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Determination of structural alloy equilibrium properties from quantum approximate methods
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In this paper we address basic issues, not investigated previously, concerning the relationship &letween
initio methods and the Bozzolo-Ferrante-SnilBrS) method for alloys, and its ability to model the process of
alloy formation and reproduce structural alloy properties near and at equilibrium. Based on perturbation theory,
the method requires single element parameters and their binary combinations, even for multicomponent sys-
tems. A direct comparison of BFS predictions of equilibrium alloy properties agalinstitio results, and the
handling and influence of the parameterization on the accuracy with which the method reproduces the process
of alloy formation are presented. Besides establishing a range of validity for the method in reference to
first-principles results, a simple algorithm for the determination of equilibrium properties of ordered alloy
systems is introduced and illustrated with applications to binary and higher order systems, maximizing the flow
of information carried in the first-principles-based parameters.
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[. INTRODUCTION potential limitation is the fact that when implementing the
The vast number of potentially useful but still undiscoy- SIMPlifications that characterize either approach, the real sys-
ered alloys and the practical limitations facing the develop{€M iS replaced by a virtual one, and it is assumed that the
ssential features of the real system are faithfully capttired.

ment of new materials have been the driving force for usinﬁ .
ab initio methods and quantum approximate methgsm) he payoff warrants making these necessary changes, as
gomplex systems can be systematically described by known

for large scale atomistic simulations as a standard tool to ai q ble alqorith ith 4 of
the experimental work on alloy design. With time, the differ- 2"d manageable algorithms with a proven record of accu-
racy. In essence, gams follow the same path: substantial sim-

encegas well as the similaritighetween gams arab initio e AL y
methods are better understood. This understanding and ipémcatlons are made for the sake of simplicity, basically opt-
g for replacing the real system or the real process by a

I

oty e oo e Il cne, b one tht s for proper iing and oo

o . : mized performance within their limited framework by means
design in mainstream materials development programs. ot 5 nymper, hopefully minimal, of adjustable parameters.

The ab initio approach is based in finding the solution of A yecent addition to the growing family of gams is the
S_chrodmgers equgtlon which will contgm all the informa- Bozzolo-Ferrante-SmitiBFS) method for alloy€® which
tion on the properties of the system. It is well known, how-pags heen applied to a number of diverse structural problems.
ever, that such solution only exists for very simple systemsThe method relies on approximations, by replacing the exact
This limitation has been circumvented with the use of tWOprocess of a||oy formation, with virtual processes whose end
different approaches: one, dealing with the search of alterngesult is, or is expected to be, a good description of the result
tive, simplified, solutions which hopefully reproduce the of the real process. In terms of validation, the same way that
main features of théunknown) exact, true, solution. This is, DFT requires that the virtual system describe the real elec-
in essence, the strategy followed by the Hartree-Fétlk)  tron density with a high level of accuracy, BFS is expected to
method. A second approach, as implemented in density funaeproduce the essential features of the equation of state of the
tional theory (DFT), consists of replacing Schrodinger’s solid at zero temperature and, in particular, around equilib-
equation with one that is easier to solve, once again assunium. Unlike ab initio methods that provide a full description
ing that it is selected in such a way that its solutions are @f the system at han@ncluding band structure, density of
good representation of the exact answer. In either case, istates, charge density, 8tcBFS is limited to structural in-
spite of these simplifications, the corresponding equationformation that is, ultimately, contained in the binding energy
are still hard to solve, requiring a great deal of computercurve describing the solid under study. This trade-off, i.e.,
power and fast and efficient algorithms. Substantial progresgreatly increased computational efficiency and a minimum
has been realized in recent years, allowing for proper comaumber of universal parameters at the expense of detailed
putational treatment of realistic problerhs. electronic structure information, allows for a full description

Both approaches have one thing in common: either byf several structural aspects of interest. Starting from sepa-
limiting the search of possible solutiortas in HF, or by  rate single elements as the initial state, BFS tries to provide
altering the equation that properly describes the syséenin  an alternative, virtual path leading to the real final state with
DFT), no adjustable parameters appear in these methods. ln minimum number of parameters to guide its way. While
other words, simplifications are introduced without any par-more flexibility can be gained by letting these parameters
ticular reference to the system under study. Underlying thivary according to the specific problem at hand, no such de-
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gree of freedom is added to the method, and the paramete(ELAPW) method used both for the calculation of the nec-
remain fixed, fully transferable, for any case dealing with theessary BFS parameters and for the comparison between BFS
same elements, regardless of their number, type, or structurahd FP results. Section Il concentrates on the BFS formal-
properties. This restriction implies that in order for theism as an introduction to Sec. IV, where its relationship with
method to be equally valid in a number of diverse situationsgp calculations is addressed. Section V concludes with the
as DFT is, the parameters must contain all the necessagescription of an algorithm linking the BES method and FP
information to warrant the accuracy of the virtual path cho-cacylations, capitalizing on the underlying simplicity of the
sen for describing the process of alloy formation. If this de- niversal binding energy relationshitBER)® for optimiz-

scription is correct, then the method should accurately reéprog,q e transfer of information between the original input and
QUce t_he most cr|t|c§1I properties of the solid in its f'.n"."l. Stateyhe calculation of alloy equilibrium properties. Conclusions
including the cohesive energy per atom, compressibility, an re drawn in Sec. VI

equilibrium Wigner-Seitz radius. As long as these properties
are sufficient for an equally accurate description of defects,
their accuracy is essential for addressing issues such as the Il. FIRST-PRINCIPLES CALCULATIONS

site preference behavior of alloying additions in multicom- All calculati in thi ‘ d using th
ponent systems. calculations in this paper were performed using the

Approximations imply loss of information, but while to self-consistent FLAPW method within the generalized gradi-

some extent such loss is affordable, it must be guarantegt correction of Perdevet al.? as implemented in the
that gams properly describe the properties of the final statdYIEN97 program packagé FLAPW is considered as one of
regardless of the path taken to model the process. Besides most accurate band structure methods currently avallaple
ability to properly model the alloy formation process, the {0 Solve the Kohn-Sham equation of DFT. As such, it consti-
parameterization schenfaumber of parameters, source for {Utes an useful tool for checking the validity of gams when
their determination, the information they contain, etoflu- ~ €xPerimental data are not available.
ences the accuracy with which such process is described. The For all single element and binary phases, local orbitals
BFS method relies on a minimum amount of input, namely,Vere added to the FLAPW b'a.S|s to describe the semicore
equilibrium properties of the pure elemeftshesive energy, States3sand3p of the 3d transition metals and thzp state
lattice parameter, and bulk modujusnd their binary com- for AI. Spln-po_larlzed contrlbu_tlons to the total energy were
binations(equilibrium lattice parameter and energy of forma- N0t included in our calculations. The plane wave cutoff
tion of a given ordered phase In some cases, such input RmtKmax Was set to 9.0, wherk,, is the reciprocal lattice
exists from experimental results. In order to maximize theVector cutoff, anRy, the muffin-tin sphere radius, was set
range of application of the method, however, recent #drk t© .0.9525 A_(1.8 a.u) for all el_ements. The largest value of
has centered solely on the use of input generated via firs{® included in the charge Fourier expansion was set to 22. We
principles(FP) method<® While economical in the necessary used 10 O_O(k points in the full Brillouin zone for a]l single
input, the small number of parameters used in BFS imposeglements in the bce and fee structures and 50@@ints for
important demands on their stability and accuracy. ThereMulticomponent systems. All total energy calculations were
fore, conservation of the information transferred via FP pa€£onverged in energy to within 0.01 mRy.
rameters is an essential requirement for the effectiveness of
the method. It is also worth noting that this type of param- IIl. THE BES METHOD EOR ALLOYS
eterization implies a somewhat different approach for the _ _
interaction between different atoms. In general, most ap- 'he BFS method for 3”095_5“”_'”_5 several requirements
proaches introduce some sort of interaction potential, wittfor applicability in terms of simplicity, accuracy, and range
changed. In BFS, it is precisely the set of parameters descrifie€ number and type of elements present in a given alloy.
ing the pure element that it is perturbed in order to accounMoreover, it has shown promise in describing diverse prob-
for the distortion introduced by the nearby presence of 4ems, particularly in the area of surface alldyand high-
different element or defect. The additive nature of the perturiémperature ordered intermetallf&8.The method provides a
bative theory results in that only binaries systems need to b@mple algorithm for the calculation of the energy of forma-
known in the BFS framework. Multicomponent systems arefion AH of an arbitrary alloy(the difference between the
thus studied only via binary perturbatiohs. energy of the alloy and_ fthat of its individual c'ons'tltue)nts

In this paper we address two basic issues concerning tharitten as the_superposmon of elemental contr_lbutlensf_
method and its relationship to FP methods, namely, valida@ll the atoms in the alloy, wherg denotes the difference in
tion of BFS predictions of equilibrium alloy properties €nergy between a given atom in the equilibrium alloy and in
against FP results, and the handling and influence of the FF equilibrium single crystal of species
based parameterization on the accuracy with which BFS re- _
produces the process of alloy formation. In doing so, this AH _2 &
study focuses on the ability of the method to maximize the '
information from a minimum number of parameters, by ex-For each atom, we partition the energy into two parts: a
amining the accuracy of predicted properties against hbth strain energysis, and a chemical energy,c, contribution. By
initio and experimental results. Section Il briefly describesdefinition, the BFS strain and chemical energy contributions
the full-potential linearized augmented plane wavetake into account different effects, i.e., geometry and compo-
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sition, computing them as isolated effects. A coupling func- TABLE I. Ground state parameters of different elements. The
tion, g;, restores the relationship between the two terms byequilibrium lattice parametefin angstromg cohesive energyin
considering the asymptotic behavior of the chemical energyglectron-volts, and scaling lengttiin angstroms provide the best
where chemical effects are negligible for large separationﬁ_t of the first-principle; data for the toFaI energy vs lattice parameter
between dissimilar atoms. A reference chemical ener,f}y, via the universal binding energy relation of Radeal. (see Ref. &

is also included to insure a complete decoupling of structurat

and chemical features. Summarizing, the contribution to the Element 2 (A) Ec (eV/atom) I (A)
energy of formation of atom s then Ni (fcc) 3.5184 5.6724 0.2996
g =& +0 (e — ). 2) Ni (bco 2.7975 5.6207 0.2904
The BFS strain energy?, differs from the commonly de- All (fec) 4.0459 3.5378 0.3517
fined strain energy in that the actual chemical environment is A, (beg 3.2319 3.4423 0.3641
replaced by that of a monoatomic crystal. Its calculation is Ti (fce) 4.1103 5.8244 0.3782
then straightforward, even amenable to FP methods. In this Ti (bco 3.2561 5.7721 0.3814
work, however, we use for its computation the equivalent Cr (fco) 3.6184 4.9640 0.2472
crystal theory(ECT),!* due to its ability to provide accurate Co (fcc) 3.4580 5.5637 0.2617
and computationally economical answers to most general Fe (fcc) 3.4452 4.2700 0.2124

situations. The BFS strain energy contributimi“?, is ob-
tained by solving the ECT perturbation equation

NRPE R + MRBE (5 1M)R: = S r})ie_[”‘i*'s(rj)]rj' 3 atomi, reflected in the parametey;, is given by
! @y = o+ Ay (7)
whereN and M are the number of nearest-neighbdkéN)
and next-nearest neighbdSNN) at distance®; andR, (in
the equivalent crystalrespectively, and wheng |, «, and\
are ECT parameters that describe elemeisee Ref. 11 for
definitions and detaijs r denotes the distance between the
reference atom and its NN and NNN, astr) describes a
screening functiol for NNN. This equation is used for the
calculation of the lattice parameteP of a perfect crystal
where the reference atoirhas the same energy as it has in where y, =1 if aic*>0 andy=-1 if alg:*<0 and the scaled
the geometrical environment of the alloy under study. Once ! . W T '
the lattice parameter of thtrain equivalent crystalaf, is chemical lattice parameteqc is given by
determined,eiS is computed using the UBER of Roseal.? (aC-a,)
which contains all the relevant information concerning a af*:qﬁ. 9
single-component system I

where the BFS parametdy,; (a perturbation on the single-
element ECT parametes;) describes the changes of the
wave function in the overlap region between atanasd k.
Once Eq.(6) is solved for the equivalent chemical lattice
parameterg’, the BFS chemical energy is then

0= yEc[1-(1+a%)e™ ] 8)

8is: Ecyi[l—(1+a1-sk)e‘ai9] (4) Finally, as m_enti_oned earl_ier, the BFS strai_n and chemical
energy contributions are linked by a coupling functign
whereEc; is the cohesive energy of atomand where the ~ which describes the influence of the geometrical distribution
scaled lattice parametaﬁ is given by of the surrounding atoms in relation to the chemical effects
and is given by

S
S (81 - ae|)
A= i 2 g =exp-a’). (10
whereq is the ratio between the equilibrium Wigner-Seitz ~ The computation ofs® and &7, using ECT: involves
radius and the equilibrium lattice parameteay;. three pure element properties for atoms of specieshesive

The BES chemical energy;ic, is obtained by a similar energy, lattice parameter, and bulk modulus. The chemical
procedure. As opposed to the strain energy term, the suenergy,e, includes two BFS perturbative parametéss
rounding atoms retain their chemical identity, but are forcedand Ay, with i, k including all possible binary combinations
to be in equilibrium lattice sites of an equilibrium crystal of of the alloy constituenis Table I lists all the parameters for
atomi. The BFS equation for the chemical energy is giventhe pure elements used in the different examples in this

by work.
i A—ai R Pi o~ (a;+1/\)R:
NRpe % + MRge i re IV. RELATIONSHIP BETWEEN BFS AND AB INITIO
- E [Nikrgie_"‘ik'1+ Mikrgie_(“ik+1/)‘i)r2], (6) METHODS
K In this section we elaborate further on the concepts intro-
whereN;, and M;, are the number of NN and NNN of spe- duced in Sec. Ill and examine the performance of the

ciesk around atom. The chemical environment surrounding method in the framework of FP calculations. Comparable in
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simplicity but different in its formulation from other gams, opposite is true. The exponential form of the coupling func-
the BFS method for alloys is based on a different way oftion is chosen as the simplest fofire., no additional param-
interpreting the alloy formation process. Any given system.eters are introduced in its definitipthat describes the asym-
regardless of its composition and structure, is always modmetry between the two regimes: the possibility of an infinite
eled in terms of two independent virtual processes whichexpanded equivalent crystal is not matched by a correspond-
properly coupled, are meant to result in the final state that ighg infinite compression.

being studied. One _of these vi_rtual processes rel_ates to the |t remains to be shown that this simple way of coupling
structural changes in the environment of any given atoMpe o processes suffices to warrant results that would be
(strain energy The other virtual process accounts for qomparaple to those obtained from FP calculations. To this

Chrf‘”g?s Im the c_?err;cal erI1V|ronment IOf t(;\athsamelat]?rgnd, we concentrate on the expression for the energy of for-
(c emica energ)y. 0 decouple structural and chemical et 4ii0n in terms of the individual constituents as provided by
fects, in the strain process all atoms surrounding a glveIEgs (1) and (2):

atom are considered as being of the same atomic species a
the reference atom, thus freezing compositional degrees of
freedom. In the chemical process, the surrounding atoms re-
tain their chemical identity, but are forced to occupy equilib-
rium lattice sites of a lattice characteristic of the reference Consider a compoun@ABC...Z). The energy of forma-
atom. The fact that the chemical energy is a constfamta  tion of such compound can be written as

fixed compositioln, can be used to our advantage and, as will

be seen later, allows for an ideal integration of detailed FP AH=E- 2 EC, (12
calculations with the simplicity of quantum approximate X

methods. Both processes are based on the concept of ideal

equivalent crystals. As such, the method will be equally acwhereE is the total energy of the compound, afil is the
curate when describing bulk or surface problems, as botgnergy of atoms of species(X=A,B,C, ... ,Z) at equilib-

will be mapped onto isotropically deformed equivalent crys-fium. The total energy of the compound can also be written
tals, properly described by the same set of parameters. TH@ terms of the equilibrium energy of each one of its compo-
accuracy of this aspect of the approach is supported by theents(Ex ), computed from the minimum of the UBE®r

fact that the transformations describing the mapping of theéiny other equation of state a=0 K), and an “alloying”
real systems onto equivalent crystals is substantiated by peterm, E;esiguas as follows

turbation theory! However, the correspondence between the

virtual processes and real situations or their interpretation as E=D, Exj + Eresiduar (13
components of the process of alloy formation does not nec- X,

essarily guarantee that the results will be accurate or compa-

rable to those obtained with FP methods. The two virtuawhere the sum runs over all atorpsf species<. Combining
processes, associated to the calculation of the strain ariiese two expressions, we obtain

chemical energy, are defined independently, although it is

clear that the appropriate coupling of the two processes is AH=, (Ex;— EY) + Eresiuar (14
what ultimately determines the validity of the method. Once X

the choice is made to depart from a straight description of the )

real process and virtual processes are chosen to replace thehhis 1ast expression can now be compared to the BFS ex-
the freedom in the features describing each virtual process Rression for the energy of formation in terms of strain and
constrained by the fact that, ultimately, the coupling betweerghemical components, given in E@11), reformatted to
them has to be such that the final state coincides with th&ingle out the energy contributions from monoatomic crys-
actual alloy or system under study. The coupling function tals

plays the role of linking the structural and chemical informa-

tion of the system in a straightforward and computationally AH=Y, sij + &residual (15
economical way(i.e., no additional calculations are required X

to determine the value of for every single atom in the
computational cell As defined in Eq.10), g ensures the

AH=2 sP+gi(sf — 579, (12)

Thus, BFS extracts the maximum amount of information of a
ggiven compound from the single element UBERs, with

correct asymptotic behavior of the chemical energy. If th ] 13 ! . !
scaled lattice parametef is understood as a measure of the 5esidua '® sponsible for any additional information regarding
fhe mixing process. In BFS, this quantity is written as a

structural characteristics of the alloy from the pgrspective Olinear combination of the coupling functioms,; assigned to
each individual atoni, then a positive value of®> means gach atonj of elementX(X=A,B): '

that the atom finds itself in an atomic local environment
that resembles an isotropically expanded version of a pure
crystal of species. As such, the chemical environmeie.,

the changes in the electron density in the vicinity of atom

due to the presence of neighbors with different chemicahnd the constantay; denote the chemical energies of atom
identities is diminished. Conversely, & is negative, the j of speciesX. Finally

Eresidual™ E X9 j (16)
X,j
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FIG. 1. Comparison of the IN&LAPW results, solid curves, in electron-volts per aj@nd rhs(BFS results, dashed curyesf Eq. (17),
as a function of lattice parametén angstromy for (a) NiAl (B2), (b) UMo (B2), (c) AlZr3 (L1,), (d) NiCu (L1p), and(e) body-centered-
tetragonal NiAl(c/a=1.1). In this last case, the Wigner-Seitz radius is used instead of the lattice parameter. The vertical lines denote the
equilibrium lattice parameters of the individual elemd(imisthe symmetry of the alloy, dashed linend the lattice parameter of each ordered
structure(solid lineg, as predicted by first-principles methods.
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0.0 T
Ni,AlITi (L2;)

AH- (Ex;—EQ = > M jOx,j - (17)
X X

The left-hand sidélhs) of Eq. (17) denotes quantities that
can be properly described by FP-determined UBERS,-o5 -
whereas the right-hand sidehs) denotes a quantity that is
exclusively computed within the context of BFS. If the
method provides an accurate description of the mixing pro-
cess and if the parameterization of the elements is properly-1.0
included, then the validity of BFS is warranted when the
identity between both terms is satisfied within the range of
validity of the description of the system as provided by the
UBER (i.e., in the vicinity of equilibrium. To illustrate this  -1.5
point, Fig. 1 displays results for a variety of binary systems.
Figures 1a) and Xb) show the results for two orderes?
(bco compounds, NiAl and UMo. The comparison between
these two examples highlights the fact that BFS is equaIIy—2.01 p
accurate regardless of the type of element considered. Fig-
ures Ic) and Xd) refer to fcc compounds, AlZr(L1,) and FIG. 2. Comparison of the INFLAPW results, solid curves, in
NiCu (L1,), respectively, indicating that the approach is electron volts per atojrand rhs(BFS results, dashed curyesf Eq.
equally applicable regardless of the lattice mismatch betweefi?), as a function of lattice parametén angstromy for Ni AlTi
the constituents or the type of lattigbcc or fcg or, as (L2,). The vertical lines denote the equilibrium lattice parameters of
shown in Fig. 1e) for the case of body-centered-tetragonalthe individual elementgin the symmetry of the alloy, dashed line
NiAl (with c/a=1.1), the specific geometry of the cell. and _the Iattice_ parameter of each ordered strudtswéd lines, as

The agreement between FLAPW results and BFS showRredicted by first-principles methods.
in Fig. 1 is the foundation for the quality of the results found
in a number of applications of the method to binarythe contributions of just thi! nonequivalent atoms;, each
systemg®However, the examples shown in Fig. 1 represenwith multiplicity m:
just a few simple cases and raises the question of whether M M
this agreement could be dependent on the complexity of the _ _ s C
example chosen, as it relies on the ability of the FP-based AH = z Mei = 21 M7+ Gei), (18)
parameters to carry the necessary information to warrant rea-
sonable agreement in the equilibrium region. To further illus-wheree® is the strain energy© is the chemical energy, and
trate this point of additional complexityi.e., more non- g is the coupling function for each of thd nonequivalent
equivalent atoms, more components, Jetnd its effect on atoms.
the validity of the approach, Fig. 2 shows similar results for If the value ofAH is known forM arbitrary values of the
a ternary case, ahl, Ni,AlTi Heusler alloy. Once again, lattice parametea, then the chemical energies can be easily
BFS results are in excellent agreement with the FP results iabtained by simply solving a linear system of equations
the equilibrium region. Recent applications to systems withased on the valuesH(a,)=AH, (k=1,...M). Once these
up to 12 elementg indicate that this correspondence be-energies are known, the equilibrium properties of the alloy
tween FP and BFS results could be expected for any numb@an be trivially obtained by minimization oAH. Most
of components. simple binary structures have just one nonequivalent atom of

We conclude this section noting that while Fig. 1 illus- each kind. These are, for example, the bcc-b&2dnd fcc
trates the ability to describe the alloy formation process byt 1, structuresDO0,,, D03, andL6y AB; binary ordered struc-
means of just a few examples for bcc or fcc systems, nothingures require one A and two different B atoms. Also, ternary
in the formulation of the method or the derivation aboveordered structures, d2; A,BC, would require a minimum
imposes restrictions on the type of symmetry examined. Reof three nonequivalent atoms. Although the formalism can be
cent results by Légarét all® indicate that similar conclu- presented for an arbitrary numhérof nonequivalent atoms,
sions can be drawn for hcp systems. Similarly, the methodwe will illustrate it, for the sake of brevity, with sSimpB2 or
ology does not impose restrictions on the number ofL1l, structures. It should be noted, however, that some re-
elements in the system at hand, and no loss in accuracstrictions or simplifications were imposed in these calcula-
should be expected for higher-order systems. tions due only to the fact that they do not address the objec-

tive of this work (i.e., to introduce the conceptsand not
because it is outside the scope of the methodology.

V. DETERMINATION OF GROUND STATE PROPERTIES For these structures, the BFS energy of formation is sim-

3.5 4.5

The simplicity of the BFS formalism allows for a straight- ply
forward analytical algorithm for the determination of ground AH = 2(e5 + gae + £505 + £9), (19)
state properties of ordered alloys. For ordered structures, Eq.
(1) is substantially simplified, as it can always be reduced tovhere s)s( and s§ denote the strain and chemical energy,
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respectively, of atonX. While the strain energy contribution- could correspond to any two arbitrary valugsanda, of the
s(and the corresponding coupling functiogg) are volume lattice parameter, which we will represent by their corre-
dependent, the chemical energies are not, and can be easdgonding Wigner-Seitz radir, andr,. Using Eq.(19), it is
computed if just two FP-computed energies of formationstraightforward to compute the chemical energies feby
AH; and AH,, are known. In principle, these two energies and AH,:

o 08 [2AH, — &5(ry) — £5(r)] - g5 T2AH, = £3(r) - £3(r)]
A - 1)

(2)

(20)
[gway - g'gs’]

where gi(k):gi(rk). A similar expression results foS, ex- E&+E2 - 2AH,
changingA for B. If, as shown in Sec. IV, the method is lo= X K .
successful in describing the process of alloy formation, then g—;[Eé(l -ay) +es|+ g—ZB[EE(l -a3]+eS]
the computed values af; andsS can be used for the deter- A I5
mination of the equilibrium lattice parametay of the alloy, (26)
by solving Generally, the path followed when using FP calculations
d(AH) to produce input parameters to fit alloy properties in gams
ar =0. (21)  consists of determining the full energy versus lattice param-
8 eter curve, and then fit the results to appropriate functional

forms to extract the equilibrium alloy properties. The present

Onceagis known, the energy of formation of the equilibrium algorithm, instead, simplifies this procedure by combining
ordered alloy,AH,, is obtained with Eq(19). The results imited FF3 input w}th BFS to provideHo, ay, andl, in a

Zgﬁgld be equivalent to the values obtained from FP Calculas_traightforward fashion, thus optimizing the transfer of infor-

The procedure can be further simplified if some reason™ 20"
€ procedure can be further simplilie Some reaso It is important to stress that the methodology is general

able expression denoting isotropic expansions gr compre%-nough to be applicable to multicomponent systems, com-

sions of each single crystal is used kﬁ(a)_ and eg(a). It lex ordered structures, etc., where it is imperative to sim-

depend on the functional form used. A natural and suffithe amount and quality of information that can be obtained
ciently accurate expression is given by the universal bindingor the system at hand.

energy relationship The accuracy and relevance of the procedure is demon-
N strated in the following examples. Using FLAPW ingfit-
E(r)=-Ec(1+a)e™, (22)  ted to a UBER to determine the pure element parameters
where (a,E.,), listed in Table I, Table Il shows typical results for

the values of(ay, AHg,lo) obtained both from a direct fit of
FP results and with the algorithm outlined in Sec. V, using
the equilibrium values of the lattice parameter of eleménts
andB as the two reference poingg anda,. Table Il supple-
andEc andr, represent the cohesive energy and the equilibments  these results with a comparison between
rium Wigner-Seitz radius of the pure element, respectivelyiheoretical*-20and experimental-32data for some of these

. r—r
a= Ie’ (23)

andl is related to the bulk modulus by systems.
E As a final point, and in order to maximize the quality of
=/ ——. (24) the information carried by the relevant parameters, it is im-
12mByre portant to mention that even small instabilities in FP calcu-

lations (for example, uncertainties in the values &ifi; or
AH, in Eq. (20)) could have a deleterious effect on the ac-
curacy of the BFS parametesfsthat can be extracted from
. the computed values of the chemical energigs. (20)], and
?—f(E’éaﬁ ‘82) + ?—:(Egag ‘S(B:) =0. (25) therefore limit their ability to properly describe the system
under study. As an example of the reliance of this algorithm
Moreover, once\Hy andag are known, the bulk modulu8,  on the accuracy of the FP input, Fig. 3 shows typical results
can be computed from these expressitssuming that the for NiAl in the B2 andL1, structures, highlighting the role
alloy can also be described by an UBERy means of the of the chemical energies in the determination of the binding
scaling length [see Eq.(24)]: energy curve for each alloy. As described earlier, the algo-

After using the UBER(or any other alternative expres-
sion), Eq. (21) simply reads
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TABLE Il. Comparison between the equilibrium lattice paraméterangstromy energy of formation(electron-volts per atojm and
scaling length(in angstromgobtained from fitting FLAPW data with the universal binding energy curve of Rosek (see Ref. 8 and the
predictions of the same parameters obtained from EZf$.and (26) using the FLAPW+BFS approach introduced in Sec. V. The two
reference point$a; anda,) used in the FLAPW+BFS approach correspond to the equilibrium values of the lattice parameter of the single

elements.

FLAPW (This work)

Limited FLAPW input+BFS

N AHg lo & AHq lo

Alloy R) (eV/atom A) R) (eV/atom R)
NiAl (B2) 2.8951 -0.7598 0.3131 2.8958 -0.7582 0.3230
NiAl (L1p) 3.6676 -0.5431 0.3176 3.6658 -0.5427 0.3244
NizAl (L1,) 3.5652 -0.4732 0.3065 3.5651 -0.4731 0.3016
NiTi (B2) 3.0148 -0.4728 0.3318 3.0146 -0.4706 0.3421
AlTi (L1p) 4.0224 -0.4367 0.3534 4.0213 -0.4366 0.3678
AlTi (B2) 3.1880 -0.3677 0.3490 3.1820 -0.3682 0.3741
CrFe(L1p) 3.5250 -0.1339 0.2569 3.5255 -0.1354 0.2550
NiCr (L1p) 3.5469 -0.1545 0.2669 3.5457 -0.1545 0.2694
AlCo (B2) 2.8522 -0.8632 0.2984 2.8518 -0.8631 0.3067
AlCo (L1p) 3.6382 -0.4451 0.2986 3.6371 -0.4450 0.3028
CoCr(L1y) 3.5156 -0.2649 0.2546 3.5156 -0.2652 0.2536
AlFe (B2) 2.8693 -0.5866 0.2983 2.8691 -0.5865 0.3053
AlFe (L1y) 3.6547 -0.1639 0.2977 3.6510 -0.1651 0.3016

TABLE lIl. A sample of theoreticalRefs. 14—2D and experimentalRefs. 21-32 results for the equilibrium lattice paramet&y (in
angstromsand energy of formation per atoHy (in electron-volts per atojrfor some of the binary alloys listed in Table II. The asterisk
indicates the observed structure.

ag (A) AH, (eV/atom
FP Exp. Theor. FP
Alloy This work Ref. 21 Ref. 14 This work Exp. Theory
NiAl (B2)" 2.8951 2.8864 2.8332 -0.7598 -07660.74, -0.70
-0.6% -0.78", -0.83,,

-0.6¢!, -0.68' -0.72
-0.7C¢, -0.64 -0.6%, -0.74

NiAl (L1o) 3.6676 3.5698 -0.5431 -0.540.58"

NizAl (L1,)" 3.5652 3.567 3.4746 -0.4732 -0%60.43, -0.46, —0.50"
-0.42, -0.4%

NiTi (B2)" 3.0148 3.015 2.9226 -0.4728 -0i35 -0.358, -0.42, —-0.47", -0.4%

AlTi (L1y)" 4.022 4.005 3.9715 -0.4367 -0.39-0.39, -0.41, -0.44

(cla=1) (c/la=1.02 -0.3%, -0.3&
AlTi (B2) 3.1880 3.1528 -0.3677 -0.26
AlFe (B2)" 2.8693 2.909 2.8205 -0.5866 -0.25-0.2¢, -0.42
(nonmagnetit -0.28
AlFe (L1) 3.6547 3.5534 -0.1639 -0.17
(nonmagnetit

aSee Ref. 22. kSee Ref. 32.

bSee Ref. 23. ISee Ref. 14.

ZSee Ref. 24. MSee Ref. 15.

egss S:]f- gg "See Ref. 16.

'See Ref. 27. °See Ref. 17.

9See Ref. 28, PSee Ref. 18.

hSee Ref. 29, ASee Ref. 19.

iSee Ref. 30. 'See Ref. 13.

iSee Ref. 31. SSee Ref. 20.
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FIG. 3. Binding energy curves fokB alloys.
The solid curves describe the pure elemdiis
-8.0 . L : Al) and the binary alloys NiAl in different struc-
@ 20 ,3(-‘2) 4.0 tures:(a) B2 and(b) L1,. The other curves denote
at the predictions based on variations of the equilib-
00 rium lattice parametergaand the energy of for-
' mation (AHy) of (-1%,-109% (dots, (+1%,
-10%) (dashed ling (-1%,+10% (long
dashed ling and (+1%,+10% (dot-dashed
line).
-20
i}
>
L
m
-4.0
_6.0 1 1
25 35 4.5
(b) a(A)
rithm relies on the determination of the chemical energies of g(°> _ _af(aﬂ) (29)
W =

each nonequivalent atom which, via E@9), define the

binding energy curve for the alloy. We note that in the samegng

way that the chemical energies can be determined from Eqg.

(20), they can also be obtained frofay, AH,) (as long as AHg=2[EA(1 -gW) + EB(1 -gP)], (29

Eq. (21) is satisfied
(and a similar expression foig). In Fig. 3, besides plotting
the binding energy curve for each pure element, we include

o 2(AHy - AHy) . EAaS*( ) 27) the UBER for the alloy when the FP values(ef),, AH,) are
A © 8 céa (80, used. We also include alternative results for this same curve,
Oa|\1- . also obtained from Eqd23), but where the FP inpug, AHy)
A has been increased or decreased by (186 the lattice pa-
rametey and 10%(for the energy of formation While little
where variation is seen for NiAIB2, substantial dispersion of the
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predicted values occurs in the NiAl, structure, underscor- tions. In this paper we show that it is possible to model the
ing the sensibility of the FLAPW+BFS algorithm against process of alloy formation with a minimum number of pa-
small variations in the FP input used. In light of this feature,rameters in the vicinity of equilibrium, as shown in Figs. 1
it is not surprising that the stability of the BFS predictionsand 2. The lack of limitations on the method regarding the
are directly linked to the quality and precision of the input number of elements present in an alloy enables the study of
used. Accurate and precise theoretical or experimental inpuhulticomponent systems with the same simplicity observed
will result in correspondingly accurate BFS predictions, andin the example earlier for binary systems. In this sense, and
conversely, unstable input would translate into dispersion oflue to the potential important applications in studying sys-

the resultgas seen in Fig. ®)). tems of practical use, the algorithm in Sec. IV serves the
purpose of simplifying the modeling effort to tractable lev-
VI. CONCLUSIONS els.
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