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Within the framework of the two-sublattice Mitsui model, taking into account the piezoelectric interaction
with the shear strain«4, a dynamic dielectric response of Rochelle salt is considered. Experimentally observed
phenomena of crystal clamping by high-frequency electric field, piezoelectric resonance, and microwave dis-
persion are described. Ultrasound velocity and attenuation are calculated, and peculiarities of their temperature
dependence at the Curie points are described. Existence of a cutoff frequency in the frequency dependence of
attenuation is shown.
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I. INTRODUCTION

Crystals of Rochelle salt have been attracting the interest
of physicists due to their practical applications and, from a
fundamental point of view, due to the curious character of
their ferroelectric behavior. In contrast to most of the known
ferroelectrics, in Rochelle salt the ferroelectric phase exists
only in a narrow temperature interval between two second-
order phase transitions at 255 and 297 K. Spontaneous po-
larization is directed along thea axis and accompanied by
the spontaneous shear strain«4. The ferroelectric phase is
monoclinic sC2

2d; both paraelectric phases are orthorhombic
sD2

3d. Thus Rochelle salt crystals are noncentrosymmetric
and piezoelectric in all phases, which essentially affects their
dielectric response.

In the frequency dependence of the dielectric permittivity
of Rochelle salt, the three following dispersion regions are
observedssee, e.g., Ref. 1d: sid domain-related dispersion be-
low 1kHz, present only in the ferroelectric phase,2,3 sii d mi-
crowave relaxational dispersion, andsiii d piezoelectric reso-
nance in the 104−107 Hz region, depending on sample
dimensions and temperature. Below the resonances the di-
electric permittivity of a free crystal is measured, whereas
above the resonances the crystal is effectively clamped. A
concise explanation of the clamping effect and the reso-
nances is given by the following formula, obtained by
Mueller4 in 1940 for the 1 cm long 45°X cuts of Rochelle
salt:

x = xfree+ S1 −
2V

v
tan

v

2V
Dd128

2s228 ,

where xfree is the free-crystal permittivity,V is the sound
velocity, andd128 , s228 are the corresponding piezomodule and
compliance. Applicability of this formula, however, is lim-
ited to the MHz region, since it does not reproduce the mi-
crowave dynamics of the permittivity.

The behavior of Rochelle salt is usually described within
a two-sublattice Ising model with an asymmetric double-well
potential sMitsui model5d. Usually it suffices to use the
mean-field approximation. Dynamic dielectric response is

approached within stochastic Glauber dynamics6,7 or the
Bloch equations method.8,9

The conventional Mitsui model does not take into account
the piezoelectric coupling with shear strain«4. This leads to
qualitatively incorrect results yielded by the model for the
temperature behavior of microwave relaxation times and dy-
namic permittivity near the Curie points.7,10 The origin of
such a discrepancy—a fundamental drawback of the conven-
tional model—is that the model does not distinguish free and
clamped crystals and is not able to reproduce the effect of
crystal clamping by high-frequency electric fieldsor me-
chanical stressd.

A recently proposed modification of the Mitsui model11

takes into account the piezoelectric effects. It allows one to
calculate, depending on what is necessarysobserved in ex-
perimentd, susceptibilities of either the free or clamped crys-
tal. Thus, setting the clamped crystal regime, we were able to
obtain a correct temperature behavior of the microwave di-
electric response of Rochelle salt, which was in both quali-
tative and quantitative agreement with experimentse.g., Ref.
12d also near the Curie points.

So far the model consideration of dielectric response in
Rochelle salt has been restricted to the static limit and to the
microwave region. Attempts to explore the piezoelectric
resonance phenomenon within a model that does not take
into account the piezoelectric coupling are pointless. It seems
thus natural to extend the model with piezoelectric
coupling11 onto the entire frequency range from the static
limit sin the ferroelectric phase from about 1 kHzd to THz
frequencies, including as well the piezoelectric resonance re-
gion. For a coupled dynamics of the shear strain
«4–pseudospin system, the standard methods of description
of the lattice strain dynamics13 based on Newtonian equa-
tions of motion will be combined with the Glauber approach
to pseudospin dynamics. We shall calculate dynamic dielec-
tric, piezoelectric, and elastic characteristics of Rochelle salt.
Evolution of the dielectric permittivity from the static free
crystal value via the piezoelectric resonances to the clamped
crystal value and to the microwave relaxation will be de-
scribed. Within the same approach we shall derive expres-
sions for ultrasound velocity and attenuationsfor a certain
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geometry of sound propagationd and explore their tempera-
ture and frequency behavior.

Experimentally sound attenuation in Rochelle salt has
been studied since the 1940’s14–17. In accordance with the
Landau and Khalatnikov prediction,18 an anomalous increase
of attenuation associated with the shear strain«4 was re-
vealed near the Curie points. So far the theoretical descrip-
tion of this phenomenon has been restricted to that proposed
by the Landau approach based on expansions of thermody-
namic potential in the order parameter.15,19 In the present
paper the model calculations of attenuation will be per-
formed.

II. THERMODYNAMICS OF THE SYSTEM

Let us present here the main results for the equilibrium
thermodynamics of Rochelle salt obtained within the modi-
fied Mitsui model.11 Calculations are performed with the
Hamiltonian

Ĥ = NUseed−
1

2o
qq8

o
f f8=1

2

Rqq8sf f8d
sqf

2

sq8f8

2
− Do

q
Ssq1

2
−

sq2

2
D

− sm1E1 − 2c4«4do
q

o
f=1

2
sqf

2
. s2.1d

Here

Useed=
v
2

c44
E0«4

2 − ve14
0 «4E1 −

v
2

x11
«0E1

2

is a “seed” energy of the crystal lattice which forms the
asymmetric double-well potential for the pseudospins.
Rqq8s11d=Rqq8s22d=Jqq8 and Rqq8s12d=Rqq8s21d=Kqq8 are
constants of interaction between pseudospins belonging to
the same and to different sublattices, respectively. The pa-
rameterD describes the asymmetry of the double-well poten-
tial; m1 is the effective dipole moment. The last term is the
internal field created by the piezoelectric coupling with the
shear strain«4.

Introducing the parameters of ferroelectric and antiferro-
electric ordering

j =
1

2
sksq1l + ksq2ld, s =

1

2
sksq1l − ksq2ld,

within the mean-field approximation, we obtain the thermo-
dynamic potential of the system11

g1E

N
= Useed+

J + K

4
j2 +

J − K

4
s2 −

2 ln 2

b

−
1

b
ln cosh

g + d

2
cosh

g − d

2
− vs4«4,

where

g = bSJ + K

2
j − 2c4«4 + m1E1D ,

d = bSJ − K

2
s + DD ,

andJ,K are the Fourier transforms ofJqq8 andKqq8 at k =0.
Equations for polarization and strain are

s4 = c44
E0«4 − e14

0 E1 + 2
c4

v
j,

s2.2d

P1 = e14
0 «4 + x11

«0E1 +
m1

v
j.

The other calculated static characteristics are the piezomod-
ule

d14 = S ]P1

]s4
D

E1

= d14
0 −

s44
E0m18bc4

v
f2sj,sd, s2.3d

dielectric permittivity of a free crystal

«11
s = 1 + 4pS ]P1

]E1
D

s4

= «11
s0 + 4p

bsm18d
2

2v
f2sj,sd, s2.4d

compliance

s44
E = S ]«4

]s4
D

E1

= s44
E0 + ss44

E0d22bc4
2

v
f2sj,sd, s2.5d

and elastic constant at constant field

c44
E = S ]s4

]«4
D

E1

= c44
E0 −

2bc4
2

v
f1sj,sd. s2.6d

The following notations are used:

f1sj,sd =
w3

w2
, f2sj,sd =

w3

w2 − Lw3
,

l1 = 1 −j2 − s2, l2 = 2js,

w2 = 1 −
bJ

2
l1 − b2K2 − J2

16
sl1

2 − l2
2d,

w3 = l1 + b
K − J

4
sl1

2 − l2
2d,

s44
E0 =

1

c44
E0, d14

0 =
e14

0

c44
E0, «11

s0 = 1 + 4px11
s0,

x11
s0 = x11

«0 + e14
0 d14

0 , m18 = m1 − 2c4d14
0 ,

L =
2bc4

2s44
E0

v
.

Values of the model parameters providing the best descrip-
tion of these characteristics are given in Table I.

III. VIBRATIONS OF X CUTS OF ROCHELLE SALT

In this section we shall consider vibrations of a thin
square platel 3 l of Rochelle salt crystal cut in thes100d
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plane sX cutd induced by time-dependent electric fieldE1
=E10 expsivEtd or shear stresss4=s40 expsivstd. Those
fields give rise to the shear strain«4. For the sake of simplic-
ity we shall neglect the diagonal strains«i si =1,2,3d, which,
in fact, are also created in the ferroelectric phase due to
nonzero components of elastic constants tensorci4.

Dynamics of the pseudospin subsystem will be described
within the Glauber approach, where the kinetic equations for
the time-dependent averagesj ands have the form11

− a
d

dt
j = j −

1

2
Ftanh

1

2
sg + dd + tanh

1

2
sg − ddG ,

s3.1d

− a
d

dt
s = s −

1

2
Ftanh

1

2
sg + dd − tanh

1

2
sg − ddG .

Here a is the parameter setting the scale of the dynamic
processes in the pseudospin subsystem. The best description
of microwave permittivity11 is obtained ata=1.7310−13 s.
It should be noted that Eqs.s3.1d formally are relations of the
form

dz

dt
= A

]G

]z

sz=j ,s are the dynamic variables of the system,G is its
thermodynamic potential,A is a certain constantd. This ki-
netic equation is usually used for description of the order-
parameter dynamics and sound attenuation in ferroelectric
crystals,15,19 with the phenomenological thermodynamic po-
tentialG presented as a series expansion in the order param-
eter. In our case, the model thermodynamic potentials2.2d is
used.

Dynamics of the strain«4 will be described by the stan-
dard method, using classicalsNewtoniand equations of
motion13 of an elementary volume

r
]2hi

]t2
= o

k

]sik

]xk
, s3.2d

wherer=1.767 g/cm3 is the crystal density,hi are the dis-
placements of an elementary volume along the axisxi, and
sik are components of the mechanical stress tensor. We need
to determine the displacementsh2 and h3, giving the shear
strain

«4 =
]h2

]z
+

]h3

]y
.

Taking into account Eq.s2.2d for s23=s4, as well as the fact
that the diagonal strains are assumed equal to zero,

«2 =
]h2

]y
= 0, «3 =

]h3

]z
= 0,

the expressionss3.2d for i =2,3 reduce to two equations,

r
]2h2

]t2
= c44

E0]2h2

]z2 +
2c4

v

]j

]z
,

s3.3d

r
]2h3

]t2
= c44

E0]2h3

]y2 +
2c4

v

]j

]y
.

At small deviations from the equilibrium the dynamic
variablesj, s, and«4 can be presented as sums of the equi-
librium values and of the fluctuational deviations

j = j̃ + jt, s = s̃ + st, «4 = «̃4 + «4t = «̃4 +
]h2t

]z
+

]h3t

]y
.

Equationss3.1d and s3.3d can be expanded in terms of these
deviations up to the linear terms. For the fluctuation parts we
obtain the following system of equations:

− a
d

dt
jt + a1jt + a2st + a01F ]h2t

]z
+

]h3t

]y
G = a02E1,

− a
d

dt
st + b1jt + b2st + b01F ]h2t

]z
+

]h3t

]y
G = b02E1,

s3.4d

r
]2h2t

]t2
= c44

E0]2h2t

]z2 +
2c4

v

]jt

]z
,

r
]2h3t

]t2
= c44

E0]2h3t

]y2 +
2c4

v

]jt

]y
,

with

a1 = − 1 +b
J + K

4
l1, a2 = b

K − J

4
l2,

a01 = − bc4l1, a02 = −
bm1

2
l1,

b1 = − b
J + K

4
l2, b2 = − 1 −b

J + K

4
l2,

b01 = bc4l2, b02 =
bm1

2
l2.

All further consideration will be based on systems3.4d.
Solving the first two equations ofs3.4d at h2t=h3t=0 sre-

gime of a mechanically clamped crystald, we find

jt = o
i=1

2

Ci exps− t/tid + F1savEdE10expsivEtd,

where

F1savd =
iavl1 + w3

siavd2 + siavdw1 + w2
,

TABLE I. Theory parameters used for Rochelle saltsRef.
11d.

J/kB K /kB D /kB c4/kB c44
E0 d14

0 x11
s0

K dyn/cm2 esu/dyn

797.36 1468.83 737.33 −760 12.831010 1.9310−8 0.363

v=0.5219f1+0.00013sT−190dg310−21 cm3.
m1=f2.52+0.0066s297−Tdg310−18 esu cm.
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F1s0d = f1sj,sd, w1 = 2 −
bJ

2
l1.

The relaxation times are

t1,2
−1 =

1

2a
f− w1 7 Îw1

2 − 4w2g . s3.5d

t1 exhibits critical slowing down andt2 has only weak pe-
culiarities at the transition points. However, both of these
times remain finite at the transition points, which is in accor-
dance with experimental data.12

The corresponding dynamic dielectric permittivity of a
mechanically clamped crystal is11

«11
« svd = «11

«0 + 4p
bm1

2

2v
F1savd, «11

«0 = 1 + 4px11
«0.

s3.6d

It can be presented as a sum of two Debye terms, where the
contribution related tot2 is different from zero only in the
ferroelectric phase and even then it is several orders smaller
than the one related tot1 ssee Ref. 11 for detailsd.

Hereafter, we shall not impose any artificial conditions for
the displacementsh2t, h3t. We shall look for solutions of the
systems3.4d in the form of harmonic waves

jt = jEsy,zdexpsivEtd + jssy,zdexpsivstd,

st = sEsy,zdexpsivEtd + sssy,zdexpsivstd,

«4t = «4Esy,zdexpsivEtd + «4ssy,zdexpsivstd, s3.7d

h2t = h2EszdexpsivEtd + h2sszdexpsivstd,

h3t = h3EsydexpsivEtd + h3ssydexpsivstd.

The first two equations ofs3.4d give

jEsy,zd = − bc4F1savEd«4Esy,zd +
bm1

2
F1savEdE10,

s3.8d
jssy,zd = − bc4F1savsd«4ssy,zd.

Taking into accounts3.7d and s3.8d, from the two last equa-
tions of s3.4d, it follows that

h2E =
c̃44

E savEd
rsivEd2

]2h2E

]z2 , h3E =
c̃44

E savEd
rsivEd2

]2h3E

]y2 ,

h2s =
c̃44

E savsd
rsivsd2

]2h2s

]z2 , h3s =
c̃44

E savsd
rsivsd2

]2h3s

]y2 ,

where

c̃44
E savd = c44

E0 −
2bc4

2

v
F1savd.

Assuming the plane-wave form ofhiE,

h2E , expsikEzd, h3E , expsikEyd,

and similarly forh2s, h3s, we find the dispersion law for the
vibrations

kE =
ÎrvE

Îc̃44
E savEd

, ks =
Îrvs

Îc̃44
E savsd

. s3.9d

The boundary conditions are set as follows:

«4Es0,0d = «4Es0,ld = «4Esl,0d = «4Esl,ld = «0E,

«4ss0,0d = «4ss0,ld = «4ssl,0d = «4ssl,ld = «0s.

The values of«0E and «0s are determined froms2.2d, using
relationss3.8d between«4E andjE, and between«4s andjs,

«0E =

d14
0 −

bm1c4s44
E0

v
F1savEd

1 − LF1savEd
E10,

«0s =
s44

E0

1 − LF1savEd
s40.

With these boundary conditions we find that

«4Esy,zd =
«0E

2
FcoskEz+ coskEy

− tan
kEl

2
ssin kEy + sin kEzdG ,

and similarly for«4ssy,zd.
Using Eqs.s2.2d and s3.8d, we can find polarization

P1sy,z,td = P1Esy,zdexpsivEtd + P1ssy,zdexpsivstd,

where

P1Esy,zd = Fe14
0 −

bm1c4

v
F1savEdG«4Esy,zd

+ Fx11
«0 +

bm1
2

2v
F1savEdGE10,

P1ssy,zd = Fe14
0 −

bm1c4

v
F1savsdG«4ssy,zd.

Observable dynamic characteristics of the system: dielectric
susceptibility at constant stressx11

s svEd, piezomodule
d14svsd, and elastic compliance at constant fields44

E svsd, are
expressed as appropriate derivatives from the integrals over
the sample volume of polarization or strain

x11
s svEd =

1

l2
]

]E10
E

0

l

dyE
0

l

dzP1Esy,zd,

d14svsd =
1

l2
]

]s40
E

0

l

dyE
0

l

dzP1ssy,zd,
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s44
E svsd =

1

l2
]

]s40
E

0

l

dyE
0

l

dz«4ssy,zd.

Thus

«11
s svd = 1 + 4px11

s svd,

s3.10d

x11
s svd =

Rsvd − 1

Rsvd Fx11
«0 +

bm1
2

2v
F1savdG

+
1

RsvdFx11
s0 +

bsm18d
2

2v
F2savdG ,

s44
E svd =

1

RsvdHs44
E0 + ss44

E0d22bc4
2

v
F2savdJ , s3.11d

d14svd =
1

RsvdHd14
0 −

s44
E0m18bc4

v
F2savdJ , s3.12d

where

F2svd =
iavl1 + w3

siavd2 + iavfw1 − Ll1g + fw2 − Lw3g
,

F2s0d = f2sj,sd,

1

Rsvd
=

2

kl
tan

kl

2
.

Let us analyze the above results. In the static limitfv
→0, Rsvd→1g from s3.10d we obtain the static permittivity
of a free crystals2.4d; in the high-frequency limitfRsvd
→`g we get a dynamic permittivitys3.6d of a mechanically
clamped crystal, exhibiting relaxational dispersion in the mi-
crowave region. Thus, Eq.s3.10d explicitly describes the ef-
fect of crystal clamping by high-frequency electric field.
Elastic compliances44

E svd and piezomoduled14svd in the
high-frequency limit turn to zero, which is also a manifesta-
tion of the clamping effect. Atv→0 Eqs.s3.11d and s3.12d
transform intos44

E s2.5d andd14 s2.3d.
In the intermediate frequency region, the calculated char-

acteristics have a resonance dispersion with numerous peaks
at frequencies where RefRsvndg=0 or Refknl /2g=ps2n
+1d /2. Frequency variation ofc̃44

E svd is perceptible only in
the region of the microwave dispersion of the dielectric sus-
ceptibility. Below this regionc̃44

E svd is practically frequency
independent and coincides with the static elastic constantc44

E .
Since the resonance frequencies are expected to be in the
104−107 Hz range, depending on temperature and sample
dimensions, we can neglect the frequency dependence of
c̃44

E svd and reduce an equation for the resonance frequencies
to

vn =
ps2n + 1d

l
Îc44

E

r
. s3.13d

Resonance frequencies are inversely proportional to sample
dimensions. Universalssample independentd is the frequency
constant 2pv0l.

IV. SOUND PROPAGATION IN ROCHELLE SALT
(90° Z CUTS)

Pulsed ultrasonics provide a powerful and convenient tool
for the investigation of mechanical and piezoelectric proper-
ties of crystals. The ultrasound wavelength is usually much
smaller than the sample dimensions. Therefore the dynamical
variablessdisplacements, order parameter, etc.d depend only
on the spatial coordinate which is the direction of sound
propagation.

Within the presented above approach one can readily
calculate the characteristics of ultrasound propagation in
Rochelle salt. From the point of view of the developed
model, one should consider the transverse sound wave,
which propagates in the so-called 90°Z cuts of Rochelle salt
sthin bars cut alongf001gd and is polarized alongf010g.
Among]hi /]xj the only nonzero derivative is]h2/]z; there-
fore, instead ofs3.4d we have

− a
d

dt
jt + a1jt + a2st + a01«4t = 0,

− a
d

dt
st + b1jt + b2st + b01«4t = 0, s4.1d

r
]2h2t

]t2
= c44

E0]2h2t

]z2 +
2c4

v

]jt

]z
.

One can easily verify that for the systems4.1d the frequency
dependence of the wave vector

ks =
Îrvs

Îc̃44
E savsd

coincides with that obtained in the previous section disper-
sion law of s100d plate vibrationss3.9d.

This expression gives the ultrasound velocityV
=v /Refkg and the contribution of the ordering subsystem
into ultrasound attenuation for a 90°Z cut of Rochelle salt
ût=−Imfkg. Background contributions into observed attenu-
ation sinherent to pulsed method: beam spreading, pulse dis-
tortion, etc.d will be described by a constant frequency and
temperature-independent termû0, such that

Vsvd = ReÎ c̃44
E savd

r
, s4.2d

ûsvd = û0 − Im F Îrv

Îc̃44
E savd

G . s4.3d

At low frequencies, whenvt1!1 and Refc̃44
E savdg

@ Imfc̃44
E savdg sup to about,100 MHz, maybe except the

vicinity of the transition pointd, in a quadratic with respect to
vt1 approximation we have

c̃44
E savd . c44

E0 + sc44
E − c44

E0d
1 + ivt1

1 + v2t1
2

sthe Debye contribution related to the relaxation timet2 is
neglectedd. Thence we obtain the approximate formulas for
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low-frequency sound velocity and attenuation

V2 = V0
2 +

1

r

c44
E − c44

E0

1 + v2t1
2, ûsvd = û0 +

V0
2 − V2

2V3 v2t1,

V0
2 =

c44
E0

r
.

In this approximation the sound velocity is hardly frequency
dependent, whereas attenuation is proportional to the square
of frequency.

V. NUMERICAL ANALYSIS

No additional theory parameters should be determined
apart from those found in Ref. 11 and given in Table I. We
have, however, to specify the sample dimensions, which de-
termine the positions of the resonance peaks.

A. Dynamic response of Rochelle salt

First let us consider the calculated dielectric susceptibility,
piezomodule, and elastic compliance of anX cut of Rochelle
salt. A square plate with dimensions 131 cm2 is assumed.

Figure 1 shows the frequency dependence of dynamic
permittivity of Rochelle salt in the ferroelectric phase. The
obtained evolution of the permittivity is analogous to the
experimental one,1 except for the domain-related dispersion
below 1 kHz. Similar behavior is observed also in the
paraelectric phases. Atv→0 the static permittivity of a free
crystal is obtained; in the region 105÷107 Hz a resonance
dispersion is observed. Magnitudes of the resonance peaks
decrease upon increase of frequency. Above the resonances
crystals get clamped by a high-frequency field, and the per-
mittivity of a clamped crystal exhibits a relaxational disper-
sion in the microwave region.

The piezomoduled14svd, the frequency dependence of
which is depicted in Fig. 2, as well as the elastic compliance
s44

E svd, show a resonance dispersion in the 105÷107 Hz re-
gion, turn to zero above the resonances and to their static
values below them.

Figures 3 and 4 illustrate the temperature dependences of
dynamic permittivity at different frequencies. The tempera-
ture curves of the dynamic piezomodule and compliance are
similar. Below the frequency of the first resonance peak, the
temperature variation of dynamic permittivity essentially co-
incides with that of the static permittivity of a free crystal.
Near the resonance frequencies, the sharp peaks in the tem-
perature curve of permittivity appear, the number of which
increases with increase of frequency, whereas the magnitudes
decrease. Upon further increase of frequency, numerous
resonance peaks of small amplitude arise around the curve of
clamped permittivity. At even higher frequencies the peaks
disappear, and the typical smooth curve of the clamped per-
mittivity is observed.

B. Sound attenuation

In Fig. 5 we show the temperature dependence of ultra-
sound attenuation for the transverse wave propagating in the
90° Z cut of Rochelle salt. Near the Curie points a sharp
increase of attenuation is obtained, in accordance with the
Landau and Khalatnikov theory.18 A qualitative agreement
with experiment is obtained. The experimental attenuation in
the ferroelectric phase strongly exceeds the theoretical one;
this should be attributed to domain effects.

A certain quantitative discrepancy between theory and ex-
periment takes place in the paraelectric phases as well. The
theoretical values are usually smaller than the experimental
ones. This should be explained by the existence of additional
sound absorption mechanisms which are not taken into ac-
count by the proposed model. Another factor is the possible
nonlinearity that could occur during the experimental mea-

FIG. 1. Frequency dependence of dielectric
permittivity of Rochelle salt at 289 K. Solid line:
Eq. s3.10d. s: Dynamic permittivity of a clamped
crystals3.6d. j: Static permittivity of a free crys-
tal. Lines and symbols: A theory.

FIG. 2. Frequency dependence of the dynamic
piezomodule of Rochelle salt at 289 K.j: Static
piezomodules2.3d. Lines and symbols: A theory.
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surements, increasing thus the measured value of attenuation
sdue to generation of higher harmonicsd.

In the low-frequency rangesv&106 Hzd, as expected, at-
tenuation varies proportionally to the square of frequency.
The closer the temperature is to the Curie point, the larger is
the rate of this variationsFig. 6d.

An interesting effect is observed at high frequencies.
Somewhat below the region of the microwave dispersion of
dielectric permittivity, the theory predicts a sharp increase of
attenuation with increase of frequency; after that the satura-
tion is observedsFig. 6d. Such high values of attenuation at
saturation, in fact, mean absence of sound propagationscut-
off frequencyd. One may notice that the position of the cutoff
frequency is in the region of a fast increase in the imaginary
part of the dielectric permittivitysFig. 6d. In the paraelectric
phases the cutoff frequency decreases with approaching the
transition point sFig. 7d. Experimental measurements of
sound attenuation in Rochelle salt so far have been restricted
to the MHz region. The extension of sound attenuation mea-
surements to higher frequenciesspossibly up to the micro-
wave regiond is thus of great interest.

At the frequency of the microwave dispersion of permit-
tivity, a sharp increase of sound velocity should be observed

ssee Fig. 7d, after which the frequency curve of velocityVsnd
saturates. The saturation value is temperature independent
and equal toV0=Îc44

E0/r.

VI. CONCLUSIONS

In this paper we have applied the previously proposed
modification of the two-sublattice Mitsui model with piezo-
effect to description of a dynamic response of Rochelle salt
in the entire frequency range from the static limits1 kHz in

FIG. 3. Temperature dependences of dynamic dielectric permit-
tivity of Rochelle salts3.10d near the lower transition point at dif-
ferent frequencies.

FIG. 4. Same in a wide temperature range.

FIG. 5. Temperature dependence of attenuation for the trans-
verse wave propagating in the 90°Z cut of Rochelle salt near the
Curie points atn=53106 Hz ssolid lines,P, Refs. 14 and 15d and
n=107 Hz, sdashed line,s, Ref. 16d. Lines: Eq. s4.3d with k0

=0.5 cm−1.
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the ferroelectric phased up to the THz region. Dynamic di-
electric, piezoelectric, and elastic characteristics are calcu-
lated. Experimentally observed evolution of dynamic permit-
tivity from the static free crystal value via the piezoelectric
resonances to the clamped crystal value and to the micro-
wave relaxation is obtained. Within the same approach the
sound velocity and attenuation for a transverse wave propa-
gating in the 90°Z cut are calculated. A qualitative agree-
ment with experiment for sound attenuation is obtained. To
reach a satisfactory quantitative description of some of the
experimental data, one should take into account nonlinear
processes and/or additional mechanisms of sound attenuation

not included in the present model. This is the subject of our
further studies. An existence of a cutoff frequency for sound
propagation is expected, which frequency position correlates
with the start of a fast increase in the imaginary part of the
dielectric permittivity. Experimental measurements of sound
attenuation in Rochelle salt in this frequency range have not
been performed and are of great interest.
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FIG. 6. Frequency dependence of attenuation at different tem-
peraturessKd. Left: s1d 298, s2d 299, s3d 300, s4d 305. Right: 289
ssolid linesd. Dashed line: Imaginary part of dielectric permittivity.

FIG. 7. Frequency dependences of sound velocity and attenua-
tion at different temperaturessKd: s1d 298, s2d 300, s3d 350.
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