1) integer charges on
and on successive transitions between rod phases. Secotide Ith layer at positionr within the layer. The two-
we apply this study to various physical situations, mainly todimensional2D) positionr is defined on a lattice of spacing
layered superconductors in an external field. We justify, stat¢, which for the superconducting system is the coherence
ing clearly the assumptions, that VI in the vortex lattice of|jength. We study the Hamiltonian:

layered superconductors with no Josephson coupling and in

o X ! 1
the presence of pinning disorder can be described by the H===3 S 20,0(r.)G( = (e’ 1)

DCCG model with quenched random dipoles. In particular 2~ ~
our derivation is valid in the presence of BrG nonlinearities. rer L

In Sec. Il we present the DCCG model and its mapping to “Svinr D+ES n2r 1
a sine-Gordon type problem. In Sec. Il we develofi=a0 %" (On(r. 1y C,EJ" ., @

energy rationale by an approximate mapping to Cayley tree ) _

problem. For the one layer case we find the well knownwhereE; is the core energy, accounting for short scale ener-
critical disorder value oé,,=1/8 for theonset of VI. For the giesr <& Charges on the same or different layers interact
many layer case we find that as the anisotropy-J;/J,  Wwith a 2D Coulomb interaction, with
increases a cascade of phase transitions appear at which the

number of correlated charges &h neighboring layers in- G(r)~ In M
creases. These “rod” phases appear at an decreasing critical Irl—es £’
disorder value until a— 1/2 we findN— o~ ando,— 0. In . .

Sec. IV we develop an efficient variational method which is"ith G(Ql:fqeq(l_e'q ) andfq=f[d*q/ (2m)’] (on a square
tested on the one layer system, allowing for fugacity distri-lattice G™=(1/m)[2-cogq,¢) ~cogq,$)]). Neutrality is as-
butions, knowf’ to be important in 2D since disorder be- sumed in each layer. The disorder poten¥igl) can be con-
comes broad at low temperature. We reproduce the phasidered as due to random dipoles. A dipole has a potential
boundary in disorder-temperature plane separating an or-1/r or ~1/q in Fourier space; hence the disorder potential
dered phasdgbound chargesand a disorderedunbound on thelth layerV,(r) has long range correlations:

charges, i.e., finite VI densitythe critical disorder param- )

eter atT=0 is o,=1/8 isrecovered. We also find a first TSV oW £m 242) ,

order line within the ordered phagseen in the dynamics Vi@Vir (@) =q-02A0- P (2m?*8%(a+q"), ®
study*’) which becomes a crossover line in the disordered

phase. In Sec. V we extend our method to the 2-layer system Ir=r|

and find for the anisotropy; a critical value y,=1-1/y2 (VI(r) = Vi (r )V (r) = Vi (r ) = r oy In ———,

above which the single layer type transition is preempted by 3

a transition induced by bound states of two vortices on the (4)

two layers witho, <1/8, in agreement with the energy ra- whereA,; = 0. This logarithmically correlated disorder is the

tionale of Sec. lll. However, in a limited range &F1/y2 one which exhibits a phase transition—other types of disor-

<7< 1/3 we find coexistence with a two gap state, which 'Ster with either weaker or stronger correlations result in either

not captured by the energy rational in its simplest form, but . :
does not change the value of,. Of course, all of these ordered or disordered phases, respectively, hence no phase

above results truly involve renormalized values of Couplingtransition as function of the disorder strength. One simpler
; case, which we will study in details, is the case of uncorre-
J°"and disordew'™". Although we have not attempted a full y

; — 2
RG study, one main additional effect of RG is simply to lated disorder from plane to plane, namely: =aJyd . In
. . . that case one has
substitute bare by renormalized values accounting for screen-
ing effects, which on the basis of the two layer case can be SO —— 5 r=r’|
assumed to be small for our present purpése, identifying V() =Vi(r) = - |dadgIn £ ©)
transition lines at low temperatyre
In Sec. VI we develop the effective theory of layered |t is clear that the model on a square lattice defined by its

superconductors with magnetic coupling between layers, bupartition sumZ|an:E{n(r,,)}e‘5H can also be seen as a neutral

2
quqHO? ) (2)
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2D Coulomb gas model favi-component vector charges. A We proceed to define an equivalent sine-Gordon system.
given configuration of charges is thus defined by a set ofVe first rewrite the logarithmic interaction by using a scalar

vector chargegn(r,)}=; . on a 2D lattice. field x,(r,1),
We define the Fourier transform: _ ) 2
Zm:< 2 H e—lxa(r,I)na(r,I)—,BECE,‘|Vana(r,I)> ) (14)
n(g,k) =d2> 2 n(r,1)earkd, (6) ing(rh}rla x
I r

_ _ _ ~ The average is done with the weight €xg/y/qxa(d.K)
vyhgred is the spac;ng betv;/een Ia_yers and in a Cont'nuumx(Gal)ab(q,k)X;(q,k)]; performing this Gaussian average
limit d=, — fdzand§°E — [d”r. The inverse formula for the  gne readily recovers Eq8). The inverse of Eq(13) is de-

charge densityper unit aregis rived by the inversion formula(Ad,,+B)™1=(1/A)é8,,
o -B/[A(A+Bm)], which form— 0 yields
n(r,|)/§2=fjn(q,k)e"q""kd', (7)
<a (Gal>ab<q,k>:q—z[iaabwzm)}. (15)
4l glk) T gi(k)

with  [=[[d?q/(2m)?], k=2mM/Md with ™ integer,

-[M/2]+1<m=<[M/2], andfk:(1/Md)2kﬂfﬂf,d(dk/27r) The product in Eq(14) at each lattice point can be written

at largeM. as a sum of all +1,0 values ofy(r,l), i.e., a sum on all
We perform disorder averages via the replica method, i.einteger vectom={n, }; a=1,... m,1=1,... M,

from the replicated partition functiod™ in the limit m— 0, _ )

disorder averaged correlations and free energy are obtained. Z"= <H [1 + > Y[n]e'za~'na""a<r")]> , (16

For integerm we have r {n#0} P

Zm= s (8)
nae )}

where the fugacity isY[n]=ex;:[—ﬂECEa,,n§'|]. At this point
we make an approximation of small fugacitigen] (dilute
limit) and write the above as an exponent

with 8=1/T, which on a lattice iexactlya Mm-component _ _
2D vector Coulomb gas with integer charges at eachrsite "= <H exp >, Y[n]e'Ea,'”a,lXa”")D . (17
with integer entriesi,(r,l) at eacha=1,... m, 1=1,... M. r {n#0} X
The replicated Hamiltonian 18 This approximation neglects harmonics of gxpy], i.e., it
m_ . - neglects vector charges with entrieg| >1. These harmon-
pHTT = E, KiaroNa(r,DG(r = r")ng(r",1") ics are irrelevant near the actual phase transttidhere and
e below we definen- x==n,xa(r ,1). The result Eq(17) can
+ BE. >, ni(r ), (99  now be identified as the partition sum for a sine-Gordon type
rla Hamiltonian,
1 —_ *
Kiaib = B 8ap = B4y 1. (10) BHsc= EJ f Xa(0,K)(Gg ) an(01, K) xp(a1,K)
kJq
Summation over repeated indices is assumed unless other- _
wise specified. -2 > Y[nlexpin - x(r), (18)
For system which is cyclic angstatistically translation- r.n
ally invariant in thez direction, i.e., where y.(q,K) = £dS, 3, xa(r ,1)edaT We note that ther
I =3 A=Ay, (11)  Sign for the off diagonal replica term in EQL5) corresponds

to imaginary gauge disorder in a related Dirac problém.
it is convenient to work with a Fourier space version whichThe validity of the approximations leading to E{.8) are
reads discussed in Ref. 17 in the context of a single layer. As also

shown below, it is important, as done here, to retain replica

1 * charges with several nonzero entries in order to describe the
m—_T 9
BH ZdZJk L Na(0,K)(Go)an(d, k)Ny(a. k) freezing transitions at low temperatures.
2
+ BE.2 (1), (12) . ENERGY RATIONALE

rla
In this section we consider the Coulomb gas problem at
A T=0 and develop an energy rationale to determine the phase
(Go)an(9,k) = ?[g(k)éavb_ AAR)]. (13 diagram of the coupled layer system. The problem amounts
to find minimal energy configurations of charges in a loga-
For later convenience we have defingtk)=£J(k), J(k)  rithmically correlated random potential. To ascertain ¥
=d=J, exp(ikdl), with J=[,J(k)exp-ikdl. Similarly A(k)  ordered phasetbound defectsand the transitions out of it
=dZ A pexplikdl), i.e., for disorder uncorrelated between (defect unbinding a first step is to study the dilute limit of a
IayersA(k):dchS. single chargdor dipole. Even then, the full analytical solu-
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Cer To generalize the Cayley tree argument we construct op-
timal energy charge configurations ft coupled layers as
0.125 1 i follows. ConsidemN neighboring layers with a-,— pair on

each layer and no charges on the othérN layers. We
assume, for convenience, thd>0 and J,.,<0 so that
equal charges on different layers attract. The DPCT repre-

0075 i A . i sentation now involves on a single trée+polymers(each
2R S 1 2 |3 seeing different disordeand N-polymers(each seeing op-
L L5 § posite disorder v, to their + partnex. A plausible configura-

I S——— tion is that the+ charges bind within a scalef (0<e<1),
0025 L 5 | so do the— charges, while thet to — charge separations

define the scalé. Its tree representatidiFig. 1(a)] has N
0 0.1 0.2 0.3 04 M 05 brangh_es withe In L generations, i.e., an optimal energy of
—-2N\8oJpeIn L. On the scale betweeh® and L the +
FIG. 1. Critical disorder values with only nearest neighbor cou-charges act as a single charge with a potelitibgv,(r) (the
pling J; vs the anisotropy;=-J;/Jo. Transitions between different N polymers share the same brapohvarianceNo hence the
N phases are marked with arrows. Inset: the Cayley tree represeaptimal energy is —28NaJy(1—¢€)In L. Note that the rod for-
tation (for N=3 neighboring layejswith + chargedat the tree end  mation limits the disorder optimization leading to a disorder
pointy separated by.€ along the layers, and separated lbyrom energy~\s"ﬁ< N. The total energy gain from the disorder

the N=3- charges. potential is thus estimated as

tion lis difficult, but_various approximations h.ave been argued Ege=~ — 2J0\e"§r[eN +(1- e)v’N]In L (19)
to give exact leading order results. For a single layer it was

studied either using?%-22a “random energy modelREM) It is clearly exact for botke=0 ande=1, sufficient for our

approximation, or more accurately using a representation ipurpose. This result can also be obtained from the REM
terms of directed polymers on a Cayley t@PCT), intro-  approximation, i.e., replacing th&r) by L2 variablesuncor-
duced in Refs. 16 and 23. The continuous version of theelated in r, with the same on-site varianc&2(r)
DPCT representatior(branching proce$swas shown to ~2¢J3InL also yielding® Vimin~ —V80Jy I L.
emergé’ from the one loop Coulomb gas RG of the single  The competing interaction energy from the couplidgis
layer problem, both for the single chargw dipole) problem  for the +— pairs [2J0N+4E|’11J|(N—I)]In L while for the
and for the many charges problem including screening ef<+ + and —— pairs it is _@ﬁljl(N_Dfm L. Hence the in-
fects. It is thus expected to be accurate. teraction energy is

Schematically, one considers a tree with independent ran-
dom potentialgFig. 1 inse} v; on each bond with variance N
E?:ZUJS. For definiteness we can discuss a tree of coordina- Ent=2JN| 1 - 2> (1 -1/N)(1-¢) |InL, (20
tion €2, the choice being immaterial for our present consid- I=1
erations. Afterp generations one hase? sites which are
mapped onto a 2D layer: each pointcorresponds to a
unique path on the tree withy, ... ,v, potentials and is as-
signed a potentia¥/(r)=v,+- - +v,. Two pointsr, r’, sepa-
rated by|r-r’|~e? in Euclidean space, have a common
ancestor at the previous' =In|r —r’| generation Since all
bonds previous to the common ancestor are identical N | P
[V(r)-V(r") =230 v?=4033 In(Jr -1 ")), reprqducing Eq. Epr= 2J0N|:1 -2> 77|<1 __) — A /_‘T} InL. (21)
(5) on each layer. Thus the growth of correlations on the tree I=1 N N
and in Euclidean space is by construction the same, and the
single charge problem corresponds to a single directed poly@ne can introduce more scaleé$ to describe the multi-
mer. Exact solution of DPCH yields the best energy gained charges, however, as the energy is linea¢’ithe result is the
from disorderV,,=min,V(r)=-y8cJyInL for a volume same rod structure.
L2, with only O(1) fluctuationst’ i.e., —/8aJ, per generation Consider first the case with only nearest neighbor cou-
p=InL. It is argued that this is also the exact result for thepling 7, and only intralayer disorder correlatirJ3. Disor-
Euclidean problem. For a dipole in a single layer, one conder induces thé vortex statg(i.e., E vanishegat the criti-
siders two directed polymers on the same Cayley tree. Fotal value
opposite sign charge see opposite disordgythe gain from
disorder V., behaving identically. The configurations of wn_N 1-2 (1_1> 2 (22)
the two oppositely charged polymers can however being ar- Tor = 8 n N/ |-
gued to be essentially independéne., determining maxi-
mum and minimum of a log-correlated landscape can be peithe system is thus fully stable to disorder only & o,
formed independenty with

where 7, =-J,/J,. The total energ¥;,=Egist+ Ein is linear in

€, hence the minimum is at eithe=1 or ate=0. Sincee
=1 implies that thet charges unbind, it is sufficient to con-
sidere=0 with all N=1, i.e., a rod is aligned witlN corre-
lated charges at distan€¥(1) and has energy
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(23 N:I(Z)/Zo and leads to asystem size lower bound L,
=~ exd Edo/4Jgo] for observing largeN states with a given
Wheno reachesr,, the first instability is to one of thél rod ;< %_ For layered superconductétsE./J,>1 and l,>1
state, whereN depends on the value of the anisotropy If  and this largeN instability occurs at unattainable scales, thus
m<n’=1-1/2 thenag‘) is minimal atN=1 and the first N=1 dominates. One needsg~2-3 to realize theN>1
instability is similar to the one of a single layer with,  states, attainable in multilaye(see discussion in Sec. VI
=1/8. For Iargeranisotropiesn(lN_l>< m< 77(1”), the first in- We finally generalize the energy argument for #we0
stability occurs ato,=o, towards aN-rod state with configuration to the case of arbitrary correlations A,/ A,.
1/(1—277(1N)):1+\/N(N+1)~N, thus with divergingN as The disorder energy can be found from the variance of

7V =2 (Fig. 1) (for 7,>3E,<0 even without disorder Ziz\Vi(r)  leading to the replacement o— o1

. N 1) |2 for N>13/8¢ the lowest scalé in this range is achieved at
og=min—|1-2mp|1-—
N

and the defects would form a lattice Bt 0). +2512(A 0/ Ag)(1-1/N)] in Eq. (21). A more compact form
Upon increasingr beyondo'’ a given rod phaséi>1  can be obtained by writing directly
would eventually decompose into the=1 phase. In particu- N N N N
Ia}r1’£5r1e 2energ‘rles 2f thd_\l—l,Z phases becoTe eqt{gl at Etot:2|:2 >3- A /82 EA”}In L. (29
oy 7 =n/[4(2-1)7] which equals 1/8 atp=1-1/2. 1=1 /=1 1=1 1=1
Hence atyp;>1-1/V2 theN=2 rods disintegrate intbl=1 )
charges ato>o'1?. The variational solution(Sec. V B Using that
shows that this secondary line is actually at a somewhat N N
lower o'+ (see Fig. 5 belo DI :f J(K) P (K), (29
In the general case with all couplingsthe critical value I=1yr=1 k
is
N .
N 2 ~ =17y _ SiP(Nkd/2)
oy = 2{1 -23, 7/|<1 . lﬁ)] . (24) Il =2 = ) (20
1=1

: . : . . One has the criticality condition for i rod:
We consider in particulad; with range ofl, constrained teaity ”

by 2,J,=0, as relevant for the superconductor syst{&ac. 1 2
VI). An illustrative example isp =75, exp(—=(1-21)/1y), con- kA(k)¢N(k) ) k‘](k)d’N(k) ' (31)
strained as 7, =3[1-exg-1/ly)] (note that N, 7=3[1

—exp(—=N/lp)]). One then has which in terms ofa=A/J3 has the critical value
— ext- 2 sinf(Nkd/2 2
o= L L1 ex=NT (25) ( f SiriNkd2) )J(k)/Jo>
 8N[1-exd-1MyT? w1k sirf(kd/2)
N 7 T8 [ sif(Nkd2) ' (32
For largely>1, eachy is small:af;r) as a function ofN f S : AK)/A,
starts by increasing and fad=<I, the lowesto'" is at N « Sirf(kd/2)

=1. However, the combined strengthN#= I, vortices being , . . .
significant, it has a maximum and then decreases back t'c:)or fixed anisotropied(k)/Jo, A(K)/A, this relates the over-

" ; (N)
zero forN> 1, asggyz%m,\l_ HenCEO'((:';I)—>O asN— o and all critical disorder strengtlar,” to the rod length\.

any small disorder seems to nucleate such vortices. This is |y yARIATIONAL METHOD—THE SINGLE LAYER

because of the perfect screening of the zero mbde=0 o )

which implies that an infinite charge rod has a vanishing In  We develop here a variational method which allows for

interaction; hence a logarithmically correlated disorder is alfugacity distributions, an essential feature in the one-layer

ways dominant. problem. The method is developed in this section for the
In practice, the realization of these laiyestates depends, ©One-layer system and it is shown that one recovers in a

however, on the type of thermodynamic limit. Adding to Eq. simple way all the important known features for this prob-
(21) the core energy BN yields lem. Furthermore, insight is gained for a critical line within

— — the orderedcharge boundphase, as well as a crossover line
Efor = 2J0V’N(\r’8(r(c':‘) -v8o)InL +2E.N (26) in the disorderedcharge unboundphase, at which the the
functional dependence of the charge density changes.

which becomes negative only beyond the scale The single layer replicated Coulomb gas Hamiltonian is

N ,f_
= AR B0l @D | ni@ 25K ok + BES, e
== | n(q)— - n ns(r),
This Ly is the typical distance between rod vortices. Hence A 2)y ° a R oKsIn(a)+ B ‘e
even ifo> of:t') only for system sizé. > L, the energy gain (33)

from disorder wins over cor@and interactiopenergy. Hence .
aso— 0 such states are only achievable in a thermodynamievheren,(q)=X,n,(r)€9". Note thato>0 is here essential;
limit where L/N diverges exponentially. Using(c’:')~I§/8N, the same 2D system with<<O has been shown to have a
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different phase diagras®?’ The equivalent sine-Gordon = lim (1 +e* + ) Mm)g = (IN(1 + " + e V))q
system is now m—0
1 (42)
P -1 *
BHse= ZJ Xa(@)(Go)an( @) xp(q) and the binomial expansion has been used(anf, denotes
a an average with the weigld(u,v). Similarly one has
-2 2 Yinlexpin - x(r), (34) 1
x im = 3 3 n2An] = (S (n, + n e
m—-0Mpo a n+#0 @
-1 q2 1 Uty 4 QU
(GoHab(@ =~ —| — ot o], (35) =(duIn(1 +e™ + 7))q
4| K " -
) e U+e U
where Xa(q):2§22r xa(r)e?" and _ bare fugacitiesY[n] = <—1 e 4 e”‘”>q) (43
=exp(—-BEZ4n;). Here one has simply-x(r)=Zanaxa(r),
with n a nonzero vector with entrigg,=+1,0. and
The variational method represents the full Hamiltonian 1
(34) by an optimal Gaussian one of the form lim =2, > nnAln]={ >, (n, - n_)%ens+n-+v(n-n)
m—0Mp.0 ap n#0 @
1 _
BH yar = Ej G D) Xa( @ xp(~ 9), (36) =(FIn(L+e"" +e"))g
q gt 4 giv 4 gg2u
whereG,, is to be determined by a variational principle. The N dremre2/, (44)
variational free energy i, =Fo+(Hsc=Hyar) Hyar With @
BFo=-In Zo:—% Trin G is found to read In our case we consider a replica symmetric parametriza-
. L tion o= 0cdap+ 0 SO thatG,,=J(Gap(q) has the formG,,
F — _
L 2J)q 2)q 2
1 A
G.= =KIn , 45
- £23) Y[n]e WA can (37) ‘ L q’ 4mKo (49
n#0 m O¢c
up to an unimportant constant, where the Tr is in replica )
indices. Taking the derivatived/ §G,,(q) one obtains the ot oq”
saddle point equation: 0" 4q ) A? , Koy
A= 2—2:K‘T|n4K -Keo+ —,
Tap= €722 nanpYn]e HAnen, (38) i ( < m) o -
n#0 47K
where we have defined (46)
G"é(q) - (GO)—g(q) + o (39) where A ~ £1>Kao, is a cutoff on theq integration. Since
a a "

fqn-G(q)-n=GCEan‘,§—G(Eana)2 we can now identify the
We recall first some technical relatiotst’ In the follow- weight function from the interaction term in E(g7),
ing we represent relevant operators as averages which de-
pend only om,,n_, which are the number of or — entries
in n, respectively. The averages have the form

y[n]e—(lIZ)f qn'Ga)n = g [(1/2)Ge+BEC](Ny+n ) +(L/2A(N, — n.)?

= J dvq)(v)eU(n++n_)+v(n+—n_), (47)
Aln]= f dudy®(u,v)e!Msnroinen) (40)
where here the weight function depends here only on
where z,=e"*" can be interpreted as fugacities for the 1 5
charges, hencé(u,v) is a fugacity distribution. A sum on O(v) = ﬂe_” ol (48)
Wy

all n# 0 can be written in terms of the variablag,n_ with
a combinatorial factor for the number of vectors with a gn(d u:—BEC—%GC_ We recall that
givenn,,n_,

y=¢eFE (49)
1 . . .
lim =, Aln] is the bare fugacity of the charge, while thecorresponds to
m—0Mpo the renormalized one&hey become random variables be-
1 ml cause of the quenched disorder in the sys$tehe bare
= lim = (gwrvn+umingy - model can be generalized by introducing short-ranged ran-

- In_l(m-n, -n_)! . : .
m-0Mo<n m <m NAN-HM=n, —n.) domness in the bare core enerdiebwidth E,),'>"resulting

(41) in the replica symmetric form Y[n]:exp{—,BECEang
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DISORDER-INDUCED TRANSITIONS IN LAYERED..

—%,BZESEabnanb]. This corresponds to the change— A
+B%E§ in the averages above. Singeis divergent at criti-
cality a finite Ey can be ignored.
The interaction term in Eq.37) is therefore
> Y[n]e YA C@n = (In(1 + e + €47))y,.  (50)
n+0

To identify o, 09 we consider the variational equation
(38) and note that Eq44) in the limit m— 0 is o, while Eq.
(43) is o+ 0y, hence

0'c=§_2<

eu+v + eu—v + 4e2u>
]

(1 +eu+v + eu—v)2 (51)
(eu+u_ u—v)z
— 2
O-O - g_ < (1 +eu+v + eu—v)2>q)- (52)

These equations, together with E¢48) and (46) form the

PHYSICAL REVIEW B 71, 134202(2005

0.2 5

o

0.1 4

0.0 . Y
0.25

FIG. 2. Phase diagram for one layer in termsoofand T/J,
=1/K variables. The full line is the defect transition given Ky
-K20-2=0 at;<1/K<3 and byo=j at 1/K<3. The dashed
line ¢=2/K2 is a first order transition within the orderétbw T)

phase and a crossover line in the disordered phase.

closed set of self-consistent equations that we want to solve.

On general grounds one expects an ordered phase where the
self-energyo, vanish corresponding to zero charge density

and zero renormalized fugacityXY phas¢. The solution

with o.>0 corresponds to a phase with finite density of

chargegdisordered phasgthe typical correlation lengtfsee

Eq.(39)] being~ o2, the typical distance between charges.

We will thus perform the analysis near the critical line
where o is small. We will first neglect therg term in Eq.

(46) and later show that it is indeed negligible in all regimes

of interest.

To analyze these equations we note thatuthetegration
is dominated by largéu| and A which diverge at criticality,
o.— 0. The function displayed in Eq51) is maximal atv
=—u with a width O(1), W_hile the gaussia(v) is maximal
at v=0 with a widthO(JA). Consider then» >0 where the
e term dominates and is either very small+v <0) or
very large(u+v>0), hence

Po.~2 f @A gy
0. = ——
o 1+ \27A

~ Zf_u eu+v—U2/2A’d_v + fo e_U_U_UZ/ZAq—U .
0 V2mA —u V27A
(53

In the second term the saddle poinbat—A is outside of the

0o~ YK K _K25-250, g<2/K2 (55)
and the critical line wherer, vanishes i —K?¢s—2=0 (Fig.
2); the conditionA< —u becomesr< 2/K? (see below. This
is the first, or high temperature regime. In that regime a

standard small fugacity expansion works, the effects of the

* width of ®(v) are unimportant, both at the transition and in

the disordered phase.

Considering now the second, or low temperature, regime
A>-u. Then the first term of Eq53) is dominated by the
upper limit, hence both terms of E(3) yield

1
O.C —_~ e_U2/2A —_ y1/4K(TO_(]:./8(T, o > é, A > - u. (56)
Note that this corresponds to the distributid{v) being
very broad and then the maximum @&-u dominates the
result. For the finite charge density phase we have now

0y ~ 2D o> 2IK?,

1
o> g (57)
so that the critical line i&r=§ (Fig. 2); the conditionA
> -u becomesr>2/K? (see below.

The boundary between the regiméb) and (57) is A
=-u, which for o.—0 is 0=1/4K, i.e., a:é, K=2 on the
critical line. The form(55) is then valid at high temperatures

integration range, hence it is dominated by the lower limit,K<2 and a sum on single replica, single charge excitations

i.e., it is of order exp-u?/2A). The first term has a saddle
point at v=A which is within the integration range iA
< -u and then

(K-K20)12

U+A/2
~ yo-C ,

op~ € A<-u. (54)
For A<-u the second term of Eq53) is indeed smaller,
exp(—u?/ 2A) < exp(u) <exp(u+A/2). The range where is
finite, i.e., the charge density is finite and behaves as
plasma is where the exponent in the solution is positieh

o, andy being small,

is sufficient. In the low temperature regin( >2), where
Eq. (57) is valid, the summation on all charges in all replicas
n,=(0, 1) is essential in obtaining the correct result. It cor-
responds to the physics of the freezing, or prefered localisa-
tion of the charges in deep minima of the random pote#ffial.

It is instructive to evaluate the boundary between the re-
gimes (55) and (57) for arbitrary small bare fugacity<1
also away from the critical line. The nonanalytic behavior of
the integral in Eq(53) is related to the divergence aof i.e.,
it exists in the ordered phase, while it becomes a crossover
line in the disordered phase; this is further discussed below.
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Consider then a finiter, and defines.~y”. For y<1 the
condition A=-u becomeso=(1/2K)+(1/yK?). For A<-u
we have from Eq(55) y=2/(2-K+0oK?), hence the bound-
ary is o=2/K2. Similarly, for A>-u, using u=(Ky/2
+1)Iny yields y=(2/K)/(y8a—-1) and again the boundary is

at c=2/K2. Hence there is a unique boundary between the

two regimeq as included in the conditions for Eq&5) and
(57)] which intersects the critical line atrzé, K=2. The

sharpness of this boundary, as mentioned above, depends el
o.—0, hence in the disordered phase it depends on thgII
smallness ofy, i.e., it is a crossover line where the charge

densities~ o, change from Eq(55) to Eq.(57), a crossover
whose width shrinks witly. In the ordered phase.=0 and

formally the boundary is sharp, although the relevant obser
able, i.e., the density, vanishes. One may still observe thigx

transition by a finite size effect where the- 0 singularity is
cutoff by the inverse area Lf instead of o, i.e., o

~(1/L)K7K* or ~(1/L)Y4" in the two regimes, respectively.

This transition is termed as a freezing transition; it is relate

. o7 =Y BE=% off diagonal andk-dependent replica mass terms. This corre-
to a dynamic transitiod’ and also to a phase transition in a

to the single directed polymer transition on a Cayley ffee

random gauge Dirac systetf.
Consider nextop, Eqg. (52). The integral is again domi-
nated by largdv|, hence

© e — 22N dv

P07 ) T @+e™)? \2mA
—~ f_u e2u+2v—v2/2A dv + fw e—v2/2A dv (58)
0 V27A —u V27A

The second term is-exp(-u?/2A) while the first term has a
saddle point ab =2A which is inside the integration range if
2A<-u, and then

o ~ YRR A (g KK s <32 (59)

2A<-u implies o0<(1/4K)+1/(28K? and since alsoA
<-uwe can usg8=2/(2-K+oK?), henceo<2/3K?. Note

that UO~U§_"K2< 0. Wwheno<2/3K?, so thatoy/ o, in Eq.
(46) can be neglected. Consider next:2 —u where the in-
tegrals foroy are dominated by the end points=—u. The
range t4<2A<-2u which corresponds to 2K¥<o
<2/K? yields

)(1 + oKZ2)2(20K3)

2/13K? < o< 2/K?, (60)

for which againoy< o, while at o> 2/K? we haveo,~ o.
At 0=2/3K? the functional form ofo, changes, but since
near this linesy<< o, there is no observable singularity.

oo~ (o

V_
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of the large set of random fugacities becomes rapidly diffi-
cult asM increases. We thus now turn to the extension of the
variational method to several layers.

V. VARIATIONAL METHOD—MANY LAYERS
A. General case

We study now the full many-layer system, H48). We
velop a variational method fdvl coupled layers which
ows for fugacity distributions, an essential feature in the
one-layer problem. It is explicitly worked out for two layers,
describing the various rod transitions as found by the energy
rationale in Sec. lll, as well as a narrow transition region.
We note in particular the form of the interaction term
pin-x(r); the naive approach would be to restrict to
chargesn with a single nonzero entry, leading to a uniform
fugacity term 3, [ .C0{xn(r)) and a diagonal

OE—independent replica mass term. Instead we kalegom-

osite charges, which allow for variational solutions with

sponds respectively to fluctuations of fugacity aNd>1
charge rods being generated and becoming relevant.

We note first that a rod solution is readily obtained from
Eqg. (12), i.e., we look forN correlated charge on nearest
layers so that

2

= d?ny(@)]*pn(k), (61)

N-1

Ina(a. K2 = [ ny(@)d > ek
1=0

where ¢y (k) was defined in Eq(30). With this replacement
Eqg. (12) has the form of a one-layer system H§3) with
effective parameters

Keff:fkg(k)¢N(k)- (62)
fﬁzﬁ(k)QSN(k)

Oeff= : 2 (63)
fkg(k)fﬁr\n(k)

The system than has the same phase diagram as for one layer
(Fig. 2 with these effective parameters. In particular the
=0 transition is atreff:%, in agreement with Eq.31).

We proceed with the variational scheme and define an
optimal Gaussian Hamiltonian to approximate Etp) as

To conclude, comparison with RG studie$’ shows that Ho = lf f Xa(0,K) Gan(@,K) x50, K), (64)
the present variational method, which accounts for broad 2)vJgq
fugacity distributions, gives a remarkably accurate descrip-
tion of the transition and in particular of the freezing phe- G2(0,K) = (Go)ai(0,K) + 07e(K) 8ap + (), (65)

nomena at low temperature in the single layer model. This is

presumably because the screening efféntglected in the 1-€- the self-energy can now dependion

variational approachwas shown, via higher order RG, to be ~ The variational free energy isF,a=Fo+(Hsc=Holo
very small at low temperature. In addition it provides a de-where(: --) is an average with respect ¢, and 7, is its free
scription of the disordered phase. The RG methods can b@ﬂergyﬁf():—% Trin G,1(q,k). The Gaussian average has
extended to many layers but following the joint distribution the form
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F[n] = (expin - x(r))o
1 _
—expy—= | > £
2 k a
1 ikdl | 2
+- ] | 2 AK) ¢
2 k| la

where we recall that[,=(1/Md)Z; and [Gay(q,K)
=G (k) 8= A(k), with

“Ge(k)

(66)

Go(k) = J Ge(G,K) = g(K)IN[AZ/(4mg(K) o (K))],
q

Ak) = f G(a,k) = BPAK)IN[AZ/(4mg(K o(k)] - BZA(K)
q

+9g(K)oo(K)/ (k). (67)
Extremization offF,,, yields the saddle point equation:

(0 dap+ (ool = €202 ngnyy YINIF[n].  (68)

Since the dependence is érl’, a corresponding Fourier

transform yields

0o(K) 8ap+ 0p(K) = 271 D ngng €< 7Y[n]F[n].

n o
(69
We can now define,(k)=d=n, .£«%. The A(k) term can

be written as an average over Gaussian distributions of

fugacities:

1 2
I1 exp( sl A(k))

k
- [ TS o] 1S R

- o
2MAK)d' ¥

:];[<exp(ﬁRe[wks;(k)]>> :

This form allows to decoupl&F[s]=(Z™,, with

Z= }exp( o7 f (K)|s(k)[2+ f Re[wks*(k)]).
{s,=0,+1]

(70)

(71)
The variational equations fan— 0 become
#Inz alnz|?
ok =& =), ok=¢%d :
dodwy | dwy ®
(72)

PHYSICAL REVIEW B 71, 134202(2005

B. Detailed solution for two layers

We consider now two layers with uncorrelated and equal
disorder on each layer. The partition sum depends now on
the number of+ and — charges on each layer, i.e., on the 8
numbersn, ; wherea, 8=+1,0, excludingngy, For the vec-
torsny, n, in replica space for each layer, their number for a
given collection ofn, ; is the combinatorial factor in the
following sum:

> YIng,ny]F[ng,n]

nq,No

-3 _om eXD[-BEcE (2, + 12y

nOO! Nio! ... N!

- 4_dGC(O)2 (Ngy + Ng2)? = _Gc(ﬂ')z (a1 = Ng2)?

+ lA1<§: Nar + na2>2 + %Az(z Nag — naz)z] . (73

2 a a

where A;=A(0)/2d, A,=A(m)/2d and the sum is restricted
to >, gn, z=m. We need then two fugacity distributions,

dw;
ex n - elea(nalinaz)e—wiZIZAi’ L
p{ <E a )} f V2mA
(74)

where the uppeflower) signs corresponds to=1 ori=2,
respectively. The sum ovex, ; has the form of a “ninomial”
expansion, i.e., a power of 9 terms,

> YIng,nylF[ng,n,l =(Z™,,

ny.ny

(75

where the average is on both;, w,. In terms of u;
=—2BE.~(1/4d)G(0) and u,=-3BE.—(1/4d)G,(m) we
have

Z = 1 + eu1+u2+w1+w2 + eu1+u2+w1—w2 + eu1+u2—w1+w2
+ eu1+u2—w1—w2 + e4ul+2wl + e4u2+2w2 + e4u1—2wl + e4u2—2w2
(76)

The equations for thédimensionlessself mass termsry;
=(£d/2)0(0), 0,=(£2d/2)o(m) and similarly foroy; are

[ #InZ
TN\ i /)

_<((7Z/(9wi)2>
goj — 22 w.

These self-masses correspond to length scalesofF? is
the typical distance betwedr-+) charge rodgi.e., a+ in
layer 2 is on top of a+ in layer 1, while o3’ is the typical
distance betweefH—) charge rods. In generaicz [oa]®

so thata=0 corresponds to; =0 with N=2 (+—) rod de-
fects, a=« corresponds tw.,=0 with N=2 (++) rod de-

fects,a=1 corresponds to the two length scales being equal

(77)

(78)

We will not attempt to solve the general case but rathehence arN=1 state, while other values of imply the pres-

present a solution fol =2.

ence of two independent length scales.

134202-9



B. HOROVITZ AND P. LE DOUSSAL PHYSICAL REVIEW B71, 134202(2009

we have separated tlg integral into ranges left and right of
these lines and check in each range that it has no saddle point

°2 and is therefore dominated hy; at the line position. Thus

for w,<-2u, the integral is dominated by;=-w,—U;—U,
leading to a contribution
10 2,
oi ~ f duwge (@2t et v 2Aed2e (8D
0

o= o,+3u,-u,

o= 0,3utu,
while for w,>-2u, the intgeral is dominated bw;=w,
2 (0) +3u,-u, with the contribution

-us-u, 3u,tu, ' 0.‘(:%) —~ j d wze—(w2 +3uy - u1)2/2Al—w§/2A2_ (83)
—2U2

FIG. 3. Integration ranges far,; and o, whenu,>u, (i.e.,
|u| >]uy)). For o the numbers indicate the fraction value in Eq. The saddle point of this integral is below &2 hence it is
(81) and the full lines are where the, integral is dominant. Fos, dominated byw,=-2u,, i.e., is the same as(cll) if the latter is
the numbers in parenthesis indicate the fraction value in(89.  3lso dominated bw,=-2u,, or less tham(cll) if the latter has

and the arrowed lines are where thg integral is dominant. a saddle point within the integration range. Hen{fé deter-

mines the result with
An N=2 rod solution is readily obtained hy.,=0 so that 5
U, — o andZ=1+e*1*2e1+ 17201 This is equivalent to the ooy~ € T RTRAA) (, — U A, < = 2UA,
one layer system with

oK3 ooy~ €T (202508, (Uz = UpDAy > = 2UA,.
= + =
Kerr=2(Kox Ky),  0efs 2Kgx K2 (79 (84)
where the lower sign corresponds to the — rod solution Consider nexir, which for w;, w,>0 is dominated by

O'Cj_:O. ) . J (92/(9(1)2

Consider now a general solution of the form, O = o 7

~[o4]% so that near criticality “2 ®

a eU1+U2+w1+a)2 + 2e4U2+2w2 >
wl,w2>0-

(9602 1 + eU1+U2+w1+w2 + e4U1+2w1 + e4U2+2w2

1 1
Up—— Z(Ko +K)In(A%ogy), A — EUKS IN(A%/ o),
(85)

Uy — — %a(Ko— K)IN(AZaw), Ar— %QUKSM(AZ/(M)_ The fraction above has values 0, 1, 2 is indicated in Fig. 3

with boundaries shown by the arrowed lines; at these lines

(80) dl dw, is maximal and the corresponding, dominate the

o ) ) integral. Hence fow; <u,—u; the integral is dominated by
Near criticality thew integrals are dominated by large values ,,=-2y, leading to a contribution

so that positive and negative integration ranges are equiva-

. i i i U—uy
lent; furthermore, thev;, w,>0 _mtegra_l is do.mlnated by ex- o do e—wf/ZAle—Z@/Az _ e—ZLé/Az 86)
ponents wherev,, w, appear with positive sign, 2 0 1 '
Oy = 0 9Zow, The next range isl,—U; < wy <-U,—U; Wherew,=-w;—U;
dw, Z © —u, dominates, contribution
_ J Utlgtortewy 4 Ze4u1+2w1 , —Uy—uy , 5
= _ﬁwl 1 + guitlztortoy 4 gAu+2m; 4 Mip+2m; o >0- 0_5:2) ~ dwle—(wl +Ug +Up) /2A2e—wl/2A1. (87)
L2 Up=ty

(81) This has a maximum within integration range(if,—u,)A,
We focus here on the low temperature behavior whére <-2u,A; with the result
—o0 and the integrals are dominated by the maxima of the )
aboved/ dw;. The fraction in Eq(81) has values 0, 1, 2 as 0@ ~ g T WTRAA) (1, — U A, < - 20pA,
indicated in Fig. 3 with boundaries shown by the full lines, (88)
assuming for nowu,>u; (the solution foru,<u; can be
inferred by the symmetry of the phase diagram undehile if (u,—u;)A>-2u,A the integral is dominated by its
Ko, Ky, a—Kq,—Kg, 1/a). At the full lines in Fig. 39/ dw, is  lower limit u,—u; which is then always smaller therfz). In
maximal and dominate the integral at low temperatures sincthe range t;- U, <w;<-3u;+U, the line of maximumw,
the Gaussian averaging factors are very flat. More precisely w;—3u,+Uu; is at large values o, (see Fig. 3 so should
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give a small contribution; in fact integrating this line even a
from u,—u; yields

3
u.

~@ 2u2/A2 (Up - up)? /2A1

d wle"(“’l +ug - 3u2)2/2AZe—w§/2A1
Pl
(89)
where the integrand has a maximum below the integratioros -

range and is therefore dominated by the lower integration
limit. The result in EQ.(89) equals also to that of the inte-

grand in Eq.(87) at its lower limit, hencer's < o'2. Finally,
the range —-B;+u,<w; has the line of maximum at,
=w,+3u;—U,, hence

U(é) _ f d wle'(“’l +3u - u2)2/2A2e—w§/2A1 ~ g (Bu - u2)2/A1,
3uq+uy

(90)

where again the integral is dominated by its lower limit. This
result is smaller than E@89) [it is smaller than the integrand
of Eq. (87) at w;=-U;—U,, hence the latter is bigger if it has

a maximum within integration range
Collecting all terms we have

_ ma){e—2u§ glu+ u2)2/(2A1+2A2)]

(Uz = upAy < = 2UxA,
~ mav{e22,e WA (U, - up)A, > — 2UnA,.
(91
Equations(84) and(91) can be written in terms o and an
anisotropy parameten=K;/Ky>0 (for <0 we note that

the solutions are symmetric under,a— —»,1/a). For 5
<(1+a)/(3+a)

1+a+ 59— 9a)416(1+e)o
Uclw[o'cl]( 7= me) 18 ),

~ ma){[o'cl]a(l - 77)2/40', [a.cl](l ta+tp- na)2/16(1+a)g}'

(92
while for > (1+a)/(3+a) we have
Oy ~ [og ]l -t 7+ ne)?+da(l - 9)?)160
. ma){[o_cl]a(l - 77)2/40" [U-Cl](a +3n-a+t 7]&)2/160'} )
(93)

0.0+

T T
0.2 0.3 0.4

05 7]

FIG. 4. Two layer solutions for the exponentdn,~[o¢]* in
terms of the anisotropyy. In the rangel -1/y2< <1/3 two so-
lutions coexist.

2-\Vl+a
n= 1 (94)

-«

24 e

V1+a

exists forl—1/y2< < 1/3 with o, =3(1- )2 (iii) Finally
a=0 is possible, i.e.g.;=0 and an onset of just thie=7
componento,. The solution is then of charges correlated
between layers, i.e., thd=2 rod phase. Criticality is ad,
‘1‘(1 7)?, and from both Eqs(92) and(93) this solution is
valld at all 7 provided it precedes the solutidi with o,
hencen>1 12.

The solutiong(i) and (iii) reproduce the energy rationale.
We have found here an additional solutiGi with a _non-
trivial new exponenta in a narrow rangel- 1N2< 75
< 1/3. This solution is a continuous interpolation anbe-
tween theN=1 solution (e=1 at <1-1/\2) and theN
=2 rod solution(e=0 at »>1/3). Both solutions(ii) and
(iii) have the same,, hence they may be degenerate.

Solution(iii) allows for an additional phase transition cor-
responding to the onset of;, i.e., theN=2 rods decompose
into independenN=1 charges on each layer. Wheg, # 0,

u, and A, are finite, hence the divergent terms in the expo-

nent of Eq. (84) yield oy~€ “1’2A1~a(1+” 16 hence
o' "?=(1+7)%/16 allows the onset afy at 7;> 1/3 (dashed

Ilne in F|g 5. The energy rationale gives a somewhat higher
o' P = 721[4(\22-1)?] for this N=2 to N=1 transition.

Flnally we consider the disorder-temperature phase dia-
gram. The high temperature part of the phase boundary is
determined by low order renormalization group as disorder is
WeII behaved Thus, in e|ther Coulomb gas formulaﬂtTcmT

tions (except witha=0; see belowwhile for Eq. (92) we

have the following solutionésee Fig. 4 (i) The second term

of o, (~0g) identifieso; exponents and leads to=1 and

criticality at o= é i.e., the independent layer solutid
=1. The 2nd term of the;02 line is the maximal one ifp

<1-1//2. (i) The 1st term ofs, identifies exponents as

scale€
aY[n]
A

1I"a

=Y[n ]{2 > NanaKi ,,+aKOE [E na|] }

(95

(1-n)?/4=(1+a+n-na)’>/16(1+). This term dominates TheN=1 solution is determined by one nonzero entry, hence

in the o, line if «<1, hence the solution

2-Ko+0K3=0; for N=2 the solution corresponds to one
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0184 Hamiltonian in terms of pancake vortices, i.e., point singu-
o larities in each layer, and a nonsingular Josephson phase. We
o, consider here the case without Josephson coupling, where
g the pancake vortices are not coupled to the Josephson phase.
If n(r,l) is an integer field of +1,0 corresponding to the
o.10 location of pancake vortices then the vortex Hamiltonidn is
E > n(r,HG,(r =’ 1=1")n(r",I’ +E2n(r 12,
r#r’ I’
0.05 (96)
with
T T 1 242
0.0 0.2 04 0.6 n G( ): q)Od i 1 (97)
o A2, 02 1+f(gl0)”
FIG. 5. The critical disordet, for a two layer system Aty
<1- 1/\2 the transition is to &=1 phase atrcr—g For n>1 d .
-1/\2 atoy, = 7 La-92 the transition is either to aN=2 rod phase f(q,k) = sinh(qd) 98
at7>1/3 or, for 1-1A2< <1/3, a mixed phase,~[o]" is 4)\abq 2 qd +sire @ kd
possible. Atyp>1/3 theN=2 rod solution disintegrates into tié sin 2 S|

=1 phase at'-?=(1+7)%/16. _ _ _
where\,, is the magnetic penetration length parallel to the

layers andG,(q,k)=d%, [d?rG,(r,1)éd*1a7 The core en-
ergy is estimated &%%° E.~(0.04-0.27 where 7
D/ (47°N\2,).

Note that thek=0 mode is screened, i.65,(q,K) is non-
singular atg=0. All the other modes are unscreened and lead
to logarithmic interactions. This is because no screening cur-
grent can go along (in the absence of Josephson coupling
and thus two pancakes in two different layers cannot screen
each others.

In presence of an external fiell along z a flux lattice

nonzero entry per two layers, with the relative signhence
2—2K012K1+20K§:0. For »>0 the dominant transition ~
(i.e., the one at lower temperatiifeas the upper sign, cor- ~
responding tar,; with k=7. At 0=0 this has a critical tem-
perature lower than that di=1 sinceKy=1/(1-7) <2 for
7<3 1 Therefore the range of low is dominated by the
usuaIN 1 transition. In Fig. 6 we demonstrate the phase
diagram with=0.35 where the phasé$=1,2 compete.

VI. APPLICATION TO SUPERCONDUCTORS with a unit cell areaa?=®,/B is formed. The flux lattice is
) _ composed of pancake vortices, i.e., point singularities, which
A. Layered superconductor without disorder are d|splaced from theth line positionR, at thelth layer

The standard model for layered superconductors is th#to R +Up, its Fourier transform is
Lawrence Doniach model in terms of the superconducting qRgtikal
phases on each layer and the electromagnetic vector poten- u(g,k) = 2 2 upe?
tial. The latter can be integrated 8ugading to an effective

Expanding Eq(96) to second order irlup yields the elastic

(99)

0.15 Hamiltonian of the form
(0 — 1 2 2
He|: 5 [DL(q,k)|UL(q'k)| + DT(q,k)|uT(q,k)| ]
k<q
R .
° N=2 (100

We will be mainly interested in the case of no Josephson
coupling, where the following exact expression holds:

0.05 - . L -
N1 D(a,K)Pgs(a) + D1(g,K)P,4(0)
1
=5 G,(q,k
0 | | I I \ I a4d2(qaqﬁ U(q )
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
T/J, + 2 [(Q+0),(Q+1)4G,(Q+0a,k
Q+#0
FIG. 6. Phase diagram for the onset of the 1,2 instabilities _
for anisotropyn=0.35. At low T two distinct transitions are pos- Q“Qﬁe @ 0)]) (103)

sible, the first being to the rod=2 phase. At highl the indepen-
dent layeN=1 transition dominates and eliminates tie2 phase. provided we add a short distance cutoff in plane, i.e., replace
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Gu(q,k)HGU(q,k)e‘quzlz. The conventional elastic moduli
are then identified as

Dy(g,k) = g?c11(a,k) + Kichs(a,k), (102)

D1(9,k) = q%ces(a,K) + Koci(a,K), (103

wherek?=(4/d?)sir?(kd/2). For zero Josephson coupling it
is found?! where leading terms ig? are retained,

Bd,
k)= —— 104)
Cs6(0,K) (Brha)? (104
2
1
C(@K) +Ceel QR = o (105
41 +N(q° + kD)
B2 1
L _P T
Cad @l =7 R+ Cull), (108
caa(k) -l(i)zi > [G,(Q.k - G,(Q,0]Q?
a4 2\d&?) Koz0 v
_2BO, 1 1+KQ) (107
(8mAZ)2KE T 1+&42

and the last form is in the limidl<<a, \,,. We note that with
Josephson coupling the results fag,cq; are unchanged,

while ¢}, are modified with a stronger effééton c;,.

PHYSICAL REVIEW B 71, 134202(2005

1
Hl()]{i)c(svu) = Z_ZJ f S(q!k)Gv(qvk)(_ Iq) ' U(_ q,— k)
ad~Jy Jg
(112
The total energy is thus
Hei(U) + Hig(S,U) + H,(9)
1
= Ef J DT(q1k)|uT(q!k)|2
kJq
1 2
+ E DL(q!k)|uL(q!k)|
kJq
1
+ ?S(qik)Gv(q!k)s(_ q,— k)
2
+ ARG, (@K (- iqu (- g,k )] .
(112

One can either minimize it to find thig@urely longitudinal
deformation of the lattice induced by the defect,

U,ad(0,K) =igs(q,k)G,(q,k)/a?d’D (q,k) (113

and computeH+H, .+ H, at the minimum or, since it is
Gaussian, simply integrate out the displacemanig,k).
One finds that the screening of the vortices by the longitudi-
nal displacements of the lattice results in an effective inter-

We consider first the defect transition in the pure system.action energy between the defects:

This refers to the proliferation of vacancy interstitial pairs
(VI), thereby destroying the superconducting order parallel
to the layers. These defects correspond to additional pancake

vortices, denoted bg(r) on top of the ones forming the flux

lattice. These defects couple to the lattice via the same cou-

pling of Eq. (96),

Moo= 2 NG, (Ry+uy =1,1=1").

r.pl,l’

(109

To Oth order inu}' the defects feel a periodic potential:

HO%= 2 s(NG,Ry-1,1-1),
r.pll’

(109

which fixes the defect position in a unit cell, hence fluctua-

tions ofs(q,k)=d=,2,s(r)€k"a7 involve onlyq in the first
Brillouin zone(BZ); in the following[and in Eq.(100] all g

integrals are restricted to the first BZ. Note that for vacancie
the periodic potential has minima on the flux lines, while for
interstitials the minima are in the middle of the unit cell.
Hence, the core energies of vacancies and interstitials differ,

but as they come in pair&, refers to an average of these
core energies. For an isolated pancake vaPteE,
~(0.1-0.27, while in presence of a flux lattice with local
relaxation leads f§ E,~0.04r.

Expanding to first order, one finds with the above defini-

tions:

HyadsU) = H' () + H D (s,u) + O(stP),  (110)

1

eff, -
Hu (S) 2d2

JfS(q,k)GS”(q,k)S(—q,-k), (114
kJq

9°G,(a,k)
a4d2DL(q,k)

One can connect with the notations of the previous sec-

G2"(q,k) :G,,(q,k)(l - ) (115

tions (B=1/kgT):

gk =2

=2 lim G (g, b).
dar

a—0

(116

The pure defect transition thus occurs when

1
Keff:J g(k) =2 Tget= 8_f Gk), (117
k m™J g

gvhere we define

242 k2
4

T 2 — q>0 _z
Gv(k)—mm G,(q,k]= am 1eA2gE (118
eff1) = [l a2ee’ _ _GU—(k))
G, (k)—(lm[q G, (q.k)]—Gv(k)<1 LD (0K’
(119

where we recalk?=(4/d?)sir?(kd/2).

It is instructive to consider the “unscreened defect transi-

tion” temperature, i.e., formation of pancake vortices in the
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absence of an external field. This is denoted as the vortex &0 = 6. D1(K) (I%dz K e(k)
transitior? with the onset temperature at v TS (0T dAm 1ea2ge L+ e)]

5 e (127)
T=5o fk Gl = S am 2 @), (120

(k) = a*d’D(K)/G, (k). (129
h(y):iJ dx ! —=1-+ y . (121 Hence the condition foly<T,, Which justifies our de-
2] y Vi+ty scription of the defect transition, is(k)<1. We note also
Siré(x/2) that for a single 2D layer there is no tilt modulus for the FL

and e=0; hence a 2D FL has VI's at any finite temperature.
Let us first consider the regimer@<<a<\ relevant for
24 layered superconductors. As shown in the Appendix one has

5=18. (122 in this regime

In particular ford<\ one has

- g wansiton isTaw @ | 1405 0

e actual superconducting transition isTatwith T,<T. Dr(k) = s Zz <04 Z k20(d &2m),
<T; where T is the fluxon transition temperature, where 32?1+ 8Q N

Josephson decoupling would occur in the absence of pancake (129
defects’

To compare the vortex transition with melting we use a - i
Lindemann type criteriorfwith only transverse modgs whered=max(d, £/27) and ford < £ only the first term con-

tributes. This yields

cta?=(u?)=T Jf _— 2 1\3E  [1+KYQ2 P(1 42212
a,BZ Cocll’ +C44k e(k) = a —zb In( iQo) md( abky)
Bl K\ 1edi) 200
= T J |n(1+ L}F’TTC662>- (123 X o(d=&2m) (130)
477066 k C44a2k .

Note that the relative contribution of the second term be-

H i 2 2
Using a circular BZ of volume(2w/a), hence G6<q comes significant only fok~1/d. The condition thate(k)

<4mla’, <1 for all k is thus met for\/a sufficiently large (high
. ALCEC d- 47705 (D(Z)d enough field as
moA® A (8hgp)?’ 21 [ 2
? _77|n<d_Qo)' (131

_ AmCep | _ %o
A= dfk '”(1 T azkz) - dfk '”(1 + 16ma’\?D1(0,k) )’ wherec is a constant of ordeD(1) (which can be estimated
from above, withc=1 whend< &/27). As long ase(k) <1
(124 we find that in all regimes one can estimate

where in the last equation we have used the dispersionless

Py K Piatd?
value of cgg valid for a>d. The scales of the vortex and Gef(k) = o= "z e(k) ~ In (1+k2/Q0)
melting transitions are the same, their ratio beiffy/ T, ! 4 1+\2HC° 32,
=A/4mc?. Hence the condition that the defect transition oc- (132
curs before melting and can thus be consistently described is
that G;'(q,k) < G,(q,K). This yields the estimate of the defect transition ford2<a

Let us now study the true transition with screening. One<\, using Eq.(117) at 2rd<a,
denotesD, +(k)=D, +(0,k)= k2ck,'(0,k), respectively. Using
the above result, one finds in tlee—0 limit the exact ex- Zda
pressions: To=Tget= m In(ayd), 1< - " < A

2 1
ort0=2( L)' S (6,@M0- G017 (129 e
Q#0 We use thisT, as a convenient scale below. We note that Eq.
(132 is weaklyk dependent, hence small anisotropyFig.
1) and the one-layeN=1 transition dominates.

We now estimate the defect transition temperature in the
other limit 27d > a relevant for multilayers. As shown in the

One thus has Appendix one has then

1
Dy (k) =Dr(k) + 3 5Gu(K). (126
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®2Q,d e Qod
OQ(L K2 . (134
2ma ( 2\ QO>
1+ ==

D(k) =

This yields

1+2%2
(k) = Qode : )2' (135

20%Q,
2(1+—=0
( d

The condition fore(k) <1 for all k is satisfied when 2d
>a. Thus in this limit one finds

P K2 dQue %

27 Z 2\2 2
1+ Qod

Gk = (136)

yielding
d’é dQue %

T~
def™ g12d 2)\2 2
1+ Qud

(137)

using fkk§=2/d3. If in addition A >+/ad one finds

2 2
o~ $oda 5 qa
64\t

(138

The melting criteria Eq(124) has nowc}, which is expo-

nentially small~e 24, however it enters the logarithm in

Eq. (124, ie., A=2wd/a is large and T,
~ c? p2al (327m2\2,), henceT yor< T, for all 277d>a. We note
that Eq.(136) implies a significant interlayer coupling with

(see Fig. 1 close to 0.5; hence disorder favors rod phases at

low temperatures.

B. Model with disorder

PHYSICAL REVIEW B 71, 134202(2005

fi(Of(r) =F & =r7), (140

where we display only the coupling to the longitudinal com-
ponent,u, (I,r) (being a suitable continuation up andf(r)

is the longitudinal disorder component; only the longitudinal
mode u,(I,r) couples to the defectkEq. (111)]. One can
write it in Fourier components:

1 *
Hais=— ‘f J f(k,qu (k,q),
dJy q

fka)f(k',a") = (2m)*6*(q+q") ok +K)F(K), (142

where F(k)=d3,F,ed": note that for finiteM one hasf,
=(1/dM)Zy and 2r8(k+k’)=dMéy . It is useful to relate
F(k) to a previously useéd dimensionless disorder param-
eter s representing point disorder uncorrelated between lay-
ers. The replicated action has (32#sTs/
da"')fq,kua(q,k)u’;(q,k) with Ty from Eg. (133. Replicating
Eq. (141 identifiesF(k) =64msdT5/a*.

We now consider the total energhig(u)+H,,J(s,u)
+Hg(u) and determine the configuration in presence of
both disorder and defects. The part involving longitudinal
displacements reads

(141

1 * 1
Hior= fq’kﬁs(q,k)el,(q,k)s(q,k) + 558 KG, (G

N D, (q,k) 1 «
X(=iq)uy(g,k) + %IUL(q,k)IZ— gf@ku(a.k

and we neglect the random potential seen by the defect itself
(which is short range The relaxed phonon field at the mini-

mum energy is

B Gy(a,K) 1
U@l =1as(0.0 5 o0 o ¥ dD k)

Computing the energy for the defects at the minim(on
equivalently integrating out the displacemeniselds the

f(q,k). (143

We have seen in Sec. IV that disorder can affect a Cousame screened interacti@f (q,k) between defects as be-
Ipmb.gas transition if its correlation dl\_/erges at least loga+gre and in addition yields the coupling of the vacancy to
rithmically with distance. Therefore, disorder that couplesgisorder(through the latticeas in the starting model which

directly to pancake defects has a finite correlation and has n@yo\s to identify the correlatoa(k) introduced in Sec. II:
effect on the defect transition. In particular the vortex tran-

sition Eq.(120) in the absence of an external field is disorder
independent. The presence of a flux lattice deformed by point

1 .
Hvdis:_EVI(r)sl(r):_aJ V(g,K)s (g,k), (144
r,l k,q

disorder leads to a significant change in the disorder as seen

by pancake defects. Since each pancake composing the flux
lattice is a charge interacting logarithmically with the pan-
cake defects, a displaced pancake is equivalent to an addition

G, (g,k
V(K = iq -f(qk)ﬁ
L

(9.’ (149

of +, — charges, i.e., a dipole. Hence a disorder deformed

flux lattice leads to a quenched dipole disorder seen by the

defects, leading to logarithmically correlated disorder.

We consider first disorder within the finite Larkin scale
where one can expand in displacement, resulting in a random

force f(r)

Hais= = 2 szfﬁ(r)UL(l,r), (139
|

. 4ar
V(a,kV(q’ k') = (2m)28(q +q')(2m) Sk + k’)?A(q,k),

(146)

q'G,(q,k)?
A(g k) = — 12\ BH0”
@ = D2 k)

Thus in the limitg— 0 one obtains in general

F(k). (147
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1 G, (k)? disorder term in the Hamiltonian undau(r,l)—u(r,I)
Ak) = EF(k)WDZ(k) (148 +¢(r,1) whereg(r,1) is an arbitrary functior{see, e.g., Ref.
- 1) so that{u(q,kju(q’ k' )).~ &°F/8¢? 4= is independent
with A(k)=A(0,k). In the almost fully screened case of in- of disorder.

terest(2nd<a<\ or 2rd>a) we haveG,(k)/a'd’Dy (k) Since this is an expansion in defect density, k) we can
~1, hence now identify the random potential coupling linearly to the
a* defect via the second terfa response of the third term in
A(k) = 4—F(k). (149 Eq. (152 to defects results in higher ordéxs®) termg:
a
For usual layered superconductorgd2<a we have from V(q,k)=‘éGv(q,k)iq (u(q,k)ge- (154)

Egs. (132 and (133 for almost allk (k= 1/a) g(k)=28Ty,
henceoey; of Eq. (63) with N=1 becomesr(=4s. Note thal  The correlations are thusverbar is disorder average
et~ B, hence defect formation is induced at a fixed disor-
der by increasing the fielB. oo 5 , AT

We proceed now to study the full disorder problem on all V(@.kV(a' k') = (2m)°8(q +a")(2m) 5k + k )FA(q’k)’
scales allowing for Bragg glag8rG) propertiest The basic (155
assumption is that the long range extra displacement induced
in the BrG configuration by the defect is very small and one
can expand in it. Consider thetigg(u) as the BrG Hamil- A(qK) = q
tonian for theu field in presence of disorder but in the ab- ’ 4d?at
sence of point defects. We add to(fitereu=u,):

G,(0,K*Cac(a,k), (156

whereCgs(q,k) denotes the disconnected average:

H(u) = Hgg(u) + J h(g,k)u(g,k). (150 (u(q,k)Xu(a’ k")) =(2m)?s*(q+q’)(2m) &k +K')Cga(@,K).
q.k
(157)
In particular for the flux lattice problem we identify from Eq.

At all temperatures except near melting one Ha¥u)
~{uuw as thermal fluctuations are subdominant. Therefore
we replace the left hand side of EQ.57) by*

whereg?=cgg0?+Ci,k% andR. is a Larkin length along. For
Og:O and largek=1/R,, i.e., on short distances compared
with R., this reduces to the previous result E§49), while

at longer scales the BrG induces interlayer disorder correla-
tion as seen by the defects. Replacin@@(,k) in Eq. (148

by Cgs(q,k) at =0 we obtain[using G,(k)/a*d’D, (k) =1

FeFoot | ook - gy 2549
ak .9’ kk' at K
AK) = ——F(K) 5 (159
X(u(a,ku(g’ k")) + O(h¥), (152 4m (K + RO
where(:--) is thermal average in a particular disorder con- It is instructive to present another derivation afk),
figuration with no defects anBgg is the free energy of the valid at T=0. In general, the disorder potenti®(r,I)
BG in that configuration and denotes connected averages; couples to the flux density(r ,u(r,l)) and leads to a Bragg
disorder average will follow below. glass configurationugg(r,l). The addition of a vacancy at
In the absence of disorder the second term in(E§2) is position R on layer | leads to an energy ofU(R)
zero and the third one welds the energy which screens th@wadszUac(f-RJ'-') -V p(r ,ugg(r,1")V(r,I’). One can
initial defect-defect interaction: now see that the forc®p(r ,ugg(r,1))V(r,l) has short range
1 PG, (q,k)? 5 correlations. Indeed, ak=0 we can minimize the disorder
Fecreen= ~ 52 m|s(q,k)| (153 energyZ, [d?p(r,u(r,))V(r,1) with the elastic energy Eq.
ak G (100 to vyield ugg(r,l), hence Vp(r,ugg(r,D)V(r,I)
using (u(q,k)u(g’ ,k")).=T/D(q,k), i.e., the screening term ~ VZUgg(r, 1), the latter quantity having clearly short range
in Eq. (115). correlations~q*/[g*+R_.*q%]. The potentialJ(R) is thus the
In presence of disorder, the disorder average of the thirgonvolution of a short range correlated random force with
term in Eq.(152) still yields exactly the samecreening part the displacementi,,. which has a long range form: for a
of the interaction between defects. This is guaranteed by theingle vacancyu,,(q,k)[*~1/q? from Eq.(113. Thus one
so-called statistical tilt symmetry of the Bragg glass model infinds thatU(R) is logarithmically correlated witt (k) of Eq.
the absence of defects, i.e., the statistical invariance of th€l59). Hence the BrG induces an effective disorder correla-

(112
1
a2

The next order in the displacement expansio®@{st?) and
after integrating out, (q,k) leads tos® and higher order
terms; these are neglected in our low density treatment
defects, i.e., larg@BE..

Then one has the exatlthough formal expansion for
the free energfr=-TIn Z

h(a.k) = —535i9s(q,K) G, (a.K). (151
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tion between layers on scales longer tin For weak dis- merge into one transition &t,, above which both the renor-
orderR.>d and the effect inf,A(k) is negligible, hence the malizedJ is zero as well as a finite VI density, appears.
results of the Larkin regime are valid. In fact a transition to a “supersolid” phase in a flux lattice
The application of our results to flux lattices depends orin isotropic superconductors was propoSedhere a finite
the interlayer form of Eq(97) which fora>d has the ford  density of defect loops proliferate and a related “quartet”
G,(r,h~e'Inr, ie., a range of,~a/d. For usual lay- dislocation scenario was suggestédn the supersolid des-
ered superconductdrsvith a/d=10-100, we find that the ription a finite line energy competes with the entropy of the
N=1 phase dominates anc,=1/8. Thephase diagram has wandering line, both being linear in the defect length. The
then the form of Fig. 2 with the magnetic fieB in the  resulting transition temperature is comparable to that of
vertical axis. melting}® hence it is uncertain if this scenario is possible.
To achieveN # 1 phases the nearest layer coupling should In our VI transition the competing energies and entropies
increase. We note thgtk=0)=0 since for a straight pancake are logarithmic in the VI separation, rather than linear. If a
rod the logarithmic interaction is fully screened. HenceJosephson coupling is added, naively a linear term is added
>,J,=0 and when the randg is reducedl,, J; dominate the since a flux line connecting the VI pair is formed. However,
sum, i.e_,nlﬂé whend>a, as in Eq.(136). Direct evalua- hear decoupling the renormalizetivaries as a power of
tion of 7, shows that it crosses the critical valae-1/y2  Scale, hence we expect that the free energy of a flux loop to
when d/a=~1, depending weakly on the ratia/\,, We b€ nqnllnear in size, modifying significantly the supersolid
therefore propose that flux lattices in multilayer superconiransition at least in the smallcase. We also show now that,
ductors, wherel>a can be achieved, may show a rich phasein contrast with the supersolid scenarig,can be well below

diagram withN>1 phases. melting. .
We note first that in the pure system the decoupling tran-

sition is atTye=8Tges (for d<a<\) while its critical disor-
der(atT=0) is af’ o4e=2=1604., hence ther—T boundary

We have developed here a variational method and a Cay?f the defect transition is below that of decoupling in both
ley tree rationale and applied these to the layered Coulomte o, T coordinates. The disorder-temperature “phase dia-
gas. The variational method is shown to reproduce the defe§fam” has therefore 3 regions, separated by the two lines
transition of the single layer as well as demonstrate a firstdef) andTgedo): (i) decoupled and defected phase at high
order transition within the ordered phase. The latter was sd Or higho, (i) between the lineSge(0), Taed o), and(iii) a
far inferred in the Caylee tree probléfror in the dynamic  coupled defectless phase at snfalind smallo. This “phase
problem!” To observe this transition one needs to inducediagram” is inconsistent in the sense tfgt{(o) is derived
defects in the system, e.g., by finite size or dynamics. Wén the absence af, while T4.{ o) is derived in the absence of
also show that this line survives in the disordered phasey! defects.
showing a crossover in the defect density dependence on We show next thaT < T, <Tge In phasei) J—0 and
temperature or disorder. ng is relevant in the RG sense. This is a consistent descrip-

The variational scheme has been extended to two layersion sinceJ=0 is assumed in the VI description, hence region
confirming essentially the energy rationale. Near the onset t@) is a disordered phase. In regidii) ng— 0 while J is
the N=2 rod phase we find in a narrow interval a curiousrelevant, again a consistent scenario sihteing relevant is
phase with a new exponent relating the two components ashown assumingy=0. However, in regiortii) bothng andJ
the order parameter. We consider then the variational schen@ge relevant, hence seperate “decoupling” and “defect” de-
as reliable for the main features of the phase diagram, i.escriptions are inconsistent and a single combined transition
the sequence of transitions into rod phades. 1). within region(ii) is expected, i.e Tgei< T < Tgee Since both

Our results are relevant to flux lattices where we find theTge, Tgecare well below melting foa<<\, we conclude that
phase boundaries and propose that fad2a new N>1 T, is also well below melting.
phases can be manifested. Our derivation assymesslo- In fact we can estimat&, by an argument as used in the
cations are neglected, arfid) the Josephson coupling is ne- B=0 cas€. Consider the VI correlation Iengtﬁ,%n;”2 for
glected. Assumptioffi) implies that the melting transition is J=0 (which diverges afl4s) and the Josephson correlation
at higher temperature or disorder than those of the defedength&; (which diverges aTy.). Consider a temperature for
transition. This has been justified for the pure case in Seavhich £;<§&g; &;is the scale at whicll/T is renormalized to
VI A showing that Tye;< T, if either 2rd<<a<\ or 27d  strong coupling=1, e.g., in 1st order RG
>a. We assume that the same holds for disorder induced
melting, though the latter is less understood.

We discuss next assumptidii), i.e., the effect of the
interlayer Josephson couplidgIn the absence of VI a layer
decoupling was fourfif whereJ vanishes on long scales. At The Josephson terthcod 6,4+ 6) involves both the nonsin-
this transition the width of a Josephson flux line diverges angjular phased,s and the singular on®s due to VI pairs. If
its fluctuations renormaliz&to zero. A complete description &;<¢y VI pairs are not seen on the scale betweeand &;,
should allow for both VI defects and Josephson vortex loopsenormalization ofl coq 6,¢) can proceed till strong coupling
which would combine to form 3-dimensional defect loops.is achieved, i.e., the phase is ordered. If instéad &; VI
We expect then that the defect and decoupling transitiondefects interfere in the renormalization and disorder the

VII. DISCUSSION

& ~ a(T/J)M20-Tged], (160
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system. Hencd is estimated byt;~ &;. From Eq.(55) for © #? s ( 1 1 )
th D ~ - -
o P s . ] el Sh @ (@)
~ Ec\1M[2(1-TgefT)
&g~ a(e’™) def ], (161) & [a) a,gd 1 L
henceT, is nearTy if J is sufficiently small, 877)\4 o . X X x+ (ak/2m)?2 (ak/2m?)”
J<Te&T, (162 (A5)
For Bi,SL,CaCyOg we estimaté® J=0.1 K, E,~10° K Thus we find, ford< &, d/a<1 and\ >a that
which for relevantT=10-100 K does not satisfy E¢L62),
i.e., the transition is nedrry.. However, for multilayers such d)g ( 1+ (kJ/Qy)? )
' i i i Dr(k) = n : A6
as (Bi,Sr,CaCuyOg)y(Bi,SLCUO;),, the semiconducting (k) 3222 ™ T+ (eeg2nP? (AB)

layers of BiySr,CuQ;, reduced by a factore ¢ whered~n
includes now the thickness of the semiconducting Iayers
Hence, for a few such layers the condititt62) is already
satisfied andl; is nearTy Therefore, multilayer systems
are excellent candidates for observing the VI transition with

whereQy=2/a is the lowest term in th€ sum. In general
for d> & one has

d
interlayer defects being either uncorrelated, wherd 2 a, D-(k) ~ ﬁ Q<21 -\Q? N A2(Q%+ kﬁ)
or in .c_orre_latt_ad\|>1 rod.phases, w_hen_n'zd>a. The Iaf[ter k) ~ 8m\2at 970 \1 +A%Q%  1+2\H(Q%+KD)
condition is in fact easier to realize in these multilayers
whered is larger. Increasing too much will push down the
coupled phase to very low temperatures, hence the optimal Q>1/d 1
case for study are multilayers withn®l =~ a. + 2 d 1
Q#0
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APPENDIX A: EVALUATION OF SOME QUANTITIES The first term can be estimated far>a and the second
with no assumption:
Let us estimate
Q<1
1/ 1 \2 % 1 ( 1 1 )
Dik)==| = G,(Q,k -G,(Q,0]Q> (Al D+(K) = —==|1 = -5
T( ) 2<da2> qu&o[ U(Q ) U(Q )]Q ( ) T 8’77)\2a4 )\2 ng QZ (Q2+k§)
in various regimes. Implicit in the sum is a cutoff at large 0-1d
Q=2mw/& One has 2220d
+E > e‘Qd% (A8)
2 3o 1 1 Q+#0 2\
Dr(k) = D ) 1+=Q
8m\" g0 \ 1 +1(Q, k) 1+1(Q,0)
(A2) Using the previous calculation this yields
2 : 1 +(kJQp)?
__% 1 Drk ~ R ( (99 )a(d—a/(zm) b
L ey L, d sinh(Qd) 32m\a 1 +(dk,)
AN?Q sint(Qd/2) + sirP(kd/2) (A9)
_ 1 _ (A3) and one can compui@(k) in two limits:
L d sinh(Qd) In the case Zd<a one finds
4N\°Qsink?(Qd/2)
. . L % d 222
Let us first consider the case< &, d/a<1. Then it sim- k)~ — > 4kiF — | (A10)
plifies into 2Qpda § d
b N N(QHK)
D(k) = 242 242t 2002 + 12\ |
8m\%a* 070 \1+N°Q° 1 +N\(Q?+K) F[xy]= du(1+ )Ze (A11)

(A4)

If we now further consider the case wheve-a it becomes  Since\ >d seems natural in that case one gets
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2d2
¢°—k2 (A12)

d(k) ~ .
(k) 8Qza’\* *

In the opposite caserl> a the sum is dominated by the

two shortesQ of lengthQg; hence
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$6Qud > g 1
2mat ¢ 22 \%
1+ FQO

(A13)
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