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In this paper we address basic issues, not investigated previously, concerning the relationship betweenab
initio methods and the Bozzolo-Ferrante-SmithsBFSd method for alloys, and its ability to model the process of
alloy formation and reproduce structural alloy properties near and at equilibrium. Based on perturbation theory,
the method requires single element parameters and their binary combinations, even for multicomponent sys-
tems. A direct comparison of BFS predictions of equilibrium alloy properties againstab initio results, and the
handling and influence of the parameterization on the accuracy with which the method reproduces the process
of alloy formation are presented. Besides establishing a range of validity for the method in reference to
first-principles results, a simple algorithm for the determination of equilibrium properties of ordered alloy
systems is introduced and illustrated with applications to binary and higher order systems, maximizing the flow
of information carried in the first-principles-based parameters.
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I. INTRODUCTION

The vast number of potentially useful but still undiscov-
ered alloys and the practical limitations facing the develop-
ment of new materials have been the driving force for using
ab initio methods and quantum approximate methodssqamd
for large scale atomistic simulations as a standard tool to aid
the experimental work on alloy design. With time, the differ-
encessas well as the similaritiesd between qams andab initio
methods are better understood. This understanding and its
consequences are now part of an overall approach to deal
with the complexities of inserting computational materials
design in mainstream materials development programs.

The ab initio approach is based in finding the solution of
Schrödinger’s equation which will contain all the informa-
tion on the properties of the system. It is well known, how-
ever, that such solution only exists for very simple systems.
This limitation has been circumvented with the use of two
different approaches: one, dealing with the search of alterna-
tive, simplified, solutions which hopefully reproduce the
main features of thesunknownd exact, true, solution. This is,
in essence, the strategy followed by the Hartree-FocksHFd
method. A second approach, as implemented in density func-
tional theory sDFTd, consists of replacing Schrödinger’s
equation with one that is easier to solve, once again assum-
ing that it is selected in such a way that its solutions are a
good representation of the exact answer. In either case, in
spite of these simplifications, the corresponding equations
are still hard to solve, requiring a great deal of computer
power and fast and efficient algorithms. Substantial progress
has been realized in recent years, allowing for proper com-
putational treatment of realistic problems.1

Both approaches have one thing in common: either by
limiting the search of possible solutionssas in HFd, or by
altering the equation that properly describes the systemsas in
DFTd, no adjustable parameters appear in these methods. In
other words, simplifications are introduced without any par-
ticular reference to the system under study. Underlying this

potential limitation is the fact that when implementing the
simplifications that characterize either approach, the real sys-
tem is replaced by a virtual one, and it is assumed that the
essential features of the real system are faithfully captured.1

The payoff warrants making these necessary changes, as
complex systems can be systematically described by known
and manageable algorithms with a proven record of accu-
racy. In essence, qams follow the same path: substantial sim-
plifications are made for the sake of simplicity, basically opt-
ing for replacing the real system or the real process by a
virtual one, but one that allows for proper tuning and opti-
mized performance within their limited framework by means
of a number, hopefully minimal, of adjustable parameters.

A recent addition to the growing family of qams is the
Bozzolo-Ferrante-SmithsBFSd method for alloys,2–5 which
has been applied to a number of diverse structural problems.
The method relies on approximations, by replacing the exact
process of alloy formation, with virtual processes whose end
result is, or is expected to be, a good description of the result
of the real process. In terms of validation, the same way that
DFT requires that the virtual system describe the real elec-
tron density with a high level of accuracy, BFS is expected to
reproduce the essential features of the equation of state of the
solid at zero temperature and, in particular, around equilib-
rium. Unlikeab initio methods that provide a full description
of the system at handsincluding band structure, density of
states, charge density, etc.d, BFS is limited to structural in-
formation that is, ultimately, contained in the binding energy
curve describing the solid under study. This trade-off, i.e.,
greatly increased computational efficiency and a minimum
number of universal parameters at the expense of detailed
electronic structure information, allows for a full description
of several structural aspects of interest. Starting from sepa-
rate single elements as the initial state, BFS tries to provide
an alternative, virtual path leading to the real final state with
a minimum number of parameters to guide its way. While
more flexibility can be gained by letting these parameters
vary according to the specific problem at hand, no such de-
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gree of freedom is added to the method, and the parameters
remain fixed, fully transferable, for any case dealing with the
same elements, regardless of their number, type, or structural
properties. This restriction implies that in order for the
method to be equally valid in a number of diverse situations,
as DFT is, the parameters must contain all the necessary
information to warrant the accuracy of the virtual path cho-
sen for describing the process of alloy formation. If this de-
scription is correct, then the method should accurately repro-
duce the most critical properties of the solid in its final state,
including the cohesive energy per atom, compressibility, and
equilibrium Wigner-Seitz radius. As long as these properties
are sufficient for an equally accurate description of defects,
their accuracy is essential for addressing issues such as the
site preference behavior of alloying additions in multicom-
ponent systems.3

Approximations imply loss of information, but while to
some extent such loss is affordable, it must be guaranteed
that qams properly describe the properties of the final state,
regardless of the path taken to model the process. Besides an
ability to properly model the alloy formation process, the
parameterization schemesnumber of parameters, source for
their determination, the information they contain, etc.d influ-
ences the accuracy with which such process is described. The
BFS method relies on a minimum amount of input, namely,
equilibrium properties of the pure elementsscohesive energy,
lattice parameter, and bulk modulusd and their binary com-
binationssequilibrium lattice parameter and energy of forma-
tion of a given ordered phased.2 In some cases, such input
exists from experimental results. In order to maximize the
range of application of the method, however, recent work3–5

has centered solely on the use of input generated via first-
principlessFPd methods.6 While economical in the necessary
input, the small number of parameters used in BFS imposes
important demands on their stability and accuracy. There-
fore, conservation of the information transferred via FP pa-
rameters is an essential requirement for the effectiveness of
the method. It is also worth noting that this type of param-
eterization implies a somewhat different approach for the
interaction between different atoms. In general, most ap-
proaches introduce some sort of interaction potential, with
the parameters describing each constituent remaining un-
changed. In BFS, it is precisely the set of parameters describ-
ing the pure element that it is perturbed in order to account
for the distortion introduced by the nearby presence of a
different element or defect. The additive nature of the pertur-
bative theory results in that only binaries systems need to be
known in the BFS framework. Multicomponent systems are
thus studied only via binary perturbations.2

In this paper we address two basic issues concerning the
method and its relationship to FP methods, namely, valida-
tion of BFS predictions of equilibrium alloy properties
against FP results, and the handling and influence of the FP-
based parameterization on the accuracy with which BFS re-
produces the process of alloy formation. In doing so, this
study focuses on the ability of the method to maximize the
information from a minimum number of parameters, by ex-
amining the accuracy of predicted properties against bothab
initio and experimental results. Section II briefly describes
the full-potential linearized augmented plane wave

sFLAPWd method7 used both for the calculation of the nec-
essary BFS parameters and for the comparison between BFS
and FP results. Section III concentrates on the BFS formal-
ism as an introduction to Sec. IV, where its relationship with
FP calculations is addressed. Section V concludes with the
description of an algorithm linking the BFS method and FP
calculations, capitalizing on the underlying simplicity of the
universal binding energy relationshipsUBERd8 for optimiz-
ing the transfer of information between the original input and
the calculation of alloy equilibrium properties. Conclusions
are drawn in Sec. VI.

II. FIRST-PRINCIPLES CALCULATIONS

All calculations in this paper were performed using the
self-consistent FLAPW method within the generalized gradi-
ent correction of Perdewet al.,9 as implemented in the
WIEN97 program package.7 FLAPW is considered as one of
the most accurate band structure methods currently available
to solve the Kohn-Sham equation of DFT. As such, it consti-
tutes an useful tool for checking the validity of qams when
experimental data are not available.

For all single element and binary phases, local orbitals10

were added to the FLAPW basis to describe the semicore
states3s and3p of the 3d transition metals and the2p state
for Al. Spin-polarized contributions to the total energy were
not included in our calculations. The plane wave cutoff
RmtKmax was set to 9.0, whereKmax is the reciprocal lattice
vector cutoff, andRmt, the muffin-tin sphere radius, was set
to 0.9525 Ås1.8 a.u.d for all elements. The largest value of
G included in the charge Fourier expansion was set to 22. We
used 10 000k points in the full Brillouin zone for all single
elements in the bcc and fcc structures and 5000k points for
multicomponent systems. All total energy calculations were
converged in energy to within 0.01 mRy.

III. THE BFS METHOD FOR ALLOYS

The BFS method for alloys2–5 fulfills several requirements
for applicability in terms of simplicity, accuracy, and range
of application, as it has no limitations in its formulation on
the number and type of elements present in a given alloy.
Moreover, it has shown promise in describing diverse prob-
lems, particularly in the area of surface alloys2 and high-
temperature ordered intermetallics.3–5 The method provides a
simple algorithm for the calculation of the energy of forma-
tion DH of an arbitrary alloysthe difference between the
energy of the alloy and that of its individual constituentsd,
written as the superposition of elemental contributions«i of
all the atoms in the alloy, where«i denotes the difference in
energy between a given atom in the equilibrium alloy and in
an equilibrium single crystal of speciesi:

DH = o
i

«i s1d

For each atom, we partition the energy into two parts: a
strain energy,«i

S, and a chemical energy,«i
C, contribution. By

definition, the BFS strain and chemical energy contributions
take into account different effects, i.e., geometry and compo-
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sition, computing them as isolated effects. A coupling func-
tion, gi, restores the relationship between the two terms by
considering the asymptotic behavior of the chemical energy,
where chemical effects are negligible for large separations
between dissimilar atoms. A reference chemical energy,«i

C0,
is also included to insure a complete decoupling of structural
and chemical features. Summarizing, the contribution to the
energy of formation of atomi is then

«i = «i
S+ gis«i

C − «i
C0d. s2d

The BFS strain energy,«i
S, differs from the commonly de-

fined strain energy in that the actual chemical environment is
replaced by that of a monoatomic crystal. Its calculation is
then straightforward, even amenable to FP methods. In this
work, however, we use for its computation the equivalent
crystal theorysECTd,11 due to its ability to provide accurate
and computationally economical answers to most general
situations. The BFS strain energy contribution,«i

S, is ob-
tained by solving the ECT perturbation equation

NR1
pie−aiR1 + MR2

pie−sai+1/lidR2 = o
j

r j
pie−fai+Ssr jdgr j , s3d

whereN and M are the number of nearest-neighborssNNd
and next-nearest neighborssNNNd at distancesR1 andR2 sin
the equivalent crystald, respectively, and wherep, l, a, andl
are ECT parameters that describe elementi ssee Ref. 11 for
definitions and detailsd, r denotes the distance between the
reference atom and its NN and NNN, andSsrd describes a
screening function11 for NNN. This equation is used for the
calculation of the lattice parameterai

S of a perfect crystal
where the reference atomi has the same energy as it has in
the geometrical environment of the alloy under study. Once
the lattice parameter of thesstraind equivalent crystal,ai

S, is
determined,«i

S is computed using the UBER of Roseet al.,8

which contains all the relevant information concerning a
single-component system

«i
S= EC,if1 − s1 + ai

S*de−ai
S*

g s4d

whereEC,i is the cohesive energy of atomi and where the

scaled lattice parameterai
S*

is given by

ai
S* = q

sai
S− ae,id

l i
, s5d

where q is the ratio between the equilibrium Wigner-Seitz
radius and the equilibrium lattice parameter,ae,i.

The BFS chemical energy,«i
C, is obtained by a similar

procedure. As opposed to the strain energy term, the sur-
rounding atoms retain their chemical identity, but are forced
to be in equilibrium lattice sites of an equilibrium crystal of
atom i. The BFS equation for the chemical energy is given
by

NR1
pie−aiR1 + MR2

pie−sai+1/lidR2

= o
k

fNikr1
pie−aikr1 + Mikr2

pie−saik+1/lidr2g, s6d

whereNik andMik are the number of NN and NNN of spe-
ciesk around atomi. The chemical environment surrounding

atom i, reflected in the parameterDki, is given by

aik = ai + Dki s7d

where the BFS parameterDki sa perturbation on the single-
element ECT parameteraid describes the changes of the
wave function in the overlap region between atomsi andk.
Once Eq.s6d is solved for the equivalent chemical lattice
parameter,ai

c, the BFS chemical energy is then

«i
C = giEC,if1 − s1 + ai

C*de−ai
C*

g s8d

wheregi =1 if ai
C*

.0 andgi =−1 if ai
C*

,0, and the scaled

chemical lattice parameterai
C*

is given by

ai
C* = q

sai
C − ae,id

l i
. s9d

Finally, as mentioned earlier, the BFS strain and chemical
energy contributions are linked by a coupling functiongi,
which describes the influence of the geometrical distribution
of the surrounding atoms in relation to the chemical effects
and is given by

gi = exps− ai
S*d. s10d

The computation of«i
S and «i

C, using ECT,11 involves
three pure element properties for atoms of speciesi: cohesive
energy, lattice parameter, and bulk modulus. The chemical
energy,«i

C, includes two BFS perturbative parameterssDki
andDik, with i, k including all possible binary combinations
of the alloy constituentsd. Table I lists all the parameters for
the pure elements used in the different examples in this
work.

IV. RELATIONSHIP BETWEEN BFS AND AB INITIO
METHODS

In this section we elaborate further on the concepts intro-
duced in Sec. III and examine the performance of the
method in the framework of FP calculations. Comparable in

TABLE I. Ground state parameters of different elements. The
equilibrium lattice parametersin angstromsd, cohesive energysin
electron-voltsd, and scaling lengthsin angstromsd provide the best
fit of the first-principles data for the total energy vs lattice parameter
via the universal binding energy relation of Roseet al. ssee Ref. 8d.

Element ae sÅd Ec seV/atomd l sÅd

Ni sfccd 3.5184 5.6724 0.2996

Ni sbccd 2.7975 5.6207 0.2904

Al sfccd 4.0459 3.5378 0.3517

Al sbccd 3.2379 3.4423 0.3641

Ti sfccd 4.1103 5.8244 0.3782

Ti sbccd 3.2561 5.7721 0.3814

Cr sfccd 3.6184 4.9640 0.2472

Co sfccd 3.4580 5.5637 0.2617

Fe sfccd 3.4452 4.2700 0.2124
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simplicity but different in its formulation from other qams,
the BFS method for alloys is based on a different way of
interpreting the alloy formation process. Any given system,
regardless of its composition and structure, is always mod-
eled in terms of two independent virtual processes which,
properly coupled, are meant to result in the final state that is
being studied. One of these virtual processes relates to the
structural changes in the environment of any given atom
sstrain energyd. The other virtual process accounts for
changes in the chemical environment of that same atom
schemical energyd. To decouple structural and chemical ef-
fects, in the strain process all atoms surrounding a given
atom are considered as being of the same atomic species as
the reference atom, thus freezing compositional degrees of
freedom. In the chemical process, the surrounding atoms re-
tain their chemical identity, but are forced to occupy equilib-
rium lattice sites of a lattice characteristic of the reference
atom. The fact that the chemical energy is a constantsfor a
fixed compositiond, can be used to our advantage and, as will
be seen later, allows for an ideal integration of detailed FP
calculations with the simplicity of quantum approximate
methods. Both processes are based on the concept of ideal
equivalent crystals. As such, the method will be equally ac-
curate when describing bulk or surface problems, as both
will be mapped onto isotropically deformed equivalent crys-
tals, properly described by the same set of parameters. The
accuracy of this aspect of the approach is supported by the
fact that the transformations describing the mapping of the
real systems onto equivalent crystals is substantiated by per-
turbation theory.11 However, the correspondence between the
virtual processes and real situations or their interpretation as
components of the process of alloy formation does not nec-
essarily guarantee that the results will be accurate or compa-
rable to those obtained with FP methods. The two virtual
processes, associated to the calculation of the strain and
chemical energy, are defined independently, although it is
clear that the appropriate coupling of the two processes is
what ultimately determines the validity of the method. Once
the choice is made to depart from a straight description of the
real process and virtual processes are chosen to replace them,
the freedom in the features describing each virtual process is
constrained by the fact that, ultimately, the coupling between
them has to be such that the final state coincides with the
actual alloy or system under study. The coupling functiong
plays the role of linking the structural and chemical informa-
tion of the system in a straightforward and computationally
economical waysi.e., no additional calculations are required
to determine the value ofg for every single atom in the
computational celld. As defined in Eq.s10d, g ensures the
correct asymptotic behavior of the chemical energy. If the

scaled lattice parameterai
S*

is understood as a measure of the
structural characteristics of the alloy from the perspective of

each individual atomi, then a positive value ofai
S*

means
that the atomi finds itself in an atomic local environment
that resembles an isotropically expanded version of a pure
crystal of speciesi. As such, the chemical environmentsi.e.,
the changes in the electron density in the vicinity of atomi
due to the presence of neighbors with different chemical

identitiesd is diminished. Conversely, ifai
S*

is negative, the

opposite is true. The exponential form of the coupling func-
tion is chosen as the simplest formsi.e., no additional param-
eters are introduced in its definitiond that describes the asym-
metry between the two regimes: the possibility of an infinite
expanded equivalent crystal is not matched by a correspond-
ing infinite compression.

It remains to be shown that this simple way of coupling
the two processes suffices to warrant results that would be
comparable to those obtained from FP calculations. To this
end, we concentrate on the expression for the energy of for-
mation in terms of the individual constituents as provided by
Eqs.s1d and s2d:

DH = o
i

«i
S+ gis«i

C − «i
C0d. s11d

Consider a compoundsABC. . .Zd. The energy of forma-
tion of such compound can be written as

DH = E − o
X

EX
0 , s12d

whereE is the total energy of the compound, andEX
0 is the

energy of atoms of speciesXsX=A,B,C, . . . ,Zd at equilib-
rium. The total energy of the compound can also be written
in terms of the equilibrium energy of each one of its compo-
nentssEX,jd, computed from the minimum of the UBERsor
any other equation of state atT=0 Kd, and an “alloying”
term,Eresidual, as follows

E = o
X,j

EX,j + Eresidual, s13d

where the sum runs over all atomsj of speciesX. Combining
these two expressions, we obtain

DH = o
X,j

sEX,j − EX
0d + Eresidual. s14d

This last expression can now be compared to the BFS ex-
pression for the energy of formation in terms of strain and
chemical components, given in Eq.s11d, reformatted to
single out the energy contributions from monoatomic crys-
tals

DH = o
X,j

«X,j
S + «residual. s15d

Thus, BFS extracts the maximum amount of information of a
given compound from the single element UBERs, with
«residual responsible for any additional information regarding
the mixing process. In BFS, this quantity is written as a
linear combination of the coupling functionsgX,i assigned to
each atomj of elementXsX=A,Bd:

«residual= o
X,j

mX,jgX,j s16d

and the constantsmX,j denote the chemical energies of atom
j of speciesX. Finally
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FIG. 1. Comparison of the lhssFLAPW results, solid curves, in electron-volts per atomd and rhssBFS results, dashed curvesd of Eq. s17d,
as a function of lattice parametersin angstromsd, for sad NiAl sB2d, sbd UMo sB2d, scd AlZr3 sL12d, sdd NiCu sL10d, andsed body-centered-
tetragonal NiAlsc/a=1.1d. In this last case, the Wigner-Seitz radius is used instead of the lattice parameter. The vertical lines denote the
equilibrium lattice parameters of the individual elementssin the symmetry of the alloy, dashed lined and the lattice parameter of each ordered
structuressolid linesd, as predicted by first-principles methods.
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DH − o
X,j

sEX,j − EX
0d = o

X,j
mX,jgX,j . s17d

The left-hand sideslhsd of Eq. s17d denotes quantities that
can be properly described by FP-determined UBERs,
whereas the right-hand sidesrhsd denotes a quantity that is
exclusively computed within the context of BFS. If the
method provides an accurate description of the mixing pro-
cess and if the parameterization of the elements is properly
included, then the validity of BFS is warranted when the
identity between both terms is satisfied within the range of
validity of the description of the system as provided by the
UBER si.e., in the vicinity of equilibriumd. To illustrate this
point, Fig. 1 displays results for a variety of binary systems.
Figures 1sad and 1sbd show the results for two orderedB2
sbccd compounds, NiAl and UMo. The comparison between
these two examples highlights the fact that BFS is equally
accurate regardless of the type of element considered. Fig-
ures 1scd and 1sdd refer to fcc compounds, AlZr3 sL12d and
NiCu sL10d, respectively, indicating that the approach is
equally applicable regardless of the lattice mismatch between
the constituents or the type of latticesbcc or fccd or, as
shown in Fig. 1sed for the case of body-centered-tetragonal
NiAl swith c/a=1.1d, the specific geometry of the cell.

The agreement between FLAPW results and BFS shown
in Fig. 1 is the foundation for the quality of the results found
in a number of applications of the method to binary
systems.2–5 However, the examples shown in Fig. 1 represent
just a few simple cases and raises the question of whether
this agreement could be dependent on the complexity of the
example chosen, as it relies on the ability of the FP-based
parameters to carry the necessary information to warrant rea-
sonable agreement in the equilibrium region. To further illus-
trate this point of additional complexitysi.e., more non-
equivalent atoms, more components, etc.d and its effect on
the validity of the approach, Fig. 2 shows similar results for
a ternary case, anL12 Ni2AlTi Heusler alloy. Once again,
BFS results are in excellent agreement with the FP results in
the equilibrium region. Recent applications to systems with
up to 12 elements12 indicate that this correspondence be-
tween FP and BFS results could be expected for any number
of components.

We conclude this section noting that while Fig. 1 illus-
trates the ability to describe the alloy formation process by
means of just a few examples for bcc or fcc systems, nothing
in the formulation of the method or the derivation above
imposes restrictions on the type of symmetry examined. Re-
cent results by Légaréet al.13 indicate that similar conclu-
sions can be drawn for hcp systems. Similarly, the method-
ology does not impose restrictions on the number of
elements in the system at hand, and no loss in accuracy
should be expected for higher-order systems.

V. DETERMINATION OF GROUND STATE PROPERTIES

The simplicity of the BFS formalism allows for a straight-
forward analytical algorithm for the determination of ground
state properties of ordered alloys. For ordered structures, Eq.
s1d is substantially simplified, as it can always be reduced to

the contributions of just theM nonequivalent atoms,«i, each
with multiplicity mi:

DH = o
i=1

M

mi«i = o
i=1

M

mis«i
S+ g«i

Cd, s18d

where«S is the strain energy,«C is the chemical energy, and
g is the coupling function for each of theM nonequivalent
atoms.

If the value ofDH is known forM arbitrary values of the
lattice parametera, then the chemical energies can be easily
obtained by simply solving a linear system of equations
based on the valuesDHsakd=DHk sk=1, . . .Md. Once these
energies are known, the equilibrium properties of the alloy
can be trivially obtained by minimization ofDH. Most
simple binary structures have just one nonequivalent atom of
each kind. These are, for example, the bcc-basedB2 and fcc
L10 structures.D022, D03, andL60 AB3 binary ordered struc-
tures require one A and two different B atoms. Also, ternary
ordered structures, asL21 A2BC, would require a minimum
of three nonequivalent atoms. Although the formalism can be
presented for an arbitrary numberM of nonequivalent atoms,
we will illustrate it, for the sake of brevity, with simpleB2 or
L10 structures. It should be noted, however, that some re-
strictions or simplifications were imposed in these calcula-
tions due only to the fact that they do not address the objec-
tive of this work si.e., to introduce the conceptsd, and not
because it is outside the scope of the methodology.

For these structures, the BFS energy of formation is sim-
ply

DH = 1
2s«A

S + gA«A
C + «B

SgB + «B
Cd, s19d

where «X
S and «X

C denote the strain and chemical energy,

FIG. 2. Comparison of the lhssFLAPW results, solid curves, in
electron volts per atomd and rhssBFS results, dashed curvesd of Eq.
s17d, as a function of lattice parametersin angstromsd, for Ni2AlTi
sL21d. The vertical lines denote the equilibrium lattice parameters of
the individual elementssin the symmetry of the alloy, dashed lined
and the lattice parameter of each ordered structuressolid linesd, as
predicted by first-principles methods.
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respectively, of atomX. While the strain energy contribution-
ssand the corresponding coupling functionsgXd are volume
dependent, the chemical energies are not, and can be easily
computed if just two FP-computed energies of formation
DH1 and DH2, are known. In principle, these two energies

could correspond to any two arbitrary valuesa1 anda2 of the
lattice parameter, which we will represent by their corre-
sponding Wigner-Seitz radii,r1 and r2. Using Eq.s19d, it is
straightforward to compute the chemical energies fromDH1
andDH2:

«A
C =

gB
s2df2DH1 − «A

Ssr1d − «B
Ssr1dg − gB

s1df2DH2 − «A
Ssr2d − «B

Ssr2dg
fgA

s1dgB
s2d − gA

s2dgB
s1dg

, s20d

where gi
skd=gisrkd. A similar expression results for«B

C, ex-
changingA for B. If, as shown in Sec. IV, the method is
successful in describing the process of alloy formation, then
the computed values of«A

C and«B
C can be used for the deter-

mination of the equilibrium lattice parametera0 of the alloy,
by solving

UdsDHd
dr

U
a0

= 0. s21d

Oncea0 is known, the energy of formation of the equilibrium
ordered alloy,DH0, is obtained with Eq.s19d. The results
should be equivalent to the values obtained from FP calcula-
tions.

The procedure can be further simplified if some reason-
able expression denoting isotropic expansions or compres-
sions of each single crystal is used for«A

Ssad and «B
Ssad. It

should be noted, however, that the following results do not
depend on the functional form used. A natural and suffi-
ciently accurate expression is given by the universal binding
energy relationship

Esrd = − ECs1 + a*de−a*
, s22d

where

a* =
r − re

l
, s23d

andEC andre represent the cohesive energy and the equilib-
rium Wigner-Seitz radius of the pure element, respectively,
and l is related to the bulk modulus by

l =Î EC

12pB0re
. s24d

After using the UBERsor any other alternative expres-
siond, Eq. s21d simply reads

gA

lA
sEC

AaA
S*

− «A
Cd +

gB

lB
sEC

BaB
S*

− «B
Cd = 0. s25d

Moreover, onceDH0 anda0 are known, the bulk modulusB0
can be computed from these expressionssassuming that the
alloy can also be described by an UBERd, by means of the
scaling lengthl0 fsee Eq.s24dg:

l0 =Î EC
A + EC

B − 2DH0

gA

lA
2 fEC

As1 − aA
S*

d + «A
Cg +

gB

lB
2 fEC

Bs1 − aB
S*

g + «B
Cg

.

s26d

Generally, the path followed when using FP calculations
to produce input parameters to fit alloy properties in qams
consists of determining the full energy versus lattice param-
eter curve, and then fit the results to appropriate functional
forms to extract the equilibrium alloy properties. The present
algorithm, instead, simplifies this procedure by combining
limited FP input with BFS to provideDH0, a0, and l0, in a
straightforward fashion, thus optimizing the transfer of infor-
mation.

It is important to stress that the methodology is general
enough to be applicable to multicomponent systems, com-
plex ordered structures, etc., where it is imperative to sim-
plify the computational work maximizing, at the same time,
the amount and quality of information that can be obtained
for the system at hand.

The accuracy and relevance of the procedure is demon-
strated in the following examples. Using FLAPW inputsfit-
ted to a UBERd to determine the pure element parameters
sa,Ec, ld, listed in Table I, Table II shows typical results for
the values ofsa0,DH0, l0d obtained both from a direct fit of
FP results and with the algorithm outlined in Sec. V, using
the equilibrium values of the lattice parameter of elementsA
andB as the two reference pointsa1 anda2. Table III supple-
ments these results with a comparison between
theoretical14–20 and experimental21–32 data for some of these
systems.

As a final point, and in order to maximize the quality of
the information carried by the relevant parameters, it is im-
portant to mention that even small instabilities in FP calcu-
lations sfor example, uncertainties in the values ofDH1 or
DH2 in Eq. s20dd could have a deleterious effect on the ac-
curacy of the BFS parametersD that can be extracted from
the computed values of the chemical energiesfEq. s20dg, and
therefore limit their ability to properly describe the system
under study. As an example of the reliance of this algorithm
on the accuracy of the FP input, Fig. 3 shows typical results
for NiAl in the B2 andL10 structures, highlighting the role
of the chemical energies in the determination of the binding
energy curve for each alloy. As described earlier, the algo-
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TABLE II. Comparison between the equilibrium lattice parametersin angstromsd, energy of formationselectron-volts per atomd, and
scaling lengthsin angstromsd obtained from fitting FLAPW data with the universal binding energy curve of Roseet al. ssee Ref. 8d, and the
predictions of the same parameters obtained from Eqs.s25d and s26d using the FLAPW+BFS approach introduced in Sec. V. The two
reference pointssa1 anda2d used in the FLAPW+BFS approach correspond to the equilibrium values of the lattice parameter of the single
elements.

Alloy

FLAPW sThis workd Limited FLAPW input+BFS

a0

sÅd
DH0

seV/atomd
l0

sÅd
a0

sÅd
DH0

seV/atomd
l0

sÅd

NiAl sB2d 2.8951 −0.7598 0.3131 2.8958 −0.7582 0.3230
NiAl sL10d 3.6676 −0.5431 0.3176 3.6658 −0.5427 0.3244
Ni3Al sL12d 3.5652 −0.4732 0.3065 3.5651 −0.4731 0.3016
NiTi sB2d 3.0148 −0.4728 0.3318 3.0146 −0.4706 0.3421
AlTi sL10d 4.0224 −0.4367 0.3534 4.0213 −0.4366 0.3678
AlTi sB2d 3.1880 −0.3677 0.3490 3.1820 −0.3682 0.3741
CrFe sL10d 3.5250 −0.1339 0.2569 3.5255 −0.1354 0.2550
NiCr sL10d 3.5469 −0.1545 0.2669 3.5457 −0.1545 0.2694
AlCo sB2d 2.8522 −0.8632 0.2984 2.8518 −0.8631 0.3067
AlCo sL10d 3.6382 −0.4451 0.2986 3.6371 −0.4450 0.3028
CoCr sL10d 3.5156 −0.2649 0.2546 3.5156 −0.2652 0.2536
AlFe sB2d 2.8693 −0.5866 0.2983 2.8691 −0.5865 0.3053
AlFe sL10d 3.6547 −0.1639 0.2977 3.6510 −0.1651 0.3016

TABLE III. A sample of theoreticalsRefs. 14–20d and experimentalsRefs. 21–32d results for the equilibrium lattice parametera0 sin
angstromsd and energy of formation per atomDH0 sin electron-volts per atomd for some of the binary alloys listed in Table II. The asterisk
indicates the observed structure.

a0 sÅd DH0 seV/atomd

Alloy
FP

This work
Exp.

Ref. 21
Theor.
Ref. 14

FP
This work Exp. Theory

NiAl sB2d* 2.8951 2.8864 2.8332 −0.7598 −0.60a, −0.74b,
−0.69c

−0.68d, −0.68d

−0.70e, −0.64f

−0.70l

−0.78m, −0.83n,
−0.72n

−0.65o, −0.74p

NiAl sL10d 3.6676 3.5698 −0.5431 −0.54r, −0.58m

Ni3Al sL12d* 3.5652 3.567 3.4746 −0.4732 −0.40c, −0.43g,
−0.42h, −0.49e

−0.46r, −0.50m

NiTi sB2d* 3.0148 3.015 2.9226 −0.4728 −0.35i, j −0.35l, −0.42n, −0.47n, −0.45q

AlTi sL10d* 4.022
sc/a=1d

4.005
sc/a=1.02d

3.9715 −0.4367 −0.39b, −0.38b,
−0.37c, −0.38k

−0.41l, −0.44s

AlTi sB2d 3.1880 3.1528 −0.3677 −0.26l

AlFe sB2d* 2.8693
snonmagneticd

2.909 2.8205 −0.5866 −0.25i, −0.26k,
−0.28c

−0.42l

AlFe sL10d 3.6547
snonmagneticd

3.5534 −0.1639 −0.17l

aSee Ref. 22.
bSee Ref. 23.
cSee Ref. 24.
dSee Ref. 25.
eSee Ref. 26.
fSee Ref. 27.
gSee Ref. 28.
hSee Ref. 29.
iSee Ref. 30.
jSee Ref. 31.

kSee Ref. 32.
lSee Ref. 14.
mSee Ref. 15.
nSee Ref. 16.
oSee Ref. 17.
pSee Ref. 18.
qSee Ref. 19.
rSee Ref. 13.
sSee Ref. 20.
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rithm relies on the determination of the chemical energies of
each nonequivalent atom which, via Eq.s19d, define the
binding energy curve for the alloy. We note that in the same
way that the chemical energies can be determined from Eq.
s20d, they can also be obtained fromsa0,DH0d sas long as
Eq. s21d is satisfiedd

«A
C =

2sDH0 − DHSd

gA
s0dS1 −

lB
lA
D + EC

AaA
S*

sa0d, s27d

where

gA
s0d = e−aA

S*
sa0d s28d

and

DHS= 1
2fEC

As1 − gA
s0dd + EC

Bs1 − gB
s0ddg, s29d

sand a similar expression for«B
Cd. In Fig. 3, besides plotting

the binding energy curve for each pure element, we include
the UBER for the alloy when the FP values ofsa0,DH0d are
used. We also include alternative results for this same curve,
also obtained from Eq.s3d, but where the FP inputsa0,DH0d
has been increased or decreased by 1%sfor the lattice pa-
rameterd and 10%sfor the energy of formationd. While little
variation is seen for NiAlB2, substantial dispersion of the

FIG. 3. Binding energy curves forAB alloys.
The solid curves describe the pure elementssNi,
Al d and the binary alloys NiAl in different struc-
tures:sad B2 andsbd L10. The other curves denote
the predictions based on variations of the equilib-
rium lattice parameter a0 and the energy of for-
mation sDH0d of s−1% ,−10%d sdotsd, s+1% ,
−10%d sdashed lined, s−1% , +10%d slong
dashed lined and s+1% , +10%d sdot-dashed
lined.
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predicted values occurs in the NiAlL10 structure, underscor-
ing the sensibility of the FLAPW+BFS algorithm against
small variations in the FP input used. In light of this feature,
it is not surprising that the stability of the BFS predictions
are directly linked to the quality and precision of the input
used. Accurate and precise theoretical or experimental input
will result in correspondingly accurate BFS predictions, and
conversely, unstable input would translate into dispersion of
the resultssas seen in Fig. 3sbdd.

VI. CONCLUSIONS

High expectations have been imposed on the range of
applicability of quantum approximate methods, their compu-
tational efficiency, their ease of implementation, and the type
of output that they provide. The particular partitioning of the
energy of formation of an alloy in the framework of the BFS
method allows for the determination of the equilibrium alloy
properties from FP input of the pure elements and limited
data points for the alloy, obtained also from such calcula-

tions. In this paper we show that it is possible to model the
process of alloy formation with a minimum number of pa-
rameters in the vicinity of equilibrium, as shown in Figs. 1
and 2. The lack of limitations on the method regarding the
number of elements present in an alloy enables the study of
multicomponent systems with the same simplicity observed
in the example earlier for binary systems. In this sense, and
due to the potential important applications in studying sys-
tems of practical use, the algorithm in Sec. IV serves the
purpose of simplifying the modeling effort to tractable lev-
els.
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